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Theoretical and experimental considerations of the critical 

current density of DI-BiSCCO superconducting tapes as a 

function of magnetic field, field orientation, temperature and 

strain  
 

Prapaiwan Sunwong 

Abstract: The critical current density (Jc) of DI-BiSCCO superconducting tapes was 

measured as a function of magnetic field (B), field orientation (θ), temperature (T) 

and strain () in a 15 T split-pair horizontal superconducting magnet using probes 

designed and built in-house. Strain was applied to samples using a modified bending 

beam apparatus with a copper beryllium springboard-shaped sample holder, which is 

capable of applying uniaxial strains of -1.4 %    1.0 %. The temperature of the 

sample was controlled with the use of an inverted insulating cup with a temperature 

stability of 80 mK to 200 mK. The vapour-cooled brass critical-current leads 

(incorporating high-temperature superconducting tapes) were optimised to minimise 

helium consumption. Optimisation includes consideration of the maximum safe 

temperature of the current leads and the effects of duty cycle and static helium boil-

off. The optimised helium consumption of the leads is a factor of two lower than   

standard current leads optimised for magnets. Jc(B,T,θ,) data of the DI-BiSCCO 

tapes were characterised based on the superconducting-normal-superconducting 

Josephson junction model where Jc is determined by flux flow along the grain 

boundaries (or the normal junctions). It was found that grain boundaries in the DI-

BiSCCO tapes are thick (several tens of nanometre) and exhibit semiconducting 

behaviour. The degree of misalignment has been included into the anisotropy 

analysis of Jc and the correlation between the effective anisotropy and texturing of 

the sample obtained. Analysis of three different samples (Nb3Sn, YBCO and 

BiSCCO) is presented where the average local properties of the grain boundaries 

were extracted from magnetisation and the transport Jc data.  
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Chapter 1  
 

Introduction  

 

Superconductivity is a captivating phenomenon found in those materials that exhibit 

the vanishing of electrical resistance below a critical temperature. An electric current 

can be transmitted through a superconductor without any dissipation. For a century, 

superconductivity has attracted the attention of scientists and engineers throughout 

the world and has led to developing an understanding and enabling the practical use 

of superconducting materials. Superconductors have been used successfully in the 

magnet systems of Magnetic Resonance Imaging (MRI) scanners and Nuclear 

Magnetic Resonance (NMR) spectrometers which are widely used in medical and 

scientific research applications. Superconducting magnets in large systems have also 

been accomplished. The Large Hadron Collider (LHC) was successfully built with a 

27-kilometre ring of superconducting magnets and operated for collisions at 8 TeV in 

2012, which will be increased to 13 TeV in 2015 [1]. ITER, the world’s largest 

tokamak being built in France with contribution from several countries around the 

world, uses superconducting magnets to confine, shape and control the plasma for 

fusion reactions. The reactor has been designed to produce an output energy up to 10 

times of the input energy. It is planned to be operated in the next decade and will 

demonstrate the feasibility of a sustainable source of fusion energy that emits no 

pollution to the environment [2].  

The production of superconducting magnets has been dominated by the use of low-

temperature superconductors such as Nb3Sn and NbTi which are necessarily operated 

in liquid helium. The shortage of helium is currently a serious issue and its supply 

has recently become erratic [3, 4]. Scientists and users are aware of this problem and 
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searching for a solution or alternative cooling methods. In fact, discovery of a 

ceramic copper oxide compound which is superconductive at above 30 K in 1986 [5] 

has led to the discovery of various other high-temperature superconducting materials 

that exhibit critical temperatures above liquid nitrogen temperature. These materials 

have provided the possibility of superconducting applications operated at lower 

cooling cost in liquid nitrogen. However, the use of them is still limited due to their 

ceramic properties and a lack of understanding of the mechanism(s) that give rise to 

the high-temperature superconductivity. Their brittle nature restricts the available 

manufacturing processes. Technological fabrication techniques have been developed 

to overcome this problem for example by introducing metallic layers in wire/tape 

structure so that the conductors are now easier to handle. The anisotropy and grain 

boundary problems are also major concerns. The grain boundaries in high-

temperature superconductor suppress current flow [6]. Therefore, the critical current 

density in these materials will not achieve the intrinsic ability unless the grain 

connectivity and alignment are understood and improved. Nevertheless, the high-

temperature superconductors can be used in many applications including power 

cables, transportation, motors, transformers, power storage devices, fault current 

limiters, superconducting magnets and SQUID (superconducting quantum 

interference device) magnetometers which until recently were restricted to the use of 

low-temperature superconductors [7]. 

The research reported in this thesis concentrates on the critical current density of 

BiSCCO tapes, a commercially available high-temperature superconductor with the 

highest critical temperature of ~110 K. The critical current density is probably the 

most important property for applications.  In operation, superconductors are expected 

to experience self-field generated by flowing current, external magnetic fields, 

different operating temperatures and mechanical strains. Superconducting magnet 

engineering needs to know the critical current density as a function of all operational 

parameters involved in order to design the magnet efficiently. Therefore, 

understanding the effect of field, temperature and strain on the critical current density 
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is crucial. In this work, transport (and some magnetic) critical current densities of 

BiSCCO tapes were measured and the data were analysed based on a theoretical 

model previously established in our group. The results provide insight into the 

current carrying mechanism in polycrystalline superconductors. 

This thesis is structured as follows: Chapter 2 provides general characteristics of 

superconductor and fundamental theories of superconductivity including the 

phenomenological Ginzburg-Landau theory and BCS theory which describes 

superconductivity from the condensation of electron pairs. Flux pinning models are 

also discussed in the last section to explain the generally accepted origin of critical 

current density in superconductor. Chapter 3 is a review of high-temperature 

superconductivity which includes general properties, important production 

techniques and challenges in understanding and improving the superconducting 

properties to make it useful in applications. Chapter 4 gives the description and 

specification of BiSCCO samples used in this work and presents the results from 

early critical current measurements. Effects of magnetic field, field orientation and 

strain on the transport critical current density are discussed. Chapter 5 presents 

design and calculations of the probes used to perform the critical current 

measurements in high magnetic fields as a function of field, field orientation, 

temperature and strain. Optimisation and construction of the current leads and the 

variable-temperature system are the main interests. Chapter 6 introduces the 

superconducting-normal-superconducting Josephson junction model used to describe 

the critical current density in polycrystalline superconductors based on flux flow 

along the grain boundaries. Experimental results of three samples (Nb3Sn, YBCO 

and BiSCCO) are discussed, showing applicability of the model regardless of the 

type of superconductors studied. Transport measurements on BiSCCO tapes were 

performed at various temperatures using the probe presented in Chapter 5. The 

results are reported and discussed in Chapter 7. Finally, suggestions for future work 

are stated in Chapter 8. 
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Chapter 2  
 

Fundamentals of superconductivity 

 

2.1 Introduction 

In order to explain the mechanisms giving rise to superconductivity, comprehensive 

studies in various aspects are still in action. This chapter introduces the characteristic 

properties of superconductivity and provides the description of the theories including 

the Ginzburg-Landau theory introduced in 1950 which explains superconductivity 

from a phenomenological point of view and BCS theory introduced in 1957 which 

describes superconductivity from a microscopic point of view and includes the 

condensation of electron pairs. Finally we discuss flux pinning models which 

explains the origin of critical current density in superconductor. 

 

2.2 Characteristic properties of superconductivity 

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes [8] when he 

measured electrical resistance of solid mercury as a function of temperature. It was 

found that the mercury exhibits vanishing resistance at temperatures below ~4.2 K 

instead of approaching a constant value as expected by some of the current theories 

for metals at the time. The plot of resistance versus temperature from Onnes’ original 

work entitled “On the Sudden Change in the Rate at which the Resistance of Mercury 

Disappears” is shown in Figure 2.1(a) where the resistance drops abruptly 
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to ~10
-5 
 in the superconducting state. Other superconductors exhibit the same 

behaviour with the transition temperature or critical temperature (Tc) varying from 

material to material. Another important characteristic of superconductivity was 

discovered two decades later by Walther Meissner and Robert Ochsenfeld [9] when 

they found the exclusion of magnetic flux from the interior of superconducting tin 

and lead samples. This effect is known as the Meissner effect and is visualised in 

Figure 2.1(b). 

Figure 2.2 shows the magnetic response in two types of superconductors which are 

simply differentiated by their behaviour in a magnetic field. Type I superconductors 

act as a perfect diamagnet [10] in an external magnetic field strength less than the 

value of the critical field strength (Hc) at temperature below Tc. As a result, the total 

magnetic field inside type I superconductors is zero due to the cancellation of the 

applied magnetic field and the magnetisation, which is the characteristic of the 

Meissner state. The exception is at the surface layer of superconductor where the 

magnetic field can always penetrate. If the field strength and temperature are higher 

than Hc and Tc, the superconductivity disappears. 

 

        

Figure 2.1 (a) Electrical resistance of mercury as a function of temperature measured 

by Onnes, showing zero resistance state below ~4.2 K [8]. (b) Magnetic flux 

exclusion from superconducting material in Meissner state below Tc. 

(a) (b) 
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The magnetic response in type II superconductors is more complicated. The external 

magnetic field can partly penetrate into a bulk of material while it still has 

superconducting properties up to the upper critical field strength (Hc2). This regime 

is called the mixed state due to the coexistence of normal regions and 

superconducting regions. The penetration of magnetic field starts at the lower critical 

field strength (Hc1) where the magnetisation becomes less negative before reaches 

zero at the Hc2. Below Hc1, type II superconductor displays a Meissner-like 

behaviour. 

 

 

Figure 2.2 Magnetic response in type I and type II superconductors. The Meissner 

state is found in type I superconductor below Hc while it is found below Hc1 in type 

II superconductor before the superconductor enters the mixed state as the magnetic 

field increases. Eventually materials become normal when the field exceeds Hc in 

type I and Hc2 in type II superconductors. These behaviours occur below Tc. 
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2.3 Ginzburg-Landau theory 

Following the London equation of superconductivity and the Landau theory of 

second-order phase transitions introduced in 1930s [11, 12], Ginzburg and Landau 

together suggested that phase transition in a superconductor can be explained in 

terms of a complex order parameter,      ierr


with its square 
2

 represents 

the superelectron density (
*

en ) [13]. Similar to magnetisation in the Landau theory, 

the superconducting order parameter decreases with increasing temperature due to 

thermal fluctuation and vanishes at the critical temperature. The Gibbs free energy 

density functional of a superconductor, which is analytic and obeys the symmetry of 

Hamiltonian, is expressed in the form 

     

,  
22

               

i
2

1

2
,,

0

2

0

0

0

2

2
*

*

42












H
BH

B

Ae
m

TrgTrg
e

n











   (2.1) 

where  Trgn ,


 is the free energy density in the normal phase where the system is 

complete disordered, α and β are temperature-dependent phenomenological 

parameters, 
*

em  = 
em2  is mass of the superelectron (twice of the free electron mass 

em ), *e = 2e is superelectron charge (twice of the free electron charge e), A


 is the 

magnetic vector potential and B


 is the magnetic field. Minimising the total free 

energy with respect to the order parameter in the London-Landau gauge ( 0 A


) 

gives 

  0i
2

1 2*

*

2
 Ae

me


 ,      (2.2) 

which is known as the first Ginzburg-Landau equation. Similarly, minimisation of 

the free energy with respect to the vector potential and substituting the Ampère Law, 

JB


0 , provides the second Ginzburg-Landau equation: 



Chapter 2 Fundamentals of superconductivity  8 

 

  2

*

2*
**

*

*

0
2

i
 A

m

e

m

e
J

ee


        (2.3) 

where J


 is the superconducting current density. Considering magnetic flux 

penetration in  a type II superconductor, (2.3) leads to quantisation of the magnetic 

flux () through the surface of the normal domain and line integral of the current 

density (known as screening current density) around the domain, with flux quantum  

( 0 ) of */ eh  = 2.067910
-15

 Tm
2
. The flux quantisation occurs in the form of 

vortices, consisting of the normal core region and the outer region where the field 

exponentially decreases with distance from the core. The magnetic flux is called 

fluxoid or fluxon. As mentioned in the previous section, this is a characteristic of 

type II superconductor in the mixed state or vortex state. The vortices form a 

triangular vortex lattice which was first obtained using a perturbation method that 

dealt with the nonlinear term 
2

 
in the mixed state below the upper critical field. 

It was also confirmed later by the experiments [14-16]. This arrangement provides a 

minimum value of the free energy. A contour plot of normalised 
2


 
is shown in 

Figure 2.3 where the vertical distance between vortex cores is 2π
1/2

ξ/3
1/4

 and the 

horizontal distance between the rows of vortices is 3
1/4

π
1/2

ξ [17]. Here ξ is the 

coherence length which is the length scale at which the thermodynamic fluctuation 

of superconducting parameter occurs. From the first Ginzburg-Landau equation, ξ is 

defined as 

2/1

*

2

)(2 
















Tme


.        (2.4) 

The coherence length is therefore temperature dependent with    cTTT /10  . 

Another characteristic length of superconductor is the penetration depth (λ) which is 

a parameter that represents the depth that magnetic field penetrates into a 

superconductor in its superconducting state. The magnetic field exponentially decays 

to zero inside the superconductor and λ is the distance over which the field decreases 

by 1/e.  
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Figure 2.3 Level surfaces of normalised 
2

  for the triangular vortex lattice, which 

also represent the lines of constant magnetic field and constant current flow [17]. 

 

 

Figure 2.4 (a) Increase in the number of superconducting electrons 
*

en and the decay 

of the magnetic field B at the interface of a type I superconductor. (b) Change in the 

number of superconducting electrons and magnetic field around three fluxons in the 

vortex state of type II superconductor. 
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The second Ginzburg-Landau equation gives an expression for λ as 

2/1

2**

0

*


















en

m

e

e            (2.5) 

which is also temperature dependent since the density of superelectrons changes with 

temperature. At T = Tc where density of superelectron vanishes, the penetration depth 

becomes infinite and the superconductor becomes normal with complete penetration 

by the magnetic field.  

The ratio of the penetration depth to the coherence length of superconductor 

determines whether the superconductor is type I or type II. The ratio λ/ξ is known as 

the Ginzburg-Landau parameter ( GL ). Superconductors are classified as type I or 

type II depending on whether this parameter is less than or greater than 2/1  

respectively. Figure 2.4 shows the plots of magnetic field and superconducting 

electron density near the interface in two types of superconductor. Ginzburg and 

Laudau [13] showed that the surface tension, as well as the surface enery, changes 

from positive to negative values at GL  = 2/1 . If GL < 2/1 , the surface energy 

is positive because the energy associated with the exclusion of magnetic field is less 

than the condensation energy and the superconductor is type I. On the other hand, if 

GL  > 2/1 , the surface energy is negative and it is energetically favourable for the 

superconductor to form the vortices [18] showing type II behaviour.  

Critical field strength  

At the critical field strength at which the superconductivity of type I superconductor 

is destroyed, the Gibbs free energy in the normal phase and superconducting phase 

are equal and the transition is a first-order phase transition. One can obtain the 

expression for Hc from (2.1) by substituting B


= 0 in the superconducting phase and 

 = 0 in the normal phase, which gives 
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




0

2

2

cH .         (2.6) 

Experimentally, the temperature dependence of Hc of some metallic superconductors 

shows a common parabolic dependency described by ])/(1)[0()( 2

ccc TTHTH 

[10].  

In type II superconductor, existence of the mixed state leads to a continuous change 

in the order parameter approaching the Hc2 and the superconductor exhibits a second-

order phase transition from a reduction of diamagnetic energy. By solving the 

linearised form of the first Ginzburg-Landau Equation where the nonlinear term 


2

 
is ignored, the expression for Hc2 can be derived. It is shown in (2.7) which is 

valid for both types of superconductor. In type I superconductor, Hc2 is smaller than 

Hc and represents the stability boundary of the normal phase [17]. 

c

e

c H
Te

Tm
H 2

)(2

)(
GL2

0

0

0

*

2 











        (2.7) 

Anisotropic Ginzburg-Landau theory 

Due to structural anisotropy of some superconductors, most of the thermodynamic 

properties can be anisotropic and can be understood in terms of the anisotropic 

Ginzburg-Landau theory where superconductor is treated as a continuum with 

different properties along the three principal axes [19-21]. In the high-Tc 

superconductors, the anisotropy in the ab-plane is generally negligible and the 

parameter used to described the anisotropy (which is doping dependent) is defined as 

1
2

2

2/1

*

*

























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cc

abc

c

ab

ab

c

abe

ce

H

H

m

m
.     (2.8) 
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If the vortices are at an arbitrary angle θ relative to the ab-plane, the Ginzburg-

Landau parameter is in the angular form and the upper critical field from (2.7) 

becomes angular dependent, that is, 

2/1

2

2

2

22 cos
1

sin)(














 ccc HH   or 

1
cos)(sin)(

2

2

2

2

2

2 
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


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






 

abc

c

cc

c

H

H

H

H
.     (2.9)  

The external magnetic field penetrates into the anisotropic superconductor in the 

form of continuous vortices, similar to that predicted from the isotropic Ginzburg-

Landau theory. At low temperature, the vortices are straight with elliptical cross-

sections and arrange themselves in a periodic, solid-like lattice. When the 

temperature is increased, the vortices become undulate due to thermal agitation and 

the vortex lattice undergoes first-order melting at a sufficiently high temperature. 

Increasing the magnetic field decreases the melting temperature of the vortex lattice 

and the degree of anisotropy plays an important role in determining the melting line 

in the B-T phase diagram. The vortices become floppier with increasing anisotropy 

and the melting temperature is displaced to lower temperatures. 

An implicit assumption of the Ginzburg-Landau theory is that all the characteristic 

lengths of superconductivity are much larger than the interatomic spacing or layer 

periodicity length (S) in layered superconductor. At temperature close to Tc, all the 

characteristic lengths are much larger than S. However, the coherence length 

(especially the smallest one ξc) is reduced at lower temperature and can be smaller 

than S, making the continuum theory invalid [19, 22]. Lawrence and Doniach [23] 

introduced a useful theoretical model in which a layered superconductor is 

approximated as a stack of weakly coupled superconducting layers. It treats the 

superconductivity within the layers via the Ginzburg-Landau theory and treats the 

flow of current between adjacent layers via the Josephson effect. It can be reduced to 
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the anisotropic Ginzburg-Landau theory at the temperature close to Tc due to strong 

interlayer coupling. The transition temperature from two-dimensional (2D) behaviour 

(weak coupling) to three-dimensional (3D) behaviour (strong coupling) is given as  








 


 2

2

23D2D

)0(21
1

S
TT ab

c .       (2.10) 

The angular dependence of Hc2 in the 2D case is given by Tinkham [24] as  

1
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In 2D behaviour, a vortex line passing through a stack of weakly Josephson-coupled 

layers behaves as a set of 2D pancake vortices connected by Josephson strings [19, 

21]. Pancake vortices are characterised by nearly circular supercurrent patterns 

confined to the individual superconducting layers, as shown in Figure 2.5. Josephson 

strings are short segments of Josephson vortices, whose axes are confined to the 

weakly coupled regions.  

 

Figure 2.5 Stacks of pancake vortices connected by Josephson strings in a layered 

superconductor with 2D behaviour. Magnetic field is normal to the superconducting 

layer. 
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2.4 BCS theory 

The experimental evidence of the isotope mass dependence of the critical 

temperature of mercury was found in 1950 by Maxwell [25] and Reynolds [26]. This 

isotope effect obeys the empirical law 
2/1

Ic MT  = constant ( IM  is the isotope mass), 

which is also true for other superconductors. More importantly, it shows a relation 

between superconductivity, which is a property of the electron system, and a 

characteristic of the crystal lattice and led to the development of microscopic theory 

of superconductivity. The BCS theory is named after John Bardeen, Leon Cooper 

and Robert Schrieffer who introduced this theory in 1957 [27] based on the isotope 

effect. It was proposed that electrons in a superconductor form Cooper pairs by 

means of an interaction between electrons and the lattice to lower the ground state 

energy. The attractive interaction is isotropic so the bound electron pairs are formed 

in a state with zero orbital angular momentum (s-wave pairing). This formation could 

in principle increase the kinetic energy since the momentum of the electrons changes 

to a new value above the Fermi surface, however, the potential energy in many-

electron system decreases to more than compensate for the kinetic energy increase. 

By solving Schrodinger equation for two electrons interacting via a potential V, the 

eigenenergy for a weak coupling limit is obtained as  













)(

2
exp22

0 F

DF
EDV

EE        (2.12) 

where D  is a phonon frequency, 0V  is the attractive potential and )( FED  is the 

density of states at the Fermi energy. The pair state always has energy lower than the 

normal ground state energy, making it more stable. This energy is also much less 

than phonon energy so the Tc is much less than Debye temperature. The difference 

between the Fermi energy and the Cooper pair energy is known as binding energy of 

the Cooper pair. 
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Figure 2.6 shows the pairing mechanism according to the BCS theory. The origin of 

the attraction between two electrons can be considered as the exchange of virtual 

phonons from an electron-phonon interaction. When atoms are disturbed by the 

electron moving in the crystal, the harmonic oscillator will move from the ground 

state to the unstable excited state and releases the energy when it returns. The energy, 

or virtual phonon, is then absorbed by another electron, leads to additional attraction 

between them. The Cooper pair momenta are slightly above the Fermi surface, 

within the layer of thickness D . 

The BCS ground state has its energy separated from a single-electron state by an 

energy gap (). The magnitude of the energy gap at absolute zero is given by  













1
exp2)0( D ,       (2.13) 

where ´ = )( FEVD  is the coupling constant that determines the strength of the 

electron-phonon coupling and is much less than 1 (weak-coupling approximation). 

At higher temperatures, the attraction between electrons is disrupted by thermal 

chaotic motion and electrons in the excited state have to be described by the 

quasiparticles [28] which behave like normal electrons even though their energy is 

changed. An expression for the energy gap near Tc is 

2/1

1)( 












c

cBTT T

T
TakT

c

      (2.14) 

where a = 3.06 for the weak-coupling approximation. The two-fluid model describes 

the system as consisting of superconducting electrons and quasiparticles. At zero 

temperature, there is no excitation or quasiparticles. The number of quasiparticles 

exponentially increases with temperature while the energy gap and the number of 

superconducting electrons decrease and eventually vanish at the critical temperature. 

The BCS critical temperature is proportional to the energy gap at zero temperature 

and is given by (2.15) where Bk  is the Boltzmann constant. 
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Figure 2.6 (a) The pairing mechanism via exchange of a virtual phonon (with energy 

D ) - the momenta of two electrons change from 1k


 and 2k


 to 


1k


and 


2k


after the 

interaction. (b) The isotropic Fermi sphere of the electron system (the solid line 

shows the Fermi energy) - the new momenta 


1k


and 


2k


have to be above the Fermi 

surface since all orbitals below are filled. 

52.3

)0(21
exp14.1













 DcBTk       (2.15) 

The energy gap in superconductor was first observed by Glover and Tinkham in 

1956 using the infrared spectroscopy [29, 30]. Normally, scattering of electrons 

moving through a metal results in an electrical resistance because the electrons 

dissipate their energy. Existence of the energy gap in superconductor means that, if 

electrons move slowly (low current flowing in the superconductor) the electrical 

resistance will be zero. This is because an energy associated with the scattering 

process is not enough to break the pair. Nevertheless, the resistance appears if the 

current exceeds a certain value of the critical current, at which the Cooper pair 

density vanishes.  

BCS theory successfully described superconductivity in many materials with weak 

electron-phonon coupling. For materials with strong coupling such as Pb, Hg, Bi2Tl 

and Pb0.7Bi0.3 with the coupling constant larger than 1, Eliashberg modified the BCS 

theory and provided the equation that includes information about the relative strength 
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of the phonon system and the electron-phonon interaction which can be reduced to 

the BCS theory in the weak coupling approximation [31]. An expression for the 

energy gap derived from Eliashberg’s equation uses a = 3.06[1+8.8(Tc
2
/D

2
)ln(D/Tc)] 

(D is Debye temperature), while an expression for the critical temperature uses an 

effective coupling constant ( ffe ) which takes into account the Coulomb pseudo 

potential instead of the ordinary coupling constant [28, 32, 33]. The critical 

temperature for strong electron-phonon coupling can be written as  

2/1

ff

1
2

exp25.0
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With the typical values of ffe  of 1 for strong coupling and D of 300 K for alloy 

materials [34], upper limit of Tc in phonon-mediated superconductors is ~30 K.  

The connection between the Ginzburg-Landau theory and the BCS theory was 

established by Gor’kov in 1959 [35] who derived the Ginzburg-Landau equations 

from the BCS theory. He identified the order parameter with the wave function of 

electron pair so the order parameter is proportional to the energy gap described in the 

BCS theory. A spherically symmetric gap results from the s-wave pairing, while 

asymmetric energy gaps which have also been observed result from unconventional 

pairing (p-wave and d-wave) with interactions other than that between electrons and 

phonons. 

