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The theory of groups and their representations has been recognized for a long time as
a source of canonical structures for practically all branches of mathematics and theoret-
ical physics. The theory is remarkable in its internal beauty and every new connection
strikes us with the profundity of the symmetry principle underlying so much of our

knowledge.
I.B. Frenkel, Beyond Affine Lie Algebras1L

t A talk given at the international Congress of Mathematicians. August 3-11, 1986. Berkeley.



ABSTRACT

This work is an examination of various aspects of twisted vertex operator represen-
tations of Kac-Moody algebras. It starts with an introduction to Kac-Moody algebras
and string theories, including a discussion of the propagation of strings on orbifolds.
String interactions in a subclass of such models naturally involve twisted vertex opera-

tors.

The centrally extended loop algebra realization of Kac—-Moody algebras is used to
explain why the inequivalent gradations of basic representations of Kac-Moody algebras
g(") associated with g are in one-to-one correspondence with the conjugacy classes of

the automorphism group of the root system, aut ®,.

The structure of the automorphism groups of the simple Lie algebra root systems
are examined. A method of classifying the conjugacy classes of the Weyl groups is
explained and then extended to cover the whole automorphism group in cases where
there are additional Dynkin diagram symmetries. All possible automorphisms, o, that
have the property that det (1 ~0") # 0, r = 1,.....n — 1 where n is the order of o,
are determined. Such automorphisms lead to interesting orbifold models in which some

of the calculations are simplified.

A thorough exposition of the twisted vertex operator representation is given includ-
ing a detailed explanation of the zero-mode Hilbert space and the construction of the
required cocycle operators. The relation of the vacuum degeneracy to the number of
fixed subspace singularities in the orbifold construction is discussed. Explicit examples

of twisted vertex operators and their associated cocycles are given.

Finally it is shown how the twisted and an alternative shifted vertex operator repre-
sentation of the same gradation may be identified. This is used to determine the invari-
ant subalgebras of the gradations along with the vacuum degeneracies and conformal
weights of the representations. The results of calculations for inequivalent gradations of

the simply laced exceptional algebras are given.
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0. Introduction.

Twisted vertex operator representations of Kac-Moody algebras arise naturally in
a number of areas of mathematics and théoretica.l- i)hysics. In a bosonic form they first
arose in physics in an attempt to develop an off-shell formulation of the dual modél
[8,9,10]. This made use of the fact that fully twisted strings do not conserve momentum.
In fact their ancestry could be traced even further back as the Neveu-Schwarz [11,12]
sector of the spinning string could be viewed as a twisted relative of the Ramond sector
[13]. They reappeared recently, in a more general form, in the study of the propagation
of strings on orbifolds [14,15,16]. As such they allow a possible method of dimensional
reduction and symmetry breaking in string theories. This is necessary if the currently
favoured models [17,18] are to produce a more interesting phenomenology in a physical
number of dimensions. Using the particular form of orbifold construction and twisted
vertex operator representations that we describe in this work there turns out to be a

112 non-equivalent ways to break Eg.

In mathematics the general construction of twisted (bosonic) vertex operator rep-
resentations of simply laced Kac-Moody algebras has been elucidated [3,19]. Such con-
structions give non-integer graded representations of the Kac-Moody algebras. Chrono-
logically they actually arose before the untwisted representations in a representation of
the twisted algebra Agl) [20]. The untwisted construction was given in (21,22]. In the
last few years a combination of Zs twisted and untwisted vertex operators has been
used to construct the so called ‘moonshine’ representation of the monster group, Fy; the
largest sporadic finite simple group [23,24]. Thus again there seems to be a mysterious
connection between strings and an area of pure mathematics. Strings and finite simple

groups already have interesting mutual connections via modular functions.

The idea of this thesis is to try to draw together some of the ideas associated with
the mathematics underlying these constructions. As well as reviewing various topics
and constructions we determine some of the resulting invariant algebras and distinguish

an interesting subset of representations.

Chapter 1 consists of an introduction to Kac-Moody and Lie algebras. It establishes
ideas and terminology that are needed later in the work. It includes a detailed look at
the possible choices for the structure constants. In particular it is shown that they can

be chosen to be integers (Chevalley basis) and for the case of simply laced algebras




that a 2-cocycle with a few additional conditions provides a suitable set. Finally the
restrictions put on the generators and structure constants by hermiticity conditions are

examined. A number of possible conventions are elucidated

In the next chapter we give a brief introduction to string theories. This includes an
elementary review of both the bosonic and the heterotic strings. We then relax some
of the physical constraints on string theories and look at the general propagation of
strings on orbifolds. These are spaces obtained by quotienting out a manifold by the
action of a discrete group. In particular we look at quotienting R® by a space group
consisting of the semi-direct product of the group of translations by roots in the root
lattice of a simply laced Lie algebra and some subgroup of the automorphism group of
the root system, aut ®,. It is seen that the resulting string theory has twisted sectors
corresponding to strings that only close up to an element of the space group. The
interaction of such strings involves the construction of twisted vertex operators which
motivates our interest in such objects. In addition the original symmetry group that the
string states at a given mass level form representations of is broken to some subgroup
Go. It is therefore gives a possible method for symmetry breaking in string theories as

well as a way of dimensional reduction.

In Chapter 3 we show how to realize an arbitfa.ry integer gradation of an infinite
dimensional Kac-Moody algebra in terms of its underlying finite Lie algebra. This
involves a preliminary study of Lie algebra automorphisms and in particular those of
finite order. We give a classification of all finite order automorphisms and a method of
determining the resulting invariant subalgebras both of which are due to Kac [25,1]. We
establish some ‘machinery’ and phase conventions that are used in later calculations. It
1s also shown that for each conjugacy class of aut ®; there is an Inequivalent gradation
of a Kac-Moody algebra g(™) associated with g. Finally we realize the Kac-Moody
algebras in terms of centrally extended loop algebras and their subalgebras. .

Chapter 4 consists of a study of the groups of automorphisms of Lie algebra root
systems. After the general structure of such groups is given we go on to give an expo-
sition of a classification of the conjugacy classes of the Weyl groups in terms of some
Dynkin diagram like graphs due to Carter [3]. These can be used to construct explicit
elements in each conjugacy class. We then extend our investigation to conjugacy classes

of the full automorphism groups which are not given in [3]. We elucidate all the cases
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of which that of aut ®p, is the most interesting and hence dealt with in some detail.
The chapter ends with a few observations on the matrix representations of aut $; for

the classical Lie algebras.

The twisted vertex operators corresponding to a given automorphism o are greatly
simplified if o leaves no point but the origin fixed. A subset of these automorphisms are
those for which an arbitrary power of o leaves nothing but the origin fixed (or is equal
to the identity element), i.e. det(1-0") # O r = 1,..,n — 1, where n is the order of
o. We call such automorphisms no fixed point automorphisms or NFPAs. It is shown
in Chapter 2 that an interesting subclass of orbifold models is given when we take the
point group to be generated by a NFPA as they lead to string theories in which the
momentum is eliminated in all the twisted sectors. In Chapter 5 we classify all the
NFPA of Lie algebra root systems [4]. We conclude the chapter by looking at some nice
properties of the third order NFPAs.

Chapter 6 fleshes out a twisted vertex operator construction given in [5]. We start
by reviewing the ordinary vertex operator representation of Kac-Moody algebras before
proceeding to the more complicated twisted vertex operator representations. We sketch
in some detail the calculations that are necessary to show that the moments of such
operators truly give a representation of a Kac-Moody algebra. To do this we give a
detailed account of the zero-mode Hilbert space and the cocycle operators on this space
that are required for the construction to work. We also discuss how the vacuum degen-
eracy is related to the number of fixed points in the orbifold construction. We include
some explicit examples of twisted vertex operator constructions and their associated

cocycle operators.

In Chapter 7 we introduce an alternative shifted vertex operator construction of
the graded representations of simply-laced Kac-Moody algebras corresponding to inner
root system automorphisms. We explain how it is p;)ssible to calculate the invariant
subalgebra and how to determine the vacuum degeneracies of the corresponding repre-
sentations. As an example of the method we give results for all the different gradations,
corresponding to conjugacy classes of the associated roots system automorphism group
aut Py, of the simply laced exceptional algebras Eg, E7 and Eg . These extend the results

given in [7].
The work finishes with a summary of what has been achieved and a few final com-

3



ments in Chapter 8. These include the possibility of the original symmetry of the string
being restored by the combination of various sectors of the theory, the use of twisted
vertex operators in mathematics and some generalisations of both the twisted vertex

operator and orbifold constuctions.



1. An Introduction to Kac-Moody and Lie Algebras.

The first part of this chapter consists of an introduction to Kac-Moody algebras. It
introduces some definitions and terminology that are used later, see for example [1,2].
We then go on to look at the special case of Lie algebras particularly in the Cartan-Weyl
and Chevalley bases. We also examine the restrictions put on the structure constants

by the Jacobi identity and hermiticity considerations.

1.1 A BRIEF INTRODUCTION TO KAC-MOODY ALGEBRAS.

Let A= (ai;) be an nxn complex matrix with;

(1) aii = 2 fori=1,...,n
(2) ai; <0 fori # j
(3) aij =0 = a;; =0

Such a matrix is known as a generalized Cartan ( or GCM).

The complex Kac-Moody algebra g(A) associated with A is then the algebra
generated from the complex vector space spanned by {h;, e;*', e; | ¢ =1,..,n} by use

of the commutation relations,

[hi,h;] = 0 (1.1)
[h,',eji] = :}:a,'jeji (1.2)
[e;-",ej_ = bi;h; (1.3)
(Adefl:)l""""e]-i =0 (1.4)

[z, [y, 2]] + [y, [z, 2]] + [2,[z,9]] = 0 Vz,y,z € g(A) Jacobi Identity (1.5)

where Ade,-i are the linear maps

Adef : g(A) - g(A)  such that
Adef(z) = [ef, 1]

The rank of the matrix A divides the resulting algebras, g(A), into three distinct
types:



(1)det A # 0,i.e.rank A = n: g(A) is finite dimensional. In this case A is invertible
and g(A) is a finite dimensional simple Lie algebra. All the general terminology we

introduce reduces to the normal definitions for Lie algebras when det A # 0.

(2) det A = 0, rank A = n—1: g(A) is infinite dimensional. Here g(A) is known as
an affine Kac-Moody algebra.

(3) detA = 0, rankA < n— 1: g(A) is infinite dimensional. An example of such
an algebra is the Lorentzian algebra E;g [26]. We shall not be interested any further in

this case.

All the information in a GCM can be described by a diagram called a Dynkin
diagram. This is a diagram with n nodes, with each pair of nodes (i, j) being connected
by max(| a;; |,| aji |) lines with an arrow pointing from i to j if | ai; |<| aj;i |. We shall

denote the Dynkin diagram of g by D(g).

It is not too difficult to classify all the possible diagrams/algebras. They are listed
in Table 1.1. The labeling is of the form g(7) where g is a finite simple Lie algebra and
is a number called the twist associated with the algebra. The diagrams with 7 = 0 are
those of the usual finite simple Lie algebras and in this case the superscript is omitted.
The 7 = 1 diagrams, called the extended Dynkin diagrams of g, are obtained from
the 7 = 0 diagrams by appending minus the highest root of the Lie algebra g, -0, to
its Dynkin diagram. The corresponding algebras are quite often just written as g. To
obtain the 7 = 2,3, which are called twisted algebras ( as opposed to the 7 = 0,1
untwisted algebras) one has to make use of the symmetry of the Dynkin diagram of g.
We shall explain how to do this in Chapter 2. Notice that removing one spot from any
infinite dimensional algebra’s diagram leaves the diagram of a, not necessarily simple,

finite algebra.



Table 1.1 : Dynkin diagrams for the affine and finite Kac-Moody algebras.

T=0: Ap: Oo—0- ... -0—0

a; a3 Qp-1 Cy

B,: o— ... Q== )

(25 B¢ 5] Qn—-1 Q4

Cy o .. 0O

ay On—-1 CQp
CGp-1
a; Qp-2 (23

Es : E; Gg

ay a2 a3 Qa4 as

E-: :z ar

a; a2 Qg Gy as ag

Eg : Ez asg

ay az aj g  as  ag ag

Fy: o—C=0—0

a1 a2 a3 Q4

Go: (B @ = short root

ay. a O = long root



Table 1.1 : Continued.

1
Ag):

AV (@ > 9):

B (n2>3):

¢ (n > 2):

DY (n > 4):

241] aj
Qo
a; o Qp—1 Qp
Qg
a) az Qnp-1 Qp

N >@~ —@<j
aql a2 Qap-2

@ = Kac label.



1.1 : Continued.
le 1,
Tab
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a2
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a3
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a3

5 Q4

a
g

a7

g

Qg
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1 a2

a
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0 a1
a



Table 1.1 : Continued.

T =2: Agz):

AP (> 2):

Agi)—-l (n > 3):

Now for each g(A) we have a dual algebra, gP(A), obtained by interchanging the
long and the short roots, that is replacing A by AT, thus gP(A) = g(AT). The Dynkin

diagram of gP(A) is_easily found from that of g(A) by reversing all the arrows.

The vector space generated by the h;’s, H= {c;h; | ¢c; € C}, is a maximal commut-
ing subalgebra of g(A) known as the Cartan subalgebra (or CSA). Its dual space,
H*, is called the root space. We use A to identify these two spaces. To each h; € H

we associate an o; € H* such that

The vector «; is known as a simple root, in particular it is the simple root associated

ai(h;) = aji.

with the generator ef. We denote the set of simple roots by A.
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The lattice formed by the integral span of the simple roots, Ap = {nia; | n; €
Z} C H* is called the root lattice. We define a positive subset of the root lattice as

follows,
A% = {njo; € Ap|n; € Z and first non — zero n; 1s positive}.
We can thus introduce an ordering, >, on Ag by defining
a>p ff a-p€ A}.

n
Ifa = Z nja; € Ap then the height of a is defined as

1=1
n
ht(a) = 3 n..
1=1
Notice that @ > B implies that ht(a) > ht(,B)‘ but the converse is not true.

The elements {e?} are known as simple step operators or Chevalley genera-
tors, the {e;"} being called simple raising operators and the {e] } simple lowering

operators.

Let ny be the subalgebras of g(A) generated by {e;.-F } and {e;"} respectively. g(A)

has the triangular decomposition,
g(A) = n_oH@n,.
nt can be further decomposed into eigenspaces of H. Let
8« = {z € g(A)| [h,2] = a(h)s Vh € H},

then we have the following root space decomposition of g(A),

g(A)= @ g« | OHS @ Ba |

aeAt-{0} : a€A}-{0}
or

g(A) = @ 8a>

ax€Agr

as H = go. a is known as the root associated with z.

11



The sublattice of Ag such that g, # 0 is called the root system, &, of g(A) i.e.
®g = {a € Ar|ga # 0}.
We denote the positive and negative roots by
®F = +AFN G,

Note that ®; = ¢, U @é" and ®; N ‘P; = 0.
We can see that:

1. If det A # 0 then the root system is non-degenerate i.e. dimg, = 1V @ € &,
In addition | ®g | is finite. In this case the element of &; with the greatest height

is known as the highest root.

2. However if rank A = n~—1 then the rows and columns of A are linearly dépendent.
Hence there exist a unique set of integers, k;, called Kac labels and k?, called

dual Kac labels such that

n

n
> aikj = Y Klaji=0 i=0,..,n
j=0

=0

and min(k;) =min(k?) = 1.

(a) The Coxeter and dual Coxeter numbers, h4 and h%, of A (or g(A) ) are
defined to be the sum of these labels,

ha E.zn:k; h = zn:kf
1=0 1=0

(b) The Kac labels are given in Table 1.1. The dual Kac labels of g(A) are just
the Kac labels of the dual algebra g(AT). Also a given k; is equal to half the
sum of the adjacent k;s appropriately weighted by the number of lines joining

i to j if there is an arrow pointing from j to i.

12



Because of this linear dependence an element of the CSA, called the central ele-

ment or central charge, defined by

C= ikfh,‘
1=0

forms a one~dimensional centre that commutes with the whole algebra g(A). There is
only one such element as rank A = n—1. Consequently «(C) = 0 Va € H*. Similarly

there is a null root,
n
§=r1) kia,
1=0

such that §(h) = 0 Y h € H. Thus all the roots of g(A) are infinitely degenerate. In

particular g, = Ea+né-

To remove this degeneracy we can extend g(A) to g(A)®Cd by adding a derivation

d to its CSA, where we choose

[d, e,-i] = :L-A,'efb, (1.6)
[d7hi] = [d’d] =0, (17)

where A; € Z, with at least one A; # 0 and there is no summation implied in (1.6).

(1.6) is equivalent to choosing a;(d) = A;. Let [d,z] = Az, [d,y] = py then

4, [, v]] = [[d, 2], 3] + [z d, ],
= (4+ Nz, )

Thus there is a natural gradation of g associated with the derivation d,

g = @gn (18)

nez

where gy = {z € g|[d,z] = nz}. What is more, dimg, is finite for all n. We thus

have a finite dimensional Lie subalgebra gy of g(A), sometimes called the horizontal

13



algebra, which commutes with d,
[da go] = 0.
All the other levels must form representations of gy as,

[go,gn] C &n.

We call (1.6) and (1.7) a gradation of g(A) of type A. A gradation of g(") can alter-
natively be thought of as an eigenspace decomposition of g(") under some automorphism.

It is this approach that we follow in the next chapter.
There are two gradations which are worth a special mention.

1. If k; = 1 and we choose A; = §;; then we get what is known as a homogeneous
gradation. The untwisted algebras have a unique homogeneous gradation upto
1somorphism, whilst the twisted algebras Agi)_l, Eéz) and Df) have two and Dﬁ)_l
has [%] - go is the finite Lie algebra whose Dynkin diagram is obtained by removing

the j** node from the Dynkin diagram of the Kac-Moody algebra g().

gnggo VHEZ—{O}.

2. If we take A; = 1V then we get the principal gradation with gy = [U(D)]".

Let us introduce the fundamental weights A; € H* of (7). They are defined by,
Ai(hj) = &

Ag, called the highest weight of the basic representation, does not belong to the
space spanned by the a; ¢ = 0,...,n but is defined to be another null vector that is
orthogonal to all the a; with 7 = 1,...,n and to be dual to the light-like vector § i.e.
(Ao, 6) = 1. The vector space H* spanned by Ay, 6,and @; t = 1,...,n is then an

(n+1)-dimensional Lorentzian space where Ag and § are dual light-like vectors.

Let R(g(") be a representation of the Kac-Moody algebra g{”). The gradation

on g(™) gives a gradation on the the representation space. A representation in which

14



this gradation is bounded below is called a highest weight representation. Such
representations are interesting because in physical applications the derivation is usually
considered to be either an energy or a scale operator. They can be built up from a
highest weight state, | A) where A = i 0iA;. The components §; are known as the
Dynkin weights of A. A weight is sa.ici T,oo be dominant if §; > 0, : = 1,...,n. In
this representation we have,

hi | A) = & | A),

e'-"|A) = 0.

The representation space consists of the complex linear span of states of the form

e, €€ | A)
and is known as a Verma module, V(A). It is characterised by the highest root of its
horizontal subalgebra and the eigenvalue of the central term on the vacuum, called the

level of the representation,

In general a highest weight representation is reducible. Just as for the case of finite
Lie algebras the resulting representation is unitary if and only if the Dynkin weights
are non-negative integers [1]. In this case A is known as an integral weight and
K >0 is an integer with K= 0 corresponding to the trivial representation. Level one
representations are also known as basic representations. They are basic in the sense
that all other unitary highest weight representations can be built up from them by taking
direct products of such representations and reducing them into invariant subspaces. In
addition we have vertex operator representations of the basic representations of simply
laced Kac-Moody algebras [21,22]. Notice that the level depends on the dual Kac labels,
so for example Egz) only has one level one representation. If a given Kac-Moody algebra
has two or more dual Kac labels which are all equal to one and can be transformed into

each other by a symmetry of the Dynkin diagram then they lead to isomorphic basic

representations.
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Given a particular representation there are many possible gradations of it corre-
sponding to the choice of derivation. This is in contrast to the level of the representation
which is intrinsically defined. In this work we examine the twisted vertex operator repre-
sentations corresponding to different gradations of basic representations of simply laced
Kac-Moody ;a;lé(?_lta;a‘ss “U‘R‘ etnc; conjugacy of the Heisenberg subalgebras, the inequivalent
gradations offKac-Moody algebra.s associated with the underlying Lie algebra g are in
one-to—one correspondence with the conjugacy classes of the automorphism group of
the root system of g, aut ®; [16]. The vacuum states, that is the states with zero
gradation, will vary with our choice of derivation. They must form a representation of

the horizontal subalgebra. This representation has to be irreducible if the Kac-Moody

algebra representation is to be irreducible.

1.2 LIE ALGABRAS: CARTAN-WEYL BASIS.

Given a CSA H of a Lie algebra g, a basis {h;,Eq | h; € H, i = 1,...,rankg, a €

®¢} can be chosen for g such that the commutation relations are:

[hi,h;] = 0 (1.9)
[H,Eg] = a.8Eg (1.10)
[Ea, Eg] ={NogEarg a+p8 € &, o (111)

Bya.H a+pB =0

0 a+p ¢ o,

where;

Nop = —Npq (1.12)
Na,pBy,= Ng,Be = Ny oBgif @,8,7y € & and a+ 8+~ = 0. (1.13)
Na,gNysBats + Ng s Ny sBgyy + Ny oNgsBayy = 0 (1.14)

if a,8,7,6 € &g, a+F+ v+ 6 = 0 and no sum of two of them is zero.

a?B,B
Na)ﬂN_a;_ﬁ = —-2—

q(a A){p(a, B) +1}. (1.18)

and
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rankg
(1) a.H = n;h;ifa = Y. niq; is the decomposition of & in terms of simple roots.
_ 1=1

(2) By = Tr{ad(Ey)ad(E_,)}, e € ®¢, where ad(x) is the adjoint representation of
x € g and Tr denotes a trace. In general B:gxg — € such that B(a,b) = Tr{ad(a)ad(b)}
is a symmetric bilinear form on g called the Killing form. Because B(E,,Eq) = 0
the Killing form does not give a normalization for the Eq4, so we can choose B, =
B(Eq, E_4) arbitrarily for each a € ;. In the Cartan-Weyl basis we can choose the h;
such that,

B(EmEﬁ) = B060+/3,0a
B(Ea7hl) = 07
B(h;,hj) = &;.
(3) The inner product on the root space is obtained from the Killing form restricted to

H, which is an inner product on H, by duality. a.f = B(hg,hg) where he,hg € H are
the elements dual to a, 8 € H* respectively.

(4_) p(a,8),q(a,8) € Z* + {0} are defined by the a-chain of roots through 3, the

sequence of roots,
B —p(a, Ba,....., B, ..., 8 + q(a, Ba
such that

B —(p(a,B) +)e, B+ (q(a,B) +1)a ¢ 3.

Proof : See for eg [27], in particular pp 829-831.

- For a given choice of CSA there is a huge amount of freedom left in choosing a

Cartan-Wey! basis. Given a particular basis we can:

(1) : Make a change of basis in the CSA. However if we wish it to remain orthonormal

with respect to the Killing form we must choose an orthogonal transformation.

(2) : Map

Eq — T/(a)Ea(a) )

n(a)n(B)
Najg = mNa(a),a(ﬂ),

Ba — n(a)n(—a)Bs(a),
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where o € aut @, is an automorphism of the root system and n:%;— C-{0}. Ifin
addition we want to keep the structure constants fixed, 1.e. Ny g — Ng 3, then we must

have

n(a)n(B8) = Moy <——n(a + B).

a(a),d(

So the n( ) must form a projective representation of ®, with the factor set {H(a,ﬁ)

— __Nags
= No(a)os) }
(3) : Make an independent choice of each of the B, (€ C). This choice fixes the moduli

of the step operators but leaves their phases undetermined. So we still have the freedom

to map
Eo — p(a)E,,
pla)p(B)
A7 i+ B) w(a 1B

where p: &g —» S, S = {z € C [l z|= 1} and p(a)p(—a) = 1. If in addition the

structure constants are fixed then y must be a homomorphism,
pla)u(a) = p(a + B).

Chevalley basis :

By case by case examination of all the algebras (see for eg p 54 of [28]) we have,

+ B8)2
(e 5ﬂ) q(a,B8) = p(e, B) +1
Thus by choosing,
2

Ba ?a (I)

N—ay—ﬁ - _—N 35’
or
2

Bnr = -&3’ (II)

N—d,—ﬂ - N )ﬂ’



We have from (1.15),
Na,ﬂ = i(p(aaﬂ) + 1) .

Note: We shall show that such a choice of Nq,s and B, is consistent in the next

subsection, 1.2.1.

In such a special choice of Cartan-Weyl basis, called a Chevalley basis, all the
structure constants are integers. Case (I) is the most usual choice because it means we

have the usual hermiticity conditions on the generators (see 1.2.2.).

Now under a Weyl reflection in the root «, the a-chain through S is reversed so

that,

—20.(8 — p(a’ﬂ)a) = 2a.(B+ q(a, B)a)

and thus,

p(a,ﬂ) - Q(OI,,B) = 2%2@

However if a + f € ®; then q(a,8) > 1 so that

2a.8
a? |’

1 Sl Na,ﬂ |S

Table 1.2 : Possible values of the Chevalley structure constants.

An)Dn’EGaE'IaES- +1.

Bs,Ch, Fy. x1, £2.

Ga. +1, £2, £3.

It is possible to rescale the structure constants of By and F4 so that they are both
just drawn from the set {£1}. To do this choose B, = £1 Va € &g, in place of
B, = 4.
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1.2.1 Restrictions on the structure constants.

Theorem (1.1) : For an arbitrary choice of Bo, « € <I>;' , it 1s always possible to choose
the basis elements E, so that
either (i) Nog

N—a,—ﬂ VQ,IB € an
or (ii) Ng g =

—N_g-p Va,8 € &,
Proof : Let o : 5 — ®; such that o(a)

—a Va € ®;. We can always extend this
to an automorphism of the whole algebra (see Chapter 2), £ : g — g, with

H — —H,
Ea = ¥oE_,.
Let A = %1 and make the change of basis

Eo = VM_oEq, E !

This leaves the choice of B, unaltered as

B(Eq4, E_a) = B(E4,E_,) = B,.

Also under ¢ we have,

E_q = \/’\w—ad)a\/’\d’—aé—a = /\E—a,
E 1/’—01 1

—_— = A\E,.
' VAY—a /Ao

where we have used the fact that ¥_,1pg = 1. Now ¥ is an automorphism of g and

therefore must still preserve the commutation relations even after the change of basis.
In particular (1.11) gives

MN_a—g = ANgyg ie. Nyg = AN_o_g.
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Given a set of By, which fixes the magnitudes of the structure constants, and having
made a choice of Nog = +N_, 5 Va,8 € ®;. We still have some freedom in the
phases of the N, 5 corresponding to the freedom in phases of the step operators. That
1s we can multiply all the N4 4 by a function fla,8) =

u{a)u(B

"ot p , where u: &; — Sl is

an arbitrary function with u(a) = u(-a).

We shall examine the case of a Chevalley basis a little more closely. Every positive
non-simple root, t.e. a € <I>;' — A, can be expressed as the sum of two positive roots,
perhaps in many different ways. If we choose a specific decomposition, @ = S+ 7, for
each such root then we are free to prescribe the signs of all the corresponding Ny ..
Once we have done this the signs of all the other structure constants are determined

(p 54 [29]).

We call such a choice of signs a normalisation of the Ng,g. A given normalisation
of the Ny g is only unique up to multiplication by a function f(a,8) = u(a)u(B)u(a+p)
where u : ®; — {£1} is an arbitrary function with u(a) = u( —a). It would therefore
appear that there are 2/ % | possible normalisations. In fact there are only 2 %5 |-rankg

as some choices of u give equivalent normalisations.

These non-equivalent normalisations are in one—to—one correspondence with the
choice of signs for the Ng, when we have singled out a unigue decomposition of each
positive non-simple root into the sum of an extraspecial pair of roots, @ = S8 + %,
(pp 58-60 [28]). An ordered pair of roots (a, 8) is said to be special when
()a+B € dganda>p >0,

and extraspecial when

() (@, B) is special,
(21) V special pairs (v, 6) such that a + 8 = v + § we have B < 6.
In summary;

Theorem (1.2) : Given a Chevalley basis (or any basis in which | Nop | is given and

we have chosen N, 5 = + N_q4,_3) we can choose the signs of the strucure constants
Nq g for all the extraspecial pairs of roots (a, B) and then the structure constants for

all other pairs of roots are determined. There are 25(dimg=3rankg) o, b normalisations.

However for a given normalisation there are still an infinite number of Chevalley

bases because we can always change to a new Chevalley basis with the same nor-

21



malisation by mapping E, — 7n(a)E,, where 5 : ®, — S! is a homomorphism, i.e.
n(e)n(B) = nla + B).

The Jacobi identity and restrictions on the structure constants.

We get restrictions on the structure constants whenever we consider a Jacobi identity

containing three step operators,

[Eas [Eg, Byl + [Eg, [y, Bal] + [Ey, [Ea, Egl] = 0.

By looking at all the truly different choices of step operators we can choose to make
we find that there are up to five possible restrictions on the structure constants. We

summarize the results for each algebra in the following table.

Table 1.3 : Jacob: restrictions on the No g

a+pB (f+v |a+y |a+B+v |ADE. |B G F C
1| x v v v Y Y Y Y Y
2 vV V| V Vv N N N Y Y
3 X Vv 0 Vv Y(1) [Y()|Y Y (1) |Y (1,2)
4 Vv Vv 0 Vv N Y (0) (Y (£1) |Y (0) |Y(0)
50 v | v 0 Y Y Y Y |y
Key :

A /in the a + f column denotes that a + 8 € ®,.
A x in the a + f column denotes that a + 8 ¢ .
A 0 in the a + 3 column denotes that o + 8 = 0.