Critical field strength 

In s-wave superconductors, the transition from the superconducting phase to the 

normal phase in magnetic field occurs when the magnetic energy overcomes the 

condensation energy of the Cooper pairs and polarises the antiparallel paired 

electrons. This is the Pauli paramagnetic limit (Hp) for singlet superconductor. The 

critical field strength is given by definition as 
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   22
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Following Gor’kov equations, the Werthamer–Helfand–Hohenberg (WHH) theory 

was developed to predict the upper critical field of type II superconductors in the 

dirty limit by including the effects of Pauli spin paramagnetism and spin-orbit 

impurity scattering (neglecting strong-coupling and Fermi surface anisotropy effects) 

[36]. While the effect of spin paramagnetism limits the critical field strength, the 

effect of spin-orbit scattering increases the Pauli spin susceptibility in the 

superconducting state and drives the transition to be second order. The prediction of 

Hc2 in the orbital limit can be expressed by 
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cc
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693.0)0( 2
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Therefore, the ratio between 2 Hc2(0) and Hp(0) or the Maki parameter [37] 

represents the relative strength of the orbital pair breaking and Pauli paramagnetic 

pair breaking. 

p-wave and d-wave superconductivity 

While the order parameter in s-wave superconductivity (angular momentum l = 0) 

can be a complex number, it should be written as a complex vector to account for all 

components of the spin pairing in p-wave (l = 1) and d-wave (l = 2) 

superconductivity which is favoured in the correlated electron materials. P-wave 

pairing was first discovered in superfluid 
3
He [38, 39] and the evidence suggesting 

its existence in superconductors was reported later in several compounds including 

the layered perovskite oxide Sr2RuO4 [40, 41]. P-wave pairing is sometimes referred 

to as the odd parity superconductivity or triplet superconductivity from the parity of 

the spatial part and the binding spin state of the order parameter which obeys an 

antisymmetry requirement. Generally, p-wave superconductors are highly anisotropic 

so the carriers in certain orientations cannot move freely (e.g. between layers). The 
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order parameter is then polarised within the ab-plane parallel to applied magnetic 

field [42]. Some p-wave states give very similar thermodynamic data to the s-wave 

and d-wave states. In order to confirm the existence of the p-wave pairing, sensitive 

probes must be coupled to either the odd parity or the spin part of the pairing. Many 

experiments have reported evidence suggesting the existence of the triplet pairing. 

These include the upper critical field higher than the Pauli limit in the organic 

superconductor (TMTSF)2PF6 [43], the unchanged spin susceptibility determined by 

Knight shift across Tc showing the odd parity superconducting state with parallel spin 

pairing in the heavy fermion superconductor UPt3 [44, 45] and the layered oxide 

Sr2RuO4 [40] and also the lack of a coherence peak of the nuclear spin-lattice 

relaxation rate in the Sr2RuO4 [41]. 

D-wave pairing is found in the high-temperature superconducting cuprates [46, 47] 

where nodes in the energy gap are confirmed by measurements [48]. The ground 

state superconducting order parameter is strongly momentum dependent with the 

maximum value in the direction of the crystallographic axes a and b [49]. Figure 2.7 

shows the shape of the order parameter in YBCO and BiSCCO where the region with 

a negative order parameter appears between two maxima. In BiSCCO, deviation 

from tetragonal symmetry is small so there are four maxima displaced by /2 and the 

negative regions are in the vicinity of /4. In YBCO, the chains destroy singularities 

in the b-direction so there are only two maxima displaced by  and the negative 

regions are expected in the b-direction [50]. Superconductivity in d-wave pairing 

materials is easily destroyed due to the small mean free paths and the sensitivity of 

superconductivity to non-magnetic impurity elastic scattering. The stability of the d-

wave pairing depends on the details of band structure and the pairing potential [51-

53]. The nodeless order parameter or finite energy gap (therefore no small energy 

excitation along the node) in d-wave pairing cuprates can be induced by doping or 

application of magnetic field along the c-axis. As a result, the symmetry of order 

parameter changes from pure 22 yx
d


to isd

yx


 22  or 
xyyx

idd 
 22  [49, 54, 55].  
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(a) (b) 

Figure 2.7 Polar plot representing the shape of the order parameter in (a) YBCO and 

(b) BiSCCO [50]. 

 

2.5 Flux pinning 

In the mixed state of type II superconductor, transport current can drive flux lines 

into motion due to the Lorentz force given by BJF


  where F


 is the force per 

unit volume. It is worth noting that a perfect type II superconductor without pinning, 

will not be able to carry any current without dissipation so the critical current density 

(Jc) is zero. Figure 2.8 shows the flux-line lattice, the direction of transport current 

and the resulting Lorentz force. Once pinning is overcome, flux line motion will 

create a voltage in the direction of transport current and thus produce a resistance so 

there is the dissipation of energy.  
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Figure 2.8 Flux lines in the mixed state of type II superconductor subject to the 

Lorentz force which is proportional to the current flow and drives flux lines into 

motion. 

 

Defects in a dirty superconductor give rise to the local variation of the free energy 

and the vortices are trapped or pinned in the low-energy regions. These defects 

include non-superconducting particles, oxygen defects, cracks, dislocations and grain 

boundaries, which should have a dimension smaller than the coherence length for 

effective pinning. In order to move flux lines, an energy larger than the pinning 

energy or the Lorentz force larger than the pinning force must be used. The pinning 

force per unit volume is therefore given by BJF cp


  which is found to follow the 

universal scaling law [56]: 

  )
~

()(2 hfTHF cp



       (2.19) 

where h
~

 = H/Hc2 is the reduced magnetic field strength. The exponent  was 

originally found to be 2.5 but it could actually deviate from that value, depending on 

the temperature dependence of the Ginzburg-Landau parameter [57]. The shape of 

)
~

(hf   was found to be sensitive to geometry of the pins although they exhibit a 

similar reduced-field dependence [58]. The reduced field 
ph

~
 at which the pinning 
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force is maximum occurs at high h
~

 for weak (widely spaced) pinning 

superconductors and at low h
~

 for the strong (closely spaced) pinning. However, the 

values of pinning force at high h
~

 are not very different between weak pinning and 

strong pinning superconductors. Therefore, high-field critical current density has 

apparently limited scope for improvement. The critical current density, which is 

determined by the pinning force, is expressed as 

  qp

cc hhTHThJ )
~

1(
~

)(
~

),
~

( 2 


      (2.20) 

where the constants 
~

, , p and q are dependent on geometry, strength and nature of 

the pinning. This last equation is the subject of much of the work in the later chapters 

of this thesis.   
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Chapter 3  
 

High-temperature superconductivity 

 

3.1 Introduction 

It was not until ceramic copper oxide superconductor (Ba-La-Cu-O system) was 

discovered by Karl Müller and Johannes Bednorz in 1986 [5] that the transition 

temperature of a superconductor was found to be above 30 K and beyond the upper 

limit prediction of BCS theory. Higher Tc compounds in the same family were soon 

discovered with the Tc even higher than the boiling point of liquid nitrogen, making 

them recognised as high-temperature superconductors (HTS). This chapter provides 

general properties of various HTS materials, production techniques used to make 

them into a practical conductor and challenges in improving superconducting 

properties and understanding the mechanisms and processes behind making the 

superconductivity useful in these materials. 

 

3.2 General properties 

The most important property of HTS is the transition temperature above 30 K which 

is the upper limit predicted by BCS theory for conventional superconductors (cf 

Section 2.4). Therefore, the Cooper pairs in HTS are formed by different mechanism 

rather than phonon-mediated interaction. Table 3.1 shows transition temperature of 

some common known HTS materials. In early days of discovery, they were mostly 
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ceramic copper oxides (or cuprates) and the term cuprate superconductor was usually 

used to refer to HTS until iron-based superconductors were discovered in 2008. 

Included in the table are MgB2, organic superconductors and heavy fermions with the 

Tc values that are not as high as the Tc of cuprates and iron-based superconductors 

and even below 30 K. They are considered as potential HTS materials (i.e. with 

potentially the same mechanism causing the superconductivity) because of their 

unconventional properties which are either similar to cuprates and iron-based 

superconductors, or basically just not predicted by the BCS theory. 

HTS materials have type II magnetic response with high values of the upper critical 

field strength. When an applied magnetic field is between Hc1 and Hc2, the field 

penetrates into material in the form of flux vortex. The vortices are trapped inside the 

(hard) superconductor when the field is removed and gives rise to an irreversible 

behaviour. This behaviour occurs up to the irreversible field (Birr) before the 

magnetic flux can move reversibly (Jc = 0). To first order, irreversible line in the B-T 

phase diagram follows the vortex-lattice melting line which separates pinned vortex 

solid from unpinned vortex liquid [59]. For isotropic low-temperature 

superconductors (LTS), the vortex lattices are generally well pinned and the 

irreversible field is very close to their upper critical magnetic fields (Bc2). Figure 3.1 

shows the B-T phase diagram of some superconductors, both LTS and HTS. For 

HTS, the effect of thermal fluctuation is strong and the vortices are soft. 

Irreversibility lines of MgB2, YBCO and Bi-2223 are far below their upper critical 

magnetic fields and correlate with structural and electronic anisotropy of the 

materials. Bi-2223 has the highest degree of anisotropy so the vortex lattices are 

most likely to undulate. The irreversible field is very important in applications of 

HTS because it is the field (far below Bc2) at which the critical current density of the 

conductor becomes zero, even though it is still in the superconducting state.  
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Table 3.1 Symmetry of order parameter and typical values of transition temperature 

and upper critical magnetic field of high-temperature superconductors.  

Material Symmetry Tc (K) 
Bc2 (T) 

Ref. 
c-axis ab-plane 

Copper oxide superconductors      

(La,Ba)2CuO4 d-wave 30   [5, 60] 

YBa2Cu4O8 d-wave 80 67 - 70  [60-62] 

YBa2Cu3O7  d-wave 93 120 250 [47, 63, 64] 

Bi2Sr2CuO6 d-wave 10 16 - 27 43 [60, 65, 66] 

Bi2Sr2CaCu2O8  d-wave 85 > 60 > 250 [47, 65, 67] 

Bi2Sr2Ca2Cu3O10 d-wave 110 39 1210 [60, 65, 68] 

Tl2Ba2Ca2Cu3O10 d-wave 120  28 200 [60, 69, 70] 

HgBa2Ca2Cu3O8 d-wave 133 108  [60, 71, 72] 

Iron-based superconductors       

SmFeAs(O,F) s()-wave 55 50 - 110 100 - 150 [73-75] 

CeFeAs(O,F) s()-wave 43 47 185 [73, 76, 77] 

LaFeAs(O,F) s()-wave 28 37.8 122 [73, 77, 78] 

MgB2 s-wave 39 3.5 17 [79-81] 

Organic superconductors      

(TMTSF)2PF6 @ 12 kbar p-wave 0.9 0.02   [43, 82] 

κ-(ET)2Cu[N(CN)2]Br d-wave 11.5 8 - 10 80 [70, 83, 84] 

Cs3C60 @ 15 kbar s-wave 40    [85, 86] 

Heavy fermions      

CeCu2Si2 d-wave 0.5 2.4 2.0 [87-89] 

CeCoIn5 d-wave 2.3 5.2  11.5 [90-92] 

UPt3 p-wave 0.5 2.6 [44, 93, 94] 
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Figure 3.1 Magnetic field versus temperature phase diagram of some common HTS 

in comparison with some LTS [95]. The thick solid lines show irreversible fields. 

The thin ones show upper critical fields. 

Most of the HTS are anisotropic and have layered structures, resulting in the 

anisotropy of their superconducting properties. The coherence lengths of the layered 

superconductors are typically short and superconductivity is confined in the two-

dimensional plane. The HTS also usually exhibit the properties of unconventional 

pairing where the paring mechanism is still unknown. The following subsections 

provide information of general properties of some HTS groups previously shown in 

Table 3.1.  

3.2.1 Cuprates 

The term cuprate superconductors has been used since the discovery of LaBaCuO to 

refer to the HTS materials containing copper oxide (CuO2) layers. There is a big 

family of them including the compounds of Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Tl-Ba-Ca-

Cu-O and Hg-Sr-Ca-Cu-O as summarised in Table 3.1. The key feature is 

superconducting CuO2 layers which are weakly coupled along the c-axis and 

separated by charge reservoir layers. The parent compounds are typically Mott 
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insulators but become superconductors when doped with electrons (such as Nd-Ce-

Cu-O, Pr-Ce-Cu-O, Sm-Ce-Cu-O and La-Pr-Ce-Cu-O compounds) or holes (such as 

Y-Ba-Cu-O, La-Sr-Cu-O and Bi-Sr-Ca-Cu-O compounds). Figure 3.2 shows doping 

dependent phase diagram of cuprate superconductors for hole doping (La2-xSrxCuO4) 

and electron doping (Nd2-xCexCuO4). The superconducting phase only exists around 

optimal doping (between 0.1 and 0.2) where hole doping into the oxygen’s p-orbitals 

in the CuO2 plane breaks up antiferromagnetic order making the Cu
2+

 spins free to 

move and destroying the long-range antiferromagnetic correlations. The extra holes 

provide a vacancy for electron hopping and conductivity occurs. 

For electron-doped materials, electrons are introduced to the copper’s d-orbitals and 

the spinless Cu configuration dilutes the background antiferromagnetic order. Unlike 

hole-doped cuprates, the superconducting phase for electron doping exists at higher 

doping level and in narrower range. The antiferromagnetic phase is also very strong 

and still survives even when the doping level is close to the optimum. This can be 

explained by the dilution of Cu
2+ 

spins which decreases the Néel temperature very 

slowly [96].  

 

 

Figure 3.2 Doping dependent phase diagram of cuprate superconductors for electron 

doping (left) and hole doping (right) [97]. 
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YBCO 

Yttrium barium copper oxide or YBCO was discovered by Wu and his graduate 

students Ashburn and Torng, at the University of Alabama [63], only a year after the 

discovery of the first high Tc LaBaCuO. With the Tc of 93 K, it is the first material 

that becomes superconducting at the temperature above the boiling point of liquid 

nitrogen. This is very important since the cost of refrigerant for using these materials 

can be much lower. Figure 3.3 shows different crystal structures of YBCO; 

YBa2Cu3O7 and YBa2Cu3O6, both have orthorhombic perovskite-type structure 

consisting of two CuO2 planes where the superconductivity takes place. The 

conductivity along the ab-plane is over 100 times higher than the conductivity along 

the c-axis. This may contribute to a single crystal having a Jc as high as 10
4
 Acm

-2 
at 

77 K [98] while the Jc of untextured polycrystalline sample is two orders of 

magnitude lower due to the existing of high-angle grain boundaries. It was reported 

that the intergrain Jc of YBCO is exponentially dependent on the grain orientation 

[6]. Therefore, controlling grain alignment has been found to be necessary in all 

techniques used to fabricate YBCO in order to achieve high critical current density. 

At present, the critical current density of epitaxial YBCO thin film (quasi-single 

crystal with pinning) is of the order of 10
6
 Acm

-2 
at 77 K which is relatively high due 

to additional improvement of flux pinning. 

BiSCCO 

Bismuth-based superconducting material (bismuth strontium calcium copper oxide or 

BiSCCO) was discovered in Japan in 1988 by Maeda et al [99]. It was the first high 

temperature superconductor which does not include rare earth elements. With a 

higher critical temperature than that of YBCO, it has attracted much attention and 

has been developed continuously to enable its use in many applications. The 

generalised chemical compound BiSCCO has the form Bi2Sr2Cax-1CuxO2x+4 with x = 

1, 2 and 3 (the crystal structures are shown in Figure 3.3). The main difference 
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between them is the number of CuO2 planes which is a factor determining Tc of 

BiSCCO. Commonly used high Tc phases are Bi2Sr2CaCu2O8 (Bi-2212) with the Tc 

of 85 K and Bi2Sr2Ca2Cu3O10 (Bi-2223) with the Tc of 110 K. 

Optimal doping for BiSCCO compounds is generally at 0.16 holes per Cu atom and 

the doping phase diagram follows parabolic curve 
2

max )16.0(6.821/  yTT cc  

[100] where y is the number of holes per Cu atom. Partial substitution of Bi with Pb 

was found to improve the superconducting properties and increase the formation and 

stability of Bi-2223 phase which is difficult to grow [101, 102]. As a result, most of 

the Bi-2223 materials are now fabricated with Pb additions. They are usually made 

into conductors by the powder-in-tube method to solve the problem of their 

brittleness and also to improve the grain alignment (see Section 3.3.1). 

BiSCCO has an even higher degree of structural and superconducting anisotropy 

than YBCO. The critical current density of a single crystal Bi-2223 is over 10
5
 Acm

-2
 

at 77 K [103] while the powder-in-tube polycrystalline tape achieves 10
4
 Acm

-2
 

which can be improved further by improvement of the grain alignment and 

homogeneity. 

      

Figure 3.3 The crystal structures of YBCO and BiSCCO. YBCO has orthorhombic 

perovskite structure with two CuO2 planes and perpendicular CuO chains. BiSCCO 

family has tetragonal structure with different number of CuO2 planes for different 

phase members [104].  
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3.2.2 Iron-based superconductors 

Iron-based superconductors or pnictide compounds are a new type of superconductor 

containing iron and pnictogen (group 15 element, typically arsenic and phosphorus). 

They were discovered in 2008 by Kamihara et al [105] who reported that LaOFeAs 

compounds became superconducting at a transition temperature up to 26 K when 

doping with F
-
 ions. Soon after the discovery, several pnictide superconductors were 

reported, such as FeSe, LiFeAs, BaFe2As2 and LiFeAsO. A Tc of over 50 K has been 

achieved either by doping or by pressure [106]. Figure 3.4 shows the doping 

dependent phase diagram of CeFeAsO1-xFx with the existence of antiferromagnetic 

phase at low doping level as seen in the doping phase diagram of cuprates. There has 

been a rapidly increasing interest in these materials because they are the first known 

non-cuprate high Tc compounds that could help uncover the mystery behind the 

mechanism that causes superconductivity in the high-temperature superconductors. 

 

 

Figure 3.4 Doping dependent phase diagram of CeFeAsO1-xFx iron-based 

superconductor determined from neutron measurements [107]. 
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Like cuprates, iron-based superconductors have a layered structure but the iron and 

pnictogen plane (commonly FeAs) play an important role similar to the CuO2 plane. 

The undoped parent compounds are poor metals with five conduction bands at the 

Fermi surface. The spins on the Fe atom have antiferromagnetic order and doping 

destroys the antiferromagnetism. This confirms the correlation between 

superconductivity and antiferromagnetism in HTS. Despite the similarity between 

them, pnictide compounds have a rather more complex electronic structure which 

leads to many unusual properties. For instance, the upper critical field shows nearly 

isotropic behaviour which arises from three-dimensional electronic structure of FeAs 

[108, 109]. Antiferromagnetism of the parent compound is a stripe-like pattern rather 

than checkerboard pattern due to alternation of Fe spins from one row to the other 

[110] and appears to incorporate spin-density-wave where electrons are delocalised 

[111]. 

3.2.3 Other unconventional superconductors 

MgB2 

Magnesium diboride (MgB2) is usually only included in the high-temperature 

superconductors for convenience since its Tc of 39 K can be explained by BCS 

theory. It is referred to as a conventional superconductor with the highest Tc among 

them because its structure and properties are closed to those of the low-temperature 

superconductors such as the isotope effect [112, 113], the large coherence length (ξab 

 6.1 – 6.5 nm) [114] and temperature dependence of the upper critical field [115, 

116]. However, electronic behaviour in MgB2 is not as straightforward as in the 

conventional ones due to the two different band gaps at the Fermi energy which 

arises from different strengths of electron-phonon coupling in σ bands and π bands 

[117]. In addition, MgB2 has graphite-type layered structure and 
2T  temperature 

dependence of the penetration depth [118] which are characteristics of 

unconventional high Tc superconductors. 
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Although Tc of MgB2 is about 2 - 3 times lower than the Tc of HTS, it is nevertheless 

a promising materials for applications (especially in high current, intermediate 

temperature and medium field applications) because it has lower anisotropy ( =   

1.1 - 9) [114] and the grain boundaries do not limit the current flow [95, 119]. It is 

also relatively cheap and useful high Jc polycrystalline conductors can be fabricated 

in long lengths. 

Organic superconductors 

Most organic materials are electrically insulating. Nevertheless, some of them are not 

only conductive, but also exhibit superconductivity at low temperatures. Those 

materials include quasi one-dimensional and quasi two-dimensional salts such as 

Bechgaard salt (TMTSF)2PF6 and κ-(BEDT-TTF)2X (where BEDT-TTF is an 

organic molecule and X is an inorganic anion), alkali-doped fullerenes and carbon 

nanotubes. Bechgaard salts [82, 120] were the first organic superconductors 

synthesised by Klaus Bechgaard. It consists of stacked sheets of planar 

tetramethyltetraselenafulvalene (TMTSF) donors and monovalent anion acceptors 

PF6. The conductivity of these charge transfer complexes occur only along the 

stacking axis where an intermolecular overlap of the π-orbitals takes place. The 

bigger molecule of bisethylenedithio-tetrathiafulvalene (BEDT-TTF or ET) in κ-

(BEDT-TTF)2X, consequently, allows packing with better orbital overlap between 

the stacks and provides quasi two-dimensional behaviour. Superconductivity in the 

alkali-doped fullerenes and carbon nanotubes, however, are different from those of 

charge transfer salts. Putting foreign molecules or atoms inside C60 leads to metallic 

crystals, while putting them between graphene sheets leads to ordered structures. The 

metallic crystals and ordered structure are eventually superconductors at low 

temperatures. 

There is a special interest in organic superconductors not only because they are 

organic, but they also exhibit several common features with cuprates. κ-(BEDT-
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TTF)2X salts have layered structures, anisotropic electronic properties and pressure-

dependent phase diagrams [121, 122]. Intensive studies of these molecular materials 

by tuning of their physical properties could provide a better understanding of 

electronic correlation in quasi two-dimensional superconductors. 

Heavy fermion compounds 

Heavy fermion superconductors are found in the metallic compounds based on Ce 

and U. The first one discovered was CeCu2Si2 with a Tc of 0.5 K [87]. The transition 

temperature of this type of superconductor is generally 1 - 2 K or less. However, 

their properties cannot be explained by the BCS theory. Competition between the 

Kondo effect (antiferromagnetic interaction between conduction electrons in metal 

and magnetic impurities) and the interaction between localised f-electrons and 

electrons in the other conduction band in the heavy fermion systems gives rise to a 

very large effective mass of the charged quasiparticles. This can be seen from 

specific heat (cp) measurement near Tc [123]. The effective mass can be more than 

100 times larger than the mass of bare electron [124] and results in the low-energy 

excitations. There is also evidence of a non s-wave pairing symmetry (existence of 

nodes in the energy gap from the power-law dependence of cp below Tc) and 

interplay of spin fluctuations and electronic correlations with the pairing mechanism 

[125, 126]. 

 

3.3 Conductor technologies 

HTS materials that can be used nowadays are mostly cuprates and they are brittle. 

Therefore, turning superconductors into a useful shape for applications is not easy. 

This is a major problem that can limit the use of them especially on the large scale. 

The most successful manufacturing of high-temperature superconductor is probably 



Chapter 3 High-temperature superconductivity  34 

 

the second generation superconducting tapes/wires based on YBCO coated 

conductors. However, the powder-in-tube processing under pressure is still important 

for Bi-based materials which are more difficult to grow and control phase 

homogeneity. 

3.3.1 Powder-in-tube method 

Powder-in-tube (PIT) method has been successfully used to fabricate the low Tc 

Nb3Sn wires, MgB2 wires, Bi-2212 wires and Bi-2223 tapes. The process starts with 

filling the powder of superconducting material into a metal tube then drawing into 

wire with smaller cross-sectional area. For multifilament conductor, a construction 

that helps improving strain tolerance [127], a number of wires are then assembled 

into an outer tube before the second stage drawing and final heat treatment are 

performed. Figure 3.5 shows manufacturing process of Bi-2223 wire via the PIT 

technique [128]. In manufacturing Bi-2223, the tubes are typically silver or silver 

alloy. Silver is not only permeable to oxygen and nonreactive to Bi-2223, it also 

plays an important role in encouraging the grain alignment of the plate-like 

orthorhombic Bi-2223 grains and reducing the melting point of Bi-2223. The result is 

Bi-2223 grains growing and aligning onto the silver interfaces with the ab-plane 

parallel to them [129]. Due to the anisotropic properties of Bi-2223 with weak 

coupling between layers, the round wire is eventually rolled into flat tape to enhance 

the grain alignment parallel to the tape surface. 

Nevertheless, the silver sheathed Bi-2223 tapes produced by the early PIT method 

still faced some serious problems such as residual cracks, porosity and volume 

fraction of secondary phase occurring in the sintering process and ‘ballooning’ 

occurring from the gasification of the trapped liquid nitrogen during warming up to 

room temperature. In order to solve these problems and improve the quality of the 

tapes, the controlled overpressure sintering (CT-OP), a novel technique introduced in 

2004, has been used [130, 131]. It improves the important properties of the tapes 
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Figure 3.5 Bi-2223 wire manufacturing process with PIT technique [128]. 

such as the critical current density, n-value and mechanical strength resulting from 

the improvement of relative density, homogenisation and bonding strength between 

the grains [132, 133]. The densification also prevents liquid nitrogen penetration so 

no ‘ballooning’ occurs [134]. 

Bi-2223 tapes have been used successfully for the LHC current leads and power 

cable projects. The round wire of Bi-2212 is also a good candidate for cable-based 

magnets. However, the in-field performance of BiSCCO is not as good as YBCO and 

the production cost is quite high due to the cost of silver. In response to the 

application and economical concerns, coated conductors based on YBCO have been 

developed. 

3.3.2 Coated conductor 

Architecture of the YBCO coated conductors is totally different from the PIT 

conductors. The coated conductor production involves preparing textured substrate 

(as a template) and deposition of YBCO material. The textured template can be 

achieved either by ion beam assisted deposition (IBAD) process or rolling-assisted 

biaxial textured substrate (RABiTS) technique. Polycrystalline YBCO 
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superconductor is then deposited epitaxially by metal organic chemical vapour 

deposition (MOCVD) onto the template followed by deposition of stabilising layers.  

Figure 3.6 demonstrates manufacturing process of YBCO coated conductors by 

IBAD and RABiTS techniques. IBAD has been used by SuperPower to sputter a 

stack of buffer layers on polished hastelloy-based substrate [135] while RABiTS has 

been used by American Superconductor Corporation (AMSC) to form biaxially 

orientated nickel substrate using thermomechanical processing [136]. The YBCO 

tape produced by the coated conductor technique is strongly aligned with the ab-

plane parallel to the tape surface. There exist only low-angle grain boundaries in the 

structure providing the high value of critical current density. Although the production 

cost is not low, good in-field performance even at high temperature (above 77 K) and 

high mechanical strength means that YBCO coated conductors have become 

preferable for use in cable, magnet and coil applications.  

 

 

Figure 3.6 Coated conductor manufacturing process where the textured substrates 

are prepared by IBAD (left) and RABiTS (right) [137]. 
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3.4 Challenges in HTS 

3.4.1 Pairing mechanisms 

After much intensive research on many HTS materials, many common features in 

their properties have been found, yet there is no widely accepted theory to explain 

their properties. One example of data that need explanation is Uemura’s muon-spin-

relaxation measurements (µSR) data [138, 139] on various systems such as 

bismuthate (BKBO), cuprates, heavy fermions and Chevrel-phase compounds. The 

plots of Tc versus relaxation rate (which is proportional to the ratio between carrier 

density and effective mass) in these systems are similar. The Tc initially increases 

with increasing relaxation rate, shows saturation and then suppression in higher-

carrier regions as shown in Figure 3.7. They also have relatively high upper critical 

field, short coherence length and highly correlated electronic structures. These 

features suggest that the systems possibly share a common condensation mechanism 

and/or thermodynamic description which is not consistent with the BCS theory. 

 

Figure 3.7 Plot of Tc versus relaxation rate of cuprates, BKBO (solid squares), 

Chevrel-phase (C) and BEDT (solid star) systems based on µSR measurements; and 

of Nb and heavy fermion systems (inset) with the values of relaxation rate estimated 

from the bulk penetration depth measurements [140]. 
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There have been many studies on the coexistence of high-temperature 

superconductivity and magnetic ordering. In the copper oxide compounds, the 

magnetic ordering is antiferromagnetic from Cu
2+

 spins in the CuO2 layers. 

Normally, the copper ion has one hole with spin ½ in the 3d shell. A strong 

interaction between the hole spins gives rise to three-dimensional long-range 

antiferromagnetic order with a high value of Néel temperature. The long-range order 

disappears in the metallic and superconducting phases but some strong dynamical 

spin fluctuations with a wide spectrum of excitations are still observed even at 

temperatures above 100 K [141]. This has led to a number of hypotheses on magnetic 

mechanisms of superconductivity and it has been found that antiferromagnetic spin 

fluctuations may be vitally important in explaining many of the anomalous properties 

of the HTS in the normal phase [142]. Other possibilities include interlayer 

tunnelling mechanism, where superconductivity within the layers of a layered 

superconductor is explained by BCS theory and superconductivity between layers 

results from tunnelling of the Cooper pairs [143]. At present, the exact mechanism 

that causes the electrons to form pairs in HTS is still unclear. Some experimental 

results support the importance of d-wave pairing while others support the s-wave 

symmetry. The question of how superconductivity arises in the HTS is still one of the 

major ongoing research in this field. 

3.4.2 Superconducting properties and applications 

Superconducting properties, such as critical temperature, upper critical magnetic 

field, critical current density and mechanical tolerance are important factors 

determining the quality and use of superconductors. For the LTS, understanding in 

many aspects of these properties has been established. The J-B-T critical surface 

phase diagram and reversible strain effect have been revealed and understood. This 

has been a key success that provided appropriate strategies for improving their 

superconducting properties and thus optimised their use in applications. Table 3.2 
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shows conductor performance requirements for various applications [95]. In addition 

to magnetic field, temperature and current density, the superconductors should be 

able to be made into a minimum length, withstand the strain limit provided and 

deform up to a minimum bending radius. For the HTS, an advantage over the LTS is 

the lower cooling cost due to higher operating temperature. Fundamentally, Tc at 

ambient pressure can be improved by doping which should in turn improve Bc2 and 

make the superconductor usable over a larger phase space. 

The critical current density or the current carrying capacity of superconductors, on 

the other hand, is traditionally considered to be affected by flux pinning. In order to 

improve the intra-grain Jc, effective defects must be introduced. In YBCO, artificial 

columnar defects have been introduced into the system (in addition to natural 

dislocation defects) by various techniques such as irradiation and substrate 

decoration with nano-particles [144-146]. Jc has been increased to 10
6
 Acm

-2
 and 

even larger where the grain alignment is well controlled. This increase in pinning 

approach has successfully been used for the LTS such as Nb3Sn where fabrication 

techniques have been adjusted to reduce the grain size, so increase the number of 

grain boundaries which act as pinning centres [147]. However, this is not the case for 

HTS. Grain boundaries in YBCO were found to limit the current flow [6, 148] and to 

date we have avoided making high Jc polycrystalline HTS. A model based on flux 

flow along the grain boundaries is presented in Chapter 6 which could provide 

insight into the critical current density in polycrystalline superconductors and thus 

lead to possible improvement. 

Brittleness and Jc degradation under strain for HTS cuprates might be overcome by 

introducing other metallic layers into the wire architecture of superconductors. For 

BiSCCO in particular (and reported in Chapter 4), irreversible degradation has been 

found in compression [149, 150]. The reason behind this behaviour is still unclear 

but remains important because superconductors unavoidably experience the 

compressive strains in applications. 
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Table 3.2 Requirements of conductor’s performance for various applications [95]. 

Application 

Jc 

(Acm
-2

) 

B (T) T (K) 
Length 

(m) 

Maximum 

Strain 

(%) 

Minimum 

bend 

radius (m) 

Fault current limiter 10
4
 - 10

5
 0.1 - 3 20 - 77 1000 0.2 0.1 

Large motor 10
5
 4 - 5 20 - 77 1000 0.2 - 0.3 0.05 

Generator 10
5
 4 - 5 20 - 50 1000 0.2 0.1 

SMES 10
5
 5 - 10 20 - 77 1000 0.2 1 

Transmission cable 10
4
 - 10

5
 < 0.2 65 - 77 100 0.4 2 

Transformer 10
5
 0.1 - 0.5 65 - 77 1000 0.2 1 

 

Enabling the use of iron-based superconductors and other high-Tc materials is another 

challenge in HTS. We are in very early stage of iron-based superconductors since 

they were just discovered in 2008 and there exist many aspects to improve and 

understand. However, the number of studies on iron-based superconductors has 

increased rapidly. So far the PIT pnictide wires of the 122 type (BaFe2As2 series) 

have been made with the in-field Jc of 10
4
 Acm

-2
 at 4.2 K and 10 T [151] which 

makes it a very good candidate for high-field applications. In response to concerns of 

toxicity of arsenic, iron-based superconductors containing less-toxic elements such 

as phosphorus and selenium have also been studied. A Tc of about 10 K has been 

obtained for FeSe wires with the Jc of 10
1 

- 10
2
 Acm

-2
 at 4.2 K and 10 T [152], two 

orders of magnitude lower than the Jc of the 122-type wires. Further improvement of 

FeSe conductors and also the search for a new class of iron-based superconductors 

without toxicity problem are still challenging. 
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3.5 Concluding comments 

It has been more than 25 years since the discovery of high-temperature 

superconductors. They activated the search for a new pairing mechanism since the 

electron-phonon interaction, found in the BCS-type conventional superconductors, 

did not appear to explain the new materials. Although the new mechanism is 

believed to involve magnetic interactions, it is still not certain. Despite the 

uncertainty in the theoretical models, new classes of superconductors have been 

continuously discovered and the superconducting properties and fabrication 

techniques of HTS have been studied and successfully improved. Although the use of 

HTS is not as prevalent as LTS at the moment, these continuous studies could change 

this in the near future. 
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Chapter 4  
 

Preliminary measurements on DI-BiSCCO tapes 

 

4.1 Introduction 

This chapter provides general description of the BiSCCO tapes (the main material 

studied in this thesis) supplied by Sumitomo Electric Industries (SEI). The critical 

current density, which is a key property of the tapes, was measured as a function of 

magnetic field, field orientation and strain. Preliminary results of the Jc 

measurements are presented in this chapter that led to two conference papers [153, 

154] which includes the field, angle and strain effects on BiSCCO (predominantly 

77 K measurements). The development of the probes that followed this work is 

shown in Chapter 5 and the more comprehensive data obtained in subsequent 

chapters. This chapter describes a simple model and explanation of the Jc results 

which provides a basic understanding of the properties of BiSCCO. 

 

4.2 DI-BiSCCO samples 

The so-called Drastically Innovative Bi-2223 superconducting tapes (DI-BiSCCO) 

have been developed by Sumitomo Electric Industries (SEI) using the powder-in-

tube (PIT) process together with the controlled overpressure (CT-OP) technique at 

the final heat treatment. It was shown that the critical current (Ic) was enhanced by 

more than 60 %, the critical tensile stress improved by more than 70 % and no 
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ballooning was found in the full length of several kilometre-long DI-BiSCCO tapes 

after 24 hours immersion in liquid nitrogen [155, 156]. The critical current has 

recently been increased to more than 200 A at 77 K and self-field [131, 157, 158].  

Nevertheless, high critical current alone does not satisfy all the needs of most 

applications. High mechanical strength and low ac losses are also important. For this 

reason, SEI has manufactured multifilamentary DI-BiSCCO tapes with various 

geometries. Type H has the same structure as the conventional wire with higher 

critical current. Type S is manufactured with a half cross-sectional area of type H 

while maintaining the engineering critical current density (Je). It has been developed 

for low operating current applications. Type HT and type ST are the high strength 

tapes made by reinforcing type H and type S tapes with metallic lamination layers 

such as stainless steel and copper alloy. The lamination produces a higher reversible 

strain limit which is a result of increased compressive residual strain exerted on the 

filaments (due to difference in the coefficients of thermal expansion of various 

components in the laminated composite) and suppressed fracture of the 

superconducting filaments [159, 160]. Strengthening the tapes with the metallic 

laminations is very helpful for high field applications where the Lorentz force creates 

stress within the tapes. In addition, SEI has also produced type AC tapes for ac uses. 

It has been made by subdividing the superconducting filaments and shortening the 

twist pitch of the filaments to make the hysteresis loop smaller and reduce the 

coupling losses [131]. Typical specifications of the DI-BiSCCO type H and type HT 

tapes which are used in this work are shown in Table 4.1. Although most of the 

superconducting properties shown here are at 77 K, the high field performance of the 

tapes at low temperatures has also been investigated [157, 161]. The critical current 

of a 200A-class DI-BiSCCO tapes (Ic = 200 A at 77 K and self-field) is 430 A at 4.2 

K and 12 T, and is up to over 600 A at lower fields [157]. The tapes have anisotropic 

critical current which is likely to be larger when the grain alignment is improved 

[162, 163]. 
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Table 4.1 Typical specifications of the DI-BiSCCO type H and type HT tapes.  

Item 
Specifications 

Type H Type HT 

Width (average) 4.3  0.3 mm 4.5  0.3 mm 

Thickness (average) 0.23  0.03 mm 0.30 and 0.36  0.04 mm 

Critical current 
a
 160 - 200 A 160 - 200 A 

Lamination No Yes 

Critical wire tension (RT) 
b
 80 N 230 - 280 N 

Critical tensile strength (77 K) 
b
 130 MPa 250 - 270 MPa 

Critical tensile strain (77 K) 
b
 0.2 % 0.3 - 0.4 % 

Critical double bend diameter (RT) 
b
 70 mm 60 mm 

a
 100 µVm

-1
, 77 K and self-field, end-to-end 

b
 95 % Ic retention 

 

The DI-BiSCCO tapes used in this work are of XM375 series. Their descriptions are 

summarised in Table 4.2. The samples are called bare, SS20, Ag20 and CA50 for 

type H tape, type HT tapes with 20-μm stainless steel, 20-μm copper-silver alloy and 

50-μm copper alloy laminations, respectively. A transverse cross-section of a DI-

BiSCCO SS20 tape is shown using scanning electron microscope (SEM) image in 

Figure 4.1 where the outermost layers (dark grey) are stainless steel laminations 

which were soldered directly onto the standard bare tape. 

 

 



Chapter 4 Preliminary measurements on DI-BiSCCO tapes 45 

 

Table 4.2 Description of XM375 series DI-BiSCCO tapes. 

Sample Type 

Average 

width  

(mm) 

Average 

thickness 

(mm) 

Lamination 

Material Thickness (µm) 

1.  Bare H 4.3  0.3 0.23  0.03 - - 

2.  SS20 HT 4.5  0.3 0.30  0.04 Stainless steel 20 

3.  Ag20 HT 4.5  0.3 0.30  0.04 Cu-Ag alloy 20 

4.  CA50 HT 4.5  0.3 0.36  0.04 Cu alloy 50 

 

 

 

Figure 4.1 SEM image of the transverse cross-section of a DI-BiSCCO SS20 tape. 

The tape consists of (in order, from outer surface) stainless steel lamination layers 

(dark grey), solder layers (light grey with black spots), silver/silver alloy matrix 

(light grey) and BiSCCO filaments. 
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4.3 Experimental methods 

Critical current measurements on the tapes were carried out using a standard four-

terminal technique and the critical currents were determined using a 100 Vm
-1

 

electric field criterion. In the measurements, a computer interface was used to control 

the 2000 A sample power supply and collect the electric field versus current data. 

The current from the power supply passed through a standard resistor for direct 

measurements of the sample current. The split-current-lead design was implemented 

and used - as discussed in Chapter 5 on probe design. This ensures that to first order: 

the magnetic field produced by the current in the leads is minimised at the tape 

position and hence the tape only experiences the magnetic field from the magnet and 

its own self-field; the torque associated with currents flowing in the leads and the 

sample is minimised so the probe should not progressively twist (or rotate) while the 

current is increasing during the measurement [153].   

All critical current densities in this chapter were calculated using the critical current 

divided by the unstrained cross-sectional area of the superconducting filaments 

which was estimated from SEM images taken in Durham to be 4.810
-7

 m
2
. The 

measurements were performed at 77 K in a conventional iron-cored electromagnet in 

magnetic fields up to 0.7 T and at 4.2 K in the 15 T horizontal superconducting split-

pair magnet at different angles () between the field and the tape surface. For strain 

measurements, the tapes were mounted on a springboard-shaped copper beryllium 

sample holder, which is attached at one end to a moveable stainless steel tube and 

has another end locked by a stationary support outer tube. The compressive and 

tensile strains were applied to the tapes by pushing or pulling the inner tube. The 

strains were measured with a Vishay strain gauge attached on the surface of the 

sample holder. Schematic of the experimental apparatus for the strain measurements 

is shown in Chapter 5. 
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In addition, an HGCT-3020 Hall sensor from Lake Shore Cryogenic, Inc. was used 

to align the probe in a required orientation with respect to the magnetic field and to 

investigate whether the sample rotated during the Jc measurement while the top of 

the probe was fixed. The sensor was attached directly on to the sample and the 

component of the magnetic field normal to the sample surface was monitored. The 

sensor has the maximum linearity error of 1.0 % for fields less than 3 T and 2.0 % 

for fields up to 15 T. 

 

4.4 Experimental results 

4.4.1 Magnetic field dependence of Jc 

Figure 4.2 and Figure 4.3 show electric field versus current characteristics of a DI-

BiSCCO CA50 tape at 77 K as a function of magnetic field applied normal and 

parallel to the tape surface. The critical current determined at a 100 Vm
-1

 electric 

field criterion at the transition is 174.5 A in self-field. The applied magnetic fields 

reduce the current carrying capacity of the tape. The effect of the magnetic field on 

the critical current is stronger when the field is applied normal to the tape surface. 

Figure 4.4 shows the critical current density of the DI-BiSCCO CA50 tape at 77 K as 

a function of magnetic field applied at different orientations with respect to the flat 

surface of the tape. Those orientations include 0 (field parallel to the tape surface), 

30, 60 and 90 (field normal to the tape surface). The very weak field-dependence 

for the critical current density occurs in magnetic fields less than 0.1 T parallel to the 

tape surface when the self-field generated from the current flowing in the tape is 

larger than the external magnetic field. 
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Figure 4.2 Electric field versus current as a function of applied magnetic field 

normal to the tape surface for the DI-BiSCCO CA50 tape at 77 K.        
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Figure 4.3 Electric field versus current as a function of applied magnetic field 

parallel to the tape surface for the DI-BiSCCO CA50 tape at 77 K. 



Chapter 4 Preliminary measurements on DI-BiSCCO tapes 49 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

20

40

60

80

100

120

140

160

180

200

C
ri
ti
c
a
l 
c
u

rr
e

n
t 

d
e

n
s
it
y
 (

1
0

8
 A

m
-2
)

Magnetic field (T)

 0
o

 30
o

 60
o

 90
o
 

 C
ri

ti
c
a

l 
c
u

rr
e

n
t 

(A
)

CA50

 

Figure 4.4 Critical current density as a function of applied magnetic field at different 

orientations for the DI-BiSCCO CA50 tape at 77 K. The critical current density 

decreases more drastically when the fields are applied normal to the tape surface. 

4.4.2 Angular dependence of Jc 

The anisotropic properties of the DI-BiSCCO CA50 tape are shown in Figure 4.4, 

with more detail shown in Figure 4.5. The results from the other three samples are 

similar. Jc is maximum when the field is applied parallel to the tape surface because 

of the intrinsic pinning associated with the CuO2 planes and the higher upper critical 

field [21, 164]. The intrinsic peaks are shown clearly in Figure 4.5 for magnetic 

fields up to 0.7 T at 77 K. The in-field decrease of Jc (at any orientation) can be 

explained by the effect of the local component of magnetic field along the c-axis 

(Bsin - assuming all grains are well aligned with ab-plane // tape surface), given 

BiSCCO has strong two-dimensional (2D) properties [165]. Definitions of the field 

angle and grain misalignment (as discussed below) are illustrated in Figure 4.6.  

 



Chapter 4 Preliminary measurements on DI-BiSCCO tapes 50 

 

-90 -60 -30 0 30 60 90

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0

20

40

60

80

100

120

140

160

180

200
 0.1 T

 0.2 T

 0.3 T

 0.4 T

 0.5 T

 0.6 T

 0.7 T

C
ri
ti
c
a

l 
c
u

rr
e
n

t 
d

e
n

s
it
y
 (

1
0

8
A

m
-2
)

Angle  (degree)

 C
ri

ti
c
a
l 
c
u

rr
e
n

t 
(A

)

CA50

 

Figure 4.5 Critical current density as a function of the angle between applied 

magnetic field and the surface of the DI-BiSCCO CA50 tape at 77 K at different 

applied magnetic fields. 

 

Figure 4.6 Definitions of the field angle, misalignment angle of a local grain in the 

DI-BiSCCO tape and normal component of magnetic field. 
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Figure 4.7 Critical current density as a function of the field component normal to the 

surface (Bsin) of the DI-BiSCCO CA50 tape at 77 K. Data for the field applied 

normal to the tape surface are made more explicit for clarity. Deviation from the 

universal relation occurs at low fields due to the grain misalignment.  

Figure 4.7 shows Jc of the tape as a function of Bsin. Data for the field applied 

normal to the tape surface are made more explicit for clarity. Jc(Bsin) coincides 

with the data set of Jc(B  tape surface) in high fields but deviates from that in low 

fields, consistent with the importance of the grain misalignment [166, 167]. DI-

BiSCCO tapes produced by the PIT technique generally contains grains that are 

misaligned from the desirable ab-plane // tape surface alignment. As shown in Figure 

4.1, the BiSCCO filament itself is not uniform and the interface between BiSCCO 

and silver matrix is not always parallel to the tape surface. As a result, some grains 

are misorientated.  
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Figure 4.8 Critical current density as a function of the angle between applied 

magnetic field and the surface of the DI-BiSCCO CA50 tape at 77 K at two different 

directions of changing the angle. No angular hysteresis was observed. 

Figure 4.8 shows the angular dependence of Jc for two different directions of 

changing the angle (from 90 to -90 and from -90 to 90). No hysteretic behaviour 

was observed in the DI-BiSCCO CA50 tape (and also in three other tapes measured). 

The angular hysteresis is typically found in low fields and low temperatures (thus 

high critical current density) [168, 169] from trapping of magnetic flux around the 

grain boundaries. The magnetic fields and temperatures here are not low enough to 

see such effect. 

The work of van der Meer et al considers a Gaussian distribution function to describe 

the grain misalignment of the form [166]: 






















2

2D

2

D2
2

exp
2

1
)(G        (4.1)  

where 2D  is the standard deviation of misalignment angle (subscript 2D denotes the 

assumed 2D properties of BiSCCO). This distribution accounts for a small angle 
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between the tape surface and the local ab-plane of the grains within the tape. G()d 

is the fraction of grains that have a misalignment angle between  and d 

where -90    90. If a magnetic field is applied at an angle  with respect to the 

tape surface and the grains locally have a misalignment angle , the local orientation 

of the magnetic field with respect to the ab-plane becomes  + . As a result, the 

local magnetic field parallel to the c-axis is Bsin( + ) as shown in Figure 4.6. The 

average magnetic field normal to the ab-plane is 

 
 d)sin()()(
90

90



 GBB .      (4.2)  

Shevchenko [170] introduced a scaling function )(f  by normalising )(B  with 

respect to )90( B  which is independent on magnitude of the magnetic field. For 

any magnetic field applied at an angle  with respect to the tape surface, the scaled 

field amplitude of the effective normal magnetic field ( effB ) is written as )( fB . 

Therefore, )(f is the corrected version of sin that includes the grain misalignment. 

The value of )0( f  is determined from the experimental results where Jc is a 

function of magnetic field at the angles 0 and 90 by using the relation )0,( BJ c  =

)90),0((  fBJ c . The value of 2D is then calculated using [166] 

)0(9.702D  f ,        (4.3)  

which is accurate to 1 % and is in principle not dependent on the magnetic field 

[166]. Figure 4.9 shows the calculated values of 2D for the four different types of 

the DI-BiSCCO tapes measured. The scaling function )(f for any given  is then 

obtained using the calculated 2D  from (4.3), which is 12 for the Ag20 tape, 10 for 

the SS20 tape, 9 for the CA50 tape and 9 for the bare tape. Figure 4.10 shows 

)(f  for the four samples which is generally equal to sin except for  < 20 where 

a tail appears. The tail is due to the misalignment of the grains - the larger 

misalignment, the larger the deviation from the sin function.  
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Figure 4.9 Standard deviation of the misalignment angle as a function of magnetic 

field normal to the tape surface for four different types of the DI-BiSCCO tapes. To 

first order, the standard deviation is not dependent on magnetic field. 
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Figure 4.10 The scaling function )(f  for four different types of the DI-BiSCCO 

tapes calculated by normalising )(B  with respect to )90( B . The scaling 

function generally follows sin except at the low angles ( < 20). 
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Figure 4.11 Critical current density as a function of the effective normal magnetic 

field for the DI-BiSCCO tapes at 77 K. The data for each tape are increased 

sequentially by 1 from the bare tape for clarity. Solid lines are plots of (4.4). 