A Y /N denotes whether this restriction holds or not for a given algebra and the number

in brackets denotes the possible values of .4 if it does.
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:NgyNgiya = NyoNg gty 2 — cocycle condition
' Na,p+yNpg,y + Ng y+aNya + Ny gigNag = 0

: Nap—aNp o = —Baa.B |

' Nog—aNg—a + N_g,04Na g = —Baa.B

N b W N e

t Ng —(a+8)Ba = NogBats = N_(a4p),.Bp

Simply — laced algebras and cocycles.

(1.16)
(1.17)
(1.18)
(1.19)
(1.20)

A choice of structure constants must satisfy (1.12) and an appropriate combination

from (1.16) to (1.20).

Theorem (1.3) : For simply laced algebras a suitable set of structure constants is given

by a subset of the 2-cocycle € : Agp x Ap — {£1} if we take,

e(a,—a) = B,
e(a,0) =1
e, ) = (-1)*7¢(B,a)

V a,B8 € ®; and choose either,

(D) Ba =1 & &(a,8) = —¢(~a,—f) Ya,8€ &
(II) By = -1 & ¢&(a,B) = e(—a, ~B) Va,B € @

Proof ;: We must show that ¢ satisfies (1.12), (1.16), (1.18) and (1.20).
(i) fa+f € P, then a.f = —1, therefore from (1.23) ¢ satisfies (1.12).

(i2) € is a 2-cocycle by definition and therefore satisfies (1.16).
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e(a, B — a)e(B,—a) = —e(—a,a)e(B,0) as e is a 2 — cocycle on Ap.

= —Bq.1
()
e(B,—(a+ B))Bs = Me(—a, 0)By aseisa2— cocycle on Ag.

é(—a,—pB)
= "BaBﬂe(_aa —,3)

= Batge(a,B) if we have either (I) or (II).

Similarly: e(—(a + 8),a)Bg = &(a, B)Bysp-

Note ; In particular the choice (II) is consistent with the restriction that ¢ is a bilinear

function i.e.
e(a+B,7) = e(a,)e(B,7).
(1.23) then implies,

(v, e+ B) = e(y,a)e(r, B).

Notice tﬁat iﬁ féct bilinearity implies that ¢(a, 8) = e(—a, —p) as,
&(—a,-Be(-a,B) = ¢(-a,0) = 1.

Following [2] we can construct such an e explicitly. Let a; be simple roots of g, and
A = (a;;) its Cartan matrix.
(i) Define
. +1 ifi <y,
elag, o) = { -1 ife = 7,

(=1)% ifi > j.

(ii) Extend this definition to the whole lattice by bimultiplicity i.e.

rank g rankg rank g
5(2 nia;, Z njaj> = H e(aj, a;)™™.
1=1 ) J=1

i=1
j=1
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It can be shown that ¢ satisfies (1.12), (1.22), (1.23) and

éla,~a) = e(a,a) = (—1)%2',

which is consistent with B, = -1 Va € ®,. Thus (1.21) and (II) are also satisfied.

Notice that as pointed out in [2], it is not possible to assume bimultiplicity and

é(e,a) = 1 (or Bo = 1) on all the roots as stated in [21].

This choice coincides with the one given in [22] where o : Ag x Ag — Zs is a bilinear

form such that
o(e, ) +0(B,a) = a.f (mod2)
and e(e, B) = (=1)°(@F), We have taken
0 1 < 7,

o(aj,a;) = (1 i =7,
aji (mod2) i > j.

1.2.2. Hermiticity.

Consider a representation R of g on the canonical n-dimensional unitary space

v €%, Rig— GL,(C) such that
() R([z,4]) = R(=)R(y) - R(y)R(z) Vaz,y€g,
(ii)) R(Az) = AR(z) VA eC, z€g.

Every linear operator on V has an associated adjoint operator obtained by hermi-
tian conjugation. The set of operators {~R'(z) | z € g} form another, conjugate

representation of g on V.

We now wish to examine the possible hermiticity properties of such a representation.

In particular we look for a mapping *:g — g such that

R(zt) = A.Ri(2). (1.26)
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Lemma(1.4) : The mapping *:g — g satisfying (1.26) must also satisfy;

>,

@[w,y]Jr=/\A t2t] Vaz,yeg,
@ EHt=z . Vzeg,
@)\ = XA V) e,
u/\/\y—/\zya.nd(my)+—yz+ Vi, €C z,y €g
Proof
(1

RY([z,4]) = {R(2)R(y) - R(v)R(2)},
= RI(RI(x) - RI(=)RI(y).

Therefore (1.26) implies;

R([s,3]*) = ,%{wam - R<z+>R<y+>} .

- Sl t,a),

Al
Thus [z,y]* = Yely*, o+,

~~
ll\?
—

(RN (z) = R(z),

Therefore (zF)" = z,and A0 F = 1.

Ri(A\z) = MRi(z),
= M R(\*z ),
— MR ((a)*).
Therefore AT = A* VA, i.e. * acts as complex conjugation on the scalars. Thus from

(2) MyAp = 1.
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pa—_

Ri(zy) = AgyR ((z)7),
= {R(=)R(»)},
= R(y)'R(z)1,
= AL AR(yF)R(zY),
= A ARy ).

Therefore A\;y = A\, and (zy)* = ytzt.

For any Lie algebra we can always choose a basis, h;, for a given CSA, H, such that
R*(hi) = NR(h;) and \; = &',

i.e. a basis in which the R(h;) are simultaneously diagonalised. This is because R(H)
is a commuting family of semisimple endomorphisms as H is abelian. In addition for a
complex Lie algebra we can rescale this basis, h; e"‘%h; so that all the matrices,

R(h;), are hermitian. With respect to this basis,

h} = h;.

H

The restrictions that this, the commutation relations and Lemma. (1.4) places on E}

and the structure constants is given in the following theorem

Theorem (1.5) : If By (= B_a) = Nee®=, N, € R* and H* = H then;

1. E} = e "%E_,,

2- N_ﬂ —a p—q N; ’Bei(oa"l"eﬁ—aa_',p)'

Proof : Let E; = Y ME_,+6H.
€%

(1.10) gives Y NELHI =6 Y ME, +6H
TED, 1€%P,
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Therefore E/';' = /\ﬁE_g.

NostratsEo(arp) @+ P € &,

(1.11) gives AaMg[E_g,E_,] = {0 a+f ¢ &,
Bla.H a+f =0.
Thus
AaAgN_g _o = N;,ﬂ)\a-ha, (1.27)
and AgA_oBy = B  therefore Aad_q = e 2 (1.28)
(ED)T = Eq gives Ay = 1 (1.29)

Thus Ay = ree =, A_, = ;I:e‘i9° but (1.27) implies that TaTf = Toig SO take
ra =1 Vae &.

If we now wish to restrict g to be a real Lie algebra then all the structure constants,
Ng 3, and the B,s must be real, s00y, = 0,7 Va € ®,. We have a bewildering variety
of different possible choices and conventions. Summarizing we have the following choices

if we wish all the step operators to have the same hermiticity properties.

Table 1.3 : Summary of conventions.

E_y (Be € RY) iR

Ea = 777
~E_o (Ba € R") /H) 7
| n R

The entries in the boxes show whether the structure constants must be purely real

or purely imaginary. For a real form of the Lie algebra we must choose a convention
corresponding to a shaded box. Within these two general conventions it is further
possible to choose the B, so that we have a Chevalley basis (i.e. N, 3 € Z). The
two choices (I) and (II) of p 18 are marked. We can see from Table 1.3 that case (I)

corresponds to the usual hermiticity conditions on the generators.
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2. An Introduction to Strings.
2.1 THE BOSONIC STRING

Classical String :

Consider a closed string moving in a D-dimensional Minkowski space RP~11, Asit
does so it will sweep out a worldsheet X#(o,7) where ¢ € [0,27], T € (—o0,00), p =

1,.....,D and we have X"(O,‘r)' = X¥(2m, 7).

<

3

NN

Ro_‘ A

X5 )

Fig 2.1 : Worldsheet of a propagating closed string in RP~1!

The area of the worldsheet is assumed to be a minimal surface in RP~%! and thus

the motion of the string is governed by the action [30,31],

S = % / dodr\/(8:X.0,X)? — (8,X)%(8,X)?

where the string tension, T, is a constant having the dimensions of a force per unit
length and 0,X = ‘3—)5, 0,X = g%(- We can use the reparametrisation invariance of the

worldsheet to choose an orthogonal co-ordinate system on the worldsheet,

8,X.9,X = 0, (2.1)
(6:X)? 4+ (8,X)? = 0. (2.2)

With respect to this co-ordinate system the equations of motion are simply D copies of
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the wave equation,

(arr- - oa)X“ = 0.
They have the general solution
XHoy1) = X{(t+ o)+ Xk(r —0)

where X['(7 + o) consists of the left movers whilst X£(r — o) consists of the right

movers. Explicitly,

7 _ B B ! an __in(r+o)
XL(r+a)—qL+pL(r+a)+2§ne :
n

~ —
1 an _, _
Xp(r=0) = aqr +PR(r =) + 5 ) =),

n#o
with a#t = at | att = al,. If we define af = PL, 3 = ph then the constraints
become;
pﬁ = pllliv (23)
1
L, = 3 Z aman-m = 0 VneZ (2.4)
meZ
— 1 _ .
L, = 2 Z 8mép-m = 0 Vne Z (2.5)
me7Z

Thus

B 1) = b b obr o b N [ —in(rta) , Bh__in(r—o)
Xi(o,7) = @ +pPr+ 5 ) { Ze +Ze
2n¢0 n n

where ¢* = qf +q} and p# = pf + ph-
The Fubini—Veneziano fields are defined by
Q*(z) = ¢* — ip*ln ; an g
(z) = o* -1ip z+zz —z
n#o

‘Q‘l‘(.— B _ iokln ; E—g—n
z) = o —1ip z+zznz ,
n#0
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so that

{ Q) + Qe

N —

X#o,1) =
Let us introduce the momentum density

P#(o,7) = @(a T).

If we let P#(z) = iz% = Y ahz™®, PY(z) = zz = Y &hz" ", then
negZz neZ

PH(oT) = 5 {PHEH) 4 P

Quantum String :

To first quantise the string we replace the co—ordinates ah, @, p*, and ¢* by

operators and impose the canonical covariant equal time quantisation condition,
[X#(a,7),P*(d',7)] = ihé(o — o’ )g".

This means the harmonic oscillators must satisfy the following commutation relations

The operation of complex conjugation becomes hermitian conjugation so that

ab T = a#  att = a%,, p*1 = p#, and q* ' = q#. The oscillators a%, 3 are
creation operators if n,m < 0 and annihilation operators if n,m > 0. The string

Hilbert space can be written as
H = FL®FR®VRD,

where Fp, /Fg is the Fock space representation of the Heisenberg algebra spanned by

the L / R oscillators and the identity operator and Vo is the infinite-dimensional space
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spanned by the momentum eigenstates. The momentum eigenstates are generated from

the vacuum state, | 0), by the position operator as follows,
| 7) = &4 | 0).

Thus a typical element of the Hilbert space H can be written as,

r s
B Vi _iv.q

H a’y, 2’7 0).

t=1j5=1

The constraints (2.4) and (2.5) now become operator constraints on the states of the

model. We define
1
Ly, = 5 E 3?fma'n—-m:,

nez
—_ 1 _
Ln = 5 Z :aman_m:,
nez
where the double dots : : denotes a normal ordering with respect to the mode index.

This is necessary to eliminate the ambiguity in the ordering of the oscillators in Ly and
Ly to make them well defined.

4pam m > n,
P 8pap =

amap, m < n.

For | ®) to be a physical state it must satisfy

Ly |®) =L,|®) =0 n >0, (2.6)
(Lo —fo) I ®) = 0, (2.7)
Lo+Lo—-2)| @) =0, | (2.8)

where A is an arbitrary constant arising from the ambiguity in the choice of normal
ordering. (2.8) is known as the mass shell condition. It can be shown that if the
theory is to be Lorentz invariant, entirely transverse and ghost free, that is no negative
norm states couple to physical states, then we must have D = 26 and A = 2 (see for

example the review in [32]). This means the lowest mass state is a tachyon.
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The two sets of constraint operators separately satisfy the Virasoro algebra,

D
[Lm, Ln] = (m d n)Lm+n + 1—2-m(m2 - 1)6m+n,07

- - - D
[Lm,La] = (m —n)lpmyan + -1—2m(m2 ~ 1)ém4n0-

2.2 THE HETEROTIC STRING:

It was discovered a couple of years ago that a perfectly consistent closed orientable
string theory can be constructed by taking the left movers of a 26~dimensional closed
bosonic string and adding them to the right movers of a 10-dimensional closed supersym-
metric string [17,18]. This chiral hybrid construction was called the heterotic string.
It is possible because the physical degrees of freedom of closed strings are 2~dimensional
free fields that can be separated into left and right movers. These never mix, not even
in the presence of string interactions as long as only orientable world—sheets are con-
sidered. This is due to the fact that closed string interactions are constructed order
by order in perturbation theory by modifying the topology of the strings world-sheet.
Thus in terms of the first quantised 2-dimensional theory no interactions are thereby in-
troduced and the right and left movers still propagate freely and independently of each
other [17,33]. The resulting string theory is inherently chiral, anomaly free, Lorentz

invariant and N =1 supersymmetric in D = 10.

The extra 16-dimensional left moving co—ordinates are treated as internal dimen-
sions and compactified onto a space T. This space was originally thought to have to be

a flat compact manifold, that is a 16-torus,

where I' is a 16-dimensional lattice. In fact more general spaces are allowable as we

shall see later.
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N
N
.

/

Fig 2.2 : Compactification of R? onto T? via a lattice T

The fact that a closed string has no distinguished point means that I' must be an
even lattice, whilst examination of the 1-loop scattering amplitudes implies that I must
be self-dual if we are to have a consistent theory of interacting closed strings. There
are only two such lattices in R!®, the root lattice of Eg x Eg and a lattice consisting of

the root lattice of so(32) plus one set of the spinor weights of 59%.

The co-ordinates for the internal space have the following normal-mode expansion,

X'(r+0) = ¢ +p'r + Lo +3 Z Zng-in(r+a) ;- 1., 16,
n
n#o

where L € I is a winding vector describing how the closed string is wound around
the torus T. Because the string is purely left moving the allowed winding vectors must

correspond to allowed momenta.

J T
/e
// /7 // //

Fig 2.3 : A string configuration corresponding to a non — trivial winding vector.
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Non-zero values of L correspond to winding sectors of the resulting string theory.
Strings with a non-vanishing L are topologically stable and are therefore looked on as
soliton states. They exist because of the multiple-connectedness of the configuration
space and the extended nature of the strings and have no analogues in point particle
theories. They can be created in pairs from a string with L = 0 and therefore must be

included in the full theory to preserve modular invariance.

- . -

Fig 2.4 : The creation of 2 string states with non — zero winding numbers from a

state with I, = 0,

When we quantise this theory we form the correct Hilbert space as follows.

1. Firstly we consider the Hilbert space corresponding to strings propagating in the

original covering space.

2. Then we consider all the states which correspond to strings in this covering space

that close up to a lattice vector of T i.e.

X' = X*4+L'  wherel € T.

3. Finally we project onto the Hilbert subspace of states that are invariant under the

lifting of the action corresponding to the translation by a lattice vector.
e?™LP | Physical) =| Physical).

Thus in particular the allowed centre of mass momenta are restricted to lie on the
dual lattice I'*.
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We can introduce an interaction between these closed strings via the vertex op-
erators which are used in the calculation of scattering amplitudes. For the heterotic
string such a vertex operator can be decomposed into two parts. A supersymmetric
string vertex that acts in the 10 space—time dimensions and a piece that acts in the 16
internal dimensions which we shall denote by V(4,z). If we take z = (™) and L = P
then,

X(z) = q—iplnz+4 Y 22,0

n#0 o
and

V(¢’z) =: 61.6:1X(z) ..... Er.a?"X(z)e'.a'x(?') . Ca

where @ € I'. Such vertex operators correspond to conformal fields with conformal di-

mension

T r
don; + "’72 We let N = 3" n;. The physical states are in one—to—one correspon-

1=1 1=1
dence with the asymptotic limits as z— 0 of the vertex operators acting on the vacuum

state,

€18 p,.....€p3 g, | @) & | @) = %1_13% V(4,2z) | 0).

The total left moving states are created by the full vertex operator

VL(¢,) Z) = V10(¢”a Z)V(¢3 Z)'

For physical states this full vertex operator must have conformal dimension one. For
massless states this can be achieved by the conformal weight of Vio(4",2) equaling one
in which case the resulting physical states form part of a D = 10, N = 1 supergravity
multiplet. The other possibility is that the conformal weight of V(¢,2) equals one.
This occurs f N = 0, a2 = 2 or N = 1, @ = 0. These physical states form
a D =10,N =1 super-Yang-Mills multiplet of G where G= Eg x Eg or %ﬁz_z)
depending on the choice of T.

The moments of the vertex operators with conformal dimension one (i.ee. N =
0, @® = 20or N = 1, &> = 0) as we shall show later give via the Frenkel-Kac
construction [21,22,2,26] a representation of the Kac-Moody algebra g, the affinisation
of the Lie algebra g whose root lattice is I. Thus the Fock space of physical states forms
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a representation space for § and each mass level forms a representation of g. In this case

the gradation of the representation corresponds to the mass spectrum of the physical

states.

Despite its nice features there are a number of problems with the heterotic string
as a model of the real world. One is the rather large symmetry group of the massless
states, Eg x Eg or i%ggl and another is the unphysical number of dimensions. One way
of solving the latter problem, was given in [34]. The idea was to compactify R*! onto
R>! ® K, where K was a Calébi—Yau manifold, a Ricci-flat Kahler manifold with
SU(3) holonomy, which gives chiral fermions in four dimensions. However Calabi-Yau
manifolds are complicated, metrics for them are difficult t6 find and calculations of the

resulting interactions in the compactified theory are very hard.

One way of avoiding this problem is to replace K by an approximation to a Calabi-
Yau manifold such as an orbifold. An orbifold Q is the quotient space formed by

dividing a manifold M by the action of a discrete group G,

Q

ol

If G acts freely on M then the resulting orbifold € is a smooth manifold. However if
the action of G has fixed points then Q will have singularities corresponding to these
fixed points. If the original manifold is flat then the orbifold will also be flat everywhere
except at the singularities where the curvature blows up. Some orbifolds, such as the
Z-orbifold [34] can be used to construct Calabi-Yau spaces by removing the singularities
and replacing them by appropriate manifolds. It was soon seen that strings propagating

on orbifolds actually gave perfectly consistent string theories in their own right [14,15].

As well as considering an orbifold compactification of the physical space-time di-
mensions of the theory we can also consider an orbifold compactification of the internal
degrees of freedom. Indeed this gives us a method of reducing the symmetry of the
massless states without having to replace the lattice on which the original toroidal com-
pactification is done and thus the theory remains consistent. This gives a method of
spontaneous symmetry breaking for the string as the vacuum vector of such a the-
ory does not share the full symmetry of the theory. We examine a general orbifold

construction in more detail in the next section.
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2.3 ORBIFOLD COMPACTIFICATION AND TWISTED STRINGS.

Let us forget the particular physical restrictions that are placed on a string theory
such as the heterotic string and look at some general constructions. Let g be a simply
laced algebra with root lattice Ap and rankg =d. We shall just consider the general
twisted string theories on an orbifold obtained by quotienting R by Ag ¥ W where W
is in general a non-abelian subgroup of aut ;. In particular we shall be interested in
the case when W = Z, is an abelian group genefated by one element o € aut ®; of

order n. We shall denote this group by (o).

Classical String :

Let G be a space group of the form
G =ArxW

where W < aut ®; and Ap is the group of lattice translations. Ap is a normal subgroup
of G. An element g= (@,0) of G has the following action on R9Y,

g(8) = o(B) + .

The orbifold (2 is obtained by dividing R4 by the action of G, that is identifying all the
points that are in the same orbit of G. This explains the choice of name. If o; are the

simple roots of Ag then we define UC RY to be the fundamental cell of A R given by
U = {nja; | n; € [0,1)}.

We identify U with the torus T9. All points in RY can be translated into U by the
addition of an element of Ag. Let II be the projection from R? onto TY such that
[l(a) = @ € U where @ = a mod Ag. W, which is called the point group, has a well
defined action on the torus '

Rd

d - 2>
T—AR

given by @ = oo oII™! where II™! : TY — U maps the torus into the fundamental
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cell. Equivalently ¢ = %;. Thus

1%

~y

Rd

& ARXW_

Td
-ﬁ.

W is the holonomy group of 2 [15]. It is discrete, in comparison to a smooth manifold
which has a continuous holonomy group.

Let us in particular take ¢ € aut @, to be an element of order n. The twisted string
boundary conditions are then

X(2m,7) = 5 (X(0,7)) .

Consider the complexification V of RY. We can diagonalise ¢ in V,

where w is a primitive n't root of unity. If we denote the mth eigenspace of V by

Vm = {z € V|o(z) = w™z} then we have the following eigenspace decomposition of
\%

?

n—1
V = Q_BOV,,,.

Note that some of the V,, might be empty. Let Pp, : V — V,, such that P,, =

n—1
Y, w™™ g™ be the projection operator onto the mth eigenspace and let 2, = Pp(z)
r=0

forz € V.

If we consider the motion of a purely left-moving closed string on 2 we can see that

the m*® eigenspace of the normal-mode decomposition of X(z) can be written as,

Xm(z) = qm — ipoln 26m,0 + ¢ Z ?z'—»r.
reZ+2

In the case of m = 0; po, qo € Vj and we just have the equation of a closed string

moving on a smaller torus of dim Vo, namely the torus obtained by compactifying on
A% = Von Ag.
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n
The points ¢ = ) qy, correspond to points of V which project onto points § in
m=0

T that are fixed under 7, i.e. 3(3) = g, so

q€M, ={zeR(1-0)x € Ag).

The points q are called orbifold fixed point singularities and the set of such
fixed points is denoted by T? = TI(M,). In fact they are only points if dimPoV = {0},
otherwise they consist of dim Py V-dimensional subspaces of the orbifold. We label these

subspaces by Gs where
M,
PoV '

gqs €

The number of singular subspaces is given by

"= | (e%)] = e -

Let us look at simple two-dimensional example. Take g = A, and ¢ to be the

: 27
rotation through <.

My = Ar® (w1 + AR) ® (w2 + Ag), where w; and w, are the fundamental weights
of Az.
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] ’ ‘. A,‘ A¥ T? = {0,900}

Ll

M‘n\<>/\ %};
./\’ I " s

Let us look at some strings on Q. /

OUntWisted string L = 0.
QO Twisted string.
O Untwisted string with L = 1.
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Quantum string :

The procedure for constructing the Hilbert space for the theory of quantised strings
on an orbifold is just a slight generalisation of that given in the previous section for

‘'strings on a torus.
1. Take the Hilbert space, Hf;, for strings propagating on the covering manifold M.

2. As we are dealing with a closed string theory we must also consider strings that

only close up to an element of G i.e.
X(27r) = gX(0) whereg € G.

Notice that such boundary conditions mean that the centre of mass of the string
must sit at a fixed point or in a fixed subspace. Thus for each g € G there is a new
sector of the Hilbert space H§4 in which the boundary conditions are changed to
periodicity up to a transformation by g. These are generalisations of the winding

— g
sectors. Let Hy = ®g€GHM'

3. Finally we must project each H§4 onto a Hilbert space H§ that is invariant under
the action of G, where G is a representation of G on H$;. Notice that if G is
non-abelian then G will mix up the twisted sectors H%/I corresponding to elements
in the same conjugacy class. For example assume that we have a state in HE,,

corresponding to the boundary conditions,
X(27) = gX(0).
Acting on the state by an element h € G gives
hX(27) = hgh™'[hX(0)].

So this new string is periodic up to hgh™! and therefore an element of Hll:,{gh_l. The
symmetry group of each H; is thus only equal to its centralizer (or little group)
C(g)= {g' € G|g's = gg'} which is a subgroup of G. To form G invariant states
we must project each sector H%,[ onto its C_(g-). invariant subspace Hﬁ(g) and then

sum over all the corresponding states in different Hﬁ(g) where g’ is conjugate to
g
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Thus in the final theory there is a sector for each conjugacy class of G. The ones cor-
responding to conjugacy classes other than the identity are known as twisted sectors.
This construction is necessary if the string Hilbert space is to be G invariant and mod-
ular invariant [14]. If G is abelian then the conjugacy classes are all one-dimensional

and the construction reduces to projecting each H8, onto its G invariant subspace.
J g M

It is interesting to note that we can take G = Ag xaut @, to produce a string model

with a sector corresponding to each inequivalent vertex operator representation of g(r).

We now return to the case when W= (o). In particular we look at the first twisted

sector, HY, corresponding to string states which only close up to o.

For each eigenspace V,, we introduce an orthonormal basis ein, where 7 = 1,..,,
dim V. The oscillators are then given by a! withr € Z + Mand: = 1,..,dim V.

Canonical quantisation gives the following commutation relations,

[ab, pJ] = i8",
[o3,8d] = 860460
The Hilbert space is of the form
H = F @V’

where F7 is a Fock space for the oscillators and V? is the zero-mode Hilbert space

describing the centre of mass of the string. It in turn consists of two parts,
V7 = C(PoAR) @ V.

The first part is the complex span of the momentum eigenstates of the form | ag) where
ag € PoApg. This is because quantising the string implies that the momenta lie on the
lattice (A(}z)* = PoAw. In fact we only wish to choose momentum from the sublattice,
PoAr C PoAw. The second part is less obvious. It is not given by the naive guess of
taking states corresponding to fixed subspaces of the form | g;). It is in fact [5,16] an
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irreducible projective representation of %{n‘: where
M, ={z €M, |¥z,y) =1Vye€ M, }

and ¥ : M; x My — € — {0} is the alternating bimultiplicative form given by,
‘Il(x,y) = e21riz.(1—a)y,
= C(a, f).

where @ = (1—-0)z + ag (ag € PoAg), 8 = (1 — o)y and C(a, B) is the commutator
map of [5]. This is both necessary for the Hilbert space to be a representation space for
a Kac-Moody algebra [5,16] and required by modular invariance as we only have left

moving modes [14,35]. We will discuss it in more detail in Chapter 6.

We define the momentum field by, P(z) = i28,X(z). The conformal group is

generated by moments of the Virasoro field,

L(z) = Z Lyz™® =

ne€Z

:P(2): .

DN

The moments L, generate a copy of the Virasoro algebra with Ly shifted by

rank
1 g

n= 13 Z n;(n; — n).

1=1

Thus the conformal weight of the vacuum is 5 as
Lo |0) =n|0).

Lo gives a gradation of the twisted Hilbert space,
H = P H.
r€ =7

The partition function defined by P(q) = ¥ (dimH?)q" is,

r€z=Z

g
a €PoAr

P(q) = co— -
H (1 - q;-)d(m mod n)
=1

where ¢, is the degeneracy of the vacuum and d(m modn) is the dimension of the

eigenspace with the eigenvalue w™.
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The twisted vertex operators for this sector are of the form

2_g42

- ) .
V(6,2) = Np(a)a™ 70 ¢ iy 00 X (2).... ier B0 Ko ()62 %@ - G, (a)

where a € Apg, Ny(e) is a normalisation factor and C,(a) is a cocycle operator on the
zero—mode space that we will explain more fully in Chapter 6. The overall factor of
—(a?-al)

z~ 2 is necessary to make V(¢,z) a conformal field. The twisted vertex operator

describes the emission of an untwisted string state from a twisted string.

The twisted vertex operators of conformal dimension one give a representation of a
Kac-Moody algebra g(7) associated with the Lie algebra g. Again this will be shown
explicitly in Chapter 6.

Such a construction has a different gradation from the untwisted sector which means
the mass spectrum is altered. Let go be the Lie subalgebra of g(™) that commutes with
Lo,

[L07 go] = 0.

Thus states at each mass level now form representations of gy and in particular the
massless states of the resulting theory are in the adjoint representation of gg. The
symmetry of the theory is therefore broken from g to go. There is a slight caveat to
this remark in that sometimes the various sectors can combine together to restore the
original symmetry [15, 36]. It is not clear, at least to the author, what conditions are

necessary for this to occur.

For the case of W= (o) the other sectors of the theory are obta.ined' by replacing o
by a power of ¢ in the previous working. In general each sector of the twiéted string gives
a different graded representation of g(") where 7 might vary from sector to sector if ¢ is
outer. Note that the twisted sectors Hgim and Hﬂ"_m have the same vacuum degeneracy
and the same invariant subalgebra gy but correspond to conjugate representation spaces
of g7, In general all the sectors Hg{m where m is relatively prime to n have the same
vacuum degeneracy as each other and the same invariant subalgebra as the untwisted
sector when it has been projected onto G invariant states. In these cases we do not have
to make any further projection of H‘{dm onto G invariant states as o™ generates (o). If

we take o to be of prime order then all the sectors fall into this category.
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It can be seen from the form of various of the equations that a lot of things are
simplified if o leaves no directions fixed i.e. det(1-0) # 0, as then PoAp = {0}. It
this is to the case for all the sectors of the theory then we must have det(1-0™) #
0form = 1,.....,n—1. This motivates a study of such ¢, which we call no fixed point
automorphisms or NFPAs. In Chapter 5 we determine all the NFPAs of simple Lie
algebra root systems. On NFPA orbifolds the momentum is eliminated in all the twisted
sectors. As in this case the centre of mass variables are not dynamical the twisted strings

sit at, and oscillate about the orbifold fixed points.
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3. Realizations of the Kac-Moody algebras.