Figure 4.11 shows Jc for the DI-BiSCCO tapes as a function of the effective normal 

magnetic field )( fB  at 77 K. The log(Jc) data of CA50, Ag20 and SS20 tapes are 

increased sequentially by 1 from the bare tape for clarity. The deviation, associated 

with the grain misalignment seen in Figure 4.7 in the low field region has 

disappeared and the Jc can be described using a rather simple model derived for 

polycrystalline superconductors [171]: 
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where the parameter k is added to account for the non-exponential behaviour at low 

fields, a is the applied strain, ´ is a parameter representing the depairing current 

density and ´ characterises the suppression of the order parameter by the magnetic 
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field across the grain boundaries. A more sophisticated model to analyse such data is 

presented in Chapter 6. Equation (4.4) accounts for the reduction in the depairing 

current density due to the depression of the order parameter by the magnetic field at 

the grain boundaries and the suppression of the order parameter within the grains 

themselves [171]. Solid lines in Figure 4.11 are plots of (4.4) with the parameters ´ 

= 0.11 T and k = 0.75.  K 77 T  varies from sample to sample and is 4.210
8
 

Am
-2

 for the SS20 tape, 4.710
8
 Am

-2
 for the Ag20 tape, 4.410

8
 Am

-2
 for the CA50 

tape and 3.410
8
 Am

-2
 for the bare tape. Empirically we have found that the value of 

Bc2 is much higher than effB  consistent with significant depression of the order 

parameter across the grains [172]. 

4.4.3 Strain dependence of Jc 

Preliminary data showing the variation in the Jc caused by the tensile and 

compressive strains are shown in Figure 4.12 for the DI-BiSCCO CA50 tape at 77 K 

at different magnetic fields applied normal to the tape surface. The Jc-strain 

characteristics for different fields are similar. The strain was initially applied in 

tension causing the Jc to reduce reversibly. This behaviour in Bi-2223 

superconducting tapes in zero field at 77 K has been reported before [159, 160, 173]. 

Note that the measurements in this work were performed up to 0.2 % in tension to 

ensure that the tensile strain was below the critical limit of 0.3 % for the CA50 tape 

and prevent the tape from being damaged.  

Figure 4.13 shows the strain dependence of Jc for the DI-BiSCCO CA50 tape at 77 K 

for zero field alone and Figure 4.14 shows the data at 4.2 K for applied magnetic 

field of 10 T. Both data sets show similar behaviour namely that initially although Jc 

is reversible in tension (below the critical strain limit), there is no reversibility in 

compression (compressive strains larger than 0.1 %). On applying increased 

compression there is an irreversible degradation. Thereafter on reducing the 

compressive strain, one finds an increased reversible range stretching over both 



Chapter 4 Preliminary measurements on DI-BiSCCO tapes 57 

 

tensile and compressive strains. Figure 4.13 and Figure 4.14 each show three 

different reversible ranges. Note that (a new) reversibility in tension still occurs after 

degradation of Jc and that the reversibility is extended into the compressive regime. 

In the reversible strain regime the variation in the normalised Jc with respect to the 

strain is linear, both at 77 K and at 4.2 K, and can be described by 

      ,, 1,,, 1 TBJcTBJ caac ,      (4.5) 

where 
1c  is equal to 0.073  0.020 independent of temperature and magnetic field.  

Osamura’s data at 77 K in zero field [160] are more precise (using Nyilas 

extensometers [174]) and show that 
1c  has a weak function of strain (i.e. the 

variation in the normalised Jc with respect to strain is not entirely linear). 

Nevertheless, to within the error of our measurements, 
1c  is similar here to 

Osamura’s work (
1c   0.075) as shown in Figure 4.13 and Figure 4.14. Consistency 

between (4.4) and (4.5) leads to 
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  (4.6) 

Usually the changes in the critical current caused by strain that are associated with 

geometrical changes are ignored because they are smaller than the effect of strain on 

the superconducting parameters (gauge factor calculated from the Poisson ratio of 

0.2 - 0.4 [175] is between 0.014 to 0.018, comparing to 0.073 extracted from the 

experiments). We have observed a strain dependence for the critical current that has 

a functional form that resembles a strong geometrical factor with a gauge parameter 

1c . This suggests that at fields and temperatures well below Bc2 and Tc, the strain 

dependence measured is a combination of the intrinsic strain dependence and a gauge 

factor term which is of similar order of magnitude. 
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Figure 4.12 Critical current density as a function of strain for the DI-BiSCCO CA50 

tape at 77 K at different applied magnetic fields normal to the tape surface. The 

critical current densities were also normalised with the normalisation constant of 

173.7 A. 
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Figure 4.13 Critical current density as a function of strain for the DI-BiSCCO CA50 

tape at 77 K for zero field alone. The solid lines are similar to Osamura’s data at 

77 K in self-field [160]. The normalisation constant is 173.7 A.  
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Figure 4.14 Critical current density as a function of strain for the DI-BiSCCO CA50 

tape at 4.2 K for the applied magnetic field of 10 T normal to the tape surface. The 

solid lines have constant gradient which is equal to the gradient in Figure 4.13. The 

normalisation constant is 364.0 A. 

The irreversibility of Jc under compression for BiSCCO tapes has been observed 

before [149, 150]. A natural concern is whether this behaviour is intrinsic associated 

with the strongly two-dimensionality of BiSCCO leading to filament buckling or 

intragranular cracking under strain. This seems unlikely since the elastic constants 

and limits of BiSCCO are only about a factor of 2 - 3 different from the LTS (e.g. 

Nb3Sn). Certainly the (high) porosity of standard BiSCCO conductors can lead to 

internal cracks and once the mechanical integrity of the composite is compromised, 

one can expect the full panoply of further damage including cracking and separation 

(or delamination) of the filaments from the matrix in both tension and compression 

[176, 177]. The world-class CT-OP BiSCCO composites measured in this work have 

very low porosity but still show irreversible behaviour of Jc at relatively small 

compressive strain compared to the LTS materials. Given the low Poisson ratio for 

BiSCCO compared to metals and the difficulty of achieving strong bonding between 

metals and oxides, the irreversible behaviour of Jc in these materials for small 
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compression may be explained by separation between the matrix and the filaments. 

Given the non-uniform (sausaged) nature of the filaments, irreversibility need not 

necessarily to be associated with damaged filaments rather initially it may be due to 

the change in the interfilamentary current flow.  

 

4.5 Concluding comments 

The structural anisotropy of Bi-2223 leads to an anisotropy in the critical current 

density. Jc is dependent on the magnetic field and field orientation as well as the 

temperature and strain. The field and angular dependence of Jc can be described with 

the exponential decrease in Jc due to the effective normal magnetic field based on 

quasi-two-dimensional or anisotropic behaviour.  

The variation in the normalised Jc with respect to strain is linear over the reversible 

range of strain (to within the error bar of our measurement). In addition, the 

reversibility of Jc of the DI-BiSCCO tapes is extended further into the compressive 

regime after an irreversible Jc degradation. More detailed analysis and 

comprehensive Jc measurements are given in Chapter 6 and Chapter 7. 
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Chapter 5  
 

Probes for investigating the effect of magnetic 

field, field orientation, temperature and strain on 

the critical current density of anisotropic high-

temperature superconducting tapes in a split-pair 

15 T horizontal magnet 

 

5.1 Introduction 

Critical current density is probably the most important property of a superconductor 

from the perspective of technological applications. LTS have been studied 

intensively as a function of magnetic field, temperature and strain [178-180] with 

dedicated probes. LTS are broadly isotropic and either ductile or can be produced 

using wind-and-react techniques so that helical-shaped samples can be formed for 

measuring Jc in vertical superconducting magnets in high fields. The helical 

configuration ensures that the heat and voltage generated near the current-lead joints 

are far from the voltage taps. However most HTS are anisotropic so magnet 

engineers require knowledge of the anisotropy of Jc - in particular the anisotropy 

associated with how the angle of the magnetic field with respect to tape surface 

affects Jc while the transport current remains orthogonal to the field - so helical 

sample holders are not practical. Furthermore many HTS materials cannot be 

obtained in unstrained helical form (e.g. 2G YBa2Cu3O7 tapes) but are only available 

as unstrained straight conductors. For transport measurements using small currents, 

these straight materials can be rotated in standard vertical magnets using ingenious 

experimental design. However as sample currents required for measurement 
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approach 1000 A in high magnetic fields, low E-field high-Jc measurements are best 

done in a horizontal split-pair magnet. In this chapter we present the important 

design features of a Jc(B,T,,) probe for making critical current measurements on 

anisotropic high-temperature superconducting tapes as a function of field, field angle 

between the magnetic field and surface of the tape (in quasi single crystal tapes this 

is usually the crystallographic ab-plane), temperature and strain for use in our split-

pair 15 T (40 mm bore) horizontal superconducting magnet. Our approach was to 

build and optimise a Jc(B,T,) probe and then optimise the design of a Jc(B,T,,) 

probe - both are presented in this chapter.   

The broad themes of this chapter are structured as follows: Section 5.2 provides a 

broad description of the Jc(B,T,) probe with some of the guiding principles for 

design; Section 5.3 considers optimisation of current leads for use in liquid helium. 

An important aspect of this chapter is optimisation of helium consumption because 

scarcity of helium gas is currently a serious issue [3]. Wilson [181] has analysed 

magnet current leads and demonstrated that the minimum heat leak is about 3.010
-3

 

Lhr
-1

A
-1

 independent of material used, although the optimum LI/A varies from 

material to material. For high-conductivity copper, the optimum LI/A is 2610
6
 

Am
-1

. Wilson work considers steady state conditions for magnet current leads where 

the current is constant and the current leads are in thermal equilibrium. It shows that 

at optimum design the temperature of the leads remains below room temperature. 

Operation of hot current leads has been studied in several systems including the pulse 

mode operation of poloidal field coils of tokamak and low-duty cycling of magnets 

[182, 183]. Such studies minimise the time-averaged heat leak to reduce helium 

consumption. In this work, we investigate behaviour of current leads for Jc 

measurements, where the current is not constant but linearly increased with time over 

about 3 minutes up to Jc and then rapidly reduced to zero. The effects of duty cycle, 

maximum current to be measured, static boil-off and the incorporation of additional 

superconducting tapes as part of the leads are all considered; Section 5.4 considers 

the design and operation of a variable temperature enclosure. Fixed temperature Jc 
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measurements are routinely completed in a cryogen such as liquid helium (at 4.2 K) 

and liquid nitrogen (at 77 K). Standard techniques used to vary and control the 

temperature include cryogenic vapour pressure control (i.e. liquid refrigerant 

pumping) [184, 185], use of cryocoolers [186-188] and use of resistance heaters 

[178, 189, 190]. We require a variable-temperature system that provides a large 

temperature range and is simple and cheap to operate. The inverted cup was 

pioneered at the University of Twente [179, 191] to provide a variable-temperature 

gas environment for Jc measurements of superconductors. This technique provides a 

large temperature range (above 4.2 K for measurements in liquid helium and above 

77 K for measurements in liquid nitrogen) and is also simple to operate. The design 

and optimisation of the inverted cup is discussed along with calculations of heat 

transfer from all component parts as well as temperature stability inside the cup; 

Section 5.5 considers the broad design of the Jc(B,T,,) probe; Section 5.6 considers 

applying and controlling the axial strain on a superconductor while Jc is measured. 

Axial strain has long been of interest in the study of LTS and inevitably this interest 

has followed to HTS wires and tapes. In general, tensile measurements are probably 

best carried out using Nyilas extensometers [159, 174, 192] which are now 

commercially available. However, understanding superconductivity in compression 

is also necessary. Ekin completed a detailed study of the effect of tensile strain on 

commercial high Jc conductors [193]. Walters introduced a spring design [194] 

(WASP) to investigate long-length samples at low E-field (high sensitivity) under 

both compression and tension, in high fields. Cheggour et al developed a variable 

temperature WASP [178, 195] that eventually resolved the apparent contradiction 

between strain and temperature scaling to produce a general scaling law [196, 197]. 

A variable temperature bending beam apparatus, which allowed (high E-field) 

measurements on short samples of LTS wires and HTS tapes [198-200] in 

compression as well as in tension, was developed at the University of Twente. The 

basic principle of the WASP/bending beam is that the sample is soldered to a sample 

holder and either compressive and tensile strain applied by twisting or bending it and 
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strain gauges used to determine the strain in the sample. For the HTS materials 

considered here, a helical WASP is not practical. In order to enable the Jc 

measurements at low E-fields as function of magnetic field orientation as well as 

temperature and strain, we present the design and operation of a long vertical 

bending beam (springboard-shaped sample holder) that is used for straight samples in 

our 40 mm bore horizontal magnet; In Section 5.7, the performance of the Jc(B,T,,) 

probe is demonstrated by presenting a range of Jc data obtained from YBCO tapes. 

All the work on current leads and variable-temperature cup as well as the 

measurements on DI-BiSCCO tapes in this chapter were completed by the author of 

this thesis. Design of the springboard-shaped sample holder and measurements on 

YBCO tapes at 4.2 K in liquid helium were completed by Dr Joshua Higgins.  

 

5.2 Description of Jc(B,T,) probe 

Figure 5.1 shows a diagram of the probe designed for investigating the effects of 

magnetic field, field orientation and temperature on the critical current density of 

HTS tapes. In operation, the upper part becomes the hottest part of the probe and is 

most likely to burn out because the heat from the room temperature environment and 

the Joule heating from the current leads are at their maxima. The head of the probe is 

designed so that when the current terminals and the upper part of the current leads 

become hot there are no contiguous components that are likely to fail when hot (e.g. 

melt).  
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Figure 5.1 Diagram of Jc(B,T,) probe (a) the top part of the probe including 

(cylindrical) current leads and (b) the final design of the variable-temperature 

insulating cup. 

The current leads themselves are made from two cylindrical brass tubes with 

different wall thicknesses. Brass was chosen because it has a much lower thermal 

conductivity than copper at low temperature (two orders of magnitude lower at 

temperatures below 30 K) and its resistivity is less temperature dependent than an 

alternative such as high-purity copper [181], which in practice means that current 

leads can be reasonably robust for a given low heat leak and make it a common 

choice for magnet current leads. The thermal conductivity and other important 

properties of materials and gases used in this work are summarised in Table 5.1.  

 

 



Chapter 5 Probes for investigating the effect of B,, T and  on Jc of HTS tapes 66 

 

Table 5.1 Density, thermal conductivity and specific heat capacity of materials and 

gases.  

Material/gas 

Density 

(kgm
-3

) 

Thermal 

conductivity 

(Wm
-1

K
-1

) 

Specific heat 

capacity 

(Jkg
-1

K
-1

) 

4.2 K 77 K 293 K 4.2 K 77 K 293 K 4.2 K 77 K 293 K 

Copper (RRR=50)
 a,b

   8950 334 515 393 0.11 196 389 

Brass
 a,b

   8520 2.08 39.8 109 0.15 216 377 

Copper beryllium
 a,b

   8330 1.97 36.3 105   419 

Stainless steel (304)
 a,b

   7860 0.272 7.92 15.1 2 204 470 

Polyimide
 a,b

    1430 0.011 0.126 0.191 1 338 747 

Phenolic
 b 

   1100 ~0.1 0.184 0.281   1260 

Tufnol
 c
   1350   0.37   1500 

Aerogel
 d

   150 ~0.01 0.010 0.014   1000 

Helium (gas)
 e,f

 16.76 0.632 0.166 0.009 0.063 0.154 9080 5190 5190 

Nitrogen (gas)
 e,g

 - 4.612 1.165 - 0.007 0.025 - 1120 1040 

a  
Reference [190].  

b  
Reference [201].  

c  
The properties shown are for Carp Brand Tufnol which is made from phenolic resin  

   and cotton fabric [202].  

d  
Reference [203].  

e  
Reference [204].  

f
  Boiling point of helium is 4.230 K. Latent heat of vapourisation is 20.75 kJkg

-1
 [190]  

   so 1W is equivalent to 1.4 Lhr
-1

. 

g
  Boiling point of nitrogen is 77.35 K. Latent heat of vapourisation is 199.2 kJkg

-1 
[190]  

   so 1W is equivalent to 22 mLhr
-1
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The cylindrical shape of the leads was chosen to provide good mechanical strength 

and a large surface area for gas cooling. The current leads each have a 2-mm slit 

along the length (not shown here) to prevent large Eddy currents occurring while 

sweeping the magnet (wasting cryogen) and in the event that the magnet quenches, to 

avoid melting the leads. Not shown are Tufnol reinforcing structures that hold the 

cylindrical current leads in shape. An inverted cup was used to provide a variable-

temperature environment for the sample. The outer diameter of the cup was 32 mm 

so the probe can be inserted vertically into the 40 mm bore of our horizontal magnet 

system. The angular measurements were performed by rotating the probe to change 

the relative orientation between the horizontal field and the sample’s flat surface. A 

schematic diagram of Durham’s 15 T split-pair horizontal magnet is shown in Figure 

5.2 including the split-current-lead design for measurements in such high-field 

systems. Most parts of the probe were made from stainless steel, oxygen-free high 

thermal conductivity (OFHC) copper, brass, Tufnol and aerogel as discussed below. 

 

 

Figure 5.2 Schematic diagram of (a) the 15 T split-pair horizontal magnet system 

and (b) the split-current-lead design. 
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5.3 High-current leads 

5.3.1 Split-current-lead design 

Measurements on isotropic LTS are usually made in vertical magnets where the 

current leads are parallel to the stray field of the magnet and hence there is no force 

on them [205]. In contrast, the current leads of probes in horizontal magnets are 

orthogonal to the stray field so the forces on them can be large and the torque 

associated with the large Lorentz force can twist the bottom part of the probe even 

when the top part of the probe is fixed. The split-current-lead design has been used in 

our group [153] to minimise the torque as well as the magnetic field produced at the 

sample. The experimental apparatus is illustrated in Figure 5.2 (b). The current lead 

that is attached to the bottom of the sample is split into two parts while the other 

(central) lead attached to the top of the sample remains a single lead. Figure 5.3 and 

Figure 5.4 show the performance of the split-current-lead design we originally used 

[153] and the design implemented for the Jc(B,T,,) probe. The angular 

measurements in both probes were performed on DI-BiSCCO tapes at 4.2 K and the 

data are plotted up to values of current which generated electric fields of 100 µVm
-1

 

across the voltage taps (i.e. where Jc is determined). The angle was calculated from 

the normal field component (Bn) at the sample and was monitored by a Hall sensor 

during the Jc measurements. Figure 5.3 shows that in the first design the probe 

twisted up to 3.8 at a starting angle of  = 10 due to the torque associated with 

unbalanced currents in the two parts (which in principle can be reduced by actively 

balancing the currents). These data can be reduced to a single universal curve 

consistent with a torque twisting the probe. However, the calculated change in the 

angle of the Jc(B,T,,) probe (i.e. final design in Fig. 5.4) during Jc measurements 

was found not to be due to a torque (no universal behaviour). We attribute the 

reduction in twisting achieved to better balancing of the current in the split leads, the 

increased stiffness of the Jc(B,T,,) probe and the flexibility of the split-current 

leads (so that the current leads were deformed rather than rotating the probe).  
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Figure 5.3 Instantaneous  angle between magnetic field and the sample’s surface as a 

function of the product of the current and the applied magnetic field for Jc 

measurements on a DI-BiSCCO tape at 4.2 K at different starting angles. The applied 

magnetic field was 3 T for the first design and 14 T for the final design.  
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Figure 5.4 Data from Figure 5.3 replotted as the change in the angle during the Jc 

measurement as a function of the product of the current (I), the applied magnetic 

field (B) and the cosine of the instantaneous angle between magnetic field and the 

sample’s surface at different starting angles. 
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Figure 5.5 shows the change in the measured component of the field normal to the 

sample surface for different starting angles at 80 A which is a result of the Lorentz 

force associated with current flowing in the sample itself. Bn decreased when the 

angle was less than ~15 and increased otherwise. The maximum increase was found 

at ~50. We attribute these changes to the Lorentz force moving the sample in a 

plane which has a spatial field variation (inset). 
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Figure 5.5 Change in the normal field component at the sample when the current is 

at 80 A as a function of the starting angle between magnetic field and the sample’s 

surface for the Jc measurements using Jc(B,T,,) probe. The inset shows the 

normalised magnetic field profile of Durham’s split-pair horizontal magnet along the 

x-z plane which is the plane of the sample’s cross-section. Movement of the sample 

(i.e. change in the normal field component) is attributed to effects of the normal force 

component (Fcos). 
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5.3.2 Optimisation of the critical-current leads 

The cross-sectional area of the current leads which have one end at room temperature 

and the other end at cryogenic temperatures can be optimised by considering all 

means of heat transfer. The generalised one-dimensional transient heat transfer 

equation for one vapour-cooled current lead is given by [206]:  

t
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TcA

TA

TLtI

x

T
ctfm

x
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x
p

d
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d
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d

d 0
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


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


    (5.1) 

where T is the temperature in kelvin, x is the distance in metres along the current 

lead,  is thermal conductivity of the current lead in Wm
-1

K
-1

, m is the mass flow of 

cryogen gas in kgs
-1

, I is the current flowing in amperes, f is the efficiency of heat 

transfer between the current lead and the gas, cp is the specific heat capacity of the 

cryogen gas at constant pressure in Jkg
-1

K
-1

 , L0 = 2.4410
-8

 WK
-2

 is the Lorentz 

number, and ~  and c are the density and specific heat capacity of the current leads in 

kgm
-3

 and Jkg
-1

K
-1 

respectively. Equation (5.1) includes the effects of heat 

conduction along the current lead, heat transfer from the current lead to the gas and 

Joule heating of the current lead carrying the current I. Radiative heat transfer inside 

cryostat has been ignored [182, 183]. A schematic diagram of a current lead and the 

heat transfer mechanisms is provided in Figure 5.6. The mass flow is found from the 

conductive heat transfer into the cryogen at the bottom end, m(t) = 
0

d/d)/(



xl xTcA , 

where lc  is the latent heat of vapourisation in Jkg
-1

. However, accurate calculation 

also requires the inclusion of static boil-off of the cryostat ( stam ) and any additional 

Joule heating from elements directly immersed (below) in the cryogen. An 

expression for the total cryogen boil-off for one current lead is therefore 









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Figure 5.6 Schematic diagram of a vapour-cooled brass current lead and heat 

transfer considerations for measurements in liquid helium. 

where R is the total resistance of all parts immersed in the cryogen (in ohms). The 

contribution of all static (primarily heat conduction into the Dewar) or sample boil-

off (Joule heating) is assumed to be equally distributed among the two current leads. 

For best practice, R is generally minimised by using the high purity copper or adding 

superconducting material as part of the electrical circuit so in the rest of this chapter 

we shall set R to zero.   

The efficiency of heat transfer is by definition given by f = (T-T)/T where T is the 

difference between the temperature of the gas and the current lead at the same height 

[181]. It is physically dependent on the geometry of the current leads, the mass flow 

of the cryogen and the physical properties of the gas itself which vary along the 

current leads because of their temperature dependence. By taking into account the 

shape of the current leads, the cooling term can be written as a convective heat 

transfer term, hP(T-Tg), which includes gas temperature (Tg) and cooled perimeter 
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(P). h is the heat transfer coefficient which is  4g/D for a cylindrical pipe where 

g is the thermal conductivity of the gas, D  4A/P is the hydraulic diameter and A 

is the cross-sectional area of the pipe. Taken together, f can be written as a function 

of h where 

1
)d/(d)(

1















TPh

xTctm
f

p
.       (5.3) 

Equation (5.3) describes the effects of gas properties, temperature variation and 

geometry of the current lead on the efficiency of heat transfer. By having P and A in 

the relation, f is inevitable system dependent. A typical value for f from our 

measurements is between 0.8 - 1.0 which suggests efficient heat transfer. Hence in 

order to simplify our analysis, we have set f =1 (perfect heat transfer) in the 

optimisation. Cylindrical current leads were used to try to ensure that this condition 

was achieved.  