In this chapter we will show how to realize an arbitrary integer gradation of the
infinite dimensional Kac-Moody algebras in terms of the finite dimensional Lie algebras.
This is done by realizing them as central extensions of loop algebras and subalgebras of
them. It is basically an exposition of work found in [1]. To start with we need to know

something about the automorphisms of Lie algebras.

3.1 AUTOMORPHISMS OF LIE ALGEBRAS.

An automorphism of a Lie algebra, g, is a one-to~one mapping of g onto itself

that preserves the operation of commutation. That is S:g—g such that

S([x,y]) = [S(x),S(y)] Vx,y € g.

The collection of all such automorphisms form a group denoted by aut g It hasa
normal subgroup int g, consisting of automorphisms which are generated by the action
of elements of g. Such automorphisms are called inner automorphisms, the rest,
aut g-int g, are known as outer automorphisms. If acg then the corresponding

inner automorphism, S, : g — g, is given by

Sa(x) = e*xe™®  Vx, € g. (3.1)

Firstly it should be noted that in (3.1) x and a are considered both as elements of g
and the compact group, G, associated with g for the implied multiplication to make any
sense. Secondly we need to check that the resulting element S,(x) is in fact an element

of g. On explicit evaluation it can be seen that,

1
x = Sa(x) = x+[a,x] + 5—,—[3,, [a,x]] + ....
ea.d(a.)

xXeg

where ad(a) is the adjoint representation of a, that is the linear map, ad(a):g—g,

such that,
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ad(a)(x) = [a,x] Vxeg

It is easy to see that int g is isomorphic to g as S,(Sp(x))= Sap(x). Asintgis a

normal subgroup of aut g we can form the factor group

For simple Lie algebras I'y is always a finite group corresponding to the symmetry
group of the Lie algebra’s Dynkin diagram.

Table 3.1 : Factor groups for the simple Lie algebras.

g An Bn Cn Dn EG E7 E8 F4 G2

Pg Zo| 1|1 )| Zon#4 [Z| 1|11 1
S3 n=4

All inner automorphisms of g can be written in the form

Sa(H) = H,
Sa(Ea) — e2xix.aEm

after an appropriate choice of CSA, where  lies in the fundamental Weyl chamber,

c(A), of the root system of g, ®;. x is known as a shift vector.

For a purely outer automorphism, A, corresponding to a Dynkin diagram symmetry,

X:Ap—Apg we have

A(H) = X(H),
A(Ea) = VExa),

where et(,,x) = %1 such tha;t
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00 - _Napg  (x)
P Nx@xp
0 = &
In addition the & can be chosen equal to 1 on the simple roots (see [28] p201).

We call such a Lie algebra automorphism a diagram automorphism.

In general, as we shall see later, we can extend any root system automorphism to
an algebra automorphism. The order of this algebra automorphism may be equal to or
double the order of the root system automorphism, depending on the particular choice

of automorphism.

(X)

Lemma(3.1) : Except for the diagram automorphism of Ay, we may choose the ey so

that

Nx(a),x(8)

=1Vapf e d,.
Na,g P et

Proof : Recall that the choice of nofmalisation of the structure constants is only unique
up to multiplication by a function f(a, ) = UaUsUsyp where U : &, — {£1} is
an arbitrary function with U_, = U, (see Subsection 1.2.1. p21 ). Thus after a

renormalisation we have

H(at, B)Noys _ ey
f(X(a), X(8)) Nx(a) x(8) s

and hence

Nx(@)x(6) _ (X 0 (x) e, f)
No,s TP et (X (), X(8))

(i) If the extension of an order two Dynkin diagram automorphism is also of order

two then,
ega)e&x) =1 Vacd, (3.2)

In this case all we have to do is to choose the U, V o € @g‘ such that

Us = €5 Ux (), | (3.3)
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 U—gq = Ua. a (3.4)

This is consistent because

Ux(a) = e Us (3.3)

reduces to (3.3) by the use of (3.2). In addition we have no problem with assigning Uy
separately on the positive and negative roots so as to satisfy (3.4) because X does not

mix them.

We have a problem however if the order of X has to be doubled when it is extended
to an algebra automorphism as then (3.3) and (3.5) give

UaUsx(a) = €5 €50y Ux(a)Ua

but we must have e&x) egél)x) = —1 for some a € o,.

The only case when the order of a diagram automorphism is twice that of the

corresponding Dynkin diagram automorphism is for Aay.

(ii) Similiarly for the third order diagram of D4, whose order is not doubled, we can
consistently take,
Ue = GS{)UX(Q)) Vae @;-

U—a - L‘Ta-

The structure of the full automorphism group is that of a semi-direct product,
autg = int g % ['y.

3.2 SUBGROUP OF FINITE ORDER AUTOMORPHISMS.

The subset of automorphisms of a Lie algebra, g, of finite order form a subgroup
as the product of two finite order automorphisms is also a finite order automorphism.
We shall denote this subgroup by autfg and its normal subgroup of finite order inner

automorphisms by intfg.
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Consider a finite order automorphism, £ € autf g, of order N, of a complex Lie

algebrag. Ifw = e then we can decompose g into its eigenspaces under I,

g = @gn,

n€Zy

where gn = {x € g | £(x) = wx} is the eigenspace of & with eigenvalue w®. This
gives a Zy gradation of g as

[gm;gn] C Em+4n m,n € Zy (3.6)

Conversely we can form a finite order automorphism from a gradation of g by de-
composing any element into its components with respect to this gradation and then

multiplying each component by its appropriate eigenvalue.

The fixed eigenspace gg can be seen from (3.6) to form a closed subalgebra, known
as the invariant subalgebra. This is in fact true whether X is of finite order or not.

In addition the other eigenspaces form representations of go as

60,8l Cgn 1 € Zy. (3.7)

3.2.1 Invariant subalgebras for diagram automorphisms.

Let g be a simple Lie algebra with Chevalley generators et (= Eio,) and a CSA

basis h; (= a;.H) where i=1,.... rank g - Consider a diagram automorphism of order T,

He— X(H)

Eta; = Eix(ay)

where we have chosen the e,(,x) = 1 on the simple roots. Thus let us introduce a
permutation X € Srankg such that x(i) = j iff X(ai) = «;. Notice that under X a
simple root is either fixed or has order 7. Let O(g,) be the number of orbits of simple

roots under X, and let [{] denote the orbit containing the simple root aj.
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Table 3.2 : Diagram automorphisms.

7 =1 |{0O(gl)=rankg x(¢) =1
T =2 |0(A2,2) =n x(¢) = 2n—~1
O(A2p-1,2) =n x(?7) =(2n—-1)—1

O(Dn,2) =n1|x(?) =4 1<i<n-2 xn)=n-1
O(Es,2) =4 x(1) = 5,x(2) = 4, x(3) = 3,x(6) = 6

7 =3 |O(Dy,3) = 2 x(1) = 3,x(3) = 4,x(4) = 1,x(2) = 2

We define the following elements of g,

Ef = ¢t " H; =k x(i) = i

1 )
Ef = ef:+...+e;f,.('.) Hi =hi+..+h-q x7() =i
Except for Agp, 7 = 2 where we set,

Eit = e?: +e;h(') H; = h; +hX(‘) i ;é n

Ey = ‘/i(eni‘*'eizﬂ) Hy = (hg+hp41) i =10

Let us choose the following indexing for these elements, to correspond with the

labeling of the roots of £0,

Ay, Dy: Ef = E[i] 1 <i<0(g,7)
Eg : E?:E[ﬂ;] 1<i<3 Eq=Epy
X gives a Z. gradation of g, i.e.
g =g T=1
g =gPg T =2

g =g00g1Pg =23

Where g; is an irreducible representation of gy and the representation g2 is equivalent

to that of g;.
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The set of elements Ef 1 < i < O(g, 7), are Chevalley generators of gy whilst the
elements H; 1 < ¢ < O(g,7) form a basis for the invariant CSA, Hg.

Let ©g be the (unique) highest weight of the representation g;. (Take Oy = O, the
highest root of g, for 7 = 1). If we denote the simple roots of gg by aj, 1 < i < O(g, 1),
and Qg = Z&(gl’r) a;a; then the values of a; are given in Table 3.3.

Table 3.3 : Invariant subalgebras and highest weights of g1 representations.

T g £0 D(go) & a;

2 JAz, n>2 | B, |2 2 2 2
oo OO

OO (X0

2 Dy, 022 |Bpy |1 1 1 1

2

2 A, Ay
O
2 Eg Fs | 1 2 3 2
026::020)
3 D4 G 12

e::0)

Notice that by adding the root -©¢ to the Dynkin diagram of gy we get the corre-
sponding Dynkin diagram of the twisted Kac-Moody algebra g("). Hence ¢; = ki for
= 1,..,0(g, 7).

If we choose Eg: = Ezo,, Ho = -0, then for 7 > 1 the elements E;",

t = 1,...,0(g, 7) generate the Lie algebra g [1]. Thus we take og = —Oj and see that
O(g,7)

> kTa; = 0, where the k[ are the Kac labels for the appropriate (un)twisted Kac-
1=0

Mgody algebra.

3.2.2 Classification of all finite order automorphisms.

We now state a couple of results concerning the classification of all finite order auto-

morphisms of simple Lie algebras and a method of determining the associated invariant
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subalgebras which are both due to Kac. We refer the reader to [25,1] for the proofs of
these results and to [37] for a thorough exposition. We use the notation introduced in

the previous section.

Theorem (3.2) : Classification of finite order automorphisms : Let g be a simple Lie al-

gebra, n=rank g and s= (s, ....., S0(g,r)) be a sequence of non-negative relatively prime

integers. Set
O(g.7)

N=r Zk}'s,-.

=0
Then:

(i) We define an automorphism of g by,
osr(Ej) = e E; j =0,....,0(g,7). (3.8)

We call it the automorphism of type (s;7).

@ The automorphisms o, exhaust all the N*® order automorphisms of g, up to

conjugation by an automorphism of g.

(¢41) The elements oy and oy, are conjugate by an automorphism of g iff k=k’
and the sequences s and s’ can be transformed into each other by an automorphism of
the Dynkin diagram D(g").

(2v) T is the least positive integer for which Os;r T is an inner automorphism.

Proof : See [1] pp 96-98.

Corollary(3.3) : Let w;, 1 < ¢ < rankg , be the fundamental ﬁeights of a simple

Lie algebra g and X a symmetry of its Dynkin diagram of order 7. In general, if
(8,7) # (A2,2), we may rewrite (3.8) as

H — X(H),

Ea — leia.SEX(a) :

rank g
where § = ’llv Y. siw; and
1=1
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(1) The sequence (si, .....,8y) is invariant under the permutation of indices corre-
sponding to X i.e. S; = Sx(,-), 1 < i <rankg.
. O(g,r)
(2) N= 7 3 KkIs;, where kT are the Kac labels for g(").
- 1=0

The order of this automorphism is N. We call § a shift vector.

Proof : If a; i = 1,...,rank g are simple roots of g then (3.8) is equivalent to
2miSy . .
0s;r(Eq;) = €7F EX(e;) 7 = 1,..,rankg

— e21riaj.6EX(

2mSs
US;T(EGo) = e—"nE)«:(eo)

= i%Ey o

aj)

where § is of the form given above. Now if we use the commutation relations to extend

this to an automorphism of the whole algebra by induction then we have
0s;r(|[Ea, E
By - 2Bt
a,B

_ NMx@.x()
Nas

— e27ri(a+;3).6EX(a+ﬂ)

e2wi(a+ﬂ).5EX(a)+x(ﬂ)

using Lemma (3.1). This is also consistent with,

as;r([EaaE—a]) = Bao's;r(a-H)
= BQX(Q).H as BX(a) = Ba.

For the special case of inner automorphisms we have,

H ~ H, ‘ (3.9)

E, — ezxi"'sEa, (3.10)
rankg rankg

where § = % > syw; and N= Y. kis;, with the k; just being the Kac labels on
1=1 : 1=0

the EDD of g.
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For a given automorphism of type (s;7) let

g = @ gu(s;7),

neZy

be the Zy gradation associated with it.

Theorem (3.4) : Invariant subalgebras of finite order automorphisms :

Q_)_ Let ¢y, ....., 2, be all the indices for which 8iy = ... =s; =0. Then the invariant
Lie subalgebra go(s; ) is isomorphic to the direct sum of the semi-simple Lie algebra
obtained by removing all the vertices from D(g”), the Dynkin diagram of g(?, corre-

sponding to non-zero s;, and an (n-r)-dimensional centre, [u(1)]"~T.

(z'_i) Let j1,....., s be all the indices for which $j1 = ... = 8j, =1. Then the repre-
sentation of go(s;7) on gi(s;7) (or g-1(s; 7)) is isomorphic to the direct sum of the s

representations with highest weights -a;,, ....., —aj, (or ajy,....., @)

Proof : See [1] pp 97-98.

Recall that the Dynkin indices of a representation with highest weight A are given
by, |

205 A
n; = .
of

A few examples should help to elucidate these results.

Examples : Let us look at some automorphisms of E¢ that are of the generic type (s; 2).

The Dynkin diagram of Egz) with Kac labels is;

Qo a4 a3 a2 a
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1. Let s; = (1,0,0,0,0) i.e.

thus gi(s1;2) = 2

2. Let s = (0,1,0,0,0) i.e.

thus gi1(sy; 2) = 42.

3. Let s3 = (1,1,0,0,0) i.c.

o is of order 2.2=4. go(s3; 2) = C; & R (dimgy = 22). The Dynkin indices are

1 0 0 0 0 1
O—Cx0 o O—x0
thus gy(s3; 2) = ga(s3; 2) = 6 ® 14. Therefore dimgy(s3; 2) = 16.

Aside : One consequence of this classification of all the finite order automorphisms of g

is that it allows us to detemine all the real forms of a simple Lie algebra g very easily.
This is due to the fact that there is a real form associated with each non-conjugate
involute (i.e. second order) automorphism of a complex semi-simple Lie algebra (see for
eg Chapter 8 of [38]). The invariant subalgebra in this case corresponds to the maximal

compact subalgebra of the real form.
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Another (see also [38] pp411-414) is that it allows us to determine all the maximal
subalgebras of g of maximal rank i.e. g’ C g such that

(¢) rank g’ =rankg,
(41) There is no g” such that g’ C ¢’ C g.
These are found from the extended Dynkin diagram of g by either knocking out

1. one spot whose Kac label is a prime number, or

2. one spot whose Kac label is one and the spot corresponding to aq.

3.3 NON-CONJUGATE AUTOMORPHISMS WHICH FIX A CSA.

We now look at automorphisms of g which fix a given CSA, H. We denote the sub-
groups aut g and int g formed by such automorphisms as autgg and intgg respectively.
Given a Lie algebra g and a CSA H we can always choose a Cartan-Weyl basis. With
respect to this basis an arbitrary automorphism, & € autgg, which maps the CSA into
itself can always be written as the extension of an automorphism, ¢ € aut $g, of the

root system as follows; L : g — g such that

H — o(H), o € aut $g,

(3.11)
Ea — ";baEa(a)'
Where,
1/)01/’5

Nog — Nota)o 3.12
B Garg (0 8) (3.12)
Yath_oq =1 (3.13)
e = Y- (3.14)

(3.12) to (3.14) are necessary if ¥ is to be an automorphism of g. From (3.13) and (3.14)

we can see that,

Yatps = 1 therefore v, € S! Va e .

Let us assume that the strucure constants are invariant under £ so that,

N, ]
¢a¢ﬂ = N i ¢’a+ﬂ (3.1{))
a(a),o(8)

In the case of simply laced algebras we can replace Na,s by an appropriately chosen
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cocycle which is defined on the whole root lattice. Consequently we can extend all the

sets of phases to be defined on the whole root lattice.

We can write & = (o0,9) where ¢ € aut ®; and ¢ : & — S! is a projective

) . _ Na C
representation of the root system with the factor set {U(a, B) = m} which in
addition satisfies (3.13) and (3.14). We shall call such a way of writing an automorphism
a twisted picture of the automorphism. It is clear that autgg is isomorphic to the -

group of all projective representations of aut P,.

For a given automorphism o of order n, o™ = 1, let w be a primitive n'® root of
unity and < w > the abelian group generated by w. < w > is isomorphic to Z,. We can
write all the elements ¥ € autgg obtained by extending the automorphism ¢ € aut o,
in the form

H - o(H),
Ee = ¢gAaE;(q).
Here 47 : &3 —< w > is a particular choice of projective representation and A : ¢, —

C — {0} is an arbitrary homomorphism i.e.
AaAlg = Aa+ﬂ Va,f € @g. (3.16)

Thus the phases {A, | @ € ®;} form an ordinary representation of ®;. The cor-
responding trivial automorphisms or changes of basis are obtained by extending the

identity automorphism,1 : ¢ — &, to the whole algebra,

H+— H,
Eqy — AqE,.

We shall call this extension 15. The set of all such automorphisms, which we can look
on as gauge transformations for the basis of g, form a subgroup of autgg which we
shall call Tl;. Ilg is isomorphic to the set of maps A(w) : ¢, — € — {0} parametrised
by w € (C— {0})"k8 which corresponds to a particular choice of phases on the simple
roots. A given A is obtained by defining A,, = w; and extending the definition of A
to the whole lattice by use of the homomorphism (3.16).

In brief, an arbitrary extension of ¢ € aut ®; to an element ¥ €autgg can be
written in the form ¥ = X714, where 15 € IIg and X7 is the particular extension

with phases {¢J}.
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Theorem (3.5) :

Q) %Zg- & aut
(2) autgg = Iy xaut,

Proof :

(1) Let © :autgg— aut &g such that (o,9) — o. Almost trivially © is a homomor-

phism as

6((0, 1;[)) ° (T’ ¢)) = 6((UT’ C))

= oT

where (o = PaPr(a) V @ € &y
Whereas 0((0,¥))0((r, ¢)) = or
As Ker© = II; and Im© = aut $; we have II, sautgg and thus (1) is true by the

First Isomorphism Theorem.

(2) By (1) autgg = Iy xaut &; where the semi-direct product multiplication is given

by
(U,_’(f))o (T’ ¢) = (UT’ C) where Ca = ¢a¢r(o{) Va e Qg-
We shall define,
x] _ autgg
aut%]g = _H;—

Notice that due to the isomorphism autg]g Zaut ®g, all the elements of a.ut[Hr]

be of finite order and thus can be written in the form (3.8). We shall call this way of

g must

writing the automorphism the shifted picture.

Similiarly by replacing ¢ € aut ®¢ by 0 € W in the above we have,

and

intg]g = int &g = Wy,
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with

intHg =~ Hg P Wg.

It shall turn out that non-conjugate elements of autg] g lead to non-equivalent gra-
dations of the Kac-Moody algebras. Thus our interest in gradations of Kac-Moody
algebras naturally leads us to study the conjugacy classes of W; and aut §; which we
do in Chapters 4 and 5. We are also interested in picking a particular representative
27 for each conjugacy class of a.utg] g. We will demonstrate the existence of a choice of

phases which will turn out to be very useful in later calculations.

Lemma (3.6) : For simply laced algebras we can always choose the phases {#2} such
that ¥ = 1if o(a) = a, which means that,

o(a) = a & X9(E,) = E,.

Proof : Let ¢ be a particular choice of phases and define

A} = {a € Ag [o(a) = o)} C Ag,
$ = {ac Pg | o(a) = a} C @,

to be the invariant root lattice and root system respectively. Now on @g (3.15) with

Nq g replaced by a suitable cocycle ¢(a, 3) reduces to,
¢g¢; = ¢;+ﬂ VQ,IB (S Qg

Hence these phases form a representation of the lattice tI’g C ®;. This representation
can be extended to form a representation, {ya}, of the whole root lattice such that

Ya = ¢3 on fbg and
Yatp = Yatrpg Va,B € B (3.17)

We do this by choosing a basis a; of (Pg and extending it to a basis for the whole root
system, ®,, by picking §; € ®, — @g. Now define ¢,, = Pa, and ¥ = 1 and extend
them to ¢ : @, :— S! by using (3.17). The required phases are then obtained by
defining,
¢U
Ya =% Vaced,
G
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3.4 ARBITRARY INTEGER GRADED REALIZATIONS OF THE KAC-MOODY ALGEBRAS.

Let g be a simple finite dimensional Lie algebra and let g 7 = 1,2 or 3 be the
corresponding Kac-Moody algebras. Let {E,,h; | @ € &, i = 1,..,rankg} be a
Cartan-Weyl basis for g.

We shall realize all the infinite dimensional algebras as central extensions of infinite
dimensional loop algebras,

L(g) = C[t,t '] ®c g,
and subalgebras of them. C[t,t™!] denotes the algebra of Laurent polynomials in t,

Clt,t7Y] = {a(t) = Z apt® | all but a finite no. of a, = 0}.
nez .

The commutation relation on L(g) is defined as
[a(t) @ x,b(t) @ y] = a(t)b(t) ® [x,]-

Hence L(g) is just-the Lie algebra of regular rational maps f : C — {0} — g such that

z— ) zpz" wherez, € g. For |z |= 1 we have a loop in C — {0} so that f describes
nez
a mapping from S to g, hence the name loop algebras.

* We extend L(g) to L(g)®CC by adding a one-dimensional centre C, and extending

the commutation relations so that
- d
[a(t) ® x + AC,b(t) @ y + #C] = a(t)b(t) ® [x,y] + Res (a%b> B(x,y)C.  (3.18)

where p, A € € and

(i) Res:C[t,t”!] — € such that Res(a(t))= a_j, the normal residue of the

Laurent polynomial.
(1) B:g x g = € such that B(z,y) = Tr{adzady} is the Killing form on g.

Notice that ¥(a(t) ® x,b(t) ® y) = Res(%%b)B(x, y) is a bilinear complex valued

function satisfying
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1. ¥(a,b) = —¥(b,a)
1Y
2. U(a,[b,c]) + ¥(b,[c,a]) + ¥(c,[a,b]) = 0a, b, c € L(g) and hence/is a complex

valued 2-cocycle on L(g). This is required if the commutation relations on L(g)

. are to satisfy the Jacobi Identity.
The natural gradation, d, of L(g)®CC acts like t% on L(g) and kills C.

3.4.1. A homogeneous gradation of g(1).

The centrally extended loop algebra, I = L(g) ® CC, is isomorphic to g1), see for

example [1].

If we now write E} = t® ® E,, h? = t® @ h; then in terms of this basis the

commutation relations of the untwisted Kac-Moody algebra become,

[hinah?] = mB(hiyhj)C6m+n»,0, A (319)

[c. H™, E}] = a.fEFHR, (3.20)

[Ea, Ej] ={ NagER73 a+f e &, (3.21)

Bo(a. H™™ 4+ mC)ém a0 a+ 8 =0, (3.22)

0 a+tf ¢ &, (3.23)

[C,g™] =0 (3.24)

where
1.
rank g

a.H™ = n;h™ if o = E n;q;.

=1

2. The gradation, d, is given by

(d,Ef] = mEY, [d,h"] = mh;, [d, Cl = 0.

In addition we choose B(hi,hy) = & and the By so that we have a Chevalley
basis of g and hence of g(l). This realization corresponds to a homogeneous gradation

whose horizontal algebra is g. A suitable set of Chevalley generators for g(l) is given

by {Eg“,El_e |7 = 1,..,rank g} where © € ®, is the highest root of g. With respect
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to this basis the simple roots are {ag = § -0, ay,..... yan} whilst the corresponding

simple co-roots are {BgC — ©.H, ;. HY, ....., n.H}. The root lattice is given by,
¢y = {a+mé, a € &;, m € Z}U {mé, m € Z - {0}}.

The roots a + mé have positive norm, are non-degenerate and are called real roots.
The roots mé have zero norm, are n=rankg degenerate and are called imaginary or

null roots.

3.4.2. Arbitrary gradations of g(7).

Let 0 € aut ®; be a root system automorphism of order n, and & = (0,9) €autgg,
of finite order N, an extension of ¢ to a Lie algebra automorphism. We can in turn extend

this to a Kac-Moody algebra automorphism, £, where,

S(t"®z) = w " ®%(z) me X, z € g,
5(C) = C,

and w is an N** root of unity. Let

I:(gv XJ) = @ (tm ® 8m (mod N)) ® CC (3'25)
meZ

be the invariant subalgebra of L(g) under £, where

g= P gn

mé€ Zn

is the eigenspace decomposition of g under .

L(g, ) is the Kac-Moody algebra of equivariant maps from € — {0} to g that are

invariant under the automorphism,

f— Tofow™,

t.e. If(c) = flwe) Vee C-{0}.

[c.f. twisted string boundary conditions 0X(z) = X(e?™'z). | Now if T € II, is a gauge

transformation on g then I is just a gauge transformation on g(1). As a result any two
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Lie algebra automorphisms differing by an element of II; give the same gradation. If o

and o' are conjugate in aut @4, o' = z~loz, then let us define

S = 0y Yr(a)Pors
where X = (z, @) is the corresponding Lie algebra automorphism. We have

SaSp = ¢;:(a)¢;zl(ﬂ)¢x(a)¢z(ﬁ)¢a¢ﬂ,

Naz(a),az(ﬂ) Nz(a),z(ﬁ) Na,,@ Sats
Nz—laz(cx),z“laz(ﬂ) Ndz(a),a’z(ﬂ) Nz(a),z(ﬂ)
No s

= 5444
Nor(a),0'(8)

Thus ¥, = Aase for some set of phases A, satisfying (3.16) and therefore X 1EX =
Y1, where 15 € g and X' = (o', 4'). Consequently X~15X and ¥’ give equivalent
gradatitions. Thus conjugate automorphisms ¢ € aut ®, lead to equivalent gradations.
in fact non-conjugate automorphisms lead to different gradations so that the gradations
are in one-to-one correspondence with the conjugacy classes of a,ut[H”] g which are in

turn in one-to-one correspondence with the conjugacy classes of aut o, (16].

If we choose I to be a diagram automorphism, X, of g of order 7, or 27 if g= Ao,

then we get a homogeneous gradation of the corresponding Kac-Moody algebra g(™) [1].

@ t" ® gm (mod r) & CC g # An

g (&%) @Z t™ ® 8m (mod ) ©CC g= Ap
meE

Notice in particular that L(g, 1) & L(g) = g,

All algebra automorphisms consist of a product of a diagram automorphism (maybe
the identity) and an inner automorphism, £ = XZiyyNER- As all inner automorphisms
can be rewritten in terms of a shift vector (3.9) and (3.10) it can be seen that although
they will change the gradation they will not alter the underlying Kac-Moody algebra

i.e.

L(g, L) = L(g,X) = g7

So conjugacy classes of outer automorphisms in aut @, lead to different gradations of

the twisted Kac-Moody algebra (or algebras in the case of D4) whilst the conjugacy -
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classes of inner automorphisms give different gradations of the untwisted Kac-Moody

algebra.
To see an example of this change of gradation let us look at the case of an inner
automorphism on L(g). Here we have
z‘:(tm ® Ea) — w—me2m'a.6tm ® Em
— w—m+Na.6tm ® Eq,
S(tmQh) =t @h;,
$(C) = C.
Thus the gradation L(g, ) has
{tmtNel @ F, t"®h;, C|m € Z, i = 1,..., rankg} (3.26)

as a basis. We will also sometimes write the gradation of g{™) produced by the extension

of o € aut @4 to an algebra automorphism as g(")(o).

The homogeneous gradation corresponds to taking ¢ = 1, whilst the principal
gradation is given by taking o = wj..... Wrank g, the Coxeter element. Here w; denotes

a Weyl reflection in the simple root a;.

Commutation relations :

Let Pn : g — ga be the projection of g onto the eigenspace g,. If & = (0,9) is a
Lie algebra automorphism of order N satisfying (3.11) to (3.14) then P, is given by,

1 N-1
Pn = N Zw-nrzr .

r=0

Hence defining n(r,a) = ¢q..... Yor(a) SO that
ET(EU) = n(rva)Ea"(a)

we have,
1 N-1
Pn(Eq) = T Y w ™ n(r, a)Eqr(q),

r=0

N-1
Py(aH) = % Zw’“’a’(a).H.
r=0
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‘We now introduce the following basis for the Kac-Moody algebra gradation f,(g, );
Eq(n) = t" ® Po(Ey),
1 N-1
=t"Q® N Z w—nrn(r’ a)Ea"(oz) ’
r=0 :
a(n) = t" @ Py(a.H),
1 N-1
4D o —-nr _r
=t ®N Zw o’ (a).H,
r=0
C.

Using (3.18) we can show that the commutation relations in terms of this basis are

[a(m),ﬂ(n)] = mém+n,0Pm(a).3,

N-1
m _ .
= famn LT @5, (3.27)

N-1
[o(m), Eg(@)] = 7 ® P(a)-x > w0 (8)1(s, OB (s, (3.28)
§=0
1 N-1
[Ea(m)a Eﬁ(n)] = N{ Z w—mzn(x, a)Na‘(a),ﬂEa’(a)+ﬂ(m +n)

=0
ocZ(a)+ 8 Edg

N-1
+ Z w ™ n(z,a)B_g(m. 6mtnoC ~ B(m + n))} - (3.29)

c¥(a)+B=0

Notice that for simply-laced algebras

o (a)+p € &y & o%(a).f = -1,
c(a)+ 8 =0 & o*(a).f = -2,

and N,z(4) g can be replaced by e(o%(a), ) where ¢ is a suitable 2-cocycle.