Numerical calculations of the temperature profile of the critical-current leads for 

measurements in liquid helium and the helium boil-off were performed using 

FlexPDE. The boundary conditions used in the time-dependent analyses were: 

T(x = 0, t) = 4.2 K and T(x = L, t) = 300 K where L is the current lead’s length. A Jc 

measurement is typically performed by ramping the current from zero up to above 

the transition, where the measured voltage is rapidly increasing. One measurement 

generally takes ~200 s before the current is set to zero and the probe is ready for the 

next measurement. The ratio between the measuring time and the total time in one 

cycle is defined as a duty cycle (D). In this work, we consider the effects of duty 

cycle on the temperature profile and the average helium boil-off of the current lead 

by using the measuring time of 200 s at which the applied current reaches the 

maximum value of maxI . 
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Without static or sample boil-off 

Figure 5.7 illustrates the temperature profile of a brass current lead at 0 s, 200 s and 

1200 s (i.e. before the measurement, at the end of the measurement and 1000 seconds 

after the measurement has finished) and the instantaneous helium boil-off (inset) 

during the first cycle where A = 60 mm
2
, L = 1.0 m, Imax= 1000 A and there is no 

static or sample boil-off, i.e. 
liquidsta

2 ~/)/(  mcRIb l
 = 0 where liquid

~  is the 

density of liquid helium. We have used liquid
~/ mb  to represent helium boil-off 

measured in (useful experimental units of) Lhr
-1

. To first order, b increases linearly 

with increasing current up to maxI  and then slowly decays once the current is 

switched to zero due to the slow decrease in temperature back to equilibrium. The 

high temperature near the top end is up to 745 K. Hot current leads are not found for 

magnet current leads carrying a constant current in thermal equilibrium when helium 

boil-off is correctly minimised [181].  
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Figure 5.7 Calculated temperature profile of a vapour-cooled brass current lead with 

the bottom end immersed in liquid helium while ramping current up to a maximum 

current of 1000 A in 200 s and then reducing the current to zero without any static or 

sample boiling (b  = 0). The current lead’s length is 1.0 m and the cross-sectional 

area is 60 mm
2
. The inset shows calculated helium boil-off as a function of time. 
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Figure 5.8 shows the calculated average helium boil-off over 10 cycles for two 

current leads versus cross-sectional area as a function of applied current and duty 

cycle for L = 1.0 m. The average helium boil-off is approximately proportional to the 

maximum applied current. The data for D = 0.5 are re-plotted in Figure 5.9 as 

max/ Ib  versus AI /max , together with the calculated data for L = 0.6 m and 0.8 m. 

The optimised operation obtained at the minimum helium boil-off is at AI /max  = 

510
6
 Am

-2
 for L = 1.0 m and at larger numbers for shorter current leads. The 

resulting maximum temperature ( maxT ) of the current lead is ~350 K as shown by the 

inset. 
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Figure 5.8 Calculated average helium boil-off (averaged over 10 cycles) for two 

vapour-cooled brass current leads as a function of the cross-sectional area of each 

lead carrying a current up to 200, 600 and 1000 A for duty cycles of 0.2, 0.5 and 1.0. 

The system has no static or sample boil-off and the length of all current leads is 

1.0 m.  
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Figure 5.9 Calculated average helium boil-off per unit current ( max/ Ib ) for two 

vapour-cooled brass current leads and maximum temperature (inset) as a function of 

the ratio between maximum current and cross-sectional area ( AI /max ) of each lead 

without any static or sample boiling for the duty cycle of 0.5 and the current lead’s 

lengths of 0.6, 0.8 and 1.0 m. The maximum current investigated was 1000 A. 

Tapered current leads 

Since the heat leak into the liquid helium is a function of A, as given in Equation 

(5.2), we investigated the effects of making A smaller at the bottom end of the 

current leads by modelling heat flow in tapered current leads. The positional 

dependence of A was taken to be CxAxA  min)(  where C ranges from 20 to 80 

mm
2
 per meter and minA  is the cross-sectional area at the bottom end. A range of 

calculated results are shown in Figure 5.10 where max/ Ib is plotted as a function of 

the maximum temperature. Calculated values for uniform A are also shown for 

comparison. Figure 5.10 shows that there is little difference between the uniform 

current leads and tapered current leads in terms of helium boil-off for any given 

maximum temperature. The different is discernible only when D = 1.0 where the 

tapered current leads create higher helium boil-off at a given maxT . We conclude that 
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reducing A increases the thermal resistance so that less heat is conducted into liquid 

helium when no current flows. However, once the current is applied, the consequent 

increase in the electrical resistance leads to a larger heating especially at the bottom 

end which compensates for the effect of cross-sectional area reduction. We conclude 

that making the current lead smaller at the bottom end to reduce the boil-off is not 

productive. 
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Figure 5.10 Calculated average helium boil-off per unit current ( max/ Ib ) for two 

vapour-cooled brass current leads as a function of maximum temperature with 

uniform cross-sectional area and tapered cross-sectional area. The system has no 

static or sample boiling and the length of all current leads is 1.0 m. The maximum 

current investigated was 1000 A. 
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Non-zero static boil-off 

In most systems, there exists a static or sample boil-off which can be exploited in 

optimising A. Figure 5.11 shows the average helium boil-off and maximum 

temperature (inset) as a function of AI /max  with and without static boil-off which is 

typically from the cryostat - although one could optimise further by considering the 

boil-off from the cryostat and magnet at the lowest field (lowest boil-off) at which Jc 

is to be measured. The average static helium boil-off obtained from our horizontal 

magnet system is 0.3 Lhr
-1 

which has been included in the calculations. Figure 5.11 

shows that for all duty cycles when b  0.3 Lhr
-1

, maxT  is larger than 750 K while the 

helium boil-off does not even reach its minimum value. These results show that quite 

generally, maxT  of the current leads becomes the important limiting factor that 

determines the optimum A although the helium boil-off is not minimised. 
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Figure 5.11 Calculated average helium boil-off per unit current ( max/ Ib ) for two 

vapour-cooled brass current leads and maximum temperature (inset) as a function of 

the ratio between maximum current and cross-sectional area ( AI /max ) of each lead 

with and without static or sample boiling. The length of all current leads is 1.0 m. 

The maximum current investigated was 1000 A.  
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Superconducting components of current leads 

Adding some HTS along the current leads is useful in order to reduce Joule heating. 

Because in practice the amount of cryogen changes during experiments, it is not 

straightforward attaching the HTS tapes to the current leads whilst ensuring the 

temperature is always below the critical temperature of the component 

superconductor. Typically, one is conservative and the HTS is soldered to the current 

lead only near the bottom end. We have used YBCO coated conductor tape which 

has low thermal conductivity materials in its structure. The standard YBCO tape 

from SuperPower (SCS-type) has two 20-m copper stabilising layers and one 2-m 

silver overlayer. The stabiliser-free tape (SF-type) has no copper which is useful for 

current lead applications. Five YBCO (SF4050) tapes were added into the 

calculations for L = 1.0 m from x = 0 m to x = 0.5 m, which is the position that the 

temperature is below the Tc of 93 K [63] in zero-current operation. The calculated 

average helium boil-off and maximum temperature for the hybrid current lead (brass 

and YBCO tapes) are shown in Figure 5.12. The optimum A and resulting maxT  are 

within ~20% of the brass current lead alone. Nevertheless, the helium boil-off is 

50 % lower because the smaller Joule heating at the bottom end leads to a lower 

temperature gradient at x = 0 m. 

Optimisation equation 

The optimum A for vapour-cooled brass current leads, where the helium boil-off is 

minimised, is strongly dependent on the duty cycle of the measurement. The 

optimum A decreases with decreasing duty cycle as shown by dotted line in Figure 

5.13 which is a plot of the optimised shape factor ( ALI /max ) as a function of duty 

cycle. For D = 1.0, the optimisation of the brass critical-current lead is   

1-6max Am  102.3 
A

LI
         (5.4) 
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Figure 5.12 Calculated average helium boil-off per unit current ( max/ Ib ) for two 

vapour-cooled brass current leads and maximum temperature (inset) as a function of 

the ratio between maximum current and cross-sectional area ( AI /max ) of each lead 

with and without HTS tapes at x = 0 m to x = 0.5 m from the total length of 1.0 m. 

The system has no static or sample boiling.  

and the helium boil-off from two current leads is 

1-1-3

max

ALhr  106.1 
I

b
.       (5.5) 

Equation (5.5) is about half the boil-off of that for brass magnet current leads which 

is -1-13 ALhr  100.3  .  For D < 1.0, the optimised critical-current lead runs hot - the 

temperature is above room temperature near the top end. Eventually maxT  of the 

critical-current leads becomes the critical optimisation factor as shown by dashed and 

solid lines in Figure 5.13 which are calculated using the empirical relation 

     

 
1-

exp22.0

max

4.06

max Am  
2exp2

3001056.5

bD

TL

A

LI
b








   (5.6) 
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Figure 5.13 Optimum shape factor ( ALI /max ) of the current lead for critical current 

measurements as a function of duty cycle calculated from (5.6) where the maximum 

temperature of the current lead is a limiting factor (dash and solid lines), in 

comparison with the optimum shape factor obtained at the minimum average helium 

boil-off for the current lead’s length of 1.0 m (dotted line). For b = 0.3 Lhr
-1

, the 

minimum boil-off gives a maximum temperature larger than 800 K. 

which is accurate within 10 % for D > 0.2 and within 30 % for 0.1 <  D < 0.2 where 

maxT  > 310 K and b < 0.6 Lhr
-1

. At high duty cycles, the calculated optimum 

ALI /max  determined by maxT  from (5.6) is higher than the optimum ALI /max  that 

gives the minimum helium boil-off. However the helium consumption is only 5 % 

higher than the actual minimum value. A general empirical expression for boil-off 

accurate to ~15 % is given by 

  1-1-

max

max

ALhr   )300ln()1(2.00.75)2.3(
10001000

5.0






 TDD

bD

I

b
.     (5.7) 

Assuming L = 1.0 m for our magnet system with b´ = 0.3 Lhr
-1

,
 
D = 0.2 and maxT  = 

400 K, the calculated optimum ALI /max  is 9.0810
6
 Am

-1
. Optimal dimension of the 
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current leads is shown in Table 5.2. Comparing to the optimum value of  ALI /  from 

steady state calculation for magnet current leads of 1.5410
6
 Am

-1 
where the static 

boiling and the duty cycle are not considered, the current leads optimised in this 

work reduce helium consumption from 4.8 Lhr
-1 

to 1.0 Lhr
-1 

for Jc measurements up 

to 1000 A. 

In addition, HTS tapes are used at the lower part of the current lead to further reduce 

helium boil-off from Joule heating above and below helium level. One can calculate 

the optimum A using an L value at the minimum helium level (longest L) and put the 

HTS tapes above that level to the maximum helium level (shortest L). 

 

Table 5.2 Optimal dimension of the brass current leads for critical current 

measurements up to 1000 A in Durham’s split-pair 15 T horizontal magnet. 

Parameter/dimension Value 

Duty cycle 

Static boil-off (Lhr
-1

) 

Maximum temperature (K) 

Current lead’s length (m) 

Maximum current (A) 

Cross-sectional area (each, mm
2
) 

Calculated helium consumption (average, Lhr
-1

) 

0.2 

0.3  

400 

1.0 

1000 

110 

1.0 
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5.3.3 Temperature profile and gas flow measurements 

Temperature profile measurements were performed along one of the vapour-cooled 

brass current lead to investigate to what degree the calculations agree with the 

experiments. The temperature profile was measured using five platinum resistance 

thermometers (standard PT 100) attached along the current lead every 20 cm from 

the top end, that is, the thermometers were at x = L, L - 0.2, L - 0.4, L - 0.6 and L - 

0.8 m from helium level. The thermometers were calibrated above 12 K in a 

Quantum Design Physical Properties Measurement System
© 

and at 4.2 K in liquid 

helium. The effective length of the current lead was estimated from measuring the 

helium level in the cryostat using a cryogen level meter and the average helium gas 

flow along the current lead was monitored using a Techniquip MGF-420 gas flow 

meter calibrated for helium with the accuracy of 1.5 %. The meter was an insertion-

type so the pressure drop across it was negligible. 

Figure 5.14 shows the temperature of a 10-mm
2
 vapour-cooled brass current lead at x 

= 0.18, 0.38, 0.58, 0.78 and 0.98 m from liquid helium as a function of instantaneous 

current while it was ramped at 6 As
-1

. The inset shows the temperature profile of the 

current lead when the current was at 300 A. The dashed lines are calculated values 

which are in good agreement with the experimental data except for x = 0.98 m where 

the calculated temperature is higher. The data in Figure 5.14 show a high helium 

boil-off due to the large Joule heating under the helium level which corresponds to a 

resistance R (cf Eqn. 5.2) of 4 m. We attribute the differences between calculation 

and experiment at the head of the probe to the role of the terminal box (shown in Fig. 

5.1(a)), the complex thermal sinking of the leads at room temperature and the helium 

gas convectively flowing within the terminal box before leaving the system. We 

expect the top end of the current lead to experience more cooling than is accounted 

for computationally.  
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Figure 5.14 Temperature of a 10-mm
2 

current lead as a function of applied current 

ramping at 6 As
-1

 up to 300 A. The inset shows temperature profile at the current of 

300 A. Dashed lines are calculations using Equations (5.1) - (5.3) with bm liquid
~  

from the experiment. Solid lines are calculations including the convective-like 

cooling effect near the top end. 

The solid lines of Figure 5.14 account for this additional cooling by assuming that 

the convectional cooling in the box is proportional to x and b with an additional 

proportionality constant as a free parameter. It was found that the additional cooling 

term added from x = L - 0.2 m to x = L m was 34.6bx which can be considered a 

characterising convective heat transfer between the helium gas and the current lead 

as h and T are proportional to b and x, respectively. The calculated efficiency of 

heat transfer is between 0.8 and 1.0 at low current and decreases as the current 

increases. The calculated Reynolds number is up to 3500 at 300 A which is in the 

transition region from laminar to turbulent flow [207]. Figure 5.14 shows the broad 

features of the temperature profile from computation and experiment which are in 

broad agreement for the vapour-cooled current lead in this work. 
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5.4 Variable-temperature cup 

5.4.1 Design and calculations 

Two designs of the variable-temperature cup were produced and tested. The first one 

was made from Tufnol alone with the wall thickness of 6 mm. In the second design, 

the wall thickness of the Tufnol cup was reduced to 2 mm and a Spacetherm


 

aerogel blanket was used. In the latter case, the Tufnol helps provide mechanical 

support for the aerogel insulation. The thermal conductivity of the aerogel is as low 

as 0.014 Wm
-1

K
-1

 [203] at room temperature while the thermal conductivity of 

Tufnol is 0.37 Wm
-1

K
-1 

[202].
 
The outer diameter of the cup was fixed to 32 mm. 

The design parameters are listed in Table 5.3 and a schematic of the second design 

(Tufnol + aerogel) of the variable-temperature cup is illustrated in Figure 5.1(b). As 

shown in Figure 5.1(b), the current leads passed through the cup at the top (which 

was sealed with epoxy) and at the bottom (through a vent for gas to escape when the 

temperature is increased [191]). The temperature along the sample was measured 

with three Cernox thermometers (CX-1050-SD-1.4L) calibrated from 1.4 K to 

325 K. The magnetic field dependence of the thermometers was up to -0.16 % at 

20 K and 14 T and accounted for in setting the temperature. The temperature was 

controlled by two LakeShore 336 cryogenic temperature controllers with the resistive 

heater outputs. Three heaters were used to vary the sample’s temperature. Two of 

them were made from a constantan wire noninductively wound on the OFHC copper 

block which was attached to the sample holder. The resistance of the two heaters was 

51.2  and 53.4 . Another heater with the resistance of 79.5  was made by 

winding a constantan wire on a thin-wall cylindrical OFHC copper support which 

was placed around the sample. Six layers of aluminised Mylar superinsulation were 

wrapped around the cylindrical heater in order to reduce the heat transfer by 

radiation. 
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Table 5.3 Design parameters of the variable-temperature cups. 

Parameter 1
st
 design 2

nd
 design 

Tufnol thickness (mm) 

Aerogel thickness (mm) 

Internal CSA (mm
2
) 

     Cup 

     Vent 

Current lead 

     Brass CSA (mm
2
) 

     No. of YBCO tapes 

6 

- 

 

314 

78 

 

5 

5 

2 

4 

 

314 

38 

 

5 

3 

 

Heat transfer from the cup to the liquid cryogen reservoir is via conduction through 

the wall of the insulating cup as well as the current leads, together with heat leak 

through the liquid/gas vent (cf Fig. 5.1(b)). Heat transfer through the vent is 

complex. We have calculated it using a film boiling heat transfer coefficient ( bh ) to 

calculate a convective-like heat transfer. The film boiling heat transfer coefficient is 

given by [208] 

 
4/1

eff

38/1 ~~~)~~(
37.0














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












T

gcg
h

V

VLVVVL
b

   (5.8) 

where lpl cTccc /)34.0( 2

eff   is the effective latent heat of vapourisation in 

Jkg
-1

, g is the standard gravity,  is the surface tension in kgs
-2

,  is the viscosity in 

kgm
-1

s
-1

, ~  is the density in kgm
-3

 and T is the temperature difference between 

liquid and vapour. Subscripts L and V represent the liquid and vapour properties 
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respectively. The total heat load or power consumption of the variable-temperature 

cup in liquid helium is given by 

 2.4
leadscurrent cup


























 TAh

x

T
A

x

T
AP bbtttt    (5.9) 

where bA  is the effective area of the vent. The calculated values are compared to the 

measured values in Figure 5.15 as a function of operating temperature. We attribute 

the differences, especially at higher temperature, to uncertainties in the temperature 

dependence of thermal conductivity of component materials and the uncertain 

boiling level and effective area of the vent. Table 5.4 shows the calculated heat load 

of the two designs of the cup at 50 K operating in liquid helium. The contribution 

from each type of heat transfer is also shown as a percentage of the total heat load. 

The major source of the heat transfer in the Tufnol design is conduction through the 

walls of the cup, which led to the use of the aerogel insulation in the second design. 

Other improvements include the reduction in the size of the vent and number of 

YBCO (SCS4050) tapes soldered on the bus bar current leads. All improvements 
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Figure 5.15 Heat load in operation of the variable-temperature cup as a function of 

the set-point temperature for measurements in liquid helium and liquid nitrogen. 
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Table 5.4 Calculated heat load of the variable-temperature cups in liquid helium. 

Calculated heat load 1
st
 design 2

nd
 design 

Average percentage (%) 

     Cup 

     Current leads 

     Boiling  

At 50 K (W) 

 

56.2 

25.9 

17.8 

7.0 

 

37.5 

41.0 

21.5 

2.7 

 

together reduce the total heat load from 7.0 W to 2.7 W at 50 K. (equivalent to 

reducing helium consumption from 9.8 Lhr
-1

 to 3.8 Lhr
-1

). The major heat source in 

the optimised design is conduction through the current leads, which is difficult to 

improve further.  

5.4.2 Variable-temperature measurements 

The Tufnol + Spacetherm


 aerogel variable-temperature cup was used to provide a 

variable-temperature environment for the Jc measurements on a DI-BiSCCO tape 

manufactured by Sumitomo Electric Industries. The Jc measurements were carried 

out using a standard four-terminal technique with a pair of voltage taps 10-mm apart. 

The measurements were performed in liquid nitrogen in a conventional iron-cored 

electromagnet and in liquid helium in our 15 T vertical superconducting magnet. The 

temperature along the sample was monitored during the measurement to investigate 

the stability and variability of the temperature along the sample.  
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Figure 5.16 (a) Voltage-current characteristics of a DI-BiSCCO tape at 90 K as a 

function of applied magnetic field parallel to the tape surface for measurements in 

nitrogen. The inset shows the temperature rising during the transition for the data 

taken at 25 mT where the critical current is 88 A at 100 Vm
-1

. Temperature increase 

across the voltage taps is 130 mK. (b) and (c) Similar plots at 20 K and 60 K for 

measurements in helium. The insets are data taken at 10 T at 20 K and 0 T at 60 K 

where the critical currents were 398 A and 352 A, respectively. In both cases, 

temperature increase across the voltage taps is ~30 mK.  
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Figure 5.16 shows the voltage-current characteristics of the DI-BiSCCO tape as a 

function of magnetic field applied parallel to the tape surface for measurements in 

nitrogen at 90 K and in helium at 20 K and 60 K. The insets show the sample 

temperature measured at the top, the middle and the bottom region of the sample 

during the Jc measurements. The initial temperatures are typically within 50 mK of 

the set point at the start of the measurements. Feedback control is such that at Jc there 

is an additional uncertainty of ~30 mK across the voltage taps for measurements in 

liquid helium. The difference between the temperature and set point is higher at the 

top and the bottom parts of the sample especially for measurements at 90 K in liquid 

nitrogen where the temperature increase across the voltage taps is 130 mK. We 

attribute this to resistive heating in the YBCO current leads which enter the normal 

state at 93 K. Below 60 A, because one end of the YBCO current leads is at 77 K, 

resistive losses and hence the heating is relatively small. Once the current exceeds 

the temperature-dependent critical current of the YBCO tapes, Joule heating is 

enhanced. The inset in Figure 5.16(a) shows this effect occurs sooner for the top 

current lead than the bottom because it is totally surrounded by Tufnol and the 

cooling relies only on the heat transfer by conduction. We note that the current leads 

can be re-optimised for Jc measurements above 90 K using DI-BiSCCO tapes if 

required.   

 

5.5 Description of Jc(B,T,,) probe 

The Jc(B,T,θ,) probe was designed with the current leads optimised for our 

horizontal magnet system. The top and bottom parts of the probe are shown in Figure 

5.17 where the variable-temperature cup was modified to fit with the springboard-

shaped sample holder. Figure 5.18 shows detailed apparatus of the springboard-

shaped sample holder and thermometry.  
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Figure 5.17 Diagram of Jc(B,T,,) probe (a) the top part of the probe including a 

stack of brass current lead bars and (b) the variable-temperature insulating cup.  
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Figure 5.18 (a) Diagram of the springboard-shaped sample holder and thermometry. 

(b) Metallic foil heaters underneath the sample holder. 

Split-current leads and heaters were made flexible due to a requirement of the strain 

measurements. All heaters were made from a metallic foil-type strain gauge on 

polyimide substrate and were installed underneath the sample holder. The resistances 

of the as supplied gauges were 120 . Because of the existence of stainless steel 

tubes for strain application, cylindrical shape was not an appropriate design for the 

vapour-cooled current leads. While brass was still used with all the benefits 

discussed above, the cylindrical shape was changed to a stack of brass bars. Each 

current lead for the Jc(B,T,θ,) probe was made from five of 1 mm  10 mm  1.0 m 

brass bars with 1.5-mm gaps between them. Four YBCO (SF4050) tapes were 

soldered to each current lead from the bottom end up to x = 0.4 m. The total cross-

sectional area of each current lead was 50 mm
2
 which was the optimum for 

measurements up to 450 A with D = 0.2, maxT  = 400 K and b´ = 0.3 Lhr
-1

. The 

current lead’s length at the minimum helium level was 1.0 m. The observed static 

helium consumption of the probe alone was 0.5 Lhr
-1

. 
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5.6 Strain sample holder 

Strain is applied to the sample using the modified bending beam apparatus with the 

springboard-shaped sample holder. The sample holder was made from a copper 

beryllium alloy (Berylco 25) with good elastic properties, solderability and relatively 

high resistivity [178]. It was 78 mm in length, 15 mm in width and 2.5 mm in 

thickness, as shown in Figure 5.19. The sample is soldered directly into a groove that 

runs along the length of the sample holder and ensures the superconducting 

component of the sample is parallel to the top surface of the springboard and in the 

plane of the strain gauges. The final design ensures the springboard is long enough 

that we do not get current transfer voltages in our measurements. The wide surface of 

the springboard provides space for the strain gauge, Hall sensor and thermometry. 

The split-current leads were made from OFHC copper for measurements at liquid 

helium temperature. Four YBCO (SCS4050) tapes were used for each current lead 

for measurements in the variable-temperature cup. The pairs of legs at each end were 

pulled/pushed to adjust the strain on the top surface of the sample holder with the use 

of JVL’s MAC servo motor. The top pair was fixed to the support tube and the 

second pair to the pushrod. Uniaxial strains of -1.4 % to 1.0 % can be applied to the 

sample. Finite element analysis of the springboard-shaped sample holder with the 

applied strain of -1.08 % is shown in Figure 5.20. Strain homogeneities are better 

than 1 part in 10
5
 across the thickness of the superconducting layer and also along the 

length of the sample between 10-mm voltage taps. In the strain measurements, strain 

gauges (Vishay WK series) are mounted on the sample holder next to the sample. 

This allows direct control and monitoring of the strain during initial setup and 

measurements. At liquid helium temperature, the strain gauges exhibited a positive 

magnetoresistance of ~180 m at 14T which corresponds to the effective measured 

tensile strain of ~0.025 % relative to zero field. This magnetoresistance has been 

characterised and the measured strain has been corrected. The total uncertainty in the 

measured strain is better than 0.02 % for all data taken. 
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Figure 5.19 Technical drawings of the springboard-shaped sample holder. 
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Figure 5.20 Computational data of the strain homogeneity on the top surface of the 

2.5-mm-thick springboard-shaped sample holder with an applied strain of -1.08 %. 

The inset shows a colour plot of the data from finite element analysis. 



Chapter 5 Probes for investigating the effect of B,, T and  on Jc of HTS tapes 95 

 

5.7 Investigation of HTS tapes 

Jc measurements were performed on YBCO (SCS4050) tapes using the Jc(B,T,θ,) 

probe. The critical currents were defined using a 100 Vm
-1

 electric field criterion. 

Strain effects on the critical current density of the YBCO tape are presented in Figure 

5.21 for measurements in liquid helium and magnetic fields applied normal to the 

tape surface. At 4.2 K, the effects of strain on YBCO are weak and Jc is reversible 

over the strain range of -0.6 % in compression to 0.3 % in tension. We present Jc as a 

function of applied strain extended to -1.3 % to illustrate the capability of our strain 

apparatus in measuring Jc in compression.  
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Figure 5.21 Critical current density of a YBCO tape at 4.2 K as a function of applied 

strain for different magnetic fields normal to the tape surface. 
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Figure 5.22 Critical current density of a YBCO tape at 4.2 K as a function of applied 

magnetic field for different strains and angles between the magnetic field and the 

tape surface.  

Figure 5.22 shows the magnetic field dependence of the critical current density for 

various angles between the fields and the tape surface at  = -0.03 %. Data for  

= -0.53 % and  = 15 are also included. Jc of YBCO increases by a factor of 3 when 

 changes from 90 to 15. The anisotropy of YBCO has been analysed based on 

anisotropic Ginzburg-Landau theory and the anisotropy of 7.0 was found [209]. 

In Figure 5.23, voltage-current characteristics of the YBCO sample are shown at 

20 K and 40 K for different magnetic fields applied normal to the tape surface when 

 = 0.0 %. The inset data show that the temperature stability is sufficiently good that 

no significant change in temperature occurred during the transitions, either from 

heating of the sample or heating of the current leads made from YBCO tapes. 

However, the temperature variations are around 150 mK which is higher than the 

Jc(B,T,θ) probe probably due to the larger volume of sample space.  
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Figure 5.23 (a) Voltage-current characteristics of a YBCO tape at 20 K as a function 

of applied magnetic field normal to the tape surface for measurements in liquid 

helium. (b) Similar plots at 40 K. The insets show temperature rising during the 

transition for data taken at 10 T at 20 K and 6 T at 40 K where the critical currents at 

100 Vm
-1 

were 229 A and 153 A, respectively. In both cases, no temperature 

increase was observed. The temperature deviation was about 150 mK. 
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Figure 5.24 Normalised critical current density of YBCO tapes as a function of 

strain at 4.2 K, 40 K and 77 K. The inset shows voltage-current characteristics of a 

YBCO tape at 40 K as a function of applied strain with the magnetic field applied 

normal to the tape surface.  

Measurements using the variable-temperature cup were also performed as a function 

of strain at 40 K in the applied magnetic field of 6 T normal to the tape surface. 

Voltage-current characteristics are shown in Figure 5.24 (inset) for the applied 

strains of 0.0 %, -0.3 % and -0.6 %. The noise in the base line of the measurements 

was several hundred nanovolts peak-to-peak and was a result of the stability of the 

temperature control. The critical current density obtained as a function of strain has 

been normalised and plotted in Figure 5.24, together with two other temperatures for 

comparison. Table 5.5 summarises the measurement uncertainty for critical current 

measurements using the Jc(B,T,) and Jc(B,T,,) probes operated in liquid nitrogen 

and liquid helium. Uncertainty of the measured critical current is predominantly due 

to the temperature variation. The proportional (P), integral (I) and derivative (D) 

values of the temperature controllers were the same for all measurements and were 

equal to 50, 20 and 0 respectively. We are confident that the variations in 
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temperature can be reduced if necessary with further optimisation of the feedback 

circuit (i.e. PID parameters). These Jc results confirm the probe operates 

successfully.  

 

5.8 Concluding comments 

We have successfully designed, constructed and commissioned a probe for 

Jc(B,T,θ,) measurements on high temperature superconductors. The probe was 

designed and optimised for Durham’s split-pair horizontal magnet system, however, 

design considerations and detailed calculations were discussed and we have 

produced a generalised solution for optimisation of the vapour-cooled brass current 

leads. The optimum cross-sectional area of the current leads has been calculated 

which include consideration of the duty cycle of the measurements, the static helium 

consumption of the cryostat and the maximum safe temperature of the leads since 

over-current operation consumes less cryogen. This work shows that beyond the 

special case of magnet currents leads continuously running at constant current, more 

generally one can expect that ‘hot’ current leads will be most efficient for cryogenic 

applications. The probe used an insulating enclosure for the variable-temperature 

measurements. The total uncertainty of the sample’s temperature during Jc 

measurements was typically ~0.2 K. This was influenced by the design and 

thermometry of the probe and the control system. Uniaxial compressive and tensile 

strains were obtained using the springboard-shaped sample holder. Strains of -1.4 % 

to 1.0 % can be applied with a total uncertainty of the measured strain better than 

0.02 %. 
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Table 5.5 Measurement uncertainty in operation of the Jc(B,T,) and Jc(B,T,,) 

probes in liquid nitrogen and liquid helium. 

Quantity 
Maximum uncertainty 

Liquid nitrogen Liquid helium 

Jc(B,T,) probe 

     Temperature  

     Critical current  

Jc(B,T,,) probe 

     Temperature 

     Critical current  

     Strain  

 

180 mK 

1.1 % mv 
a
 

 

200 mK 

1.2 % mv 

0.02 % 
b
 

 

80 mK 

0.5 % mv 

 

150 mK 

0.9 % mv 

0.02 % 

a
 Percentage of the measured value.  

b
 Percentage strain as from the definition  = L/L0  100 %. 
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Chapter 6  
 

Critical current density in polycrystalline 

superconductors  

 

6.1 Introduction 

Following the preliminary measurements of the critical current density on the DI-

BiSCCO tapes in Chapter 4, detailed experimental and theoretical studies were 

performed, not only for BiSCCO but also for HTS YBCO and LTS Nb3Sn. All the 

variable-strain transport measurements on BiSCCO in this chapter were completed 

by the author of this thesis as well as all of the analysis. The measurements on 

YBCO and Nb3Sn were completed by Mark Raine and Drs Yeekin Tsui and Joshua 

Higgins. The central idea or hypothesis in this chapter is that a single mechanism, 

based on flux flow along the grain boundaries, can explain the functional form of Jc 

in polycrystalline LTS and HTS regardless of the pairing mechanism operating.  

The next two sections in this chapter provide reviews of topics in the literature 

relevant for the analysis and interpretation of the Jc data presented. Sections 6.2 and 

6.3 consider: Grain boundaries and Theoretical analysis of SNS junctions. Section 

6.4 considers Samples and experimental methods. Thereafter, Jc data is presented in 

Section 6.5 as a function of magnetic field, field orientation, temperature and strain 

for BiSCCO, YBCO and Nb3Sn and analysed using the SNS model. Finally we 

provide comment and conclusions. 
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6.2 Grain boundaries: review of structure and properties 

It is well known from experimental work and theoretical considerations that perfect 

single crystals of superconductors carry no bulk critical current density [58, 210].  

Grain boundaries control materials properties since their atomic configurations are 

locally different from that of the grains so many physical properties are locally quite 

different to the bulk. In LTS, it has long been known that decreasing the grain size or 

equivalently increasing the density of grain boundaries increases Jc [181, 211]. For 

polycrystalline HTS the strong effect on Jc of the misorientation of the grains has led 

to the idea that grain boundaries are weak-links [6, 212, 213], not pinning centres as 

found in the LTS. In general, the rotation of a crystal around an axis parallel to the 

plane of the grain boundary leads to a tilt grain boundary and a rotation around an 

axis normal to the plane leads to a twist grain boundary. For example, [001]-tilt grain 

boundary has the rotation around the c-axis so the misorientation occurs along the 

ab-plane (where superconductivity takes place) and is called the in-plane 

misorientation. On the other hand, the out-of-plane misorientation occurs in the c-

direction such as [100]-tilt grain boundary. Given the negligible anisotropy of the 

HTS in the ab-plane, we expect that the in-plane misorientation will not affect the 

anisotropic properties of polycrystalline samples as strongly as out-of-plane 

misorientation does.   

A grain boundary with low-angle in-plane misorientation angle consists of arrays of 

separated dislocations which are clean (from impurities and defects) and well-

defined as seen from the transmission electron microscopy (TEM) studies [214]. The 

transition from low-angle to high-angle grain boundaries, at which the separated 

dislocations are so close and overlap, is around 10 [215] depending on material and 

the temperature. An important difference between low-angle and high-angle grain 

boundaries is the strength of coupling across the boundary [215] and hence leads to 

significantly different physical properties. For YBCO and BiSCCO, the presence of 

the grain boundary faceting with the size of ~100 nm has been reported [216-218] 
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which is dependent on the different growth modes. Therefore, grain boundaries in 

these materials can have large local variations in properties.  

In order to investigate the local properties of the grain boundaries in HTS, several 

approaches have been used to prepare a single grain boundary such as bicrystal 

technology, biepitaxial process and step-edge junctions [214]. Current-voltage 

characteristic of the grain boundaries clearly shows the superconducting-normal-

superconducting (SNS) Josephson junction behaviour [148] which can be described 

with the Time-Dependent Ginzburg-Landau (TDGL) equations [219] where the 

critical current density is determined by flux flow along the grain boundaries. 

Magneto-optical images of YBCO samples and light microscopy images of the 

underlying Ni substrate together reveal flux penetration into the grain boundary 

regions where the superconducting order parameter is depressed [220]. Although an 

accurate thickness of the grain boundary is ambiguous, grain boundaries with higher 

angle are considered thicker than the grain boundaries with lower angle so there 

exists a larger suppression of the superconducting properties and the critical current 

density is lower. An exponential decrease in Jc as a function of misorientation angle 

has been found [6, 212, 213], consistent with this correlation. 

 

6.3 Flux flow along an SNS junction 

Recent theoretical work on Jc in an SNS junction in high magnetic fields has been 

published by Carty and Hampshire [221] (members of the Durham group) and is 

summarised here. In low magnetic fields, Jc through a narrow SNS Josephson 

junction is given by the familiar sinc function [18, 222]: 



 Bdew

Bdew

J
J c

)(2
sin

)(2

)0( )S(

)S(

* 


     (6.1) 
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Figure 6.1 Schematic diagram of the SNS junction model [221]. The junction 

consists of two superconducting components separated by a normal metal barrier that 

limits the current flow. This barrier represents the grain boundary in polycrystalline 

superconductor.   

where w is the width of the junction, )( )S(d
 
is known as the effective half-

thickness of the junction, )S(  is the penetration depth of the superconducting 

component and B is the applied magnetic field. Figure 6.1 shows a diagram of an 

SNS junction where the normal metal barrier limits the current flow from one 

superconducting component to another. 

For anisotropic materials, parameters that are determined by the direction of current 

flow (associated with the effective mass of the carriers) are distinguished by an 

uppercase star (e.g. 
*

2cB ) from those determined by the angle of the applied field with 

respect to the crystallographic axes (e.g. 2cB ).  Equation (6.1) does not consider the 

complex spatial variation of the order parameter in the mixed state where fluxon 

formation occurs in the junction and in the superconductor. TDGL computation has 

confirmed that for wide junctions or in high magnetic fields where many fluxons are 

in the junction, the sine term which is associated with phase of the superelectrons is 

averaged out to 2/1  [221]. When the superconductor is in the mixed state and the 

magnetic field produces many fluxons in the junction, the factor )( )S(d  is 

replaced by )( )S(d  where (S)  is the coherence length of the superconducting 
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component. The general solution for the depairing current density ( JDJ  ) through a 

one-dimensional SNS junction that accounts for the depression of the order 

parameter by magnetic field is given by [221] 
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and  N  are normal state 

resistivities of the superconducting component and the normal component, 

respectively [223]. In conclusion )0(*J  in (6.1) can be equated to JDJ   of the 

junction which gives  
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with the dimensionless units    NS r  and 2

~
cBBb  .  
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6.4 Samples and experimental methods 

Three different types of samples were measured: 

i) Nb3Sn wires manufactured by Bruker EAS using the multifilamentary bronze-

route process. The average diameter of the wires was 0.81 mm;  

ii) YBCO tapes from SuperPower (SCS4050). The superconducting layer was 

approximately 4 mm wide and 1 m thick;  

iii) Multifilamentary DI-BiSCCO CA50 tapes supplied by SEI. Detailed description 

of the tapes was presented in Chapter 4. 

6.4.1 Magnetic measurements and Bean’s model 

Dc magnetisation is measured using a dc magnetometer where the sample is 

magnetised by a constant magnetic field and a set of pickup coils is used to measure 

an induced voltage as the sample is moving through the coils [224]. The induced 

voltage is proportional to the change of flux which can be integrated to give the value 

of sample’s magnetisation (M), typically as a function of the applied magnetic field 

strength (H). The magnetisation of a hard Type II superconductor exhibits 

irreversible behaviour. The critical state model, first introduced by Bean [225, 226], 

provides a picture of how irreversible bulk critical current density flows to create the 

magnetisation in response to the change of external magnetic field strength. The 

screening critical current density can be extracted from the M(H) data by using the 

relation Jc  M with the proportional constant depending on geometry of the 

sample. M is the difference in magnetisations at increasing field and decreasing 

field of the hysteresis loop. 

The ac susceptibility, on the other hand, is obtained by inductively measuring ac 

magnetic moment of the sample which is created under a small ac field in the large 

applied field without any sample motion. The ac moment contains information on 
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dynamic effects of magnetisation and yields two components of susceptibility: a real 

component () and an imaginary component (). Ac susceptibility measurements 

have been used to characterise Bc2 of the superconductors investigated which 

characterises the onset of the transition [227]. 

The magnetisation measurements and ac magnetic susceptibility measurements of 

Nb3Sn, YBCO and BiSCCO were completed in the Quantum Design Physical 

Properties Measurement System
©

 in magnetic fields up to 8.5 T at different 

temperatures. In the magnetisation measurements, hysteresis loops were obtained in 

order to calculate the magnetisation Jc using Bean’s critical state model [226]. The ac 

magnetic susceptibility data were used to find Bc2(T).   

6.4.2 Transport measurements  

Transport measurements rely on current flow between the measuring contacts. The 

measurements are usually performed using the standard four-terminal technique, 

with two current contacts and two voltage taps, to ensure that only the sample’s 

resistance is measured [190]. Transport Jc measurements are carried out by passing 

an increasing current to the sample while the voltage across the sample is monitored. 

A resulting voltage-current characteristic is obtained and the critical current is 

defined by applying an arbitrary electric field or resistivity criterion [228]. Jc 

obtained from transport measurement therefore reflects the real current carrying 

capacity of the sample although it is dependent on the criterion used to define the 

non-dissipative state.  

Transport technique is also useful for Tc measurements where resistivity of the 

sample is measured as a function of temperature. Tc is normally determined at the 

temperature that sample’s resistivity drops to zero. However, broadening of the 

resistive transition in magnetic field usually occurs especially in HTS [229-233], 

therefore the ac susceptibility measurements are more convenient in terms of 
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determining Tc. Other limitation of the transport measurements includes the 

requirement to fabricate electrical contacts which makes them difficult for a small 

sample and impossible for sample in powder form. Moreover, measuring Jc in low 

magnetic fields can be restricted in high-Jc superconductors due to the heating 

problem. In these cases, the magnetic measurements are preferable.  

The transport Jc measurements of Nb3Sn were made using the standard four-terminal 

technique and the critical currents determined using a 10 Vm
-1

 electric field 

criterion. Jc of YBCO and BiSCCO were determined at 100 Vm
-1

. The critical 

current densities were calculated using the critical currents divided by the unstrained 

cross-sectional area of the superconducting components. The transport Jc 

measurements on Nb3Sn wires were performed at 4.2 K in magnetic fields up to 

14.5 T in our vertical superconducting magnet using the purpose-built strain probe 

which includes a copper beryllium spring sample holder [178, 194]. The 

measurements on YBCO and BiSCCO tapes were performed at 77 K in magnetic 

fields up to 0.7 T in our conventional iron-cored electromagnet and at 4.2 K in 

magnetic fields up to 14 T in a 40 mm bore horizontal split-pair superconducting 

magnet at different angles between the field and the surface of YBCO and BiSCCO 

tapes. The strain measurements were carried out using the springboard-shaped 

copper beryllium sample holder (as shown in Fig. 5.18) for applying strains up to 

0.3 % in tension and -1.4 % in compression [154, 234].  

 

6.5 Experimental results and discussion 

Here we consider polycrystalline superconductors as a collection of SNS junctions. 

The superconducting components represent the grains of the superconducting 

material and the normal junctions represent the grain boundaries. 
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6.5.1 Temperature and magnetic field dependence of Jc 

Figure 6.2 shows the magnetisation Jc as a function of applied magnetic field and 

identifies the self-field regime, the power-law regime and the exponential regime 

where the product of 2~
F , )

~
1( b  and the exponential field-dependent term is 

important. The solid lines are fits to the data using (6.4) where the Ginzburg-Landau 

parameter is 33, 94 and 139 for Nb3Sn, YBCO and BiSCCO respectively [171]. At 

the very lowest fields, the (log-log) insets show that Jc is almost field-independent, 

consistent with the self-field produced by the flowing current being much higher than 

the external magnetic field.  At low fields, Jc(B) shows power-law behaviour with an 

exponent of -0.5, consistent with (6.4). The power-law behaviour occurs over a wider 

range of fields and temperatures for YBCO than Nb3Sn and BiSCCO and is 

attributed to thinner grain boundaries. At sufficiently high fields, there is a cross-over 

from power-law behaviour to exponential behaviour which has been observed before 

[235-238]. Note that in other (lower Jc) YBCO samples, Jc(B) is exponential over 

several orders of magnitude/a much larger range of field and temperature phase 

space [239] than shown here, which is consistent with attributing the field 

dependence to the nature of the grain boundaries and not the intrinsic properties of 

any specific superconducting material. For BiSCCO, Jc is a significantly smaller 

fraction of the depairing current density than in say YBCO. When fitting the Jc data 

of BiSCCO at low fields, there is a very much stronger temperature dependence than 

that found in Nb3Sn or YBCO which cannot be explained by the temperature 

dependence of Bc2. This temperature dependence is attributed to the normal state 

property r as shown in the additional inset of Figure 6.2(c) and described empirically 

by 

)exp()( 00 TTrTr  ,        (6.5) 

where 
0r = 3.6×10

-2
 and 

0T  = 36 K in the fit to the data.  
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Figure 6.2 (a) Log-linear plots of magnetisation critical current density calculated 

using Bean’s critical state model [226] as a function of magnetic field for a Nb3Sn 

wire, showing the self-field regime (yellow), power-law regime (green) and 

exponential regime (blue). The inset is the Jc data in log-log plots showing the 

power-law behaviour in low fields. The solid lines are fits to (6.4). (b) and (c) are 

similar plots for YBCO and BiSCCO tapes for the field parallel to the c-axis. The 

additional inset in (c) shows the temperature dependence of r consistent with 

semiconducting behaviour of the BiSCCO grain boundaries.   
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The temperature dependence of r in BiSCCO is consistent with  N
 
(associated with 

the grain boundary) rapidly increasing with decreasing temperature which is 

expected for a semiconducting grain boundary. The functional form of Bc2(T) has 

been derived for each of the three materials studied here by fitting the Jc data to (6.4). 

In Figure 6.3 and Figure 6.4, these functional forms are compared with the Bc2 values 

obtained from the in-house ac magnetic susceptibility measurements as well with 

those from literature. Bc2 from ac magnetic susceptibility measurements has been 

characterised at 1 %, 5 % and 50 % of the full screening (Mfs) in order to quantify 

how sensitive the values are to the criterion used.  

For Nb3Sn, which is one of the important superconducting materials used in the 

ITER tokamak [240], there is much data in the literature on samples fabricated by 

different routes and with different microstructure. Bc2(T) obeys the WHH equation 

and can be characterised by 

)
~

1)(0()( 5.1

22 tBTB cc         (6.6) 

where t
~

= T/Tc is the reduced temperature [36, 241, 242]. The data at 1 % of full 

screening give the values of Bc2(0) and Tc of 26.3 T and 16.7 K which are similar to 

those derived from the Jc data (26.3 T and 16.2 K) and the literature data. For HTS 

materials, the fundamental properties and their variation with sample preparation and 

microstructure are far less well known, particularly at low temperatures where Bc2(T) 

values are high. Nevertheless for YBCO, pulsed field Bc2(T) data are available up to 

400 T [64] and are plotted in Figure 6.4. The Jc data of YBCO have been fitted using 

Bc2(T) in the form 

)
~

1)(0()( 61.0

22 tBTB cc         (6.7) 

where the values of Bc2(0) and Tc are 68.5 T and 87.6 K. The temperature dependence 

of Bc2 from (6.7) only differs significantly from the pulsed field data at 25 K and 

below where an upward curvature in Bc2(T) is found. This curvature may arise from 
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our assumption that GL  is independent of temperature, or differences between the 

single crystal sample used for pulsed field measurements and the tape used in this 

work which is optimised for high Jc. Further measurements in very high fields are 

required to explain the differences. A concave curvature of Bc2(T) has been observed 

in several BiSCCO systems [233, 243, 244] which can be characterised using a 

scaling function 

1.25.0

22 )
~

1)(0()( tBTB cc         (6.8) 

where Bc2(0) and Tc from the Jc data are 84.5 T and 110.8 K, respectively. The 

extrapolated zero-field Tc values found from the ac magnetisation data in Figure 6.3 

are lower than the measured zero-field Tc values because we have only used the in-

field data to provide the fits. The data in Figure 6.4 show that there is reasonably 

good agreement between the reduced temperature dependence of Bc2 obtained from 

different measurements on different samples. Also shown in Figure 6.4 are values of 

´(T) which were found by assuming that in the high field regime, in fields not too 

close to Bc2(T), we can simplify the functional form of Jc and consider it to be 

proportional to )](/exp[ TB   similar to Jc(B) in Chapter 4. For YBCO, the 

measurements were not done in sufficiently high magnetic fields to reach the high-

field exponential regime at low temperatures. Nevertheless the data in Figure 6.4 

show that the temperature dependence of ´(T) is similar to that of Bc2(T) for all three 

materials (where comparison is available) and leads to an empirical description of d  

as equal to a few coherence lengths through the equation [245, 246]: 

  ])([ 0S dTsd          (6.9) 

where s and 
0d  are constants. Comparing (6.4) to the functional form of Jc used in 

pinning given by in Chapter 2 (Eqn. 2.20), although (6.4) is mathematically more 

complicated, it describes Jc(B) in both low-field and high-field limits without any 

additional parameters that do not have a physical meaning. 
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Figure 6.3 (a) Upper critical field of Nb3Sn versus temperature obtained from ac 

magnetic susceptibility measurements (inset). The Bc2 is shown at 1 %, 5 % and 

50 % of the full screening (Mfs). The solid lines are fits to the in-field data with (6.6), 

giving the values of Bc2(0) [Tc] of 26.3 T [16.7 K], 26.3 T [16.7 K] and 25.3 T 

[16.5 K]. (b) Equivalent YBCO data with the field applied along the c-axis. The solid 

lines are fits to the data with (6.7), giving the values of Bc2(0) [Tc] of 89.0 T [88.2 K], 

88.2 T [88.1 K] and 79.6 T [86.5K]. (c) Equivalent BiSCCO data where the solid line 

fits are (6.8) with fitting parameters of 84.5 T [100.2 K], 83.7 T [99.7 K] and 74.4 T 

[93.7 K] respectively.  
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Figure 6.4 Normalised Bc2 and β´ as a function of reduced temperature for Nb3Sn, 

YBCO and BiSCCO. Durham’s Bc2 data are taken from Figure 6.3 at 1 % Mfs. 

Durham’s ´ data are taken from the magnetisation Jc fitted in the high field regime. 

´(0) for Nb3Sn, YBCO and BiSCCO are 6.8 T, 23.4 T and 13.5 T respectively. The 

lines describe the reduced temperature relations for Bc2 given by (6.6), (6.7) and (6.8) 

which are obtained from fits to the Jc data. The data from literature are from Godeke 

[242], Sekitani [64], Osofsky [243], Zavaritsky [244] and Kaushik [233]. 

6.5.2 Angular dependence of Jc 

The anisotropy of YBCO and BiSCCO can be described using the anisotropic 

Ginzburg-Landau theory which relates the angle θ between the magnetic field and 

the tape surface using [19] 

2/1

2

2

eff

2

22 cos
1

sin)90()(



















 cc BB      (6.10) 

similar to (2.9) but eff  here is the effective anisotropy obtained from the Jc data. In 

this chapter, YBCO and BiSCCO are treated as anisotropic layered superconductors 

with continuum 3D behaviour. Although a weak Josephson coupling between 

superconducting layers in BiSCCO leads to discrete 2D behaviour at low temperature 

where the Lawrence-Doniach theory [23] is more accurate, the Bc2 values calculated 
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from these two theories are only significantly different at very low  and are almost 

indistinguishable for very highly anisotropic materials and the data considered here. 