In particular when we look at the commutation relations of the invariant subalgebra

go we find

[«(0),8(0)] = 0, (3.30)
[2(0), Eg(0)] = ao.8E4(0), (3.31)
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N-1
[Ea(o)aEﬂ(O)] = % Z 77(3:7a)Naz(a),ﬁEa’(a)+ﬂ(0)

=0
of(a)+0 € ¥g

N-1
- Y n(z,a)B_,sﬂ(O)}. (3.32)

z=0
oT(a)48=0

where &@ = a +o(a) +..... + 0¥ 1(a), and ap = -‘Ni,
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4. Automorphisms of the Root System.

The symmetry group of the root system of a simple Lie algebra g, aut @, is the
semi-direct product of the Weyl group, Wy, and the factor group of Dynkin diagram

symmetries, I'g,
aut®g = Wy x I'g. (4.1)
We can write an element of aut ®; as (¢,Y) where 0 € W,, Y € Ig. (0,Y) acts on
on «a by sending it to o(Y(a)).

Semi — direct product multiplication: (0,Y).(,Z) = (6Y7Y™1,YZ)

The group aut &, permutes the set of roots and so must be isomorphic to a subgroup
of the symmetric group (i.e. group of permutations) on ®,. In particular it must be
finite. Information about the automorphism groups is given in Table 4.1. [39].

Table 4.1 : Information about the automorphism groups of the simple Lie algebra root

systems.

g |@g*] Wy Iy |We|
A [ (T Sn+1 Z2 (n>2) (n+1)!
Bn,Cn n2 (Z‘z)n b Sn f 1 2nn!
Dn |[n(n-1) |(Z2)* xS, Ss n=4 28-1p!
Zy n>4
Esg 36 Z, 27.3%.5 = 51,840
E; 63 1 21034 5.7 = 2,903, 040
Es 120 1 214.35.5%.7 = 696, 729, 600
Fy 24 1 27.3%2 = 1152
G, 6 Ds 1 22.3=12

t Wg, and W¢, are both isomorphic to the hyperoctahedral group of order 2°n!.
D¢ =dihedral group of order 12.
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In this chapter we shall elucidate the conjugacy classes of both the Weyl group and
the full automorphism group.

4.1 CONJUGACY CLASSES OF THE WEYL GROUP, W,.

The conjugacy classes of the Weyl groups were initially determined individually by
a number of authors. However here we shall describe a more unified approach due to

Carter [3].

The Weyl group of a root lattice, Ag, is the group generated by reflections in the
hyperplanes orthogonal to roots in the root system ®; i.e. wg: Ap — Ap such that

wgla) = a — 2% a € Ap, B € @, C Ap. (4.2)

:32
(From now on we will write ‘reflection in a root o’ when we really mean ‘reflection

in the hyperplane orthogonal to the root a’.)

The set of hyperplanes perpendicular to all the roots in the root system partition
V into disjoint cones called Weyl chambers. The number of Weyl chambers is equal
to the order of the Weyl group. There is one Weyl chamber, C(A), such that for any
B € C(A) a;.f > 0 for all the simple roots. It is called the fundamental Weyl
chamber. A vector f lying in or along the walls of C(A) is said to be dominant (i.e.
a;.p 2 01 = 1,...,rankg), whilst a vector lying completely inside C(A) is said to be
strongly dominant (i.e. ;.8 > 0: = 1,...,rank g).

It can be shown ( see for e.g. [3]) that any element, w € Wy, can be written as a
(not necessarily unique) product of rank g or less weyl reflections in linearly independent

roots, B; € Ap,

w = wiwa..w;y 1 < k < rankg. (4.3)
where w; denotes a weyl reflection in the root ;. Let I(w) denote the smallest possible
value of k.

Lemma (4.1) : 1(w) is the number of eigenvalues of w on V which are not equal to 1.

Proof : See [3].

70



For a given set of , not necessarily simple, roots 8; € Agi = 1,.....,]( w) we can draw
a graph which contains all the relevant information about the inner products between
the roots; just like the usual Dynkin diagram. A graph is a set of of I(w) nodes, one
for each root, such that any two nodes are joined by 4cos?© links, where O is the
angle between the roots corresponding to the nodes. In addition if @ and 8 are not
perpendicular then an arrow is drawn on the links, pointing from node a to node B if
- a? > B

A subgraph of a graph is a subset of nodes, together with the bond joining them
to each other. A cycle is a graph in which each node is joined to just two others by

bonds with one or more links (see Fig. 4.1).

Figure 4.1 : Examples of cycles.

A graph; T, is called an admissible diagram if
(1) The nodes of T’ correspond to a set of linearly independent roots.
(2) Each subgraph of I which is a cycle contains an even number of nodes.

So the first two cycles in figure 4.1 correspond to admissible diagrams, assuming the

roots are linearly independent, whilst the third one does not.

The order in which the reflections in roots, corresponding to nodes of the gré.bh, are
performed is important as different orderings can lead to the resulting element being
in different conjugacy classes. One of the main results of 3] is to show that every
element of a Weyl group is expressible as the product of two involutions. Thus any
wey] reflection can be written as the product of weyl reflections performed in one set of
mutually orthogonal roots followed by the product of weyl reflections in a second set of

mutually orthogonal roots,

W = Wg..WgWy..Wy 1< k41 < rankg, (4.4)
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such that:

BiBj =0 =y ifi# (4.3)

The convention for the ordering of the reflections is to split the roots of a diagram
into two sets of mutually orthogonal roots (which by the above must always be possible)

and then perform the reflections in one set followed by the reflections in the other.

E.g.
1 2 3 4
m——o can be separated into
5 6 7
1 3 2 4

and therefore would represent an element wiwswgwowewswr.

We shall now state some of the main results of [3] refering the reader to the original

reference for further details and proofs.

Admissible diagrams :

(i) All admissible diagrams for a given Weyl group, Wy, which do not contain cycles
correspond to a Dynkin diagram of some Weyl subgroup of Wy. These can all be found
[40,41] by removing one or more nodes in all possible ways from the extended Dynkin
diagram of ®;. The resulting diagrams and their duals (obtained by interchanging long

and short roots) should then be taken and the process repeated any number of times.

(2) All admissible diagrams for W, which do contain cycles can be obtained from
the ones which do not contain them. To do this one takes all the diagrams without
cycles and wherever possible replaces any connected component I'; of the graph by any
corresponding admissible diagram with cycles associated with the Weyl group of T; but

with no proper subgroup of it. All such diagrams are listed in Table 4.2.
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Table 4.2 : Admissible diagrams containing a cycle associated with the root systems,

' @, but with no proper subsystems of them.

Dn(al) : —O
Dn(az) . ——O

Dn(aﬁ) : —O

...................................................................

Da(as) : o__o_{@}_o_o (if n even)

(if n even)

Du(bs):
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Eg(a4) .
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E.g. The Weyl group Wp, has two admissible diagrams with cycles associated with it

but no proper subgroup, namely;

De(ay) H—%@) and Ds(az) : O—@@

Thus from the admissible diagram without cycles A, xDg we can form the following
two diagrams with cycles A;xDg(a;) and AyxDs(as).

All graphs corresponding to conjugacy classes are admissible diagrams.

The characteristic polynomial of w on V, the vector space spanned by the simple
roots, is determined by its admissible diagram. Each connected admissible diagram has
an associated characteristic polynomial when the element w is considered to act solely
on the subspace of V spanned by the roots in the admissible diagram. These are listed in
Table 4.3. To determine the characteristic polynomial of an arbitrary admissible diagram
Just multiply the characteristic polynomials of its connected components together with a
factor (t-1)dim V=dimU where {J is the subspace spanned by all the roots in the admissible

diagram. This extra term corresponds to the subspace of directions left fixed by w. Note

that
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dimV —dimU = rankg — No. of nodes in admissible diagram. (4.6)

The order of w is equal to the least common multiple (LCM) of the orders of its

component parts. A useful result is that;

Tracew = rankg+ No. of bonds — 2(No. of nodes). (4.7)
Every conjugacy class of Wy determines an admissible diagram but the correspon-

dence is not one to one. A given conjugacy class can be represented by more than one

diagram and more than one conjugacy class can have the same diagram.
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Table 4.3 : Characteristic polynomials and eigenvalues of the connected admissible

diagrams.
Admissible Characteristic Order (n) Eigenvalues
diagram polynomial
A, Rt n+1 (1,2,......n)
Bn,Cn th1 2n (1,3,5,.....,2n-1)
Dy "1+ 1)(t+1) 2(n-1) | (n-1,1,35,.....,2n-3)
Dn(am) (tr L) (gt ) 2[m+1,0-m-1] | (x,3%,.....,(2(m+1)-1)x,
7,350, (2(n-m-1)-1)y)
x=p/2(m-+1)
y=p/2(n-m-1)
Eg (t* 424 1)(t24t41) 12 (1,4,5,7,8,11)
Ee(a1) t64t3 41 9 (1,2,4,5,7,8)
Es(az) (t2-t4+1)2(t2+t41) 6 (1,1,2,4,5,5)
E; (t5-£3+1)(t+1) 18 (1,5,7,9,11,13,17)
Er(a1) (0% 362t 4 1) (£ 4+1) 14 (1,3,5,7,9,11,13)
E7(az),Eq(b2) (t4-62+ 1) (4%t +1)(t+1) 12 (1,2,5,6,7,10,11)
E7(a3) (t4-t3 4+t 2t + 1) (42t +1) (b +1) 30 | (1,7,11,13,17,19,23,29)
Er(a4) (£2-t4+1)%(t4+1) 6 (1,1,1,3,5,5,5)
Es 8t T-t5 ¢ 43 4t 41 30 |(1,7,11,13,17,19,23,29)
Eg(a1) t8-t441 24 | (1,5,7,11,13,17,19,23)
Es(ag) 8-t 4444241 20 | (1,3,7,9,11,13,17,19)
Es(a3),Es(b3) (241 12 | (1,1,5,5,7,7,11,11)
Eg(aq) (863 4+1)(t%-t+1) 18 | (1,3,5,7,11,13,15,17)
Es(as),Es(bs) 8847 4544 13-t 41 15 | (1,2,4,7,8,11,13,14)
Eg(ag) (t4-t3 412t 4+1)2 10 (1,1,3,3,7,7,9,9)
Eg(ar) (t-t24+1)(t2-t+1) 12 | (1,2,2,5,7,10,10,11)
Eg(ag) (t2-t4+1)* 6 (1,1,1,1,5,5,5,5)
Fy 41241 12 (1,5,7,11)
Fy(a1) (t2-t+1)? 6 (1,1,5,5)
G2 t2-t+1 6 (1,5)

Notation: [a,b] denotes the LCM of a and b.

If w is a primitive n

eigenvalues w™.

th
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4.1.1 Classical Weyl groups:

Ap:

‘The conjugacy classes of Wy _are in one-to—one correspondence with admissible

diagrams of the form:

m
An, +An, + .. + An, such that ) (nj+1) = n+1. (4.8)

1=1

Note : Ag is taken to mean the empty set §.

Wa, = Spy1 so the conjugacy classes are in one-to-one correspondence with different
cycle structures or the partitions of n+1. There are thus P(n + 1) conjugacy classes,
where P(n) is the classical partition function describing the number of different ways
a positive integer can be expressed as the sum of positive integers. Explicitly taking the
roots of A, in terms of a set of orthonormal basis vectors, as in the Appendix, the effect

of an arbitrary element of W A.1s to permute the basis vectors e;, i=1,...,n+1.

If an element can be written as the product of disjoint cycles of lengths a,b,c,... we

will write its conjugacy class as [a b c ...].

Bn,Cy:

The’ conjugacy classes of Wp_and Wg,are in one-to—one correspondence with

admissible diagrams of the form:

r

A A+t Ap, +Cm, +Cimy +..00.+Cr, such that Y (nj+1)+ Y mj = n. (4.9)

i=1 i=1

The order of the corresponding element is: LCM(n1+1,.....,n;+1,2my,.....,2m;).
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Wg, 2 Wc, & (Z2)"xSn. The effect of an element of Wp_ (W, ) is to permute the
basis vectors, e; i=1,...,n, and change the sign of an independent subset of them. Let
s=(ky,ka,......ky) be an N cycle and ¢ : {1,.....,N} — {£1} a particular choice of signs

such that

ex, — o(l)ex, — a(1)o(2)ex, — ..... > o(1)...0(N — 1)ey,.

If sN(ey,) =ex,, that is o(1)...0(N)=1, then s is said to be a positive N cycle
denoted by [N] as before. If sN(ey,) =-ey,, that is ¢(1)...0(N)=-1, then s is said to
be a negative N cycle written as [N]. [N] is of order N whilst [N] is of order 2N. An
arbitrary element of Wp_ (W¢,) can be decomposed into a set of disjoint positive and
negative cycles, called its signed cycle type. Two elements of the Weyl group are
conjugate if and only if they have the same cycle type. Hence the conjugacy classes of

Wsg,(Wg,) are in one-to—one correspondence with the pairs of partitions of x and A

where g1+ A =n;u,A > 0, and the number of conjugacy classes is given by,

Qm) = > PP

The A, admissible diagrams correspond to positive cycles and the Cp; diagrams

correspond to negative cycles.

D,:

The conjugacy classes of Wp are in one-to-one correspondence with the signed
cycle types with an even number of negative terms except if all the cycles are even
and positive in which case there are two conjugacy classes corresponding to the same
cycle type. Take Dy(ag) =Dy. The positive i cycle [i] is represented by the admissible
diagram A;j_; whilst the pair of negative cycles [1j] i>] is represented by Diyj(aj—1)-

The order of an element in the conjugacy class [n1,.....,n;, My, ..., 5] (s€ 27)

is LCM(ny, .....,n,, 2my, ....., 2my)..
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Wh, is a subgroup of W¢, of index 2. An element of W¢, is also an element of Whp,
if and only if it changes the sign of an even number of basis vectors e;. In particular
this is equivalent to an element having an even number of negative terms in its signed

cycle type.

The number of conjugacy classes is given by

or

Q(n)+P(§) ifn € 2%
Q(n) ifn € 2% +1,

where

Q@) = ) PwB(),

ptA=n
u,A20

and P(n) is the number of partitions of n into an even number of integers.

Table 4.4 : The first 10 values of P(n), P(n), Q(n), and Q(n).

n | P(n)|P(n) |Q(n)|Q(n)

0 1 1 1 1
1 1 0 2 1
2 2 1 ) 3
3 31 .1 10 )
4 5 3 20 11
) 7 3 36 18
6| 11 6 65 | 34
71 15 7 1110 | 55
8 22} 12 [ 18 | 95
9 30 14 | 300 | 150
10| 42 | 22 | 481 | 244

80



4.1.2 Exceptional Weyl groups:

Take all the admissible diagrams associated with W and calculate their correspond-
ing characteristic polynomials. For each characteristic polynomial choose one admissible
diagram, except for 10 anomalous cases (Eg:1, Fy4:8, Ga:1) where two admissible dia-
grams need to be chosen for a given polynomial. Now all these admissible diagrams
correspond to one conjugacy class except for 11 (E7:6, Eg:5) which correspond to two
conjugacy classes. A full list of the conjugacy classes and a choice of admissible diagrams
is given in [3]. See also Chapter 7 for those of the simply laced exceptional algebras
Es, E7 and Eg.

4.2 CONJUGACY CLASSES OF THE AUTOMORPHISM GROUP, AUT ®,.

The conjugacy classes of the full automorphism groups are not given in [3]. For the
cases where there are no diagram symmetries aut Py = Wy, so the conjugacy classes are
the same. This is true for By, Cy, E7, Eg, Fy and G2. Most of the other cases can be

determined with the aid of the following theorem.

Theorem (4.2) : If Ty = Z; and the inversion automorphism -1 : ®; — @, such that

a — —a is an outer automorphism then

aut ®g =Wy x Iy & W, x Z.

In this case if {[x]} is the set of conjugacy classes of W, then {[(x,1)],[(x,-1)]} is

the set of conjugacy classes of aut ®,.

Proof : Let Z; denote the group generated by -1 and let O:T'y— Z, be the isomorphism
given by O(e) = 1, ©(X) -= —1. If -1 is outer then there must exist an inner
automorphism, a € Wy, such that aX=-1. We must have a> = 1 because a?Xa~! =
—1, therefore a?X? = 1 and we know that X2 = 1. Introduce the map ¢ Ig—W,
with ¢(e)=e, ¥(X) = a~! = a. Now consider the mapping ¢ : aut &g Wy xZy such
that

#((0,Y)) = (e9(Y),0(Y))
(i) ¢ is one-to-one because (&II)(Y), O(Y)) = (r¢(Z),O(Z)) implies that O(Y)=06(2)
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and hence Z=Y as © is one-to—one . Consequently we must have ¢ = .
(%) ¢ is onto as for an arbitrary o € Wy, (0,€) — (o, 1) and (ca,X) + (o, -1).

(227) ¢ is a homomorphism:

¢((0,Y).(7,2)) = (6YTY 19(YZ),0(YZ)) (4.10)
#((0,Y))4((7,2)) = (o%(Y), O(Y))(r(2), ©(2))
= (e¥(Y)O(Y)r9(2)6(Y)™, 0(Y)0(2))
= (o9 (Y)T$(Z), ©(YZ)) (4.11)

Y=e: (411) = (o7%(Z),0(2)) = (4.10)
Y=X: (411) = (0™} (aX)r(aX) "ty (YZ), O(YZ))
= (oXrX"'9%(YZ),0(YZ)) = (4.10)

Thus ¢ is an isomorphism. Let Z= +1 then (0,2)7! = (671,Z). Hence (0,Y) ~
(r,Z) if and only if Y =7 and 3p € Wy such that pop™! = ri.e. ¢ and T are conjugate

in Wg. The conjugacy classes of aut ®; are therefore as stated.

Lemma (4.3) : -1 is an iner automorphism if and only if there exist rank g orthogonal
vectors in ;. Thus -1 is outer for Ap, Dy n€ 2Z + 1 and E;.

Proof ; See [3] page 4 (Lemma 4). The following are a choice of rank g orthogonal vectors
where they exist. (See Appendix for details of the orthonormal bases):

Cn: Qeii = 1, ..... ,n.
Dn(n € 2Z): e;tey, e3tey,..... ;€n—1tep, 1 =1,.....,0.
E7: e £ ey, e3 ey, e5 L eg, €7 + eg.

Eg: e; e, e3teq, es eg, e7 L eg.
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So the only case we have left to worry about is aut D, when n is even. Let us

consider the case n >4 first. Recall that:
Wp, = { Signed cycle types with an even no. of negative cycles.}

Consider the Dynkin diagram symmetry, X;

€n—1té€p
\

X
€ —€2 e —e3 €3—¢ey A/

€n—1 —€p

The effect of X is to send ey +— -ep. Now the transposition (jn)€ Wp_. So
(in)X(jn) € aut @p, sends ej — -¢; and fixes all the other e;. So we are able to change
the sign of an arbitrary basis vector with an element of aut ®p,. Thus aut p, = Wp_
(2Wg,) as it consists of all possible signed cycle types. As a result the conjugacy
classes of aut ®p, are in one-to—one correspondence with the conjugacy classes of Wg_.

Notice that this also means that

Wg, £ Wp, x Z; forn € 2Z + 1. (4.12)

Consequently we have the following result:

Lemma (4.4) :
2Q(n) forne 27 + 1,
Q) =19 -
2Q(n) — P(3) forne 2Z.
Proof :

n € 2Z +1: Just count the conjugacy classes for the two sides of the automorphism

(4.12).
neg2%:
(1) n = 2,4 : Explicit calculation.
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(z21) n > 4 : Notice that elements of Wp, which have the same cycle structure but are
non-conjugate in Wp, become conjugate in aut ®p,. There are P(}) pairs of such
conjugacy classes consisting of those containing only an even number of positive cycles.
All the other conjugacy classes in Wp_ become two conjugacy classes in aut $p_ because
for each partition of n there are as many ways to choose an odd number of pieces of this
partition to be even cycles as there are to choose an even number. Hence counting the

conjugacy classes of the righthand side we have,

20(n) — P (52‘-) .

It is also true that aut ®p, = Wp, & Dy, where Dy is the dihedral group of order
8. To see that aut &p, = Dy let X, X’ be the Weyl reflections in the simple roots of the

two copies of Ay, and let Y be the outer automorphism that interchanges them

- —— o« it

Y

- — d |
- X o

Taking A=X, B=YX 1t is easy to show that A2 =B* = 1 and BA=AB?, the

defining relations of Dj.
There are Q(2) =5 conjugacy classes: {e}, {X, X'}, {XX'}, {Y, YXX'}, {YX, YX'}.

The full a.utomorphisni group for the root system of Dy is in fact isomorphic to the
full automorphism group of the Fy root system. This can be most clearly understood by
realizing that the long and short roots of Fy, separately, are just copies of the D4 root
system, the lattice being scaled up by an appropriate factor of v/2 for the long roots.
As aut @, must send long roots into long roots and short roots into short roots it must
be a subgroup of aut &p,. However the dimensions of the two groups are the same so

they must actually be isomorphic
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aut &p, = aut &p,. (4.13)

The useful thing about his correspondence is that because the Dynkin diagram of Fy
has no symmetries there are no related outer automorphisms and so its automorphism

group is simply its Weyl group

Wp, x S3 = Wg,. (4.14)

Thus the conjugacy classes of aut ®p, are in one-to—one correspondence with those
of Wr,. To implement the isomorphism in (4.13) explicitly just note the effect of an
automorphism of the Fy4 root system on either the long or the short roots to find the

corresponding element in aut &p,. We list the conjugacy classes of aut ®p, in Table 4.6.

The conjugacy classes of inner automorphisms of aut ®p, are just the ones with
simply laced admissible diagrams in which case the Wp, admissible diagram is just the
WF, admissible diagram.

Notice that there are two sets of three conjugacy classes in Whp, that become one
conjugacy class in aut ®p,. These are the ones with admissible diagrams { D3, A}, A%}
and {Dg, (A}), (A2)"} which in turn correspond to cycle types {[211], [4], [4]}
and {[1111], [22],[22] } respectively. All the other non-conjugate elements in Wp, re-

main non-conjugate in aut ®p,.

It is only for the case of Dy, n € 2%, that there exist elements that are not conjugate

in Wy but are in aut ®,.

85



Table 4.5 : Conjugacy classes of Wp,.

Cycle Admissible |Order | Size of
types diagram conjugacy
class
1][1111] é 1 1
2| [1111] | D,=xA? 2 6
3| [1111] D3 = Al 2 1
4 | [211] Ay 2 12
5} [211] A1XD22A:1’ 2 12
6 |[211] D3 = A, 4 24
7| [22] (A%Y 2 6
8 | [22] (A" 2 6
9 [Qé] D4(a.1) 4 12
10 | [31] A, 3 32
11 | [31] Dy 6 32
12 | [4] Al 4 24
13 | [4] Al 4 24
192
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Table 4.6 : Conjugacy classes of aut ®p, .

Admissible |Inner/ Wbp, Wp, Order | Size of
diagram Outer | Admissible Cycle conjugacy
of Wp, diagram types class
1| ¢ I é [1111] 1 1
2] A I A [211] 2 12
3| A, 0 2 12
4| A2 I Al [1111],[22]| 2 18
5| A1 x A, 0 2 72
6| Az I A, [31] 3 32
7] A, O 3 32
8| By @) 4 36
9| A3 I A3 [211] 2 12
10| A2 x Ay 0] 2 12
11 A3 1 A, [211],[4] 4 72
12| By x A, 0 4 72
13| C3 0 6 96
14| B; 0 6 96
15| A x A, 0] 6 96
16| Ay x Ay 0 6 96
17| A} I - Al [1111] 2 1
18 Az x A, o) 3 16
19 A3 x Al 0] 4 36
20| C3 x A, 0O 6 32
21| Dy I D, [31] 6 32
22 D4(a1) I D4(a.1) [é Q] 4 12
23| By o) 8 144
24| Fy 0 12 96
25| Fy(ar) O 6 16
1152

Note : ~ denotes long roots of F4 and we identify the short roots with the root system

of D4.
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Table 4.7 : Summary of the aut ®g which are not isomorphic to their Weyl group We.

g aut @ No. of conjugacy
classes.

A, Wa, x Z2 2P(n+1)

Dy WF, 25

Dyne 2Z +1 Wp, X Z; 2=Wg, Q(n)

Dpone 2Z, n # 4 Wg, Q(n)

E6 V\,&3 X Zg 50

4.3 MATRIX REPRESENTATIONS OF AUT @8 FOR THE CLASSICAL LIE ALGEBRAS.

Let {e;} be orthonormal vectors.

An: @4, lies in the n-dimensional subspace of the space spanned by the vectors e;
1=1,...,n+1 which is orthogonal to the vector N=e;+..4e541. Let wy be the Weyl
reflection in the hyperplane orthogonal to N. This leaves the subspace fixed but sends
N into -N. With respect to the orthonormal basis this looks like

n -1 -1 . -1
1 -1 n -1 -1
WN =
N n+1
-1 -1 -1 n

wy necessarily commutes with all the elements of aut ®,_. Now consider the group
G =aut ®5,xZ; obtained by appending wy to aut ®5,. Let R:G-GL(R*') be
a representation of G. We wish to choose a representation of aut &4, from this R.
To do this we need a homomorphism ¢:G — Z, as then we can choose {R(g, ¥(g)) |

g €aut ®4,} as our representation of aut ®4_because

R(g, #(¢))R(h, 4(h)) = R(gh, ¢(gh)) Vg,h € aut &.

One choice is obtained by taking ¢ to be the identity automorphism, that is
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¢(g)=e Vge G. However a nicer choice is produced by using the fact that
aut @, = Wa, x Z2, as shown in Theorem (4.2) and Lemma (4.3), to construct the

homomorphism

e if g is inner,
¢:G-—>nguchthat¢(g)={ .g.
wy if g is outer.
If g is inner, i.e. g€ Wy, we must take R(g,e). Inner automorphisms are in one-to—
one correspondence with permutations of the basis vectors e;. Hence the set {R(g,e) |

g€ Wy, } consists of all (n+1)x(n+1) matrices with one and only one 1 in each row and

column, all the other entries being zero.

The diagram automorphism X is outer so we must pick R(X,wy) to represent X. It

is a simple calculation to see that it has the form

Now -R(X,wN) =R(g,e) for some g€aut @5, as it is a permutation matrix. So
R(g~!X,wy) = —1. Hence the matrices representing outer automorphisms are just -1

times the permutation matrices

R(g,wN) = —R(g&7'X,e) g € aut®,,

as expected.

By, Cy : With respect to the orthonormal basis the matrices representing Wp = aut ®g_
(2 W¢,) are just the n-dimensional matrices with one and only one +1 in each row and

column all other entries being zero.

D, :

(1) n # 4: Recalling that aut &p, = Wp_and the fact that aut ®p, acts in the same

way on the basis vectors we can see that its matrix representation is the same as that
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for Wg,. The representation of Wp, consists of the subset of matrices containing an

even number of minus ones. (Notice that ¢ : R(Wp_ ) — Z3 such that

1 if R(g) contains an even no. of -1s,

$(R(g)) = {

—1 if R(g) contains an odd no. of -1s.

is a homomorphism).

(2) Dy : The matrix representation of Wp, is obtained in the same way as that for the
other Wp,. However in the case of aut ®p, we have in addition to the usual diagram

symmetry a rotational symmetry. In terms of the orthonormal basis this is given by

1 1 1 1 1 1 1 -1
1 1 1 -1 -1 1] 1 1 -1 1
Y == , Y2 =YT = 2
2 1 -1 1 -1 2 1 -1 1 1
-1 1 1 -1 -1 -1 -1 -1

N
®Y

The full matrix representation consists of the set of 4x4 matrices with one +1 in

each row and column all other entries being zero, multiplied by either 14, Y or Y2.

The fact that for n€ 2Z Wp, contains non-conjugate elements with the same cycle

structure can be seen relatively easily with respect to this representation. Let

010
0 ‘ :
Xp = ) be an n X n matrix where n € 2Z.
10 0

n

It is easy to see that Xn € [n]. Let I, = diag(1,...,1,-1,..., -1) where there are J

plus and minus ones. Obviously X, = I/ X, is also of order n and X/, € [n]. Let

90



0 al
0 0 a

AX AT = diag(ajaz, asas,...,ana; )X,

A is the most general matrix which when conjugated with X, leaves the off-diagonal
form of X, unaltered. So X, ~ X! implies that we have a matrix A with a; = ap =
. az4z = Fl,az43 = x1,..,ay = Fl. In either case we have an

odd number of minus ones so that A € [f] and thus is not an element of Wp,. Hence

X, and X[ have the same cycle structure but are not conjugate in Wp_.
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5. Automorphisms which leave only the origin fixed.

An iﬁteresting subset (but not subgroup) of root system automorphisms are the set,
{o}, for which o and all its powers (not equal to a multiple of its order) leave nothing
but the origin fixed. We shall call such automorphisms no fixed point automorphisms or
NFPAs. They are a useful subset as they allow simplification of some later calculations
(see Chapters 6 and 7). In particular given any automorphism o € aut ®, we can form
the abelian group generated by o, =< ¢ >, which is isomorphic to Z,, where n
is the order of ¢. The number of orbits produced by the action of Q on @, will be
> Ji:f—[ with the equality being obtained if and only if o is a NFPA. This in turn means
that NFPAs produce the smallest possible invariant subalgebra gg of g for a given order
of twist when o € aut ®; is extended to an automorphism, ¥ €autgg, of the whole
algebra (see Chapter 3). Another consequence is that the order of a NFPA must divide
|2 .

In this section we determine all the NFPAs for the root systems of simple Lie alge-

bras.

5.1 SOME GENERAL RESULTS ON CRYSTALLOGRAPHIC ELEMENTS THAT ONLY

FIX THE ORIGIN.