Note that in Chapter 4, the anisotropic properties of BiSCCO were assumed to be 

two-dimensional (i.e.   ), therefore any deviation from two-dimensional 

behaviour was attributed to the misalignment of the grains. Here eff  characterises 

the anisotropy of superconducting parameter, together with grain misalignment (as 

discussed below). The angular dependence of Jc is shown in Figure 6.5 for YBCO 

and BiSCCO. Equations (6.4) and (6.10) imply universal scaling behaviour for the 

angular dependence of Jc as a function of 
2/12-2

eff

2 )cos(sin B . This universality 

is confirmed in the insets for several magnetic fields and angles. The effective 

anisotropy obtained for YBCO and BiSCCO is 7.0 and 7.8 respectively, both within 

the range of values quoted in the literature. The YBCO sample used in this work is 

fabricated by deposition of YBCO film onto substrates with relatively good 

crystallographic alignment, therefore the effective anisotropy obtained is consistent 

with the literature values of 3 - 8 [22, 222, 247].  For BiSCCO, the value obtained is 

at the low end of the range reported in the literature ( = 3 - 150) [34, 68, 248, 249]. 

This is because eff  considered here (which is extracted from the experimental Jc 

data) characterises both anisotropy and grain misalignment in the c-direction of 

BiSCCO tapes and in these PIT materials, the misalignment is significant - probably 

about 10 degrees (cf Fig. 4.9). 

6.5.3 Strain dependence of Jc 

In Figure 6.6 (a) - (c), the normalised critical current density, Jn = Jc(a)/Jc(p),  is 

shown as a function of relative strain (r = a - p where a is the applied strain and p 

is the strain at which the maximum of Jc occurs) for Nb3Sn and YBCO.  
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Figure 6.5 (a) Transport critical current density of YBCO tape at 4.2 K versus 

magnetic field at different angles between the field and the tape surface. (b) 

Transport Jc of YBCO tape at 4.2 K versus the angle at 6 T and 11 T. (c) Transport Jc 

of BiSCCO tapes at 77 K versus the angle for zero applied strain. All insets show the 

data replotted as a universal curve versus 
2/12-2

eff

2 )cos(sin B  where eff  is 7.0 

for YBCO and 7.8 for BiSCCO. The inset in (c) also includes data at two other 

strains for BiSCCO. All dotted lines are guides to the eye. 
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For Nb3Sn, there is a very strong field dependence expected for the strain 

dependence of Jn over a reduced field B/Bc2 changing from 0.3 to 0.5. Changes in Jc 

caused by strain are accounted for by the strain dependence of the superconducting 

properties Bc2 and Tc, as is established for many Nb3Sn samples [197]. For YBCO, Jn 

is shown as a function of relative strain for both magnetic field normal and parallel to 

the tape surface at 77 K. Measurements at 4.2 K were only made with magnetic field 

oriented normal to the tape surface to keep the currents below ~500 A. At 4.2 K, the 

p changed from -0.3 % at 2 T to -0.1 % at 14 T as has been reported before [250], 

although no such change was observed at 77 K. The change in p is shown in Figure 

6.7. In addition, unlike Nb3Sn, Jn of YBCO is an almost universal function of the 

relative strain, independent of magnetic field over a large range of reduced field from 

0.06 to 0.4 at 4.2 K and both field and angle at 77 K. This result means that Bc2 and s 

are unaffected by strain (and from WHH theory [36] (S)  also) at these temperatures. 

Therefore the strain dependence of Jc is due to the strain dependence of r and hence 

(N) . Further measurements of (S)  and (N)  are required to explain why the strain 

dependence of r is larger at 77 K than at 4.2 K and may require inclusion of the role 

of grain boundary dislocations as a function of strain [251]. Flux pinning theory does 

not include normal state properties, therefore it cannot explain such variable strain 

Jc() data at all. Changing the grain size for example by a factor of 5 at 77 K in flux 

pinning models is clearly not physical.  

Figure 6.6(b) also shows how the strain dependent r eventually causes the 

universality to break down in the high-field exponential regime and leads to a less 

strain-dependent Jn on approaching Bc2. Since Bc2 considered here for YBCO is 

independent of strain, Tc is also expected to be strain independent. Single-crystal data 

on YBCO show Tc increases with pressure along the b-axis and decreases with 

pressure along the a-axis with an average that is close to strain independent [252]. 

These data provide support for the strain independent superconducting properties 

found in this work given that the parameters derived here are sample averaged and 

one can expect percolative current flow in a twinned YBCO tape. 
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Figure 6.6 (a) Normalised critical current density (Jn) of Nb3Sn wire versus relative 

strain at 4.2 K for different applied magnetic fields. (b) Jn of YBCO tape versus 

relative strain at 4.2 K at different magnetic fields applied normal to the tape surface. 

The inset shows Jc versus applied strain. Jn of YBCO shows the power-law magnetic 

field behaviour and p at which the maximum of Jc occurs is a weak function of 

magnetic field. The solid lines are calculations of Jc using (6.4) and (6.9). (c) Jn of 

YBCO tape versus relative strain at 77 K for different fields applied normal and 

parallel to the tape surface. The inset shows Jc versus applied strain for parallel fields 

only. (d) Change in Jn with respect to strain (dJn/d) as a function of reduced 

magnetic field B/Bc2(90
o
) for BiSCCO tapes at 4.2 K and 77 K for two different field 

orientations. The inset shows Jc versus applied strain. All dotted lines are guides to 

the eye. 
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Figure 6.7 Normalised critical current density of YBCO tape at 4.2 K as a function 

of applied strain for the magnetic fields of 2 T and 14 T applied normal to the tape 

surface. Dotted lines are guides to the eye. The arrow shows peak strain (p) for each 

magnetic field. The inset shows p versus magnetic field. 

Accurate measurements of the strain dependence of Jc in BiSCCO are demanding 

because the reversible changes in Jc occur over a much smaller range of strain than in 

YBCO or Nb3Sn. The inset of Figure 6.6(d) shows the roof-top behaviour for Jc() 

which has been characterised in the reversible strain region using the change in Jn 

with strain as a function of reduced field B/Bc2(90). For parallel fields at 77 K and 

normal fields at 4.2 K, Jc is in the power-law regime and the strain dependence of Jn 

is almost independent of magnetic field which suggests that Bc2 and s are unaffected 

by strain as also found in YBCO. However, for normal fields at 77 K, Jc is in the 

exponential regime and Jn is increasingly strain sensitive as the applied field 

increases which cannot be explained by the strain dependence of r. An increase of 

~5 % in d for a tensile strain of 1 % can explain this increasing strain sensitivity, 

although without data at much higher fields one cannot determine whether this is due 

to the change in Bc2 [253] or s.   
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Table 6.1 The value of fitting parameters in (6.4) and (6.9) fitted to the 

magnetisation Jc data shown in Figure 6.2. 

 r (T = 0) w s Tc d0 

Nb3Sn 1.0 4.2 µm 1.9 16.2 K 0 

YBCO 1.0 122 nm 1.2 87.6 K 0 

BiSCCO 3.610
-2

 122 nm 6.0 110.8 K 2.0 nm 

 

6.5.4 General interpretation of the results and fitting parameters 

Table 6.1 summarises the fitting parameters in (6.4) and (6.9) for the fits in Figure 

6.2. The r parameter is unity and temperature independent for Nb3Sn, which is an 

intermetallic compound, and YBCO, which has low-angle grain boundaries. These 

results imply that the grain boundaries have a similar temperature-dependent 

resistivity to the grains and so are metallic. For BiSCCO, r is small and temperature 

dependent as shown in (6.5) and the inset in Figure 6.2(c) which implies the grain 

boundaries are highly resistive with semiconducting behaviour. The w parameter, 

which is strongly correlated with r (the ratio r/w is fixed in the fitting) and 

characterises the effective widths of the junctions, can change without significant 

changes in the quality of the fit for BiSCCO. Therefore, w value obtained for YBCO 

is used. The presence of w explains why flux pinning theory has been so successful 

historically in explaining LTS materials since the edges of the junctions can be 

considered as pinning sites. In Nb3Sn, w is a few microns, about a factor of 5 - 10 

larger than the grain size [254], which suggests that several grains act together as a 

single barrier or equivalently not all triple points separate the barriers (probably 

because they are not aligned sufficiently with the field direction). The HTS materials 

YBCO and BiSCCO have much smaller values of w which implies the faceting and 
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meandering of the grain boundaries divide a grain boundary into many Josephson 

junctions, or to use the language of flux pinning, there are strong pinning sites along 

the grain boundaries [95, 255, 256]. The value of d0 in BiSCCO is sufficiently small 

that it only affects d at the very lowest temperatures where the fundamental 

properties are least well known.     

There are simple explanations for the values of s found in Table 6.1: s is small in 

YBCO because Bc2 is not dependent on strain and the low-angle grain boundaries are 

thin; s is larger in Nb3Sn because (unlike YBCO) the local strain depresses the 

superconductivity near the grain boundaries [241] and s is large in BiSCCO because 

the PIT route produces relatively large angle of the grain boundaries. Detailed 

compositional and structural information near the grain boundaries will be necessary 

to provide a more comprehensive explanation for the s values and the thicknesses of 

the junctions. 

Similar field-dependence behaviour of Jc - the power-law dependence in low fields 

and the exponential dependence in high fields - has been observed before in several 

studies including BiSCCO tapes, epitaxial YBCO thin films, silver clamped BiSCCO 

thick films and NbTi wires [235, 236, 238, 239, 257-260]. While the polynomial 

form of flux pinning scaling laws has been used to describe Jc(B) in LTS, it has long 

been believed that mechanisms limiting Jc in HTS YBCO and BiSCCO are different 

in the two magnetic field regimes [235, 238, 261-263]. Simple explanation of the low 

field power-law dependence is that dissipation in low fields occurs at the weak-link 

Josephson network [261]. In high fields, however, Jc measurements on powdered 

samples have suggested that the dissipation is dominated by intragranular flux 

motion [238, 263]. Alternative explanations are also available in the literature - the 

parallel path model [263] proposed for high-quality BiSCCO tapes describes Jc as a 

summation of weak-link (4 <  < 8) and strong-link ( < 4) contributions which 

are both exponential field-dependence. The Josephson network is not included in the 

model and the low-field dissipation is instead explained by flux motion at the grain 
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boundaries. This analysis is useful in terms of revealing the grain boundary networks 

in polycrystalline superconductors. Nevertheless, it is completely based on a 

comparison of the normalised Jc of the tape and the powdered samples which 

contains an ambiguity of data analysis. Moreover, measurements on a 2-single grain 

boundary of YBCO [264] illustrated that the Jc(B) does not exhibit only the 

exponential strong-link behaviour as expected from the parallel path model, but also 

the power-law behaviour in low fields as expected from the SNS junction model. 

 

6.6 Concluding comments 

We described Jc in polycrystalline superconductors by flux flow along the grain 

boundaries based on the SNS junction model where the grain boundaries are 

considered as the normal barriers. The model provides an explanation of the Jc data 

and predicts the critical current density of the polycrystalline Nb3Sn, YBCO and 

BiSCCO over a large range of magnetic field and temperature. From a materials 

engineering point of view, the SNS junction model provides new grain boundary 

engineering strategies for improving Jc by revealing the properties of the grain 

boundaries.  

Flux pinning theory can provide important insights into how Jc arises but cannot 

explain the comprehensive Jc data in polycrystalline HTS superconductors such as 

YBCO. The parallel path model (based on flux pinning) successfully describe the 

total Jc of BiSCCO tapes using a simple linear combination of Jc from different grain 

boundary networks. However, it is not a complete model and some essential details 

are lacking. It should be noted that the parallel path model evaluates local 

characteristics within the sample, whereas the SNS junction model analyses the 

average properties of polycrystalline materials.    
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In the process of investigating Jc, the average superconducting properties of YBCO 

are found to be unaffected by strain. The isotope effect led to an understanding of the 

phonon-mediated fundamental mechanism in LTS and explained the strain 

dependence of Bc2 in the LTS Nb3Sn [197]. The lack of any significant evidence for 

strain affecting the superconducting properties of YBCO and BiSCCO may yet 

provide an insight into the mechanism that gives rise to the superconductivity in HTS 

materials [265, 266].  
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Chapter 7  
 

Effect of magnetic field, field orientation, 

temperature and strain on the critical current 

density of DI-BiSCCO tapes 

 

7.1 Introduction 

Following the preliminary results and analysis of Jc for DI-BiSCCO tapes discussed 

in Chapter 4, the superconducting properties of these tapes were investigated further 

using the probe specially designed for the transport Jc(B,T,θ,) measurements in high 

magnetic fields. Resistivity measurements were performed as a function of magnetic 

field orientation, magnitude of magnetic field and temperature. This work provides 

resistive Bc2 data complementary to the ac susceptibility data provided previously. 

The temperature and angular dependence of Bc2 is discussed in Section 7.2 where the 

grain alignment within the samples is also included. Transport Jc of the DI-BiSCCO 

tapes is analysed in Sections 7.3 with consideration of the non-uniform current flow 

and flux flow along the grain boundaries. Strain effects on the superconducting 

properties of the DI-BiSCCO tapes are discussed in Section 7.4 and finally we 

provide concluding comments. 
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7.2 Upper critical magnetic field 

The upper critical magnetic field is one of the most important superconducting 

parameters. No theoretical model will be able to describe Jc in the extended field and 

temperature phase space unless the B-T phase boundary is systematically studied and 

understood. For BiSCCO (and other HTS), the orientation of magnetic field strongly 

affects the superconducting properties. In Chapter 6, the ac magnetic susceptibility 

transitions and the magnetisation Jc were used to formulate Bc2(T). The functional 

form of Bc2(θ) from the anisotropic Ginzburg-Landau theory was used to extract the 

effective anisotropy of the DI-BiSCCO tapes from the transport Jc(θ) data. In this 

section, the Bc2(T,θ) dependency is examined using complementary resistive 

superconducting transitions. 

7.2.1 B-T phase diagram 

Resistive transitions of a DI-BiSCCO bare tape were obtained from the transport 

measurements at various magnetic fields applied at different angles between the 

magnetic field and the tape surface. The transitions for parallel magnetic fields (J // B 

// ab-planes) are shown in Figure 7.1 where the measurements were carried out in the 

variable-temperature cup immersed in liquid helium in the vertical superconducting 

magnet using the Jc(B,T,θ) probe. Similar measurements were performed in liquid 

nitrogen in the conventional iron-cored electromagnet and the results are presented in 

Figure 7.2 and Figure 7.3 for magnetic fields applied at different orientations (J  B). 

A sharp transition was observed at zero magnetic field while the in-field transitions 

were broadened as the field increased. This behaviour has been observed before in 

several HTS systems [229-233] and attributed to thermally activated flux motion. 

The transition width data (Tonset - Toffset where Tonset and Toffset are obtained by 

extrapolating the transition to the normal state resistance and the zero resistance 

respectively) from Figure 7.1 is plotted as a function of magnetic field in Figure 7.4 
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(inset). The width can be as large as 10 K at a magnetic field of 12 T parallel to the 

tape surface. Bc2 determined at 1 %, 5 % and 50 % of the normal state resistance (Rn) 

is shown in Figure 7.4. The Bc2 values are sensitive to the criterion used due to the 

broad transitions. In analysis hereafter, the Bc2 values determined at 1 % Rn are used. 

Figure 7.5 shows transition temperature of the DI-BiSCCO bare tape as a function of 

angle between magnetic field and the tape surface at 0.1 T and 0.2 T. The results 

imply Bc2(θ) described by the anisotropic Ginzburg-Landau theory. The data are 

replotted in the inset as a universal curve as a function of 
2/12-2

eff

2 )cos(sin B  

where eff  is 8.5 obtained from the best fit. This is similar to the Jc analysis in 

Chapter 6 in Figure 6.5. Included in the inset are data for fields applied normal to the 

tape surface obtained from Figure 7.2. 
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Figure 7.1 Normalised resistance versus temperature for a DI-BiSCCO bare tape as a 

function of magnetic field applied parallel to the tape surface and the current flow. 

The applied current was 10 mA for B = 0 – 2 T and 100 mA for B = 4 – 12 T. 
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Figure 7.2 Normalised resistance versus temperature for the DI-BiSCCO bare tape 

as a function of magnetic field applied normal and parallel to the tape surface. In 

both orientations, the magnetic field was normal to the current flow.  
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Figure 7.3 Normalised resistance versus temperature for the DI-BiSCCO bare tape 

as a function of angle between magnetic field and the tape surface at 0.2 T. The 

magnetic field was normal to the current flow. 
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Figure 7.4 Upper critical field versus temperature phase diagram obtained from the 

resistive transitions of the DI-BiSCCO bare tape presented in Figure 7.1. The 

magnetic field was applied parallel to the tape surface. The upper critical field was 

determined at 1 %, 5 % and 50 % of the normal state resistance (Rn). The solid lines 

are fits to (6.8), giving the values of Bc2(0) [Tc] of 508.2 T [107.3 K], 521.7 T 

[107.5 K] and 714.1 T [109.2 K]. The inset shows transition width, which is the 

difference between extrapolated onset and offset temperatures of the normal state 

resistance and the zero resistance respectively, as a function of magnetic field. 
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Figure 7.5 Transition temperature at 1 % of the normal state resistance as a function 

of angle between magnetic field and the surface of the DI-BiSCCO bare tape for the 

magnetic fields of 0.1 T and 0.2 T. The inset shows data replotted as a function of 

2/12-2

eff

2 )cos(sin B  where eff  = 8.5. Data from Figure 7.2 for fields applied 

normal to the tape surface are also plotted for comparison. 

7.2.2 Temperature dependence of Bc2 

Bc2 obtained from the transport measurements in Figure 7.1 and Figure 7.2 is plotted 

in Figure 7.6 together with Bc2 obtained from the ac magnetic susceptibility 

measurements already presented in Figure 6.3(c) where the DI-BiSCCO bare tape 

was also used. Both measuring methods give a similar upward curvature of Bc2(T) 

which can be described by (6.8) as shown by the solid lines, except at temperatures 

close to Tc. The upward curvature of Bc2(T) has been observed in several HTS [233, 

243, 244, 267-269] and cannot be explained by standard WHH theory. Until now an 

accurate theoretical explanation of this unconventional behaviour has not been 

achieved. Some proposed models that provide a Bc2(T) versus T relation include the 

condensation of charged bosons [270, 271], the enhanced thermal fluctuations at low 

temperature from the reduction in condensation energy by magnetic field [272] and 



Chapter 7 Effect of B, θ, T and  on Jc of DI-BiSCCO tapes 130 

 

the melting of vortex lattices [273]. Despite the different fundamental origins of 

Bc2(T) in these models, they all predict a temperature dependence of Bc2 that depends 

on the type of materials (the degree of curvature differs from material to material). 

The work published by Zavaritsky [271] based on the condensation of charged 

bosons, in particular, demonstrates that there are at least four different groups of 

unconventional superconductors distinguished by different curvatures of Bc2(T). All 

of them exhibit a universal Bc2(T) following Bc2  (Tc - T)
3/2

 near Tc which diverges 

in different ways at low temperature. However without experimental Bc2 data for the 

entire temperature range or a correct theoretical model, the behaviour of Bc2 at low 

temperatures remains uncertain.  
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Figure 7.6 Upper critical field versus temperature phase diagram for the DI-BiSCCO 

bare tape with magnetic fields applied normal and parallel to the tape surface. The 

magnetic data are taken from Figure 6.3(c) at 1 % of the full screening. The transport 

data are obtained from the resistive transitions at 1 % of the normal state resistance in 

Figure 7.1 and Figure 7.2. Solid lines are fits to (6.8) where Tc(90) = 101.6 K, 

Bc2(0,90) = 81.4 T, Tc(0) = 107.6 K and Bc2(0,0) = 500.6 T. The inset shows the 

same plots near Tc. 
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Figure 7.7 shows Bc2(T,0)/Bc2(T,90) as a function of temperature for the DI-

BiSCCO bare tape calculated from (6.8) with Tc(90) = 101.6 K, Bc2(0,90) = 81.4 T, 

Tc(0) = 107.6 K and Bc2(0,0) = 500.6 T as obtained from the fits in Figure 7.6. The 

effective anisotropy eff  is 6.1 at zero temperature, nearly constant up to around 

70 K and rapidly increases at temperatures approaching Tc. Note that eff  extracted 

from the angular Jc and Bc2 data for the bare tape is 8.0 - 8.6 (see below) which is 

higher than the calculated eff (T = 0 K) in Figure 7.7. Assuming eff  is independent 

of temperature, the differences are produced by the model used to extrapolate Bc2 to 

zero temperature. On the other hand, a weakly-increasing temperature dependence 

could explain the differences. Recent work on SmBCO and YBCO [274-276] has 

demonstrated that the anisotropy of SmBCO and YBCO weakly decreases with 

temperature. Evidence for a temperature dependent eff  for BiSCCO has not yet 

been found, so we have assumed that eff  is independent of temperature in the 

analysis in this chapter. 
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Figure 7.7 Effective anisotropy of the DI-BiSCCO bare tape as a function of 

temperature calculated from Bc2(T,0)/Bc2(T,90) using Bc2(T) from (6.8) where 

Tc(90) = 101.6 K, Bc2(0,90) = 81.4 T, Tc(0) = 107.6 K and Bc2(0,0) = 500.6 T as 

obtained from the fits in Figure 7.6. 
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7.2.3 Anisotropy and grain misalignment 

The effective anisotropy analysed in Chapter 6 and earlier in this chapter 

characterises the intrinsic anisotropy  of superconductor and the grain misalignment 

from the anisotropic Ginzburg-Landau theory. In Chapter 4, 2D behaviour (  ) 

is assumed and the standard deviation of the misalignment angle 2D  is extracted 

from the transport Jc data. The relation between 2D  and eff  can be obtained by 

writing the scaling function  f  for the anisotropic Ginzburg-Landau theory as  

2/1

2

2

eff

2 cos
1

sin)( 












f ,      (7.1) 

which is equivalent to (has the same value as)  f  for the 2D model in Figure 4.10. 

By calculating )0( f  from (7.1) and using )0(9.702D  f  from (4.3), one obtains 

eff

2D

9.70


          (7.2) 

where the misalignment effect for the anisotropic Ginzburg-Landau theory is 

included in eff . Because perfect 2D behaviour is unlikely, 2D  is an overestimate. In 

Chapter 4, 2D  obtained for the DI-BiSCCO Ag20, SS20, CA50 and bare tapes was 

between 8.2 to 11.8. However, the average misalignment angle obtained from the 

rocking curve measurements at the half width at half maximum (HWHM) is between 

6 to 9 [158, 277] and corresponds to the standard deviation of only 5.1 to 7.6 

(calculated from HWHM = 2ln2  assuming a Gaussian distribution function 

[278]). 

In order to obtain more accurate values for the standard deviation of the 

misalignment angle to those obtained in Chapter 4, we have reanalysed the data 

using the anisotropic Ginzburg-Landau theory following an analysis similar to the 

work of van der Meer [166] to obtain 3D . The Gaussian distribution function of the 

c-axis grain misalignment G() is used and the scaling function at θ = 0 is 
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numerically calculated from (7.3) for different values of 3D  and . The plot of 

)0( f  as a function of 3D  is illustrated in Figure 7.8. 

 
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

d)]90(cos)90([sin)(

d)](cos)([sin)(
)(

2/122290

90

2/122290

90

G

G
f    (7.3) 

For isotropic material ( = 1), Figure 7.8 shows that the field orientation and the 

grain alignment do not affect the superconducting properties because )(f  is always 

equal to 1. On the other hand, for a highly anisotropic material when  is larger than 

~50 the materials tends to have 2D behaviour where the plot of )0( f  versus 3D  is 

linear for 3D   20˚ and can be described by )0(9.702D3D  f  from (4.3). 