Let A be a d-dimensional lattice and V the real vector space spanned by elements
of A. Let G C O(d) be the crystallographic or point group which leaves A invariant.
With respect to a basis of A, which is also a basis for V, an element ¢ € G must be an
integer matrix as it takes the lattice into itself. In particular it must have an integer
trace so all its complex eigenvalues, except +1, must come in conjugate pairs w and
w~!. The determinant of o will be %1 depending on whether there are an even or odd
number of -1 eigenvalues. In the former case o is a rotation whilst in the latter it is a

reflection.

In addition the fact that an element is crystallographic puts a great restriction on

its possible order in a given dimension (see for eg p32 of [42]).

We shall denote the highest common factor of two positive integers a and b by (a,b).
Let ¢(n) denote the Euler function, the number of integers 0 < m < n which are
relatively prime to n, that is (n,m) = 1 Also we will use the notation LCM(nj, ....,n,)

to denote the lowest common multiple of a sequence of positive integers (np, ....,n;).
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Table 5.1 : The first 80 values of ¢(m).

ém) (1 {1]2(2]¢(2]6 46| 4]10] a]12]6]8

n (16 |17 |18 [19.|20 |21 [22 [23 [24 [25 [26 [27 28 |29 [30
¢(n) | 8116 | 6 [18 | 8 |11 [10 {22 8 |20 |12 |18 [12 |28 | 8

Note : If p is prime then ¢(p)=p-1.

A complex number whose n*? power is 1 but whose m!t power, form < n,isnot 1

t

is called a primitive n'troot of unity.

Theorem(5.1) (Crystallographic restriction) : If o is an element of a crystallographic
subgroup of O(d) of order n then ¢(n) <d. '

Proof : The characteristic equation, det(1-0)=0, has d roots. This equation has integer

coefficients as can be seen by choosing the basis of V which makes o an integer matrix.
Hence the equation will be invariant under permutations of the primitive nt® roots of
unity. Since at least one primitive n*® root of unity must satisfy this equation so must

all the ¢(n) such roots. Hence we are led to the restriction d > ¢(n).

Table 5.2 : Table of possible orders of crystallographic elements in d< 9

dimensions

Dimension. Possible orders.

2,3 12346

6. 7 8 9101 18
8.9 8 9101214 1516 18 20 24 30
Note :

1. f n >2 then ¢(n) is even therefore the restriction is the same for d =2k and

d =2k+1, where k is a positive integer.

2. The restriction is satisfied by odd n <d+1 and even n <2d. Also odd primes
n > d+1 will not satisfy the restriction.
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For a given n there are ¢(n) primitive roots: w™ where (m,n) = land w = .
If all the powers, m < n, of o are to leave nothing but the origin fixed then obviously
its eigen\}alues must consist solely of primitive roots of unity. In particular -1 is not
an allowed eigenvalue for n > 2. Hence because all the other eigenvalues, except +1,
come in conjugate pairs and the number of eigenvalues is equivalent to the dimension of
the vector space: NFPAs of order greater than 2 are only possible in even dimensional

spaces (i.e. for algebras of even rank).

By the proof of the crystallographic restriction theorem if one of the allowed eigen-
values is present then they all are. Therefore we can only have NFPAs of order n in
dimensions d € ¢(n)Z™, where Z* denotes the positive integers. For example NFP fifth
order automorphisms can only occur in dimensions which are a multiple of 4. For each
particular dimension such an automorphism is unique up to conjugacy in O(d). In the
complex basis in which it is diagonalised it just consists of the primitive nt? roots of

unity repeated d/¢(n) times down the diagonal.

Let p(n) be equal to the sum of the primitive n'® roots of unity:

n—1
p(n) = Z w™.

(m,n)=1

It can be shown that u(n) is in fact equal to the M&bius function which is alter-
natively defined as follows. Write the positive integer n € Z% as a unique product of

primes n =p;"..... p;* then

1, ifn =1,
p(n) = ¢ 0, if any of the n; >1,
(=1)%, if all the n; =1.

Let o be a NFPA of order n acting in a d-dimensional space then its trace is given

by:

_ q#n)
Traceo = dng(n)'
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Table 5.3 summarises all the relevant information for NFPAs in nine or less dimen-

sions.
Table 5.3 : Possible dimensions and traces for all NFPAs that can occur in

d < 9 dimensions.

n o(n) |pu(n) Allowed Allowed
dimensions d | traces
2 1 -1 zt -d
3 2 -1 27t -d/2
4 2 0 2%t 0
5 4 -1 47 -d/4
6 2 1 2zt d/2
7 6 -1 6Z* -d/6
8 4 0 4Z* 0
9 6 0 62Z* 0
10 4 1 4Z* d/4
12 4 0 4ZL* 0
14 6 1 62Z+ d/6
15 8 1 8%+t d/8
16 8 0 8Z* 0
18 6 0 6Z™* 0
20 8 0 8%t 0
24 8 0 8Z* 0
30 8 -1 8Z* -d/8
n () |u(@) | smmt | dsd
p =prime | p-1 -1 (p-DZ* (;_ETT
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5.2 INNER AUTOMORPHISMS.

Theorem (5.2) : Let w€ aut ®,. If w is a NFPA then:

(¢) its admissible diagram must have rank g number of spots.

(32) if g is a classical Lie algebra and w has the cycle decomposition [ny,....,n;, Ty, ..., )
and thus of order n =LCM(n;,....,n;,2mj,....,2m,) then ni=...=n;=2mj=....=2m, = n.
Proof :

(z+) An element corresponding to k <d reflections in linearly independent roots in an
d-dimensional vector space leaves a (d-k)-dimensional subspace fixed (Lemma (4.1)). So
for an element to leave only the origin fixed it must consist of reflections in d = rank g lin-
early indepeﬁdent roots. The relevant admissible diagrams are those with rank g nodes.
Note : This allows us to find all the inner automorphisms of a given root system which
leave only the origin fixed. They are those whose admissible diagrams contain rank g
nodes. In particular these automorphisms are the product of an even number of reflec-
tions and hence rotations in an even dimensional space. Likewise they are the product
of an odd number of reflections and hence reflections in an odd dimensional space. In

this latter case all such automorphisms will consequently be of even order.

(u_) Firstly notice that all the classical root systems contain the set of vectors ei-e;, 1 <
t,J <rankgor (rankg +1). Now let nj4, =2m;, j=1,...5. Asn = LCM(nji,.....,np4s) all
the n; must divide n, that is for each n; there must exist A € Z% such that n = Ain;.
If there is only one cycle then n = n; trivially so we assume that there is more than

one, s.e. r+s > 1.
N

Assume that A # 1 and let (aj,as,...,an,) be the associated cycle. Obviously wx
will fix all the vectors {e,, | k =1,...,n;}. -

a) n; #1: w fixes the vectors €a,-€a,-

@ n;=1: let e; be the fixed vector and (b1,bs,...,bm;) be any other cycle in the decom-

L~

position of w. w fixes the vector

m

Z(ebk “ei) € QS

k=1

Thus we must have \;=1 Vi. '
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Corollary (5.3) : By examination of the possible Carter diagrams we have inner auto-

morphisms of the following orders which leave only the origin fixed;

Algebra Orders of automorphisms No. of non-conjugate
automorphisms

A, n+1 1

By, Cp : 2LCM(ny, .....,n,) P(n)

;
where > n; = n
i=1

Dn:  2LCM(ny,....,n,) P(n)

38
where > n; = nand s € 2%

1=1
E¢:  3,6(2),9, 12. 5
Er:  2,4,6(4),8,10,12, 14, 18,30. 12
Eg:  2,3,4(2), 5, 6(6), 8(2); 9,10(2), 30
12(6), 14, 15, 18(2), 20, 24, 30(2).
Fy: 23,4, 6(3),82), 12. 9
Gy:  2,3,6. 3

A figure in brackets denotes how many non—conjugate (in the Weyl group) auto-

morphisms of a given order there are.

Classical Lie Algebras :

m
Ap : The admissible diagram A, +.....+A,_ corresponds to reflections in Y~ n; roots.

1=1
Thus Theorem (5.2) (i) and (4.8) together imply that
n+m=n+1 tem=1.

Therefore the only possible admissible diagram for a NFPA is A;. However looking at
the eigenvalues of such an element we see that they are w* where 1<k<n and wis a

primitive n't root of unity. Thus if no power less than n of this automorphism is to leave
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a fixed direction then all the integers k must be relatively prime to n+1. Equivalently

n+1 must be prime.

By, Cy : The admissible diagram Ap+.+A, +Cpy, +.....+Cypy, corresponds to reflec-

I S
tions in 37 n;+ 3 mj; roots. Thus Theorem (5.2) (i) and (4.9) together imply that
1=1 ij=1

n+r=nmn t.e.t = 0.

In addition Theorem 5.2 (ii) implies that m; =my =.....= ms; =m. The resulting
element is of order 2m. Let M=n/m. Such an element has the set of eigenvalues w*
k=1,3,....,2m-1 where w?™ = 1 and each eigenvalue appears M times. If all the odd
numbers 1 <k <2m-1 are relatively prime to 2m then either m is an even integer or 1.
Thus NFPAs can only occur when n=2Np for some Ne Z* and p€ 2Z%-1. In this

case conjugacy classes corresponding to NFPAs are of the form.

m =281 M = 2'p:

Cycle structure ~ Admissible diagram Order Trace

[2N—r ON—-r 2N—r] Cng_r oN-1+1 —nﬁr,N r=20.,N

2'p entries

Note: C; = A

Dn : Recall that Wp, < W, such that an element of Wec,is also an element of Wp_if
it has an even number of negative cycles in its signed cycle type. The only NFP inner
automorphism of W, that this restriction rules out is the order 2N+! (t.e. T = 0) one.
Hence if n=2Np, where N ¢ Zt, pe 2Z7-1 the conjugacy classes corresponding to
NFPAs are of the form.

m=2N""T M = 2'p :

Cycle structure ~ Admissible diagram Order Trace

(2Nt oN—r__9N=1]  DITP (apvey) 2N _psy r=1,..,N

2'p entries

Note : We have defined Dy(a;) = A? to allow this compact notation.
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Exceptional Lie Algebras :

We can explicitly examine the eigenvalues of all the exceptional Lie algebra auto-
morphisms which only fix the origin (i.e. those with rank g nodes in their admissible

diagrams) to see which are NFPAs. We are left with the following.

Table 5.4 : Table of all the NFPAs of the ezceptional Lie algebras.

g |Admissible [Order |Trace [Det |No. of |No. of conjugate
diagram orbits | automorphisms
Es Al 3 -3 1 24 80
E¢(a2) 9 0 1 8 5760
E7 Al 2 7] -1 63 1
Eg Ai 2 8 |1 120 1
A% 3 -4 1 80 27.5.7
Af 5 -2 1 48 211 347
Dy(a;)? 4 0 1 60 24.3%3.5.7
Ds(a3) 8 0 1 30 2834527
Eg 30 -1 1 8 2133457
Es(a;) 24 0 1 10 211 34527
Es(az) 20 0 1 12 2123557
Es(a3) 12 0 1 20 2°.3%.52.7
Eg(as) 15 1 1 16 213.345.7
Eg(as) 10 2 1 24 211 347
Eg(as) 6 4 1 40 27.5.7
F, Al 2 -4 1 24 1
Az x Ay 3 -2 1 16 16
Dy(a1) 4 0 1 12 12
By 8 0 1 6 144
Fy 12 0 1 4 96
F4(a.1) 6 2 1 8 16
Gy | Apx A 2 -2 1 6 1
A, 3 -1 1 4 2
G2 6 1 1 2 2

(See also Chapter 7 for simply laced exceptional algebras).
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5.3 OUTER AUTOMORPHISMS.

Now we need to check to see if there are any outer NFPAs. Firstly we shall look at
the special case of ®p,. Recalling that aut &p, = Wr, it is easy to see that ®p, has
NFPAs of order 2, 3, 4, 6, 8 and 12. The order 3, 6, 8 and 12 automorphisms are outer,
which agrees with the fact that we found &1, only had inner NFPAs of order 2 and 4.

As a NFPA of order n generates NFPAs of all orders that are divisors of n we can
put these automorphisms into two families: one generated by an element of order 12

and the other by an element of order 8.

A A? Al At Al
12 — +— +— 6 — 4 — 3 — 2
ouT ouT IN ouT IN

B - B? B
8 +— — — 4 — o — 2
ouT IN IN

OUT denotes an outer automorphism.
IN denotes an inner automorphism.
Note : A3 ~ B2 AS ~ B* ~ —1, where ~ denotes conjugacy.

Henceforth we only need to look at automorphism groups which are the semi-direct
product of a Weyl group and Z. For such groups the product of two outer automor-
phisms is inner so that the outer automorphisms are always of even order and hence
their square will always be inner automorphisms of half their order. Consequently we

need only check whether there are NFPAs of the following orders;

(1) 2. The only order two NFPA is the reflection in the origin, @ — ~a Va € ®,.
As all root systems have this symmetry there is only going to be a second order outer

NFPA if this inversion is outer. That is ®; does not contain rank g orthogonal vectors

_@ Twice the orders of known inner NFPAs.

Let us firstly look at the automorphism groups which are a direct product of the

Weyl group with Zs. In this case the inversion automorphism is always outer (Theorem
(4.2)).
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If (0,1) is an inner automorphism of order n with eigenvalues w™, where

% root of unity, then (o,—1) will be an auto-

1i=1,.....,rankg and w is a primitive n
morphism of order 2n with eigenvalues -w™. Now (-w™)X % 1 for 1 <k < 2n-1 implies
that n is odd. For if n = 2m then (-w™)" = (—1)2"‘_((.01“)" =land1<n < 2n-1.In
addition we must have (w)?™ £ 1 for 1 <m <p-1 which means that (o, 1) must be a
NFPA. Hence (0, —1) will be a NFPA if and only if (¢,1) is an odd order NFPA. Let
us denote the outer automorphism given by —1 times the inner automorphism obtained

from the Carter diagram CD by (CD, —1).

Ay

(1): -1, is outer.
(2): If n+1 is prime then there is an outer NFPA of order 2(n+1) i.e. (Ap,—1).

D, (n€2Z+1):

(1): -1, is outer.
(2): There are no other outer NFPAs.
Eg :
(1): -1, is outer.
(2): There are outer NFPAs of order 6 and 18 i.e. (A3, —1) and (Eg(a;), —1).
Finally let us look at

Dn(n € 2Z, n # 4):

(1): -1, is inner.

(2): NFPAs are the same as those for Wg_ (W, ). Therefore if n = 2Np then there

is an outer NFPA of order 2N+1,

5.4 SUMMARY.

In summary we have found the following automorphisms of the root systems of
simple Lie algebras whose powers either leave no points but the origin fixed or are equal
to the identity automorphism. This is a complete list up to conjugation in the respective

automorphism groups.




" CLASSICAL LIE ALGEBRAS -

Ap: [2(11/—{\- )] » a4+l - 2 n+ 1 prime
[Q] n+ 1 not prime
By,Co: [2FY] — 2N o n = 2%
D, : [2ﬂ1] - 2N — 2 n=2pN=4
2] | e
Dy : [ﬁ] — 6 —» 4 > 3 = 2
[8] — — — 4 = - = 2 p€ 2L +1
D; = A3
EXCEPTIONAL LIE ALGEBRAS :
Es: (18] = 9 +—> 8 = 3 +— 3
Er: [2]
Eg: [30] —» 153 —= 10 —» = 6 = 5 1+ = = 3 1o
[24] = = 12 = 8 — 6 — o~ 4 — 3. —
[?_O] — = 10 » B @ —= - 5 — 4 S S Y
Fy: [12] — 8 — — 3 — 2
[8] — — (o S = S 2
Gy: 6] —~ 3 =
Notes :
1. The numbers appearing in the above lists denote the orders of the automorphisms.

2.

[n] denotes an automorphism which can be used to generate the lower order au-
tomorphisms in the same sequence. This is done by taking an appropriate power

of 1t.
. " denotes that the automorphism is outer.

For a given algebra automorphisms of the same order which appear in different

sequences are conjugate.
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Aside : In [16] it is stated that for an inner automorphism ¢ € Wy we have det (1-0) =
ndet A, where n€ Z% + {0} and A is the Cartan matrix of g. If o leaves some points
fixed then obviously n= 0. Recall that

Aw
detA = ‘7\; = IZgl,

where Zg is the centre of g. An automorphism is said to be non—degenerate if
det (1 —~ o) # 0 and primitive if det(1 — 6) = detA [16]. The number of inner
primitive elements for simply laced algebras is equal to the number of orbits of the
extended Dynkin diagram of g, namely 1, (2], 3, 5 and 9 for A,, Dy, Eq, E7, and Eg
respectively. The primitive elements correspond to the Coxeter element, whose Carter
diagram is just the Dynkin diagram of g, and the elements created by the exceptional
Carter diagrams associated with g. The numbers of non~degenerate elements are given

in Corollary (5.3) p97.

5.5 THIRD ORDER NFPAs.

Altogether there are six third order NFPAs upto conjugacy, they are given in
Table 5.5.

Table 5.5 : Third order NFPAs.

g |A2 |Dy |Es |Eg |Fy G
g |R? [A2 |A} |As |AZ |A;®R
Inner\Outer [ I | O | I I I I
Co 1 31 3 9 - -
Fi3 9127 {81] 9 3

Notice that:

1. The number of orbifold fixed points (see Chapter 7) is given by; F = det(1 —-0) =

rank g
37z .

2. They only occur for even rank algebras as there are no third order reflections and

they are of necessity the product of rank g reflections.
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Four of these automorphisms are related to the triality of D4 (D4, Eg, Eg, Fy4) whilst
the other two (A2, G2) are related to the ‘triality’ rotational symmetry of the A; root
lattice which is in turn related to the fact that the centre of Ay is Z3. We shall look at

the former automorphisms in a little more detail.

With respect to the orthonormal basis the root system of Dy is given by +e; + e;
1 < 1,7 £ 4, ¢t # j. The vector, spinor and spinor weights are given by;

vector : +e; ¢ = 1,..,4.
spinor : %(:tel + ey £ e3 + e4) where there are an odd number of plus signs.
spinor : %(:i:el + ey £ €3 & e4) where there are an even number of plus signs.

Note : The D4 root system is isomorphic to the vector, spinor and spinor weights rotated

and scaled up.

With respect to this basis outer third order automorphisms take the form of a 4 x4
matrix whose rows are orthogonal spinors (spinors) and whose columns are orthogonal
spinors (spinors). As they are orthogonal and third order they must satisfy the addi-
tional constraint that M2 = M~ = MT, They have the effect of cyclically permuting

the vector, spinor and spinor (or vector, spinor and spinor) weights,

(—>8,,—>83—>8§-)(or(—>8,,—>83——+Q).

This magic only works for Dy where it is known as triality. There are 48 such
automorphisms which split into 2 conjugacy classes. The first contains 32 elements
which are conjugate to the third order diagram automorphisms (conjugacy class no.
7). The second (conjugacy class no. 18) consists of the subset of outer third order

automorphisms with —%s down the diagonal. These are the 16 third order NFPAs.

E.g.
-1, 1, 1, 1
-1,-1,-1, 1
M; =
-1,-1, 1,-1
-1, 1,-1,-1
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fixes e; — e4 and is conjugate to the third order diagram automorphism whilst,

"1, 9 1, 1

-1,-1,-1, 1
M, =

-1, 1,-1,—1

-1,-1, 1,-1

is a third order NFPA. Notice that for NFPAs orthogonality implies that a;; = —aji
for : # j.
We can decompose the roots of Eg in terms of a D4 root lattice é:rld an A, root

lattice scaled down so that the simple roots are of length squared one. Let oy, ay be

these scaled down simple roots and let a3 = —(ay + a3).
@z
-
The roots of Eg are then

(28,0) @ (8y,201) & (8, +a2) ® (85, xa3) ® (1,01) & (1, 02).

The effect of the NFPA is to simultaneously perform a third order NFPA on the D4 and
Az components separately. See also [36].

Similarly we can decompose Eg in terms of a D4 ® Dy subalgebra as
(28,1) @ (1,28) @ (8,,8,) @ (8,8,) D (8, 85).

This is just the decomposition of Eg used in the transcendental fermionic construction
of the Kac-Moody algebra [43].

Finally as we stated earlier the root system of F4 consists of the D4 root system and
the non-zero components of a D4 root system scaled up so that the simple roots have

length squared four.
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6. Twisted Vertex Operator
Representations of Kac-Moody Algebras.

In this chapter we shall show how it is possible to construct a general twisted vertex
operator basic representation of an arbitrarily graded simply-laced Kac-Moody algebra.
It is based largely on [5] but similiar results can be found in [16,44]. A general treatment
1s given in [19]. We start by reviewing the well known [21,22] vertex operator repre-
sentation of the homogeneous gradation of a simply-laced Kac-Moody algebra, which
1s now reduced to being a special case. We go on to look at the general construction
before explaining the details of the zero-mode space where most of the subtlety lies.

We finish by giving some examples of the construction in action.

6.1 ORDINARY VERTEX OPERATOR REPRESENTATIONS.

Let g be a simply laced Lie algebra with root system ®, and root lattice Ag. Let
V be the real span of the roots. Now assume that we have a set of oscillators {a |i =

1,...,rank g} satisfying the Heisenberg algebra
[omr 2] = mEY604n0

That is they forfn a representation of a graded Cartan subalgebra of a rank g-dimensional
Kac-Moody algebra. Let | 0) be a vacuum vector for these oscillators and F the Fock
space representation of the Heisenberg algebra spanned by the oscillators and the iden-

tity operator.

We identify p = ag as a momentum operator and introduce a corresponding conju-

gate position operator q with
[d,p’] = i6" . (6.1)

- q commutes with all the other oscillators. Let | 0)q be a vacuum vector for q and let
C(AR) be the infinite-dimensional vector space spanned by the momentum eigenstates,

| @) such that & € Ag. C (Ag) is known as the zero-mode space. The translation
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group, Ap, is represented on C(Ag) by operators of the form, e'¥9 o € Ag.
€U f) =|la+p) apB € Ar

Next we form the combined Hilbert space

H = F® C(Agr),

= @Fa,

a€AR
where Fy is a Fock space representation of the Heisenberg algebra, isomorphic to F,
with a vacuum vector | 0)q® | a) which we will write as | 0, ).
The Fubini—Veneziano field [45] is given by

: . : i
Q'(z) = ¢ —ip'lnz +1 %’l‘—z"“.
n#0

We also introduce the corresponding momentum field

. d
P(z) = zz—&-zQ— = Z apz .

nez
Finally we are in a position to give a definition of the vertex operator, V(a,z)
[21,22,46],
V(a,z) =: e1-Q() . Ca,
The colons : : denote a normal ordering introduced to eliminate the ambiguity in the
ordering of non-commuting operators. It is definition is given in Chapter 2, page 32.

The {C,} are a set of operators, variously known in the literature as Klein factors
or cocycle operators, which multiply the momentum eigenstates by an appropriate

phase,
Ca Iﬁ) = E(QHB)Iﬂ) VIB € Ag.
where ¢ : Ap X Agp — {£1}.
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We choose € to be a 2-cocycle,

e(a, Ble(a+ B,7) = e(a, B+ 7)e(B,7) . (6.2)

so that the operators C, = e'®4C, form a projective representation of Ag on C(Ap)

with the factor set € i.e.

CaCp = €(a, 8)Coss . (6.3)
In general we find that
V(a,2)V(8,¢) = F(e, B,2,() | {I<]z],
e, ) (6.4)

V(8,OV(a,2) = S(a, B)=—"—=F(a, §,2,() lz|<]¢].

e(e, B)

where F(a, ,2,() is some appropriate function. S(a, B) arises from the interchange
of the non—cocycle operator pieces of the vertex operator whilst zi(% i1s due to the
reordering of the cocycle operators. In the string picture S(a, B) is determined by the

boundary conditions of the emitting string.

So we wish, and are free, to choose the factor set to have a specific symmetry under
the interchange of its arguments so that the operators Co,C 5 in (6.4) pick up the correct

phase when their order is swopped, i.e.

&(a, B)

=(3.a) = S(e, B) . (6.5)
and
CaCs = S(a,8)CsC, . (6.6)
Now (6.3) implies that
S(a + B,7) = S(a,7)S(8,7) (6.7)

which is also consistent with (6.2), whilst (6.6) implies
S(a,B)S(B,a) = 1. (6.8)
and
S(a,a) =1 Vace€Ap. : (6.9)

Thus S:Ap x Ap — C — {0} is an alternating bimultiplicative function called a com-
mutator map by [5] and a symmetry factor by [47].
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For the ordinary vertex operator representation, or untwisted bosonic string
S(e, 8) = (-1)**,
as in this case we find that
F(a,8,2,() = ¢(a, B)(z — C)a-ﬂ . (@ Q(2)+8.Q(()) . Cosp-

If we take the integral moments of the vertex operators

dz

Bl = - : 5V (a,2) |
then
m n] _ 1 ﬁ m % n _ % m % n -"‘;2- é
BB = Gopd § T PTC - f T e b Ra,,n,0),
Izl>lc| |z}<I¢]
1 d
N @ ) CHL% S (@,5,5,0),

where the z contour now encircles ¢ positively once whilst the ¢ contour encircles the

origin positively once [26].

Altogether we have the following commutation relations

e(e, BYEGTS a+p € &,
[Egl, Eg] = .am4n + m5m+n,0 a+p =0,
0 a+f ¢ q’g ’

and

[a':n’a'{l] = m&ij§m+n,0,
[om: B3] = o'EZH,
Now the ¢ form a 2—cocycle associated with Az which satisfy

z-:(a,ﬂ) — (_1\a.B
2(Bra) ~ I

(6.10)

(6.11)
(6.12)

so by (6.10)—(6.12) the integral moments of the vertex operators defined on the root

lattice together with the oscillators and the identity form a basic level one representation

of the simply-laced untwisted Kac-Moody algebra g.
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The easiest way to construct the Co without introducing any extra degrees of free-

dom is to take them to be functions of momentum. In this case we require [46],

Ca :e(a,p),
= Y e(a,B)|B+D)NB+D],

BEAR

where p is the ground state momentum. We shall look at the construction of such

operators in more detail in Section 6.3.

The Virasoro algebra naturally associated with this construction is that obtained

by taking integral moments of the energy-momentum tensor or Virasoro field 48],
L(z) = l'Pz(z) i= ) Loz
R : n ’
nez
that is

L, =

N —

> oo
meZ

Cc

12m(m2 —1)m4n0-

[Lm7 Ln] = (m ~n)lyn +

This is a special case of the Sugarawa construction for vertex operator representa-
tions, for more details see [46]. The Virasoro algebra has a natural semi-direct product

structure with the Kac-Moody algebra, i.e.

[Lm’Eg] = _nE;n+n’ [Lmv a;] = —na';l+n’ [Lm’l] = 0.

The natural derivation of the Kac-Moody algebra is d = Lg. The zero graded
subalgebra, that is elements that commute with Ly, form an adjoint representation of
the Lie algebra g. The other eigenspaces of Lo form representations of g. If we define
the partition function as the generating function for the number of states at each

level of the Kac-Moody representation then,
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6.2 TWISTED VERTEX OPERATOR REPRESENTATIONS.

Let 0 € aut &g be a root system automorphism of order n and let & = (0,%) €
autg] g be the corresponding Lie algebra automorphism of order N. Assume we have
the same set of integrally graded oscillators as in the previous section, namely {al |1 =

1,...,rankg, n € Z}.

One way to consider the previous untwisted vertex operator construction is as fol-
lows. Firstly we take a representation of a Iﬁ)mnkg Kac-Moody algebra, given by the
moments of the momentum field P(z) and the identity operator, and then extend it to
a representation of the homogeneous gradation of the untwisted Kac-Moody algebra
gM). The U/(T)mnkg algebra thus becomes a graded CSA or Heisenberg subalge-
bra of g1). The extension is performed by ‘integrating’ the momentum field P(z) to
form the Fubini-Veneziano field Q(z) and then exponentiating this to form the vertex
operators. Similarly in the twisted case we take a representation of a different gra-
dation of a U/(T)rzmkg Kac-Moody algebra and extend it in an analogous way to the
corresponding twisted vertex operator representation of g(™) with this different

gradation. This is done by constructing the twisted vertex operators to be of the form,

Vo(a,z) = Y E4(Nr)z™".
r€Z++%

vertex operators

L (U8, 1) — 5280, 1g,1),

twisted t 47
L (U(y¥e, ) ISP g )

Firstly we need the new twisted momentum fleld. A suitable choice is given by

(where we have suppressed indices)
_ 1 4 -1 i —(N-1) N-1_ i
Po(z) = N{P(ZN)-{-O’ [P(sz)] +..4+0 [P(w zN)]}

Fock space for the Heisenberg subalgebra.

Let us relabel the oscillators so that
. N—l . .
b= ) w™o )2, nel ' (6.13)
r=0

It is sometimes useful to change the indexing on the oscillators to be drawn from {Z
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in which case we write

: : 1
C'r = b}q, r e KZ
Now the oscillators b} are creation operators if n < 0 and annihilation operators

fn>0 If a,f,f = a; then b;f = bfl. The Fock space, F?, for such a representation

consists of the complex span of all the states of the form

bu b2 ..bir [0) n; <0

N3 “n2

where | 0) is the same vacuum as for the a! oscillators.

The projection (6.13) removes many linear combinations of the oscillators so that we
are left with a subspace of the original, untwisted, Hilbert space F which is left invariant

under the representation of the Kac~-Moody automorphism $ onF.

To see this a little more clearly let us make a change of basis to one in which o is
diagonal. We assume first that we are already in an orthonormal basis in which the

orthogonal transformation ¢ is in the canonical block form

(1 )

-1,
cosf; siné,

—sinf; cosé,

cosf, siné,
\ —sinf, cosé, )

where 1, is the m x m identity matrix and m+n +2r = rankg. We can always choose
such a basis. Let the oscillators a) then be given with respect to this basis and let
M =m+n. ‘

To procced we must consider V as being embedded in the complexification of V i.e.

V ® C. To diagonalise ¢ we conjugate it by the complez matrix A which has the block
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diagonal form

| st

Thus AcA~! = diag(w™,.....,w™" ) where w is a primitive N*® root of unity and w™

are the complex eigenvalues of 0. Notice that the last 2r eigenvalues come in conjugate

pairs t.e. n, = N —n,4; and w? = w ™+ ¢ = M, M+2,... rankg.
Let &' = A* ; o’ and & = Aij al. If the ¢th eigenvalue is w™ then with respect to
this new basis
1= 1
I o Nrassi
& =B =L, re g,

— N
- 5n.~--Nr,0aNr :

where

N
fup

Z 6n,Nn'; =

{1 n=0 (mod N),
meEZ

0 n # 0 (mod N).

Therefore the labeling r on the € oscillators is dependent on i. That is for a given
one—dimensional complex subspace with eigenvalue w™ the associated oscillators are &

where r € Z +%J* With respect to this basis

Po(z) = ) &z

rEZ-*-ENi
Notice that & * = &+, a3' = &%l and & ' = &1 fori = M, M +2, ....., rankg.

Let us define the twisted Virasoro field to be given by,

:Pi(z): .

N | =

L(z) = ZL,,Z'% =

nez
Then the moments for each of the one-dimensional invariant subspaces are given by,
U o P
Ln = EZ'C’CD-" .
reZ
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Those for the one-dimensional subspaces with eigenvalue -1 are,

=5 3 &,

rEZ+2

Finally for the two—-dimensional subspaces with complex eigenvalues w™, w™™ we have

one contribution,

3 1

T <L O I

Ln_§ E (G C T
reZ+3F

The total moment, Ly, is obtained by éﬁmming the contributions from all the subspaces.

The zero moment is

2p0 + Z Z &8 +n+ (non — integer graded component) .

t=1 neZ
n;=0 n>0

where the ambiguity due to normal ordering, 7, is chosen so that
[Lz1,Lo] = *Ly; .

It turns out that that we require

rank
1 g

= o7 2 nN -

1=1

7 corresponds to the conformal weight of the vacuum as
Lo|0) =n]0).

With the gradation d = Lo we have the following partition function for the twisted
Hilbert space H?,

Z q%az‘l"l
PoA

Po(q) = cpg2ok :

TT@a- qﬁ)d(n mod N)

n=1

where ¢, is the degeneracy of the vacuum and d (o modN) is the dimension of the

eigenspace with the eigenvalue w®.
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To see that we have made an appropriate choice for the twisted momentum fields
N-1
let us work out the following commutator, (we take Pp = & 3 w %67 to be the
z=0
projection onto the eigenspace Vy of V as usual);

N-1
[a‘bm’ﬂ'bn] = N2 Z —(mr+ns) r )'as(ﬂ)m5m+n,0,

TS—

= m+n02w e z(a)ﬂa

m

= ﬁém.,,n’oPm(a).ﬂ .

(1.e. [a.cr, B.cs] = rérys0Pn,().8)

This is equivalent to (3.27) of Chapter 3 (p67) with a(m) = a.by. So the moments
— rank
of a.P4(z) do indeed satisfy a U(1) e Kac-Moody algebra with the gradation induced
by o, |

a.Py(z) = Z a(n)z”%  where o(n) € L (U(l)’ankg,a> .
ngl

The zero-mode oscillators bf, are again identified as momentum operators,
ph = bj = Py’ ;0.

The p’ are just the usual momentum operators. We introduce a conjugate position

operator given by,
QO = Po Jq

Thus the canonical commutation relations are
o Ny )
[a0, P} = iPy” (as Py = Py).

This choice is made so that a.qp = ag.q and a.pp = ag.p, where ag = Po(a) and p
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and q are the usual position and momentum operators. Hence

[@.0, 8.po] = [@0.q, Bo.p] = icg.Bg. (6.14)
We now set
P,(z) = izdgz‘r ,

where Qs(z) is the twisted Fubini-Veneziano field. Integrating and replacing the

constant of integration by qg, the position operator conjugate to pg, we find

. .1 bs
Qo(2) = gy — ipplnz¥ +iN 3 2257,
nez

)
Sr,-r
T
re %J-Z

= qf) - ipf)lnzg" +1

and
B = (it Y S
rel+F
Thus
@.Qq(z) = ao-q—iao.plnz'rlf 41 Z &&Z-r.
re€xZ
We define
Q7(z) =i Z 2T,
r>0 r
Qs(z) =1 c—rz_',
r<o |

Q57(2) = Q5(z) + Q2 (2),
Qg(z) = qp—ipgln ZV,
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We have the following commutation relation,

[(0.QS(2),iB.Q2(¢)] = — Zé[a.c,,,@.cs]z_'(—’,

= - Z %PNr(a)nB <§) )
r>0
N-1 Nr
1/(1 N
== ('ﬁ > w'N”a’(a)-ﬁ> (g) :
r>0 z=0 .
N-1 ) 1 /¢ A
= z;) az(a).ﬁ. - nezz 1—1- (w—z (;) ) y
N—1 i o™ (a).8
=Zln<1—w_z(-§> ) |C|<|Z"
=0
N-1
=Inz"®P 4+ Y I (z¥ —w 2 H)T@E 1<),

z=0
Thus if we introduce the usual normal ordering : : then we have

Q) 1 GBQ(Q) , o, 0 QSEHB.QAS(0) , y-a08

X

N-1
[[EF —w ¢ty @8 01«4,

=0

:es'a.Q?,(z): — eiao.qzao.p‘
Also using (6.14) we have

Zao.peiﬂo.q - eiﬂo.qzao.p+ao.;30.

We shall now give the form of the general twisted vertex operator and then show
that this is indeed the correct form to give a representation of a Kac-Moody algebra

with the gradation induced by o.

2 (02—02) .
_a? (o)
Vo(a,z) = 7275 Q). o,

~2 @) 00820 . e o
= NT7z77 7 ¥R ), gla0aq ja0p

where C, is a 2-cocycle operator acting on the zero-mode space. If we define

C(@) = e'®9C, then in addition we require that C(a) satisfies
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[e.p,C(B)] = @.8C(B). (6.15)

Thus in particular z“'PC(ﬁ) = C(ﬁ)za.p+a.ﬂ

C()C(B) = ecle, B)C(e + B) (6.16)
where ec 1 Ag x Ag > € — {0} is a normalised 2-cocycle associated with C
satisfying
N-1
5c(a7,3) r
—Z = ((a, = _ra(a).ﬂ_
5c(57a) (a IB) rl;[o( “ )
Yal(o(@)) = w8 P {(a), (6.17)

a.

= Ca)w= &P~ using (6.13).

where 1y : Ap — € — {0} with
. __ &le,8)
D e, @)
(11) Yath—q =1 (cf Chapter 3 p 58)
(112) Yo = Yo

Ya is the phase associated with the extension of o to a Lie algebra automorphism.

- If we define n(z, @) = Pathy(ay-. - Yo2(a) then (6.17) is equivalent to

n(z,a)C (c%(a)) = w™*EP+H((q).

We shall show how to construct such a set of operators in the next section.
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Choice of 2 — cocycle.

As C(a, f) is bilinear we can make the further restriction that e, is bilinear. This

will be useful in later calculations. In this case the 2-cocycle condition is replaced by,

ecla+B,7) = eca,v)ec(B,7).

This also means that we have
1. e(e,0) =
2. EC(OZ,,B) = E:(—al'_—ﬂ).

With this choice we can explicitly construct a set of e.(a, B) by generalising the
method of [2] given in Chapter 1. Choose

{C(ai,aj) 1 < 7.

ec(ai, aj) =

We can expand V,(a,z) as follows

Volay2) = 3 Vo(a)=F

nexZ
where the moments are given by

Vi(a) = ! %ZNOH'QT)V,(a,zN).

27rz 7

The z contour encircles the origin once positively. Now

at8)2 (az—ag) (82-p2
Vol 2) Vo (B, 0) ) i g ﬁ . ol (@Qa(2)+8.Q4(¢)) . Cotp

] : (6.18)
N"ﬂsc(a 5)H(ZN—w yny@E <2,

y=0

Let us therefore define,

2

aﬂ(z C) = N_(<1+}3)2 (°2;QO)C (82- 150 1(a Qo (2)+5.Q0(0)) . C
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Then we can rewrite (6.18) as,

N-1
Vo(@,2)Vo (B, () = Ua,p(z, N Pec(a, B) [] (2% —w3¢H)* @8 | ¢1<|s].

y=0

Similiarly we ha%re

N-1
Vo(B,O)Vo(a,2) = Uap(z, ON*Pec(B,a) [[(¢F = w¥28%)7" @ |5 1<(¢].
y=0

But
5C(,B) CY) = Ec(a3 ﬁ)c(ﬂa a) )

N-1 .
= ecle, B) [ (—w)""O),
r=90

hence

- N-1 N-1
ec(8,0) [[ (¢ —w )7 ®)e = c(a, B) T] (~w¥¢ +2)7B)e,

y=0 y=0
N-1
- @) T
y=0
Thus V,(e,zN)V, (8, ¢My« = "V.(8, CN)V,(a,zN) where the equality is in the forms of
the two sides as the lefthand side is strictly only defined for | ¢ |<|z|and the righthand
side for | z | <| ¢ |. This allows us to use the usual contour rearrangement argument

when we work out the commutation relations of the moments.

[Va(a),Vi(8)] = |
1 9z N(m+g®) [dC N(asZ) dz N(m+2l) [d( ¥ nt &
CZ;SE j£ ZZ ( )j{ C('( ) ][ ZZ )]{ CC ( )
lz1>(¢| |z}<I¢}
N-1
x Uqp(z", (NNPec(a, B) [] (2 — w¥¢)"" @4,
y=0
— Neo-f 1 fd¢ N n+8
= N*eo )z § O CH)1,00),
0
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where

2
{w==¢} y=0

2 N-1
Lo = 57 § DU ) [ @ -0 @

and {w™*(} denotes a contour which encircles all the points w™? with ¢%(a).f < 0

bl

which correspond to poles of the integrand, but excludes the origin. The ¢ contour

encircles the origin positively once.

N-1
L) = D> IZ5(0)
z=0

where

I

2 N-1
Ig,,@(() = Res (ZN(HH-QT)_IU&,,B(ZN’CN) H (Z - w_yc)ay(a).ﬂ>

y=0

z=w~*(
0 o*(a).B > 0,

M-1 N ﬁ —_
—_(Mil)!T(;lz — (z (m+s) 1, 52V, (V)

x Nﬁl(z - w—.u()ﬂ”(ﬁ)-ﬂ)

y¥az

o®(a).f = —M < 0.

z=wTI(

We shall now look at the commutator of two twisted vertex operators defined on the
roots of length squared two of a simply laced algebra i.e. a, B € ®, and o = p% =2

Fortunately in this case we only have the possibilities M = 1, 2.

M=1:

2 LN N-1
I24(0) = (=N 2=y (W=, V) [[(1 - w04,

y#z
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Firstly notice that,

N-1 ‘
a.Q§>(w—IC) =3 Z Z w—n('r—z)dr(a)‘%c_n,

n#OT 0
— 2:‘§:ufmss+z()z%
n#0s=
= z(a),Q§>(g).
Therefore
0 QW) +B.QP(0) = (+*(a) + 8) AL (0)
Thus

Uap ((w"l‘c)N,CN) - N_K—Lo‘? . el(o7()+8).Q5> (¢V) . e(a+ﬂ)°'qca 8

-N{(a?+8%~(a2+82)) (02-02)
2

x CN(a+ﬂ)o.pC

=V, (a”(a) + ﬁ,CN) N_a’ﬁ+"z(")'ﬂn(x,a)6°i—i(o€%

% CN(a’(a).ﬂ—ao-ﬁo). (619)

(W NeoR () T

1
Cats = s gy CaCr>
= ! n(z,a)w

eca, B)
Sc(o' (a)aﬂ)

%
= S o, ) RN Gy

5c(a,:3)

:cap rde

2 Ca.:(a) Cﬂ R

If we now define
N-1
é(a,f) = [J(1 w0y
s=1
then we have,
CN (n+%2) Iﬁ ﬁ(C) :-w—Nmz CN((m+n)+M))N—a.ﬂ+a”(a).ﬂ

X xaMz'Uxa o N
e, 0) = e (07(2), ) Vo (o7(2) +5,0Y)

In addition we know that ¢%(a).f = —1, and therefore (0%(a) + 8)? = 2.
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=
Il
o

z=w™I(

Ie.5(C) = diz (ZN(m’L%Z) WICANG) H(z—_ -¥¢)e¥(@): /3)

y#:

{((fr5)-) Z )

N1
d v mo¥(e
+ g Uasl@ cN>} Nty ”l[(z— vy

z=w=%(
y#r

Now o%(a).f = —2 implies that 0%(a) = —8 therefore,

, o“(a).f  B*-p.B
_(_Z_). wZ_o (w—x _w—w) - 20—

2 __ 012
(i) 25 Uasle™, ™| " {nleoa) NBPo(¢™) | Uays (0, ¢Y)

—z ; _ —a.f— 6(;(-—,3,,3) - ﬁz ao.fo
(“_Z) Ua,,B ((w C)N,CN) - CON 4 Zn(x,a)m)—c N( + ﬁ).
N-1
@) Jle-wr@?) L SR o),
Proof : @

N

1 = o' *(a).B

LHS = o o)
1 & B8
- wTE (I1—-w?)’
(8-2) g
D o8-8+ P Ne 2z,
. s=1
T LT @y
S 0%(8).8 Ne 2% + 1,
s=1
= RHS.
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(ct48? _p(2®-d)

2 9
={N—-—(a0 a)z—an,ﬂ(zN,CN)+N_ 2z N

2

(82-52)

x (N g SNyl ﬁ}

z'=w‘.=C
But z'a.%%‘l(zN) = Yo P,(2N), and

a.Pa(zN).|z=w—z<; = o%(@).Po(¢M),
= —B.P(¢N).

Thus we have,

s = (vl NBP() } Uag ((w720",¢)

= RHS.

(i2) Put 0%(a).f = -2, 0%(a) = —fB in (6.19).

()

N-1

LHS =(w—xC)N&.ﬁ+2 H(l _ wz—y)o‘”(a).ﬂ ’
V7

= RHS.
Therefore,
2 3 2_ .2
I5,s(0) = {N (m - 9‘2—) N Nﬁ-.Pa(cN)}
—a.f-2 5c(_;3a6) I N(m+°2—2—-ﬂ2) —Nmz
x CgN n(w,a)——ec(a,m e(=B6,8) w .

But 0%(¢) = —f implies that &.o = 3.8, thus

Nin 2 T —z@&. —a.f- C _ﬁ,ﬂ) ! N(n+m
MO+ () = w ﬁ{m—ﬂ.Pa(CN)}CoN p ln(x,a)%ms(—ﬂ,ﬁ)CV( ),
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Thus finally we have,
[Va(a),Vi(B)] =
5\ N-1
= N“-ﬂec(a,ﬂ)ﬁf%ﬁgl“(”%) Z IZ 5(¢),
z=0

0

{ > @ mE(z,a)e(0%(a), B)Vapa(07(a) + B )

o (a).f=~1

A

+ E w_Nsz(m: a)e(—=B, 8) {mbmin,p — ﬂ-cn+m}} .

o (a).f=-2

Where,
€(C¥, :8) = €C(a7 ﬁ)gl(a7 IB)

is a 2-cocycle associated with S(a,8) = (~1)*# by Lemma (6.1). So the moments
of the twisted vertex operators defined on roots of length squared two along with the
moments of the twisted momentum field and the identity operator do indeed give a
representation of g(”) in the gradation induced by o (See equations (3.27) to (3.29) on
p67). Notice that to calculate a particular commutator [Va(a), VI(B)] explicitly, all
that is required is the set of inner products (.8, o(a).8, ..., oN-1(a).f).

6.3 THE ZERO-MODE SPACE AND COCYCLE OPERATORS.

We shall now proceed to examine the zero-mode Hilbert space in a little more detail
and in particular give an explicit construction of the cocycle matrices [5]. The subtlety
of the twisted vertex operator construction lies in in this space. One of the main results

of this examination is to see that the zero-mode space can be written in the form,
V7 = C(PeAr) @ V'

where

1. PoAR is the projection of the root lattice onto the invariant subspace and C(PyAR)

is the Hilbert space spanned by states of the form | aq), ap € PoAg.

B

V7 is the space of an irreducible projective representation of the lattice
N =(1-Po)VNAgie N={a e Ap|afo =0 Vph € PoAg} C Az
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Let us review the ordinary, untwisted zero-mode space first. This consists of the
complex linear span of momentum eigenstates | @), a € Ag, which are built up from a

non-degenerate vacuum state, | 0), by the zero-mode operators €',

€*110) =|a),

p|0)=0]0).

The zero-mode operators appearing in the vertex operators, which we call cocycle

operators, are necessarily of the form,
C(a) = €9C, ,
where Cy is a function of momentum only so that we still have,

[e.p, C(8)] = @.BC(B).

This is necessary if the vertex operators are to have the correct weights to form a repre-

sentation of g(1), Physically this means the vertex operator V(B,z) creates momentum

8.
These operators must also satisfy,

1. C(a)é(ﬂ) = s(a,ﬂ)é(a+ﬂ) where ¢ : Ap x Agp — {#£1} is a normalised 2—cocycle
associated with (—1)"-/3,

e(a,ﬂ) —_ (_1\a.B
B TV

This just means that the C‘(a) must form a projective representation of Ag with
factor set €(a, B). It is necessary so that the phase produced by reversing the order of
two such zero-mode operators cancels the extraneous phase arising from the interchange
of the non-zero moded pieces of the two vertex operators. It thus allows us to form the

commutators of vertex operators.

Note: There is an alternative construction where the C, are taken to be products

of generalised v matrices rather than functions of momentum [47]. Such matrices 4; are
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defined on the simple roots so that

¥Yi = S(as, ;)54 -

rankg

A general 9, is then given by 9, = 4'..... f}:;;‘l‘(kg‘, where @ = ) nja;. This will
1i=1

automatically introduce a vacuum degeneracy unless C(a, 8) is trivial.

Similarly in the case of the twisted vertex operator we have,
C(a) = eiao.qCa,
where C, is a function of momentum only. Thus

[e0.p, C(B)] = «0.8C(B), (6.20)

which is the correct commutation relation for the zero-modes of such a graded repre-

sentation (see (3.31) p67 ).

The representation initially appears to be acting only on the Fock space of momen-
tum eigenstates, | ag), where @y € PgAp and PyAp is the projection of Ap onto the
invariant subspace. However for « € Ag with ag = 0 the zero-mode of the vertex

operator is given by

Vi(a) = Cq
which in particular does not annihilate the vacuum. The set of C, for which o = 0
must form a representation of the finite Lie subalgebra gg of g(") that commutes with Ly.

Hence in general the vaccuum is n-fold degenerate and the C, form an n-dimensional

representation of gg. We write the degenerate vaccuum as
|O>¢i) E|0)®I¢1) 1 = 1,..,n

The Fock space of this twisted vertex operator representation then consists of the com-
plex span of states of the form | ag,¢;) =| ag)® | ¢i) where | ¢;) € n(go), an n-

dimensional representation of gg i.e.
V7 = C(PoAr) ® n(go)-

Here C(PgAR) denotes the complex linear span of states | @) such that « € PoAp. The

position and momentum operators act only on the first part of such a state whilst C,

acts on both parts.
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In the twisted case the C(a) must satisfy (6.16) and (6.17).

This time the C(a) must form a projective representation of Ag with a factor set
ec(a, B) if we are to be able to obtain commutation relations. (6.17) comes about as
Vo(a,z) represents the element in the loop algebra L(g, ¥) corresponding to the step

operator E4 1.e.

Vo(a,zV) = Z Eq(n)z™2.

neZ

It must therefore be invariant under the corresponding Kac-Moody automorphism,$,
S(Ve(e,2V)) = V,(a,2V).

But,
f](Ea(n)) = w_n(E(Eu))(n),

= w_n¢nEa(a) (n) s
Ea(n).

Thus we must have,

baVo(o(a), (w2)) = Vo(a,2).
Now,
o(2).Q5 ((w)) = . (@),
so that for the zero-mode space we must have
@2 408 (0(2)) (@2)® = NFE(a)eér

which gives (6.17). In fact for the untwisted case if we take the identity automorphism
in (6.17) then it reduces to

Cla) = e 2eP((q) .
This corresponds to the requirement that

V(a,z) = V(a,e?™z).

Thus the Hilbert space has to be invariant under the action of e?™eP Vo € Ap

and therefore must be a subset of C(Aw), which it is. More generally we could choose
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the vacuum state to be | v) where v € Aw. Thus we have a different representation of
g for each coset of Ap in Ay . Similiarly in the twisted case we may form an alternative
representation by taking the vacuum state to be.| v) where v € PyAw such that
v-.a0 € Z Vg € PoAg. This is a special case of a y—shifted operator construction
given in Section 10 of [5].

Before proceeding to construct a suitable set of cocycle operators we need to distin-
guish some important sublattices of the root lattice, Ag. Considered as a group under
the addition of lattice vectors Ap and any of its subgroups are finitely generated free
abelian groups. We shall write a finitely generated group with generators [ PRI
as G=< g1,.....,& > and we shall denote the number of generators of G by | G |. A
group G is a torsion group if every element of G is of finite order. G is torsion free if
no element other than the identity is of finite order. In an abelian group the set T of all
finite order elements form a subgroup called the torsion subgroup of G. Any lattice
under vector addition, L, is torsion free, i.e. L & %™ for some n, and can be written as

L= (o;), where the a; form a basis of L.

In general if L' C L is a sublattice of L then L' is a normal subgroup of L because
L is abelian. We can therefore form the quotient group Q = % Q will also be a
finitely generated abelian group but in general it will not be torsion free. Of necessity

(Fundamental Theorem of Finitely Generated Abelian Groups) it is of the form

| &

=FxT,

!

gy

where

1. F & Z™ is a finitely generated torsion free abelian group, and m is known as the

Bettli number of F.

2. T = Z(p,yrs X B(p,yrs X .. X T, yra Where the p; are (not necessarily distinct) prime
numbers, or
T = Zn, X T, X ... X B, where m; divides m;y; and the number of m;s

1s known as the torsion coefficient of T.

We write

where the {r;} generate the torsion subgroup. Let I' C L be the lattice generated by
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the {4;}. This means that we have the following coset decomposition of L with respect
to L',

n

- U U(ﬁ+r,~+L’).

Belsi=1
The coset representatives {8 + 7; |1 =1

n, § € T'} form a maximal set of vectors
in L such that they do not differ from each other by an element of L’. By convention
we take 7, = 0.

Firstly we single out the sublattice N = (1 — Po)VNAp = Z7ke—Podal yhere v
is the real span of the roots of Az. Let Ap = PoV N Ap be the sublattice of the root
lattice left fixed by o, and define A » R= Xé’- In general an element of ¢ A"

can be written
as a® + vj + N where a® € A% and i € ‘\i“ LetL:ITIR"

in a s1mple root " a.nd we have

# denotes an element of A%,
W\/\ ‘ .

A;
O denotes an element of —2

For example for the second order automorphism of A, consisting of a Weyl reflection

N
O denotes an element of N.
WW v

In fact 42 =

¥ = PoAp = ZPARl where the frst isomorphism is given by
a’ +v; = af + Po(7;). (In the above example l\f- = 7). Therefore

A

YR = (010 i)v

where «aq ; 1s a basis for PyAg. With a slight abuse of notation we can write

I;—,R = (Pog;),

where «; are simple roots. In general some of the Poe; will be equal to zero and others
will be redundant.
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We will use this isomorphism later to identify the cosets of A;f- with the momentum

eigenstates | ag), a9 € PyApg, via
a’ + ¥; | a® + Po(y;) > .

Notice that we will have to introduce a degenerate vacuum if the commutator map
C(a, B) is non-trivial on N, by which we mean that we do not have Cle,8) =1Va, B¢
N. This is because for all « in N, ag = Pga = 0 so that C(a) = Cq and a.fy = 0
V Bo € PoAp. Therefore we cannot use the space of momentum eigenstates to form a

representation of the cocycle operators on N.

Next we consider the sublattice M = (1 — o)Az C N. M is also 1somorphic to
zrenke—PoAr| 5ng % is a finite group [5]. Thus if X is any sublattice of N such that
M C X C N then % will also be a finite group. In particular we choose a maximal
sublattice A C N such that C(a,8) = 1V a,8 € A. Such a lattice is not uniquely
defined but all the choices are isomorphic and give equivalent constructions of the cocycle

operators. Obviously M C A C N so that both }% and -II% are torsion grbups. We let
A

=<ag, .y apy > Ay = ’M"
N

=<np,...,0N, > Ny = ,K)

We are now in a position to construct the cocycle matrices C,.

A is a maximal sublattice on which the cocycle matrices commute,
CoCp =C4Cy Va,B € A.

Thus we only need to choose the C, to be a one-dimensional abelian representation on
A. However we are restricted in our choice of representation by (6.16), which together
with (6.17) gives
Cac_a(a)
ec(a, —o(a))’
__ CaCg  wiP=%
ec(a,—0(a)) Yoo
(o, —a) w¥P=H

=Gy ;

ec(a,—o(a)) g

’ &d.a

- = $aCotc(a, =(1 — 0)a)w®P~ %,

C(l-—a)a =

131



As Cp = 1 we must choose the cocycle operator on M to be given by

C(l—a)a = 1[)0,5(;(0, _(1 - O,)a)w&.p-%ﬁ, (621)

= Yatc(a,~(1= )a)w™F Y | BoluiBe(fy |,

Bo € PoAr

The momentum eigenstates are assumed to be orthonormal.

Lemma (6.1) : |
e(a,B) _ ec(a,8) _ _ ccga(a!,a!ﬂn
L C@e@) = wolme@) = tlso that Yoty = RGNy, .

2. C((1-0)a,B) = wh,
Proof :

1. The first equality follows from the fact that,
(a) (e, B) = €'(a, B)ec(a, B),
(b) €' (a(a),0(B)) = €'(a,B),

N-1 '
where €'(a,8) = ] (1 - w™")? (@£, In addition €(a,B) = +£1 for simply laced
r=1

algebras so that

(e,8)  e(o(e)o(8)
(@), oB) ~  e(@p) - i-

_ Nz_:lra"“(a).ﬂ
C(o(a),B) = (=1)*Puwr=o ;

N-1
(=10’ (a).5)
= (=1)%Byr=0 ,

= w¥fC(a, f).

It is a relatively simple but uninspiring exercise to prove that (6.21) does indeed
satisfy (6.16) and (6.17) using the results of this Lemma. Further for an arbitrary
B € Ap we have
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¥pC(o(B8)) = ¥sC(B - (1 -0)B),
_ 4, B8 -0)8)
P e(B—(1=a)B)

_ - €c(_ﬂ,(1—0)ﬁ)l —%E—ﬁ.
= ¥aC(E)-4Co e(B,—(1=0)B)" i

= &P b,

So with this choice of C on M we have fixed (6.17) for the whole lattice as long as

we make sure the extension to the whole lattice satisfies (6.16).

To extend the definition of C to A we need an arbitrary homomorphism y : ﬁ —
C-{0}. As ﬁ is a finite abelian group there are Ay such inequivalent homomorphisms.

Given such a homomorphism we can take
Clai + (1 - 0)a) = x(24)C((1 - 0)ar).

For simplicity we take x to be the trivial homomorphism, x(a;) = 1 Vi. Obviously
(6.16) and (6.17) still hold.

Now when we come to extend the definition of C to Ap we cannot repeat the
procedure as the commutator map C(e, ) is not trivial on Ag. We must therefore use
the representation of A to form an induced representation of Ap. Before proceeding we
shall briefly explain what is meant by an induced representation. Let G be a group and

H a subgroup of G. Further let
G = .'131H U CEgH Ui,

be coset decomposition of G with respect to H, where {z;} is a set of coset representa-
tives. Then given an n-dimensional representation ¢ : H — GL,(C) of H we can form

a representation of G as follows.

Define ¢ on all of G by

Y(z) z €H,

0 r ¢H 0= n X n zero matrix.

o) = {
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- The induced representation of G is then given by thé set of block matrices
2(g) = (2i5(8)) = (¢(z; '83,)).

Note : The matrix &(g) has only one non—zero block in each row and column of blocks.

‘In our case we have a one-dimensional representation of A with which we want to
induce a representation of Ag. The coset decomposition of Az with respect to A is in

general infinite,
L N,

Ap = U U U(a°+7j+nk+A),

a®eANI=1k=1
where as before {a?+1;} are coset representatives of a decomposition of A with respect
to N whilst the {ny} are coset representatives of a decomposition of N with respect to
A. As was stated earlier -‘}v‘?- = PyAp so that we can use the momentum eigenstates as
a representation space of this part of C. However n; € N so that we must introduce an
Ns-dimensional space to represent this part of C on. We will let {1k |k =1,..,N4}
be a basis of this space where the state | k) corresponds to the coset representative nj.

We assume that this basis is orthonormal, < i i >= 6&;j.

Firstly noticing that,
)
sc(a, —C!) ’

Cla)™! =

and then setting 8 = a —a® + 3% — Y; + Y1 — 0k + 0y, we have;

)
N
> XL: XA: ee(=(e’ +vj+m),a+ 8%+ 7+ om)ec(@, £ + 7 + i)

@030 €A ji=1km=1 ce(@’ +75 + g, —(a® + ) + np))

x Cg | k) [ a® + Po(;))(8° + Po() | (m | B €A,
| 0 : , 3 ¢ A
Therefore

L Ni
Cla) =3 > 3 > c(f-a—(8"+9 +nm), fec, B + 1 + nm)Cs

BEAB Ay l=1m=1
% | k) [ Poa) + 3° + Po(u))(8° + Po() | (m |

Let p = B+~ and a = N+ ng +a where n € %fi, n, € %a.nda € A. Then
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B € A implies that n, — ng + n,, = 0 so that the final form of the cocycle operator is

Na
Cla) = 37 >0 3 ccB—a—p=nm, Aec(a, p+nm)Cs | m+a) | Po(a+u))(Po(u) | (m].
where | m + a) denotes the state corresponding to the coset n,, + Ng.