)0( f  of the DI-BiSCCO samples measured in this thesis is shown in Table 7.1 

which was obtained from Jc measurements at  = 0 and 90.  
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Figure 7.8 The calculated scaling function at  = 0 as a function of standard 

deviation of the c-axis misalignment angle ( 3D ) for various values of the intrinsic 

anisotropy (). The inset is the same plot in a different scale. Dotted line in the inset 

is )0(9.702D3D  f  from (4.3). 
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In Table 7.1 a list of the samples used for each measurement is provided where the 

grain misalignment characterised from the 2D model in Chapter 4 and eff  

characterised from the anisotropic Ginzburg-landau theory are also included. The 

standard deviation of the misalignment angle assuming 2D behaviour ranges from 

8.2 to 11.8 which corresponds to an effective anisotropy of 6.0 to 8.6. Equation 

(7.3) was used to find a range of possible values of 3D  and  for each sample which 

are plotted in Figure 7.9. 3D  reaches its maximum value of 2D  when   50, while 

 never falls below its minimum of eff . Assuming a standard deviation of the c-axis 

misalignment angle of 5.1 to 7.6 obtained from rocking curve measurements in the 

literature [158, 277], we conclude that  for BiSCCO among the four samples is in 

the range from 7 to 30. Since the additional lamination process only reinforced the 

tapes, the variation in the grain misalignment (maximum of 3.6 among the four 

samples and 0.6 within the same sample, obtained from the 2D model) is simply 

because the tapes produced by PIT technique have local variations in texturing. 
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Figure 7.9 The standard deviation of the misalignment angle ( 3D ) versus intrinsic 

anisotropy for the DI-BiSCCO Ag20, SS20, CA50 and bare tapes calculated from 

(7.3) where the scaling function at  = 0 is obtained from the experiments.  
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Table 7.1 List of DI-BiSCCO samples used for each measurement and parameters 

representing the anisotropic properties.  

Measurement Sample 2D () eff f (0) Reference 

Jc(B) Bare 8.2 8.6  0.116 Figure 4.9 

 = 0, 90 SS20 10.1 7.0 0.142  

T = 77 K Ag20 11.8 6.0 0.166  

 CA50 8.8 8.1 0.123  

Jc(B,) CA50 9.1 7.8 - Figure 6.5(c) 

T = 77 K      

Bc2(T,) Bare 8.3 8.5 - Figure 7.5 

T  93- 110 K      

Jc()  Bare 8.8 8.0 - Figure 7.13 

B = 0.05 T      

T = 90 K, 100 K      

 

7.3 Critical current density 

7.3.1 Temperature and magnetic field dependence of Jc 

The transport critical current density of a DI-BiSCCO CA50 tape was measured at 

various magnetic fields and temperatures using the Jc(B,T,θ,) probe described in 

Chapter 5. Voltage-current characteristics of the tape are shown in Figure 7.10 for 

the magnetic field applied normal to the tape surface at 20 K, 40 K and 60 K.  
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Figure 7.10 Voltage-current characteristics of a DI-BiSCCO CA50 tape at 20 K (a), 

40 K (b) and 60 K (c) for various magnetic fields normal to the tape surface. The 

inset in (a) is the log-log plot of the same data including the resistive curve of silver 

at 20 K. 
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The temperature uncertainty in these measurements was 150 mK. The voltage taps 

separation was 10 mm. The critical current was determined using the standard 100 

μVm
-1

 electric field criterion and also at 4.8 μVm
-1

 (see below). Jc was calculated 

from the current divided by the unstrained superconducting cross-sectional area of 

4.810
-7

 m
2
. The magnetic field and temperature dependence of the transport Jc is 

presented in Figure 7.11. At 100 μVm
-1

 electric field criterion, the results show 

similar Jc(B) behaviour to Jc obtained from the magnetisation measurements on a DI-

BiSCCO bare tape. The transport Jc measurements were largely obtained in the high-

field exponential regime up to ~400 A. We avoided low-field measurements to avoid 

high currents damaging the sample either from heating or from mechanical stress. 

The transport Jc value was higher than the Jc from magnetisation measurements at all 

temperatures because of the higher electric field at which it was measured [279, 280].  
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Figure 7.11 Magnetic and transport critical current densities determined at the 

electric fields of 4.8 Vm
-1

 and 100 Vm
-1

 for the DI-BiSCCO tapes as a function of 

magnetic field applied normal to the tape surface at different temperatures. Solid 

lines are fits to the transport data at 4.8 Vm
-1

 using (6.4) and (6.9). Dotted lines are 

fits to the data at 100 Vm
-1

 using the same equations. 
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Jc obtained from magnetisation measurements is measured at an effective electric 

field ( effE ) that drives the shielding current to flow within the sample. effE  is 

induced by penetration of magnetic flux into the sample and can be calculated using 

the Maxwell-Faraday equation where  

t

B

P

A
E

s

s

d

d
eff           (7.4) 

where As is the sample area normal to the applied magnetic field, Ps is the typical 

path of current flow (say the perimeter of the sample) and dB/dt is the sweep rate of 

the applied magnetic field. It is known that electric field distributions are position 

dependent [281]. However, the electric field at the outer regions dominates the 

magnetic moment, therefore the value near the sample surface is commonly used 

[282]. The width and the length of the sample used in the magnetisation 

measurements were 4 mm and 6 mm, respectively. The sweep rate of magnetic field 

was 0.004 Ts
-1

. The calculated value of effE  is therefore 4.8 μVm
-1

, ~20 times lower 

than the value commonly used in the transport data. The transport Jc of the tape 

determined at this effE  is also plotted in Figure 7.11 in which the Jc value and the 

magnetic field dependence are now much more similar to the magnetic Jc. 

Nonetheless, magnetic and transport data at high magnetic fields and low 

temperatures (20 K and 30 K) are still different. We can rule out the effect of current 

flowing across the silver matrix because the transport data were measured at low E-

fields - three orders of magnitude below the resistive behaviour of silver as shown by 

the inset in Figure 7.10(a). The resistivity of silver is about 10
-10

 - 10
-9

 m at the 

temperature between 20 K to 60 K [283]. A simple requirement for an agreement 

between the two measurements is that effE  at these fields and temperatures must be 

lower. Given the inhomogeneous nature of Jc in BiSCCO tapes, the length scale of 

the magnetic granularity in the magnetisation measurements is typically of the order 

of several grains [284, 285] and the use of As in (7.4) may not give an accurate value 

of effE .  
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We consider the SNS junction model from Chapter 6 to describe the transport Jc 

data. It is presented by the solid and dotted lines in Figure 7.11. The fitting 

parameters are summarised in Table 7.2 and the temperature-dependent parameters 

plotted in Figure 7.12. The Ginzburg-Landau parameter of BiSCCO used in the 

fitting was 139 [171] and was assumed to be temperature independent. The effective 

width of the junctions, which is strongly correlated with r, was fixed at 122 nm (the 

value obtained from fitting the magnetisation YBCO data in Chapter 6). The values 

of d0 are all small (a few nanometres) and they only affect d at low temperature. It 

was found that the junctions predominantly affecting the transport Jc at 100 Vm
-1

 

are thinner than the junctions determining the magnetic Jc. However at the effective 

electric field of 4.8 Vm
-1

, the thicknesses of the junctions in the two measurements 

are similar. Assuming a Gaussian distribution function of the grain misalignment, the 

sample consists of a number of superconducting grains connected by junctions which 

have the misalignment angles (or thicknesses) normally distributed. The current flow 

and magnetic flux penetration in such networks have been observed in YBCO and 

BiSCCO using the magneto-optical imaging [220, 286, 287], although the out-of-

plane misorientation in the PIT BiSCCO tapes makes it more difficult. 

Computational simulation of the current transfer based on models that explicitly 

include percolation have been studied and provide a possibility for investigating the 

influence of the grain orientation [288, 289]. In the dissipation state, the voltage 

across the grain boundaries is proportional to the flow rate of magnetic flux that 

preferably penetrates through the defects, cracks and higher-angle grain boundaries 

[290]. In polycrystalline superconductors where the grain boundary’s thicknesses are 

not identical throughout the material, the current flow and motion of magnetic flux is 

not uniform. At low electric field where the transport current is low, fluxons 

essentially move along the higher-angle grain boundaries or the thicker junctions 

where the intergrain Jc is lower [6]. At high electric field, the dissipation also occurs 

at the thinner junctions where the intergrain Jc is larger. As a result, the transport Jc 

determined at high electric field (100 Vm
-1

 in this context) has an average thickness 
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smaller than that of the thick junctions that are important for low-electric field 

dissipation.  

Figure 7.12 shows that although Bc2 for the transport and the magnetic Jc data is 

similar at high temperature, it is significantly different at temperature below 30 K 

where the Bc2 value fitted to the transport Jc is larger and cannot be explained by 

(6.8). The difference at low temperature is influenced by the nature of experimental 

techniques used. The transport Jc depends on electric field criterion which can be 

arbitrarily chosen. In contrast, the effective electric field driving the magnetisation Jc 

may not be constant for all fields and temperatures due to the variation in magnetic 

granularity. Since the SNS junction model does not include electric field 

dependency, the fitted Bc2 can be different if Jc is determined at different electric 

field. Although Equation (6.8) can describe the experimental Bc2(T) data in Figure 

7.6 and the literature data for Bi-2223 in Figure 6.4, both data are at high 

temperatures (above 30 K). In this temperature range, there is no discrepancy 

between the fitted Bc2 in Figure 7.12 and Equation (6.8) can also explain the transport 

data. Therefore a different functional form of Bc2(T) that gives a higher value of Bc2 

compared to (6.8) at low temperature should not be discarded. Direct Bc2 

measurements at low temperature/high magnetic field will clarify this problem. 

Finally, the ratio r extracted from the transport Jc was found to have an exponential 

temperature dependence described by (6.5) at high temperature. The electric field 

criterion does not affect the value of r, consistent with r only dependent on structural 

and chemical compositions of the junctions which are similar throughout the sample. 

The deviation at 20 K from semiconducting grain boundaries in (6.5) may be 

attributed to the temperature dependence of GL  or )(S  which has not been included.  
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Figure 7.12 Half-thickness (d) of the junction, upper critical magnetic field (Bc2) and 

ratio (r) between normal state resistivities of the superconducting grains and the 

junctions fitted to the magnetic and the transport Jc data as a function of temperature.  
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Table 7.2  The value of fitting parameters in (6.4) and (6.9) fitted to the magnetic 

and the transport Jc data.  

Measurement E (Vm
-1

) w (nm) s d0 (nm) 

Magnetic  (4.8) 122 6.0 2.0  

Transport 4.8 122 4.8 0.9 

Transport 100 122 4.0 1.0  

 

7.3.2 Angular dependence of Jc 

Detailed anisotropic effects on Jc of a DI-BiSCCO bare tape were investigated by 

measuring Jc as a function of magnetic field orientation at 90 K and 100 K for the 

applied magnetic field of 0.05 T. The results are presented in Figure 7.13. The 

maximum of Jc is found when the magnetic field is applied parallel to the tape 

surface where Bc2 is large. The angular data in Figure 7.13 are replotted in the inset 

as a function of 
2/12-2

eff

2 )cos(sin B  where eff  = 8.0. The inset is therefore 

equivalent to the plot of Jc versus magnetic field applied normal to the tape surface at 

which the data are included and show a good agreement with the angular data.  
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Figure 7.13 Critical current density of a DI-BiSCCO bare tape as a function of angle 

between applied magnetic field and the tape surface for the magnetic field of 0.05 T 

at 90 K and 100 K. The inset shows data replotted as a function of 

2/12-2

eff

2 )cos(sin B . Data for fields applied normal to the tape surface at 100 K 

are also plotted for comparison. 

 

7.4 Effects of strain 

The effects of strain on the superconducting properties of BiSCCO are interesting 

although the measurements are demanding. The critical tensile strains of DI-BiSCCO 

are only 0.2 % for the bare tapes and 0.3 - 0.4 % for the laminated tapes, depending 

on the laminating material and thickness. In Chapters 4 and 6, the Jc versus strain 

measurements at 77 K and 4.2 K were performed and presented up to 0.2 % in 

tension to avoid damage from exceeding the strain limit. However, irreversibility of 

Jc was still found in compression even under small compressive strain of -0.1 %. 

Poor bonding between BiSCCO filaments and silver matrix may provide an 
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explanation. In this section, Jc versus strain data in the tensile reversible regime are 

presented in the extended temperature space, made available by the Jc(B,T,θ,) probe, 

at various magnetic fields.  

Jc measurements as a function of tensile strain up to ~0.2 % were performed using 

the Jc(B,T,θ,) probe described in Chapter 5. Figure 7.14 shows the normalised 

critical current density Jn of a DI-BiSCCO CA50 tape as a function of strain at the 

temperatures of 20 K, 40 K and 60 K. The dominant source of error was associated 

with the stability of the sample temperature which was around 150 mK. 

Nevertheless, it is discernible that the strain sensitivity of Jn increases with increasing 

magnetic field at 40 K and 60 K, similar to the results shown in Figure 6.6(d) for 

magnetic field normal to the tape surface at 77 K and the results presented by van der 

Laan [291]. On the other hand, the data at 20 K show approximately the same value 

of dJn/d for different magnetic fields, consistent with the 4.2 K results in Figure 

6.6(d). It should be noted that the ranges of applied magnetic field for these 

temperatures are all different. The magnitude of the magnetic field chosen was 

influenced by the value of the critical current. Comprehensive analysis requires 

measurements over a large range of reduced magnetic field B/Bc2 to make 

comparison between the data at different temperatures. Table 7.3 shows Bc2 extracted 

from the transport Jc in the previous section for each temperature, the calculated 

B/Bc2 and dJn/d. The ranges of B/Bc2 are similar for all temperatures but only the 

data at 20 K have no significant field dependence. We have found in HTS YBCO 

that strain sensitivity of Jn is lower at 4.2 K than at 77 K, although no field 

dependence was observed at both temperatures (see Fig. 6.6). In LTS Nb3Sn, strain 

changes Tc and Bc2 so the lower strain sensitivity at low temperature can be explained 

by the change in superconducting properties [197]. These results mean that 

temperature plays an important role in describing the strain dependence in both 

materials. For BiSCCO, the contrast between the field dependency of dJn/d at low 

and high temperatures will require an understanding of the temperature dependence 

of strain effects.   
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Figure 7.14 Normalised critical current density of a DI-BiSCCO CA50 tape as a 

function of applied strain at 20 K, 40 K and 60 K at different magnetic fields applied 

normal to the tape surface. The normalising constants are values of the critical 

current density at zero applied strain.  
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Table 7.3 Change in the normalised critical current density with respect to strain 

(dJn/d) of the DI-BiSCCO CA50 tapes at different temperatures and magnetic 

fields.  

T (K)  B (T) Bc2 (T) B/Bc2 dJn/d 

20  6  83.2 0.07 -25  3 

 8  0.10 -15  9 

 10   0.12 -17  7 

40 1 11.8 0.08 -21  7 

 2  0.17 -58  8 

60 0.2 5.0 0.04 -24  4 

 0.6  0.12 -48  16 

Increasing strain sensitivity with magnetic field at 40 K and 60 K (and also 77 K) is 

attributed to broadening of the effective thickness of the junctions due to tensile 

strain. However, at this point it remains unclear whether the wider junction is a result 

of the larger s (grain boundary property) or the degradation of Bc2 which in turn 

stretches the coherence length. The effect of strain on the intrinsic superconducting 

properties of Bi-2223 was observed by Chen [253] where Tc was found to linearly 

decrease with strain and dTc/d was -2 K per percent. This result also supports the 

linearity of Jn versus strain observed in this work and in many studies on BiSCCO 

family [150, 159, 160, 291]. On the other hand, dislocations along the grain 

boundaries themselves generate a strain field that distorts the lattice structure. It was 

proposed following the contraction pairing model [292, 293] that the strain field, 

which is usually tensile strain over several nanometres from the dislocation cores, 

creates nonpairing (normal) regions. This explanation tries to explain the origin of 

the weak-link behaviour of the grain boundaries in HTS and the shift of maximum Jc 
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to compressive strain found in YBCO [250]. The external tensile strain applied to the 

sample will accumulate at the grain boundaries and increase the strain field 

amplitude. As a result, the distance from dislocation cores at which the strain is 

larger than the critical value that quenches the pairing mechanism (1.0 % in this 

model) is extended. The increase of s due to applied strain is supported by this 

explanation. However it is clear that a complete understanding of the strain effects at 

the grain boundaries or understanding the grain boundaries themselves requires 

knowledge of the fundamental pairing mechanisms which is still lacking. 

 

7.5 Concluding comments 

Our group has successfully developed a theoretical model to describe Jc in 

polycrystalline superconductors where the dissipation arises from flux flow along the 

grain boundaries. The model is applicable for both LTS and HTS despite the pairing 

mechanism in the latter case still being unknown. For DI-BiSCCO tapes, the 

magnetisation and transport Jc data confirm the occurrence and fundamental nature of 

the SNS junctions within the superconductor.  

Although the three-dimensional grain boundary network in DI-BiSCCO tapes makes 

it more complicated to characterise the anisotropic superconducting properties in this 

material, the following simple conclusions can be made. Firstly, any direction of the 

grain misorientation (in-plane and out-of-plane) can limit the current flow due to the 

normal-conducting properties of the grain boundaries. Out-of-plane misorientation, 

in particular, has an important effect on the anisotropic properties of the tapes. Any 

analysis that includes this grain misalignment may describe the angular data 

equivalently well. However, in order to obtain an accurate measure of the texturing 

within the tape that is useful for further analysis and interpretation, the model must 

be carefully chosen. The anisotropic Ginzburg-Landau theory has been used to 
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describe the angular dependence of Bc2 in this thesis and there is no doubt that it 

explains the data even if the intrinsic anisotropy of BiSCCO and the average grain 

misalignment are not well known. The large range of intrinsic anisotropy reported in 

literatures limits the utility of the theory. Nevertheless, the correlation between the 

effective properties and the texturing of samples can be established from 

experimental data. 

There exists a restriction to understanding Jc in BiSCCO, which is not from the 

model itself but results from the uncertain theoretical picture of the pairing 

mechanism in HTS. The SNS junction model does not require knowledge of pairing, 

however it will be necessary in order to describe strain effects on polycrystalline 

sample. Comprehensive experimental investigation will simplify the problem, even 

though it is not easy to make an extremely-high field measurement or probe local 

superconducting properties on the scale of a few nanometres. We return to this 

challenge in the next chapter where some possible research directions are suggested. 
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Chapter 8  
 

Future work 

 

In this chapter, we will consider the possible directions of some future work. The 

probe designed for comprehensive Jc(B,T,θ,) measurements presented in Chapter 5 

has incorporated a variable-temperature insulating cup with the springboard-shaped 

sample holder. The sample holder is suitable for strain and angular measurements on 

high-temperature superconducting tapes, such as BiSCCO and YBCO, in high 

magnetic fields. BiSCCO tapes itself have been developed continuously in their 

texturing and homogeneity of the superconducting phase since the manufacturing 

process is still dominated by the powder-in-tube technique. It has been shown that 

improving the grain alignment in the tapes enhances Jc because the grain boundaries 

in BiSCCO exhibit the weak-link behaviour. SEI has already achieved the critical 

current of 200 A at 77 K for their DI-BiSCCO tapes and potentially it can be even 

higher. Therefore, the probe used to characterise Jc of the tapes need to be able to 

carry the high current and at the same time remain economically efficient. In this 

thesis, optimisation of the current leads based on the boil-off gas cooling is 

presented. The work provides the framework for future design and calculation of the 

current leads carrying high current into the cryogen. The current leads inside the 

variable-temperature cup are of concern to the author. More work is required to 

consider the high-current leads that need to be flexible or bendable without becoming 

damaged while the strain is applied. Stacks of YBCO tapes have been used due to the 

flexibility of the tapes and the excellent in-field performance of YBCO. 

Nevertheless, these current leads have not been fully tested with high current in the 

large strain range (-1.4 % to 1.0 %) that the springboard-shaped sample holder is 

capable of because Jc of DI-BiSCCO tapes measured here are only reversible in 
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tension up to about 0.2 - 0.4 %. Ultimately, examination and modification of the 

flexible high-current leads will be required. 

It has been suggested that Jc degradation in compression is a result of filament 

buckling and delamination between the filament and silver matrix. However, in situ 

scanning electron microscope of the tape’s microstructure under both tensile and 

compressive strains should also be examined. Another study that will give a better 

understanding of electro-mechanical properties of BiSCCO is direct mechanical 

measurements such as stress-strain measurement (extended into compression where 

standard tensile testing equipment cannot be used) and Poisson ratios measurement 

of the filaments. Commercially available BiSCCO tapes are generally 

multifilamentary, therefore a single filament will need to be extracted from the tape. 

Extracting BiSCCO filaments is usually done by chemical etching methods with a 

diluted solution of ammonium hydroxide (NH4OH) and hydrogen peroxide (H2O2) in 

deionised water [294]. A problem with the chemical etching is that branching and 

nonuniformity of the filaments make it difficult to separate them from each other or 

even from the inner silver matrix. Accordingly, other techniques such as Focused Ion 

Beam milling should be considered. 

The SNS junction model developed in our group to describe Jc in polycrystalline 

LTS and HTS has been successfully used for Nb3Sn, YBCO and BiSCCO. It has 

provided useful information on the important properties of the grain boundaries in 

these materials. It is essential that the model is to be assessed with other 

superconductors as well. Interesting materials include MgB2 and iron-based 

superconductor, where the grain boundaries are found to exhibit a similar behaviour 

to LTS and HTS, respectively. In addition, the SNS junction model itself describes Jc 

in polycrystalline superconductors from the average superconducting properties. 

Therefore, some poorly understood properties of superconductors may not be 

determined unless an additional knowledge is brought to bear. For instance, the 

reversible strain dependence of Jc in BiSCCO tapes is believed to involve the 
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increasing effective thickness of the junctions that suppress Jc, however it remains 

unknown whether this is due to Bc2 degradation or from increasing the characteristic 

thickness parameter of the junctions. To obtain more useful information, it will 

require further investigation of microscopic superconducting and grain boundary 

properties. Theoretical development will also require an insight of how 

superconductivity arises in HTS. It will include deriving the temperature and strain 

dependencies of fitting parameters in the model for which at the moment, simple 

scaling functions are applied. We believe that information obtained from our analysis 

here and further improvements will bring a big impact to the research and 

development of superconductors in the near future. 
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Appendix 1: Publications 

 

P. Sunwong, J. S. Higgins, and D. P. Hampshire, “Probes for investigating the effect 

of magnetic field, field orientation, temperature and strain on the critical current 

density of anisotropic high-temperature superconducting tapes in a split-pair 15 T 

horizontal magnet,” In progress, 2013. 

P. Sunwong, J. S. Higgins, Y. Tsui, M. J. Raine, and D. P. Hampshire, “The critical 

current density of grain boundary channels in polycrystalline HTS and LTS 

superconductors in magnetic fields,” Superconductor Science and Technology, vol. 

26, pp. 095006, 2013. 

P. Sunwong, J. S. Higgins, and D. P. Hampshire, “Angular, temperature and strain 

dependencies of the critical current of DI-BSCCO tapes in high magnetic fields,” 

IEEE Transactions on Applied Superconductivity, vol. 21, pp. 2840-2844, 2011. 

P. Sunwong, J. S. Higgins, and D. P. Hampshire, “Critical current measurements of 

DI-BSCCO tapes as a function of angle in high magnetic fields,” Journal of Physics: 

Conference Series, vol. 234, pp. 022013, 2010. 
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Appendix 2: Conferences and courses 

 

Superconductivity and Quantum Fluids, 8 July 2013, Institute of Physics, London, 

UK 

Fusion Frontiers and Interfaces Workshop, 13 May 2013, York Plasma Institute, 

York, UK 

The Applied Superconductivity Conference, 7 – 12 October 2012, Portland, Oregon, 

USA 

Superconductivity Summer School, 9 – 11 July 2012, University of Oxford, UK 

The European Conference on Applied Superconductivity, 18 – 23 September 2011, 

The Hague, The Netherlands 

Superconductivity Summer School, 11 – 12 July 2011, University of Cambridge, UK 

The Applied Superconductivity Conference, 1 – 6 August 2010, Washington, D C, 

USA 

The European Conference on Applied Superconductivity, 13 – 17 September 2009, 

Dresden, Germany 
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Appendix 3: Computer programs 

 

LabVIEW 

For the transport Jc(B,T,,) measurements, the programs used are listed below. 

Project - Temperature profile.lvproj 

To run temperature profile measurements of the current leads with 5 

measuring inputs, the applied current can be constant or ramping. It was also 

used for Jc measurements with an option of sample’s temperature reading. 

Project - Temperature control.lvproj 

To control the sample’s temperature inside the variable-temperature system, 

specific for LakeShore 336 temperature controller. 

Strain Gauge.vi 

To apply strain to the sample with the additional use of JVL’s MacTalk. 

PPMS MultiVu  

To control the Quantum Design PPMS system for dc magnetisation and ac magnetic 

susceptibility measurements. 

FlexPDE 

To obtained numerical solutions of the heat transfer equation for the vapour-cooled 

current leads. 

Mathematica 

To perform general calculations, in particular integration of the grain misalignment 

and effective normal magnetic field.  

Excel with Solver Add-in 

To fit the experimental Jc data with Equation (6.4) from the SNS junction model. 
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