In general we cannot simply disentangle the momentum and vacuum degeneracy
pieces of the cocycle operators. Generically we have M CACNC Ag and A% C
PoAr C Ap but we shall now look at some special cases.

l.a e A:
Na
Cla) = Y 3 3 eclf—a—p~nm, Bec(a, p+0m)Cs | m) | Po(w))(Po(n) | {m | |
ue%{i”I:lﬂEA

Therefore the matrix is diagonal, as expected.

2. If o only fixes the origin then A}, = PgAp = {0} and N = Ap, thus we have

Na
Cla) = Y Y eclB—a—nm,Bec(a,nm)Cs | m+a) | (m] . (6.22)

m=18€A

and C(1_g)y = ¥yec (7, —(1 — )n). But in this case (1 - o) is invertible so that

Na .
Cl@) = D 3 elB—a—nmBlec(a,nm)ec (1 - 0)~15, —B) b_gy-1p | m+a)(m |

m=1F€A
= Cq.

C(a) is a pure matrix and does not act on a momentum eigenspace. For NFPAs

this simplification occurs for all sectors of the string theory.

3.0 =1,A% =Ar, A=N={0}ande. = ¢ (untwisted case):

Cla) = ) e(~a - p,0)e(er, 4)Co ot m){u s,

BEAR
= D eloyp) latu)pl,
BEAR
=& Y (o) | p)u] .
BEAR

We therefore have a generalisation of a previous construction given in [46):
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4. A =N:

Cla)= > > elf-a- t:B)ec(a, p)Cp | Poa + p))(Po(w) | -

Ag BEA
pelpbe

In this case there is no vacuum degeneracy and the cocycle operators can be

represented purely in terms of operators acting on the momentum eigenspace.

6.4 SOME EXAMPLES OF TWISTED VERTEX OPERATORS AND COCYCLES.

If we take o to be the identity automorphism, ¢ = 1, then Qi(z) = Q(z),
ap = aVa € Ap and N= 1 so that

Vi(a,z) =: Q0 . ¢,
= V(a,z).

In addition C(e, ) = (—1)*# so that the general twisted vertex operator construc-

tion subsumes the Frenkel-Kac-Segal construction.

Another special case occurs when we take o to be an automorphism which only fixes
N-1

z ro’(a).8
the origin. In this case @p = 0 Ya € Ap and Cla,B) = wr=:

o a2 .
Vo(a,z) = N~ 7777 ; Q02 , Ca,

and

Qo(z) = ¢ Z %z".

rE-};Z

As was explained in the last section the cocycles are pure matrices which act solely
on the space due to vacuum degeneracy, see (6.22). If in addition the automorphism

is a NFPA then all the sectors of the corresponding string theory have this simplified

form.
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The only NFPA which is shared by all the algebras is the inversion in the origin. It
is in fact the only NFPA for odd rank algebras. This gives C(e, B) = (=1)*P and

Q-1(z) =i Y %Z_T.

TE%Z

It retrieves the construction that first appeared in (8] without the cocycle operators.
The cocycle matrices for it can be constructed from the ordinary -y matrices [47]. For
example in Az we find that N= ¢, = 2 and the cocyle matrices are just the Pauli spin

matrices associated with the lattice in the following way [49]
l.cy, =1 v € 2Ap,
2. cy =01 v € 20 +aq,
3. cy =g v € 2Ap+ 5,
4. cy =03 v € 20p+a+p,

where a, § are the simple roots of A, i.e.

o=1,
o= 01,
O = oy,
8= o3
In general as o(a) = —a and E(Eq) = %oE_4 there will be one invariant element

for each positive root and none in the Cartan subalgebra, so
dimgy = l@;’l,

= %(dimg —rankg).

(See also section 7.2). It follows that dimg, = |®F| + rank g. The resulting invariant
subalgebras are well known. We list them here along with the vacuum degeneracy

of the corresponding twisted vertex operator representation (6,49];
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Table 6.1 : Invariant subalgebras and vacuum degeneracies for second order NFPAs.

g g0 Vacuum degeneracy

su(n) so(n) spinor 22 n € 2%
. mey
spinor 2z n € 2Z +1

so(2n) so(n)®so(n) (spinor, singlet)

Ee¢  sp(4) 8

E7 su(8) §

Eg SO( 16) _1_6

The number of orbifold fixed points in each case is given by F = det(l - o) =
2r21k8  Notice that rank go <rankg iff o is outer, which by Lemma (4.3) is true for
Ay, Dpn € 2Z + 1 and Es.

Let us now look at a couple of third order NFPAs.

Example 1: Eg, Conjugacy class no. 21. With respect to a basis of simple roots an

example of ¢ is given by,

/—1 1 -1 0 1\
ag -1 0 -1 0 2
, A 0 0 -2 0 3
g =
0 0 -1 -1 1 2
Q] a3 a3 Q4 aj 0 0 0 -1 0 1
\ 0 0 -1 0o o 1/

F= det(1 — o) = 27, therefore ¢2 < 27 and as Ry = l-}%l € Z we must have one of

the following
1. Ry = 3and ¢, = 3,
2. Ry = 27 and ¢, = 1.

In fact as N = Ap and A # Ap we must have ¢, = 3. We can choose
A = {miai|my, my, ms, mg € &, my, m3 € 3%} a.nd% = {[ne1 + maj] |

n,m=0,1, 2} & Z; x Zs.
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In this case go = Ag [su(9)] and the vacuum forms a 9.

Example 2 : Dy, Conjugacy class no. 21. With respect to a basis of simple roots an

example of o is given by,

a3

-1 1 0 -1
~1 0 1 -1
o =
| 0 0 0 -1
R 0 0 1 -1
ay

F= det(1 — o) = 9, thus either
I.RM = landc, = 3, or
2. Ry = 9andc, = 1.
Again N= Ag and A # Ap so that ¢, = 3 and %I- = Zs. go = Ay [su(3)] and the

vacuum is a 3.
6.5 COMMENTS ON THE VACCUM DEGENERACY AND ORBIFOLD FIXED POINTS.

Firstly let us establish the equivalence between the notations of [16,44] and [5]. In

the former papers, whose notation is more relevant to the orbifold construction, the sets
Me = {z € V|(1-0)z € Ag}

and

M, = {r € M | ¥(z,y) = 1Vy € M,}

are considered where

\I/(z,y) = eZm'z.(l—a)y.

Lemma (6.2) : We have the following isomorphisms

My oy M,

P,V " PeV R.

IR

Proof : Obviously (1 ~ o) : My — N is a homomorphism as it is a linear map.

Im(1 — o) = N because if we take o, to be the restriction of ¢ to N, that is 0, =
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(1 - Po)o, then det(1 — o,) # 0 so that (1 — 0.) is invertible on N. We can therefore
choose z = (1—0,)7la as an element of M, that maps onto a. The kernel of (1 —¢) is
PoV, so by the First Isomorphism Theorem we have the first result. The second follows
similarly by looking at (1 — o) acting on M.

In particular we -therefore have

M,

N
M. TR

In addition if welet @ = (1 —0)z + ag, 8 = (1~ o)y we have z.(1 — o)y = z.8.
Let

1 N-1
X = —ﬁ Zrar
r=0
Then
1 N-1 _
- _ r _ r+1
X(1=-0)= —N{Zra ro’ },
r=0
1 N-1
- LT ot - (v o),
r=0
=1 on N,
N-1
as ). 0" = 1lon N. Thus X= (1 — 0,)~L. Therefore z = X(a)+ ap and
r=0

¥(z,y) = C(a, B).

Vacuum degeneracy :

It is easy to show that C is an alternating bilinear form on N, that is

C(a’ﬂ) = C(,B;Wt) Va’ B € N,

or alternatively C(e,@) = 1V a € N. Let RCN be the radical of C on N,
R = {a € N|C(a,N) = 1}.
Now as C(a, f) is alternating on N, Ng = H%l is the square of a positive integer
¢s called the defect of o [16]. In the notation of [5] this corresponds to the fact that
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Nr = NpAR and N = AR, which explains our previous identification of N A (=c¢o)
with the vacuum degeneracy .

Let us look at the lattices involved in a little more detail. F irstly

N =(1-Po)AgrNAg.

N-1
Secondly if @ € R then we have —ﬁr > ro’(a).f € ZV B € N, therefore
r=0 ]

1 N-1
- = ro"(a) € N* and,
' r=0

a € (1-o)N*NN.
But N* = {a+vo|a € Aw, vy € PyV} and therefore
R = (1-o)Aw N Ag.
It is not too difficult to verify that we do indeed have M C R C N namely,
(1-0)Ar C (1-0)AwNAgp C (1 ~Po)ArNAp.

The vacuum degeneracy is given by

1
2

o = ﬂé_ (1-Po)ArNApg
7 IR] T (1-0)Aw NAg

For the special case of a o that leaves only the origin fixed we have N = Ap and

Ap 3

o = ,(1 —o)Aw NAg

In [16] it is shown that

VOIPO AR

co = [det(1 —a,))? VolAp

torsion Ar :
or (1 - U)AW ’

where Vol stands for volume.
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[16] also gives all the possible values of ¢, for representations formed by using inner

automorphisms of simply laced algebras,

Ap: 1,
n—2 .
Dp: 2_’ where r < [T} (for D4 this means ¢, = 1, 2),
E¢: 1, 2, or 3,
E7: 1, 2,3, 40r8,

Eg: 1,2, 3,4, 5,6, 8,9, or 16.

Fixed subspaces of the orbifold :

If v €V corresponds to a fixed point singularity of the orbifold then v = ov+L where
Le Ap and therefore (1~ o)v € Apiev € M,. But (1 - Py)[(1 - o] = (1-0o)v

so in fact we must have
(1-0o)v € (1-Po)ApNAr =N

and thus

v € (1-0.)7'N+PyV.

In general the singularities are dim PyV-dimensional and there are

1-0,)"IN
( )

F = ' N l of them.
However
(1-0,)7IN ~ N
and

(1-0,)N = (1-0)N.
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So
N

(1-0o)N
= det(1-o,),
rankg

= H(l—wn‘)a

n; #0

?

|

rankg
H 2(1 — cos 6;).

o,-—;t 0

Again in the case of a o which only fixes the origin we have

_|__Ar
(1 -0)Ar
rank g

= oranke H (1 —cos 6;),

1=1

F

k]

0—dimensional, or point, singularities in the orbifold. In this case F = | det(1~o) ]| .

We can now relate the number of fixed ‘points’ to the vacuum degeneracy. Firstly

notice that (1 —o)N C M C R so that it makes sense to consider

R
(1-0)N~
The number of fixed ‘points’ is given by
N
Pl om

- [allzlle=os

and we know that Ny = Ap = ¢, so,

R
= 2 f—T
F=c; T-on|

Hence in general F > c2. In the special case of no fixed points but the origin we have

Let us concentrate on this case. Generically M C R C N C Apr but there are some

special cases.
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1. M =R = (1-0)Ar if Aw = Ag, i.e. if the lattice is self dual (for eg Eg),
F=c

therefore

co = /|det(l—0)|.

22R = N = AR if (1 -0)Aw = Ap. That is o is primitive (i.e. det(1 — o) =
det A), see p103. In this case ¢, = 1 and F=| Zg | where Z; is the centre
of g. This occurs for the third order NFPA of A,, the rotation through ZT", as
oA3 = A3, oAz = A3, oAp = Apand (1 -0)v € Agifv € Az or A;.
AV4 \/ /
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7. Invariant Subalgebras and other Results.

We start this chapter by examining an alternative construction of the graded rep-
resentation of a Kac-Moody algebra corresponding to an inner automorphism. This is
known as a shifted vertex operator representation as it corresponds to the shifted
picture of the corresponding Lie algebra automorphism. We then go on to show how by
comparing the algebra automorphism in the shifted and twisted pictures and looking
at the corresponding Kac-Moody algebra representations we are able to determine the
invariant subalgebras and vacuum degeneracies. We finish by giving the results of our
calculations for the simply laced exceptional Lie algebras . The results for Eg were

previously given in [7]. Similar calculations for Eg were also considered in [44].

7.1 SHIFTED VERTEX OPERATORS.

There is an alternative way to generalise the ‘homogeneously’ graded construction
given in Section 6.1. This is obtained by altering the zero-mode space by considering
the momentum to lie in a different coset of the root lattice in V, namely Ag + §. That
is we replace C(Ag) by C(Ag+6) or equivalently substitute | §)q for | 0)q. However
as we have not altered the vertex operators their commutators are unaltered and their

moments still give us a representation of the same Kac-Moody algebra. What has

changed is the gradation of the algebra,
Vie2) | B+6) = %9V (a,2)e9 | ),
— ei&.qV(a’Z)za.G I ﬂ)

Thus the representation of the Kac-Moody algebra on F ® C(Ap + ) given by the
moments of V(a,z) and P*(z) with the derivation d is equivalent to a representation on
F ® C(AR) given by the moments of V(a,z) = €9V (a,z)2*¢ and Pi(z) with a new
derivation d® = d + é.p + %. We call V¥(a,z) a shifted vertex operator. In general
the vertex operator will no longer be expandable in integral powers of z,

Vi(a,z) = Z Vi(a)z™®,

n€EZ-a.b

3 Va(a)e s,

neZ

But Vo(a) = t" ®E, therefore Vi(e,2) = ¥ (t***4QE,)z" and thus Vi(a) =
n€EZ-a.b

t*+*¢ @ E,. Comparing this. with (3.26) p66 we can see that we just-have a new
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non-integral gradation of g(”) the Kac-Moody algebra constructed using an inner au-

tomorphism. It corresponds to looking at the underlying Lie algebra automorphism in
rankg
the shifted picture. If we take & to be of the form § = FII 3 njw;, where w; are the

1=1
fundamental weights of g then we will have,

Vi(a,z) = Z Vé(a)z ™.

nE%Z

The partition function for the Hilbert space of this newly graded representation,
H® = F® C(Ag + 8) is easily seen to be given by,

Z q%(a+6)2
a€EA
Ps(q) = =5

1 (1 - qrynke

n=1

In particular the vacuum has a conformal weight of §2i,
2
d® |0y = ‘—52- | 0) .

Also the vacuum will be degenerate if and only if there are any a € Ap for which
(a+6)? = 62

7.2 DETERMINATION OF THE INVARIANT ALGEBRAS.

We shall now explain how we can determine the invariant, or zero-graded sub-
algebras of any twisted vertex operator representation of a sixhpiy laced Kac-Moody
algebra. The main idea behind this calculation is to compare the twisted vertex op-
erator representation with the equivalent shifted vertex operator representation of the
same gradation. Once we have established the equivalence then the invariant subalge-
bra is easily obtained by the application of Theorems (3.2) and (3.4). Really we need
to know how the Lie algebra automorphism producing the gradation looks in the two

pictures. That is given a root system automorphism o € aut ®,; which we extend to a. -
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Lie algebra automorphism £ = (o,%) we want to know what shift vector produces the

same automorphism,

AR}

To establish the correspondence we compute certain characteristics of the automor-
phism and the correéponding representation in the two pictures. In particular we can

calculate the following,
1. Order of &, N.
2. Dimension of the invariant subalgebra, dim g;.
3. Trace of ¥ on the Lie algebra g, TrT.
4. Conformal weight of the vacuum, 7.
5. Degeneracy of the vacuum, c,.

We firstly take an explicit automorphism in a given conjugacy class of aut ®; using
the classification in [3] and the results of Chapter 4 and calculate them in the twisted
picture. We then examine all the possible shift vectors é to see which one produces the
the same results. There are some restrictions on § that we will explain later. We start

by examining how we can calculate the characteristic quantities in the two pictures.

(I) Twisted picture : The extension of the order n automorphism ¢ € aut®, to

¥ = (o0,%7) produces the automorphism given in Section 3.3. In particular L : g — ¢
such that '

Hw o(H). (7.1)
Eq - "/)gEu(a) ) (72)

where the phases are those of Lemma (3.6), namely
$J =1 Va € AY.

(1) Order :
ZP(Ea) = '(/)g'l/)g(a) e ’(/)gn—l(a)Ea)

_ Ciyig (7.3)
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where we have used the fact that for a simply laced algebra the Pg satisfy

e@B) .,

Vel S e, o) ot

and ¢ is a 2—cocycle satisfying

6(0’ B) a.f -

— = (=1)*". _ 7.4

wB.a) = 7V (7.4)
(Recall that & = a + o(a) + ..... + 0" !(a)). Thus N, the order of &, is n or 2n de-
pending on whether &.a0 € 2Z V a € &, or not.

2) dimgp : Let o be in an orbit under o of order M(a) < n, where M(a) has to divide
\2) dungo :

n,

M(a) ~
"y O’.O’Ea.

ZME(Ea) = (-1)
We can therefore only form an invariant element from the orbit of By if

(_l)ﬁ,‘m&.a =1.

If m is the dimension of the invariant subspace of ¢ then there are also m invariant
elements in the Cartan subalgebra. Thus the dimension of the invariant subalgebra g
1s given by .

. cy 2n .
dimgy = (No. of a € O,(Pg) with dg.a € WZ) + m, (7.5)

where O,(®;) is a set of roots such that it contains one and only one from each distinct

orbit of ®; under o.

For NFPAs of order n we have,

. 1
dimge = ;l(bgl .

(3) Trace:
Tr¥ = No. of fixed roots under ¢ + Tro,

(7.6)
=| Qg | + Tro. '

148



(4) Conformal weight of the vacuum :

n = #Z ni{n — n;). (7.7)

1 =1

where the eigenvalues of o are given by w™ with 0 <ni <nfori= 1,...,rankg. (See
p114).

(5) Vacuum degeneracy : [25] gives

o = [det(l — U*)]%%‘/%% ,

torsion —A—R——-—
: (1 — o)Aw

where Aw denotes the weight lattice of g and o, the restriction of o to the space

1
2

’

perpendicular to the invariant subspace, i.e. 0. = (1 — Py)o. See also Section 6.5.

(IT) Shifted picture : From Corollary (3.3) we may rewrite a general Lie aﬂgebra au-

tomorphism, with (g,7) # (An,2), as

H s X(H),

2/ : .6
Ey — e TiQ EX(a)7

rankg

where § = % >, siw; and the sequence (si,52,....., Srankg) is invariant under the per-
1=1

mutation of indices corresponding to X i.e. s; = Sx(i), 1 < ¢ < rankg.

O(g,7)
(1) order : N = 7 3. kTs;, where k7 are the Kac labels for g{”) For an inner automor-
- 1=0 :
rank g
phism this gives N = 7 3" k;s;, with k; being the Kac labels of the extended Dynkin
1=0

diagram of g.

Note : § defines a unique automorphism of g of order N. As all thes; > 0 ¢ is dom-
inant, that is it lies in, or along the walls of the fundamental Weyl chamber. Any
vector differing from § by an element of the weight lattice, Ay, will produce the same

automorphism. However § is the shortest vector in this equivalence class.
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(2) dimgp : We can form an invariant element from E, if Y(Eq) = E, that is if
e¥rilet . +X"(a)f = 1 But a.b = ... = X"(a).6 so that we require Ta.6 € Z. In this

case the invariant element would be
E, = Eo + wEx(a) + - + w(r_l)Ex(f_l)(a) with w = 2™
So the dimension of the invariant subalgebra is
dimgy = (No. of & € Ox(®g) with ra.6 € Z) 4+ O(g,7) , (7.9)
which for the special case of an inner automorphism reduces to

dimgo = (No. of @ € ®; with .6 € Z) + rankg . (7.10)

(3) Trace:
TtE = ) eef L TrX,

aE‘I"
X(a)=a

=2 Z cos(2ra.6) + TrX.

ae¢:'
X(a)=a

For an inner automorphism (i.e. X = 1) this becomes

Try =2 Z cos(2wa.6) + rank g . (7.11)
a€d}

(4) Conformal weight of the vacuum : For an inner automorphism,

(5) Vacuum degeneracy : Recall that for an inner automorphism the numerator of

the partition function is of the form,

3 il

a€Ar

Thus the vacuum degeneracy is given by

¢ =|{a € Ap|(a+62=0%] .

The calculation of ¢, in the shifted picture is aided by the following result. -~ - -
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Lemma (7.1) : For inner automorphisms

(1) ¢, > 1if and only if sg = 0.

(2) @ € {a € Ap| (o + 6)? = 6%} implies that a® < rankTg
Proof :
(1) If (e + 6)* = 6% then
2
L«
—ad = = 12
a.b 5 (7.12)
Socy > 1iff 3 @ € Ag such that a.§ = —1. But § is positive so that any such a will

be negative. In addition 6 is dominant so that for any o € <I>;’ we have a.§6 < ag.é

and thus
—a.6 > —ag.b Va € @g’.

rankg

In particular ¢, > 1 iff ag.d = 1. Now ag = Y, kia; thus using the fact that
1=1

a;.w; = 6;; and the definition of N we have

1 T
ag.b = N;kis,’,

(7.13)
- 1_3
- N
Therefore
50
—a.621\—f-—1 Va € @4.

(2) We have the inequality

—lalld|< ab <|allé],

so that (7.12) cannot be satisfied unless | a || § | > %az, i.e. unless

2
@

§2 > —.
= 4
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By considering the expression for 5 in the twisted picture we see that

<rankg
T= "6

with equality only for the automorphism a — —a. Therefore

rank g

and

Corollary (7.2) : For all inner automorphisms of Lie algebras with rankg < 8 we only

need to check negative roots @ with a® = 2 to see if they contribute to the vacuum
degeneracy except for the case rankg = 8 and @ — —a when a single vector of the

form a = —26 with a® = 4 can contribute.

So for an inner automorphism the vacuum is degenerate iff s = 0. In the case
that it is and rankg < 8, with the above proviso for the automorphism @ — —a in
rank g = 8, we can determine the degeneracy by counting the number of length squared

two roots for which

a.d = ag.b.
Such roots have the same components as ay in positions corresponding to non-zero
components of §.

In summary we have the following five restrictions,

O(g,7)
N=r Z k7s;,
. 1=0
cr . 2n
(No. of a € Og(®g) with &.a € WZ) +m

= (No. of a € Ox(®g) with ra.§ € Z)+ O(g,r).
lfbg | + Tro =2 Z cos(2ra.6) + Tr X,

aeé:
X(a)=a
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and for inner automorphisms,

| R

1 T
m Zn;(n - n;) =

."=1__..

torsion{aTAi)TW}'% =|{a € Ar|(a+6?>*=6%}].

These are usually enough to calculate § but very occasionally it is necessary to
consider some higher levels in the Kac-Moody gradation. In this case, for inner auto-

morphisms, we can compare the two partition functions,

DR Eadlua T qiletd)’
a€PoAr _ _Q@EAgr
7 o = = .
H (1 — qﬁ)d(n mod N) H (1 - qn)rankg
n=1 n=1

Note : We can consider o to be of order Mn, M € Z™, rather than of order n without
altering the twisted vertex operator construction and in particular the partition function.

It is sometimes useful to consider N to be the ‘order’ of & [5,19].

We can in fact determine the lowest levels of the spectrum in the shifted picture by

rankg
systematically considering roots of decreasing height. Recall that a root o = Y. mioy
1=1
rankg
has ht(a) = 3 n;. As we also know these levels from the twisted picture, assuming

1=1
we know c,, we can calculate some of the components of § straight away. The number

we can determine varies from algebra to algebra. We define the level of a state to be
its eigenvalue under N(Lo — 7). We then label all the states starting from those at the

lowest level and working up. Finally we denote the level of state | ) by L; and define

A; = Ly - L.

In the twisted picture the level of a state c_,,.....c,, | ap) is

N(%g--i-im) .

1=
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In the shifted picture the level of a state c_p,.....Cn,, | @) is

a2 i
N —2—-+a.5+;ng .

rankg rankg
Ifé = ’I%I' Y siwjand @ = Y n;o; then the level of the lowest state | 0) is 0 and
i=1 i=1

the level of | @), a? = 2,is N + n;s;.

Delta is assumed dominant so that ht(e) < ht(8) implies that §.a < 6.8. Let
oM ..., al™ be the longest sequence of roots of length squared two so that ht(a(l)) >
ht(a®) > ... > ht(a(™) and there is no other § € ®g such that ht(8) = ht(a() i =
1,....,m. Obviously @y = ag, the highest root. We then have

Al = N(l -—aH.é) = 8y,

A = (@D —ays P=2 ., m.
. ] rankg
In general we find a0~ — o() = Y. 6ijai t.e. a simple root ajfori =2,.....,m,
i=1
thus A; = §;58;. So we can determine m components of s. In fact m corresponds to

the number of different values the Kac labels of g can take. If s denotes the sequence

(S0, ----, Srankg) then for inner automorphisms of the exceptional simply laced algebras
we have
E¢: m = 3;

s=(ALW,X,03,Y,Z2,0) with X +2Y +Z = N - > 04, .

Erm = 4;
4
s = (81,080,840, W, X, Y, Z) with 3W +2X +Y +2Z = N~ > nA, . (7.14)
: n=1
Eg: m = 6;

s = (AL XY, A, 85, Ay, A, A9, Z) with 2X +4Y +32 = N = Y nA, . (7.15)
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For D4 inner automorphisms we have

Dy m = 2

2
s=(ALX, A Y, Z) with X +Y +Z =N~ 3 na,. (7.16)

n= 1

Example : Eg, Conjugacy class number 81:
N=60, ¢, =1

Oscillators: c_3, c_s, c_s, c_1s, c_2, c_2s, c_z, c_1.
30 30 30 30 30 30 30

Invariant lattice: PopAp = {na | n € Z and o® = % }

Therefore the first few states have levels which are easily calculated from the twisted

partition function.

Level|0 |6 [10 [12 15 16 18
Noofstates (1 |1 [1 |1 2 1 2

States (11| 211 31114 LB, 00 T (8 o) |

Thus

(Al, A21 A31 A4y A51 AG) = (6,4a 2) 3a 0’ 1)

Further analysis with the aid of (7.15) gives

s = (6,4,2,1,0,3,2,4,2,6).

In general we need to know the vacuum degeneracy c, in the twisted picture to
perform this calculation. However we can try all the possible values of c, given in [16],
see also p 142, and so determine c, at the same time. We must however remember that

the values given in [16] are only for inner automorphisms.
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The reverse calculation is also possible, that is the determination of the vacuum
degeneracy and the low level part of the spectrum from a given 6. For example in Eg

let
5§ = (dO,d83d7ad5ad4,d3)d2,dlad6)
where we have excluded the two special cases s = (1,0,0,0,0,0,0,0,0) and

s = (0,0,0,0,0,0,0,1,0). If dy # O then ¢, = 1 otherwise we let M be the largest
integer such that d; = 0 for all i < M and then

e =1+M,

We also have A; = d;_; fori = 1 to 6.

Example : Eg, conjugacy class number 86. s = (0,0,0,0,1,0,0,0,0), go = A2 ¢, = 4.
(A1, A2, A3,A4,A5,A6) = (0,0,0,0,1,0).

An easy method to calculate the vacuum degeneracy, or defect, c; for inner auto-
morphisms which leave only the origin fixed and do not correspond to exceptional Carter
diagrams was pointed out to the author by [50]. Such Carter diagrams can be obtained
from the Dynkin diagram of the corresponding Lie algebra by repeated application of

the procedure
D(g) - D (g¥) - D (g¥) — {as}

where D(g) is the Dynkin diagram of g, D(g(l)) is the extended Dynkin diagram of g

and «; is a node in this extended diagram. The vacuum degeneracy is
Co = Hki,
3

the product of the Kac labels of the removed spots.

E.g. Conjugacy class no. 84 of Eg. Carter diagram = Al

D(ES) — D(Egl)) — D(A2 +E5) gives 3,
D(Az2 +Es) — DALY + E{Y) - D(A) gives 3,

therefore ¢, = 3.3 = 9.
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It is not clear to the author why this calculation works.

The automorphisms which leave nothing fixed and correspond to connected excep-
tional Carter diagrams with rank g spots ( g(a;) i.e. those specifically associated with the
algebra g) are primitive elements. As we saw on p 144 they have a vacuum degeneracy

ce = 1.
7.3 TABLES OF RESULTS.

The results of the calculations for the simply laced exceptional Kac-Moody algebras
are given in the following tables. An * indicates when the order of the algebra automor-
phism ¥ is twice that of the corresponding root lattice automorphism o i.e. N= 2n. A
e denotes a NFPA.

In Table II we denote an outer automorphism that corresponds to —1 times an inner
automorphism obtained from a Carter diagram by just the Carter diagram. There is
a problem in two of the entries in this table as we have a number of sets of indices s
which are indistinguishable by our calculations. This problem would probably vanish
if we were able to construct the corresponding y-shifted vertex operator representation

[5] and thus determine values for the vacuum degeneracy and conformal weight.
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TABLE I: 25 conjugacy classes of inner automorphisms in aut ®g, and

their corresponding invariant subalgebras.

Conjugacy | Carter s £0 Tr¥ | Order |c, | 7
Class | Diagram of ¥

1 é (0,0,0,0,0,0,0) Eg 781 - 1(11]0

2 A; (2,0,0,0,0,0,1)] As®R 34 11 &

3| A?  [(21,00,0,1,0)| D;®R? 14 4|1 |1

4| Ay [(1,0,00,00,1)] AsoR 15 3 (11}

51 A} ((1,0,0,1,000) [AZ@A; R | 2 a1 E

6 | A2xA; (4,3,0,0,0,3,1) As;®R? T 12¢f1 | &

7 Aj (2,1,0,0,0,1,2)| A;oR® 6 81| %

8 Al (0,0,0,0,0,0,1)| As® A, -2 212 %

9 | AxxA? 1(2,0,1,2,1,0,0)] Al@R? -1 1271 | &

10| A |(1,1,0,0,0,1,0)] D,®R? 6 3|1 ¢

11 | AsxA; [(2,1,1,0,1,1,0)| A, @ R* 2 811 | %

12 Ay (1,1,0,0,0,1,1)| A; ®R? 3 5113

13| Ds (1,001,001 AZ@R? 1 61| %

14 | Dy4(ag) [(1,0,0,1,0,00){A20A 0 R | 2 41| &

15 | AjxA; ((1,1,03,0,1,0)| A3gR? 2| 12¢f1 4L

16 | AsxA? [(0,0,1,0,1,02)| At@R? -2 812 |3

17 | Asx4r [(3,1,3,1,3,1,0)] A;@R® -1 2001 | &

18 |  As (2,2,1,0,1,2,1)| A, ®R® 2| 1271 |

19 { Ds [(1,1,01,01,1)| A?gR* 0 g (1]

20 | Ds(a1) |(4,3,1,2,1,3,2) RS 1] 241 |£&

o 21 A3 (0,0,0,1,0,0,0) A3 -3 33|13

22 [ AsxA; [(0,0,1,0,1,0,1)| AfeR? -2 62 |4

23 Eg (1,1,1,1,1,1,1) RS -1 1218

e 24| E¢(a1) [(1,1,1,0,1,1,1)] A;®R® 0 911 | %

25 | Ee(az) |(1,1,0,1,0,1,0)| A3@R3 1 6|11
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TABLE II: 25 conjugacy classes of outer automorphisms in aut &g, and

their corresponding invariant subalgebras.

Conjugacy | Carter s g0 TrEX|Orderc, | n
Class | Diagram of ¥

o 1 ¢ (0,1,0,0,0) Cq -6 2 3
2| Ay (0,0,1,0,0) | A3 @A, -2 4* =

3( A?  1(0,0,00,1)| B3 A, 2 4 !

41 A, (0,1,1,0,0) | A30R -3 6 8

5| A3 (1,1,000)| C;®R 6 4* &

6 [ A2xA; |(0,0,1,02)| Al®R 1| 12t |

7| Az [(0200]1) [B:oA; R | -2 8 &

8| Af (1,0,0,0,0) Fy 26 2 3

9 | AsxA? [(2,2,001)| A;@R? 51 12 =

10| A} [(0,1,001) |B.®A;®R | 0 6

11 | AsxA; [(1,0,0,1,0) [A@A; @R | 2 8* =

12 | A4 (0,1,1,0,1) | Ao R’ -1 10 &

13 | Dy (1,2,0,00)| C:oR -1 6 =

14 | Dy(a1) (0,0,1,0,0) Az d Ay -2 4 15—6

15 | AZxA; |(2,1,01,0)| AZgR? 4| 12t &

16 | AzxA? [(2,0,001)| Ci3®R 14 8* >

17 | AgxA; | (1,2,21,0)| A; ®R? 3| 20 ia

18| As  |(1,0,,1,0)| A?@R? 0| 12¢| |

19 | Ds t 0 8 s

20 | Ds(a) 1 A2gR? -1 24* e

e 21 A3 (1,0,1,0,0) |[A2®0 A0 R | 3 6 =
22 | AsxA; [(1,0,00,1)! Ci@dR 8 6 3

23 Eg (1,1,1,01) | A; o R® 1 12 4
e 24 | Eg(as) {(1,1,1,1,1) R* 0] 18 =
25 | E¢(az) [(0,0,0,1,0) A? -1 6 =

t s =(1,1,1,0,0) or (0,0,1,0,1).
s =(0,221,0), (0,4,1,0,3) or (1,2,0,3,0).
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TABLE III: 60 conjugacy classes of Wg, and their corresponding invariant subalgebras.

Conjugacy Carter s £0 TrY |Orderfc, | 7
Class| Diagram of ¥
1 é (0,0,0,0,0,0,0,0) Eq 133 1(1]0
2 Ay (2,1,0,0,0,0,0,0) D& R 65 1| &
3 A2 (2,0,0,0,0,1,0,0) | Ds ®A; 2R | 28 4111}
4 A, (1,1,0,0,0,000| Dg®R 34 3114
5 (A3Y (0,0,0,0,0,1,0,1)| Es®R 25 2 (1)L
6 (A3Y (1,0,1,0,0,0,00)| As®A; DR 9 DR
7] AiaxA; [(41,0,00,3,0,00|Dsd A, SR | 14 12¢]1 | &
8 A; (2,2,0,0,0,1,0,0) | Ds® A; S R? | 17 8|1 |5
9 (AYY (0,1,0,0,0,0,0,0)| De® A, 5 22| 3
10 (A" (1,0,0,0,0,0,1,1)| As & R? 5 4|11
11 | AoxA}  [(20,21,0,0,00) [A;@AZ2R? | 2| 12¢|1 | &
12 Al (1,0,0,00,1,00)| Ds ®A; SR | 7 312
13 | (AsxAp) [(2,0,0,1,0,1,00) [A, @ A3 R? | 5 8|1 | %
14 | (AzxAy)” (1,0,0,0,1,2,0,2)] Ds®R® 13 811 | %
15 Ay (1,1,0,00,1,000 |Ds®A; 2R* | 8 511,01
16 [~ Dy (1,1,1,0,0,0,00)| As@R? 8 6 |1]%
17 | Dg(a;) ](1,0,1,0,0,0,00)| As@A; 3R 9 411 |&
18 AS (0,1,0,0,0,1,00)| D4 B A3 R 1 22
19 | A>xA}  [(1,0,0,00,0,1,2)| As®R? -2 6|1 (&
20 [ AZxA; [(03,0,01,001)[As@AZeR? | -1 | 12¢|1 [{AL
21 | (AsxA%y 1(0,2,0,1,0,0,0,0)| As@ AR 1 82| %
22 | (A3xA%)" [(1,0,1,0,1,0,1,0) | A, @ A2 & R® 1 8 11| %
23 | AsxA; [(4,02,1,0500) AteR? 2| 24*|1 |
24 | AgxA; [(3,0,1,3,0,1,00)| AiaR® o 20|1|&
25 | (As)  [(1,0,0,0,1,1,0,1)] Dso RS 7 61|
26 | (As)"  |(2,1,0,1,0,2,00)| A?eR? 3| 1271 |
27 | DgxA;  [(2,1,0,00,1,22)] A;oR* 4| 12¢f1 |$L
28 | Dg4(a;)xA; [(1,0,0,0,0,0,1,1)| As @ R? 5 4|11
29 Ds (1,1,1,00,1,00) | Az ®@A; 2R¥ | 3 8|1 | &
30 | Ds(a1) [(4,2,2,1,03,0,0)| A}oR* 41 24tf1 | &

160




TABLE III: (continued)

Conjugacy Carter s g0 Tr¥ [Order|c, | 7
Class | Diagram of ¥

31 A8 (0,0,0,1,0,0,0,0)| A2@ A, -3 414 |3
32 A} (0,0,1,0,0000)| As® A, -2 31313
33 | AsxA}  1(0,1,00,01,02) |A;@A2aR? | -3 g |2 |4
34 [AsxAyxA; |(1,0,3,03,0,1,2) AlgR! 2 241 |
35 A2 (0,1,0,0,0,1,0,0) | Dy @ A2 @ R 1 412 |3
36 | AsxA;  (1,021,0200) AteR® 1| 1514
37 | (AsxAp) |(0,1,0,1,0,0,00)| Az @A} -1 624
38 | (AsxA1)" [(1,0,1,1,1,01,0){ A3gR* 1121 ||
39 As (1,0,0,1,0,1,0,0) [A, @ A} @ R? | 0 7112
40 | DyxAl [(0,2,0,1,0,2,00)| AS@R? 0 12¢|2 | 2
41 | DsxA; [(1,0,01,001,1)] A2@R® -1 8 |1|&
42 | Ds(a1)xA1 [(3,0,1,2,1,03,2)| A?@R® 0| 24v|1 (&
43 Ds (2,1,0,1,2,2,1,2)[ A; ®R® 2| 2071 (|4
44 | Dg(a1) |(1,1,0,0,0,1,1,1)| A; @ R* 3 g |1 L
45 | Ds(a2) [(2,0,1,0,1,0,21)] Al@R* 3] 12¢01| %8
46 Eg (1,1,1,1,0,1,0,0)| Aj}@R! 0 1218
47 | Es(a1) [(1,1,0,1,0,1,0,0)| At@ RS 1 91 |L
48 | Ee(az) [(1,0,1,0,0,1,00)[A; @ AZ9R? | 2 6|11
o 49 Al (0,0,0,0,0,0,0,1) A; -7 2 (8| &
50 | AjxA;  [(0,0,01,0,000)] AZeA; -3 4 (4|3
51 | AsxA; [(0,0,1,0,1,000)| AloR -2 6 (3|4
52 A7 (0,1,0,1,0,1,0,0)| A} o R? -1 8 (2|4
53 | D4xA?  ((0,0,01,0001)] AZoR -4 6 (4|3
54 | DexA; [(0,1,01,0,1,01)] AfgR® -2 102X
55 | Dg(az)xA1 [(0,1,0,0,0,1,0,1) |As @ A2 R? | -1 6|2 |
56 E; (1,1,1,1,1,1,1,1) R’ -1 18 |1 |1
57| Ei(a1) [(1,1,1,01,1,1,1)] A;@R® 0| 141
58 | Er(a2) [(1,1,0,1,0,1,1,1)] A?@R® 0 12 |14
59 | Er(az) {(2,1,2,1,2,3,1,3) R’ 1 30 |1 [#
60 | Er(as) [(1,0,0,1,0,0,1,0) A2 A; @R | 2 6|1 |8
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TABLE IV: 112 conjugacy classes of WE, and their corresponding invariant subalge-

bras.

Conjugacy | Carter s 20 TrX {Order|c, | 7

Class | Diagram of ¥
1 é (0,0,0,0,0,0,0,0,0) Eg 248 1]1(0
2 Ay (2,0,0,0,0,0,0,1,0) E'-aR 132 41 | &
3 Al (2,1,0,0,0,0,0,0,0) DR 64 4*1 (1
4 A, (1,0,0,0,0,0,0,1,0) E:6R 77 3 114
5 A3 (1,0,0,0,0,0,1,00) | Es®A; R | 28 1| &
6 | AyxA; |(4,3,0,0,00,0,1,0)| DgaR? 33 12*|1 | &
7 Az (2,1,0,0,0,0,0,2,0) | Dg o R? 44 8|1 |2
8 | (AYY (0,0,0,0,0,0,0,1,0) | E; & A, 24 22|12
9 (AD" 1(1,0,0,0,0,0,0,0,1) A7dR 8 4*(1 ]}
10 | AgxA? (2,0,0,0,0,1,2,0,0) [Ds@A;oR2 | 13| 12¢]1 I
11 A2 (1,1,0,0,0,0,0,0,0) D:®R 14 3 (142
12 | Az3xA; |(2,1,0,0,0,1,000) [Di®A,®R2 | 16 8|1 | %
13 Ag (1,1,0,0,0,0,0,1,0) | D¢ o R? 23 5011
14| Dy (1,0,0,0,0,0,1,1,0) | Eg¢® R? 27 61| %
15 | Dg(a1) |(1,0,0,0,0,0,1,0,0) | EsdA; @R | 28 411 &
16 A} (0,1,0,0,0,0,0,1,0) | Ds @ A; R 4 12| &
17 | AxxA} [(2,0,1,0,0,0,0,0,2) | As @ A; & R? 1] 121 [£
18 | AZxA; [(1,1,0,0,0,0,3,0,0) |Ds® A; & R? 6] 12¢)1 |
19 [ (A3xA}) |(1,0,1,0,0,0,1,0,0) A, ® A2 & R? 4 &1 |S
20 [(AsxA})” [(0,0,0,001,02,0)| Ds@AZpR | 12 82|55
21 | A3xA; |(4,5,0,0,0,1,2,0,0) | D, A; @ R® 5 24%|1 |2
22 | AsxA1 | (3,1,0,0,0,3,1,0,0) | D@ A; @ R? 7] 20tf1 (&
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TABLE IV: (continued)

Conjugacy Carter s 0 Tr X | Order | c,igma| n
Class| Diagram of ¥
23 As (2,2,0,0,0,1,0,1,0)| D,®A; ®R3 10| 12° 1|3
24 | DgxA;  |(2,1,0,0,0,0,0,1,2) As o R3 7] 12¢ 1|3
25 | D4(a1)xA; |(1,0,0,0,0,0,0,0,1) AR 8 4 1] 4
26 Ds (1,1,0,0,0,0,1,1,0) Ds ® R3 14 8 1| L&
27 | Ds(a)) (4,3,0,0,0,1,2,2,0) Ds® R* 15] 24* 1|2
28 AS (0,0,0,0,0,1,0,0,0) Ds @ A; 0 4* 43
29 | A;xA}  [(0,2,0,0,0,00,10)] Ds@ A, &R -3 6 2 | &
30 | AZxA?  [(1,0,0,0,1,0,0,0,2) AloR? 2| 12 12
31 A3 (0,0,0,0,0,0,1,0,0) Es @ A, 1 5 3 3113
32 | As;xA}  [(0,00,1,0001,0) A3 @A ®A2BR]| 0 8* 2 |4
33 [AsxAzxA; ((1,0,1,0,2,0,3,0,0)| A, ®Ad@R® 1| 24* 1 |
34 (AZY (0,1,0,0,0,0,0,1,0)] D¢ A; DR 4 4 2| &
35 (A2)" (1,1,0,0,1,0,0,0,0) A? @ R? o] s 1| &
36 | AsxA}  ](2,03,000101) A;pA’@R? -1 20 1|8
37 | AsxA;  [(1,2,0,0,0,1,2,00)| Ds@ A, @ R? 2| 15 1|4
38 | (AsxAp) [(0,0,00,01,010)| Ds@A’@R 6 6 28
39 | (AsxA1)” [(1,0,1,001,1,00)| A;@A2@R? 2| 12* 1|4
40 Ag (1,1,0,0,0,1,0,0,0)| D4 A, ® R? 3 7 1] 2
41 | D4xA? [(0,2,0,0,0,1,0,2,0)| Ds® A2 @ R? 3] 12* 2 | &
42 | DsxAz  ((1,1,0,0,0,0,0,0,1) As ® R? 0 6 1|4
43 | D4(a1)xA2 (2,0,1,0,0,0,0,0,2)| As ®A; ® R? 1| 12 1|
44 | DsxA; [(1,0,0,0,0,1,0,0,1)| As® A, R? 2 8 1|8
45 | Ds(a1)xA; {(3,0,1,0,0,2,1,0,2)| A, ® A2 R* 3| 24 1|3
46 Ds (2,2,1,0,0,0,1,2,1) A; o R® 5/ 20 1|4
47 | De(a1) [(1,1,0,0,0,0,0,1,1) As o R? 6 8 1|8
48 | De(az) [(2,0,1,0,0,0,1,01)| A;®A’@R® 6 12* 1|2
49 E¢ (1,1,0,0,0,1,1,1,0) D;®R* 71 12 1|8
50 | E¢(a1) [(1,1,0,0,0,1,0,1,0)] Ds® A; ® R® gl 9 1| %
51 | Eg(az) [(1,1,0,0,0,0,1,0,0)| Ds;@ A, @ R? 9 6 1)1
52 AT (0,0,1,0,0,0,0,0,0) A7 A -4 4* 8 | &
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TABLE IV: (continued)

Conjugacy Carter s g0 Tr ¥ (Order|c, | 7
Class | Diagram of ¥
53 | AlxA;  [(0,0,0,0,0,0,1,03) As;®A,8R 3] 12¢|3 | &8
54 | AzxA}  [(0,2,0,0,0,1,0,0,0) Ds®As;dR 4 84| B
55 | AgxAzxA} 1(0,2,0,3,0,0,0,1,0)| A; @ Ade R? -3 2402 |18
56 | AZxA,; (0,0,0,0,0,1,0,0,0) Ds @ A; 0 443
57 |AsxAzxA; {(1,0,4,0,5,0,3,0,3) AloR! -2 60*|1 [£8
58 | Ag4xAz [(1,2,0,1,4,0,3,0,0) AloR* -1 40t |1 |2
59 | AsxA?  (0,0,1,1,0,00,1,0)| As;@AdeR? 2 122 (&
60 | AsxAz [(0,0,0,1,0,0200)| Al@A;6R 1 1273 |1
61 | AexA; [(1,0,31,0,03,0,0) A @AdeR® 1) 2801 &
62 (A7) (0,1,0,0,0,1,0,1,0)| Dy ® A2 @ R? 2| 8|2 |&
63 (A7)" (1,1,0,1,0,1,1,0,0) AloR* o 16*f1|&
64 | DyxA} 1(0,0,1,0,0,2,000)| Al@A, ®R 1) 12vf4 |2
65 | DixA; [(0,2,21,0,0,030)| A;oAZeR? -1 2402 |10
66 | Da(a1)xAs {(0,0,0,1,0,0,0,1,0) | A3 ® A2 0 AZ@R| 0 8* (2| 4
67 | DsxA? 1(0,1,1,0,0,0,0,1,0)| As @A, @ R? -2 g8l2 |8
68 | DsxAz [(1,2,0,0,0,1,2,03)| A3 ®A; ® R* -1 24 |1 |8
69 | Ds(a1)xAz |(1,1,0,1,0,0,3,02)| A, ®A2@R* 0f 24*|1 %
70 | DexA; (0,1,0,1,0,2,0,2,0) A} R} 1| 20°|2 (&
71 | De(az)xA; |(0,1,0,1,0,0,0,2,0)| A3 @ A3 R? 2| 12¢|2 |4
72 [ EexAr {(1,0,1,0,0,1,00,1)| A2¢A;8R? 1 12014
73 | Eg(a1)xA1 |(3,0,3,1,0,3,1,0,0) AloR* o 36%|1|i8
74 | Eg(az)xA; [(1,0,0,0,1,0,1,0,1)| A; A?@R? 1l 1271 &
75 Dy (2,2,1,0,1,1,0,1,1) AloR® 0f 247|1 (&L
76 | ‘Dr(a1) |(4,2,1,0,1,3,0,1,3) A?goRE 1] 40*|1|&
77 | Dr(az) [(3,2,0,0,2,1,0,0,1) AloR? 1] 24|18
78 E; (2,2,1,0,1,2,2,2,1) A;®R’ 2 386*|1 (18
9| Er(a) [(2,2,1,0,1,0,2,2,1) AloRS 3| 28 |1 |&
80 | Eq(a2) |(1,1,0,0,0,1,0,1,1)] A;dA; ®R? 30 12 (1| &
81 | Er(as) {(6,4,2,1,0,3,2,4,2) AR’ 4| 60*|1] %
82 | Er(as) [(2,0,01,0,1,000)| AZ@AZaR? 5| 12*|1] 3
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TABLE IV: (continued)

Conjugacy Carter s g0 Tr¥ | Order| ¢, | n
Class| Diagram of ¥

o 83 A8 (0,1,0,0,0,0,0,0,0) Ds -8 216 | 3
o 84 Al (0,0,0,0,0,0,0,0,1) Ag -4 3| 91¢
85 | AIxA?  1(0,0,1,0,0,0,0,0,0) A7 A -4 41 8|5

o 86 AZ (0,0,0,0,1,0,0,0,0) Al -2 51532
87 | AsxAzxA; [(0,0,0,1,0,0,0,0,0)] As @A A, 3] 66|35

88 | ArxA; ((0,0,1,0,0,1,0,00) AZ@ A, 8R -2 84|28

89 Ag (0,0,0,1,0,0,1,00)| Al@A;®R -1 93|48

90 | DgxA}  {(0,1,1,0,0,0,0,0,0) A7eR -5 68| %

91 D} (0,1,0,0,0,1,0,00){ Ds®A3;®R 20 64| %

e 92| Dy(a1)* [(0,0,0,0,0,1,0,0,0) Ds @ A3 0 443
93 | Ds(a1)xAsz [(0,0,1,0,0,2,0,00)| AZ®A;®R 1 124 4|

94 | DexA?  (0,1,1,0,0,1,0,0,0) Ao R? 3] 10| 42

95 Ds (0,1,0,1,0,1,0,1,0) AjoR? 1 142

96 | Ds(a1) [(0,0,0,1,0,1,0,1,0)| A, ®AfaR? o 12|22

97 | Ds(a2) {(0,1,2,1,0,2,0,3,0) AloR? o] 30|24

e 98| Ds(az) [(0,00,1,000,10)|A30A;0A20R| 0 824
99 | EexA, [(0,0,0,1,0,0,1,0,1) Ajo R’ 2| 12 3|

100 | Eg¢(a)xAz |(0,0,0,0,0,0,1,0,1)| AsDA0R 0 63|43
101 | ErxA;  {(0,1,1,1,0,1,0,1,0) AloR* 20 182418
102 | E7(a2)xA; [(0,1,1,0,0,1,0,1,0)| A; @ AZ@R? Al 122k
103 | E7(as)xA; [(0,0,1,0,0,00,1,0)| As®AZ@R 1 6| 2|3

o 104 Es (1,1,1,1,1,1,1,1,1) R® -1 301 |&
e 105 | BEg(a) |(1,1,1,0,1,1,1,1,1) AR’ O 24| 1|
e 106 | Es(a2) [(1,1,1,0,1,0,1,1,1) A?oRE o] 20128
o 107! Eg(as) {(1,1,0,1,0,0,1,0,0)| A, ®A}@R? of 12(1(&
108 | Es(ag) 1(1,0,1,0,1,0,1,1,1) AloR® 1| 18] 1|

e 109 | Eg(as) |(1,1,0,1,0,1,0,1,0) Ao R* 1] 15 1|4
e 110 | Es(as) [(1,0,0,1,0,0,1,0,0)] AZ@AZ@R? 2 10|1(3
111 | Eg(ar) {(1,0,1,0,1,0,0,1,0)| A2@ A, ®R® 2| 121 |&

e 112 | [Eg(ag) [(1,0,0,0,1,0,0,0,0)] As®A;0R 4 61|
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8. Some Final Comments.

The main original results of this work have been the determination of all possible
cases of NFPA Lie algebra automorphisms and the development of a method of calculat-
ing the possible invariant algebras of the twisted vertex operator construction of basic
representations of Kac-Moody algebras. Along the way we have given an exposition
of a classification theorem for conjugacy classes of the Weyl groups which we extended _
to cover the full automorphism groups of the root systems. We hope that the drawing

together and amplification of various other ideas in this work will also prove useful.

We have not looked at tabulating the invariant subalgebras and properties of twisted
vertex operator representations of the Kac-Moody corresponding to classical simply
laced Lie algebras, Ay and Dy. In particular due to lack of time we have not looked at
the most interesting case of Dy, although now that we have developed the methodology
for performing these calculations there is nothing to prevent us from going on to perform

such an examination.

We have only considered twisted and shifted vertex operator representations sepa-
rately. However they can be combined into the more general y—shifted vertex operator
representations of [5]. This construction involves a simultaneous twisting by a root sys-
tem automorphism, o, and a shifting of the root lattice A to the coset Ag +vin V. In
general distinct pairs (0,7) give distinct representations but there are times when dif-
ferent pairs produce isomorphic representations. The study of such isomorphisms is an
interesting exercise as it can lead to non-trivial character or power series identities. The
vacuum degeneracy of such representations is due partially to the shifted and partially
to the twisted parts of the construction. In some ways this corresponds to constructing
a representation of the twisted algebra and then regrading it by a shift. In the case
of inner automorphism we were able to calculate the vacuum degeneracies and confor-
mal weights by using the isomorphism between a twisted vertex operator representation,
where these things are difficult to calculate, and a shifted vertex operator representation
where they become relatively easy to calculate. In the case of an outer automorphism
we are led to look for an isomorphism between our twisted representation and some
representation with a standard twist and some shift delta which was related to the par-

ticular outer automorphism. It would thus be fruitful to examine these constructions in

_more detail.

166



Although we did not look at twisted vertex operator representations of non-simple
simply laced algebras in this work the methods empioyed can be directly extended to
cover such constructions. There are however added complications if the Lie algebra
contains two identical Lie algebras in its decomposition, such as Eg x Eg, as then there
are added outer automorphisms of of &, corresponding to interchanging the equivalent
root sublattices. This would probably allow an alternative formulation of the idea of
‘confusion’ given in [51]. The method could also be extended to the vertex operator

representations of non-simply laced algebras given in [2,47)

In addition we have been looking solely at bosonic strings and representations. It
would be interesting to extend our study to twisted fermionic representations of Kac-
Moody algebras. Another way of implementing the twisting of the heterotic string is via
the fermionic representation of Eg x Eg [15,17]. This produces some partition function

1dentities.

There is also the possibility of discovering more exotic representations of the Virasoro

algebra such as those given in [52,53].

One of the most interesting unanswered questions, in the field of twisted vertex
operator representations, is the construction of intertwining operators of different rep-
resentations of the same algebra. In string theory the intertwining operators (or twisted
string emission vertices) correspond to the vertex operators for emitting twisted strings
[54]. There are interesting possibilities when the normal vertex operators and inter-
twining operators combine together to enhance the symmetry generated by the normal
vertex operators aione. This seems to occur in only a few special cases [36]. An example
of this is the half twist, o — —a oré = %(1,0,0,0, 0,0,0,0,0), of Eg which has so(16)
as an invariant subalgebra. In this case the intertwining operators restore the original Eq
symmetry. This mechanism is also involved in the correspondence between the Eg x Eg

and Eﬂ%‘”ﬁl heterotic strings and the construction of the ‘moonshine module’ [15, 23].

From the string theory point of a view we must remember that there are a number
of limitations to the application of our results. Physical considerations put limits on
the covering torii of the orbifold. In particular modular invariance of the string theory
means that we must take the lattice for toroidal compactification to be self-dual. In
other ways our construction is of a very special type as our initial space is a torus.

~ In general this could be a more general manifold such as a Calabi-Yau space. Also
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we could, whilst retaining the toroidal covering space, look at more general orbifolds
obtained by dividing out by a non-abelian group. That is by considering the point
group to be non-abelian. There are technical problems in this case as we can no longer
use the shifted picture of Lie algebra automorphisms. This is because if we can write
two automorphisms in the shifted way, i.e. S(z) = e W HzebH with respect to the

same Cartan subalgebra then they must commute.

In the heterotic string theory when we start compactifying six of the ten initially
physical dimensions, as well as the sixteen internal dimensions of the left moving modes,
we could adopt the more general asymmetric orbifold construction [65,56,57]. It must
bebornein mind that the physical motivation fof looking at twisted strings on orbifolds
is to obtain a twisted model in four dimensions with a reduced but physically attractive

gauge group.

Recently the idea of twisted open strings has been revived [68]. These first appeared
in [8] in the construction of off-shell amplitudes of the dual model. They were discussed

in more detail in [59].

Finite order Lie algebra automorphisms are also important in the construction of
some practical tools in the representation theory of Lie algebras. Work is being done
to calculate the characters of these finite order automorphisms in irreducible represen-
tations of the Lie groups [60]. These character values allow the determination of infor-
mation about Lie groups and their representations for groups which is not obtainable

from more standard methods.

As stated in the introduction another use of twisted/untwisted vertex operators
occurs in the representation theory of finite groups. The task of classifying all the
finite simple groups was finally finished in 1981. The proof of this classification extends
over 10,000 to 15,000 pages of numerous journals. The resulting groups fall into three
classes (see [61] for details); groups of Lie type, alternating groups and 26 sporadic
groups. There is, as yet, no uniform description of the sporadic groups but one hope
is that lattices and vertex operators may lead to a more unified theory of finite simple
groups [23,62]. So far they have been used to construct a ‘moonshine module’ for the
monster (or Friendly Giant), Fy, the largest (~ 105%elements) sporadic group which
contains some 20 or 21 of the other 25 sporadic groups, the so called ‘happy family’,
as subgroups [23,24,63,64]. This infinite—dimensional representation involves the Leech
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Lattice, the lattice corresponding to the densest sphere packing in 24 dimensions, and
a cross—bracket algebra. Beyond his there is a vague hope that the monster may lead
to a unique four-dimensional string theory (see for eg [35,65)). Philosophically it would
be very nice to link a fundamental area of theoretical physics with such a fundamental

area of pure mathematics.

It is clear that twisted vertex operators have a long and interesting future ahead of

them in both mathematics and physics. -
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' APPENDIX : Lie algebra roots in an orthonormal basis.

Type Roots
A, e —e; 1<t 7<n+1 1 #
B. te; ke 1<z, 73<n t#
+e; 1<72<n
Cq +te; t e 1<4,j<n t#
+2e; 1<:<n
D, te; tej 1<72,75<n 1 # 7
E¢ te; Lej 3L, 73 <7 1 #
8 8
%Ee,‘ei 8,‘=i1,H8,=1 E]1 = €9 = &8
i=1 1=1
E; te; te; 2<4,353<T7 t # ]
i(e1+eg)
3 8
%—Zeieg E,’=:i:1,HE,’=1 €1 = €8
1=1 1=1
Eg e ke 1<4,5<8 t £ 7
8 8
%Esie; g ==1, J[Jes =1
1=1 1=1
Fy te; Le; 1< 53<4 1 # g
+e; 1<:<4
H(Zertertestey)
Ga e —€; 1<:35<3 t # 7
(i +ej—2ey) 1<4¢, 7, k<3 tE ] # ]
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