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Abstract 

There are many applications of Lie algebras to theoretical physics. This thesis is a 

study of some new mathematical structures which also are applicable to current physical 

ideas. The structures studied are Lie algebras of infinite dimension and the deformations 

of Lie algebras known as quantum algebras. The approach is algebraic, although physical 

applications are indicated. 

Chapter 1 

The mathematics of finite and infinite dimensional Lie algebras is reviewed, together with 

an indication of well established uses in physics. The terms and notation used in the rest 

of the thesis are introduced. 

Chapter 2 

Explicit examples of new infinite dimensional algebras of a type related to the algebras of 

conformal transformations on arbitrary genus Riemann surfaces are given. The relation­

ship of these algebras to the Virasoro algebra is discussed. 

Chapter 3 

The sine algebra is introduced and its relationship to the Moyal bracket discussed. The 

finite Lie algebras are given in a trigonometric basis. The many applications of the Moyal 

algebra are reviewed. 

Chapter 4 

An original proof of the uniqueness of the Moyal algebra is presented. It is shown that the 

Moyal bracket is the most general Lie bracket of functions of two variables, and thus that 

the underlying associative star product is unique. It follows that all 2-index Lie algebras 

correspond to the Moyal algebra in some basis. 

Chapter 5 

Quantum deformations of Lie algebras, or quantum algebras, are introduced. The many 

deformations of su(2) are described and the associativity conditions are discussed. Some 

new higher dimensional and infinite dimensional quantum algebras are given. 

Chapter 6 

Quantum groups are discussed as groups of transformations of the quantum plane. Higher 

dimensional quantum groups and quantum supergroups are also described. 
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Preface 

This thesis is the result of work carried out in the Department of Mathemat­

ical Sciences at the University of Durham, between October 1987 and September 

1990, under the supervision of Dr. D. B. Fairlie. No part of it has been previously 

submitted for any degree, either in this or any other university. 

No claim of originality is made for the material presented in chapter 1, which 

consists of a review of well established work, or for the review parts of chapter 5. 

The rest of the material in the thesis is original. 

The work in chapter 2 was done in collaboration with David Fairlie and Jean 

Nuyts and has been published~11 

The work in chapter 3 was done in collaboration with David Fairlie and Cos­

mas Zachos and has been published~2 ' 31 In particular, sections 3.6, 3.7, 3.8 contain 

the work of the author. 

The proof given in chapter 4 is the work of the author, and has been accepted 

for publication~41 

Chapter 5 consists partly of a review of quantum algebras, with some new 

examples. The viewpoint and the new examples are the result of discussions with 

David Fairlie. 

The work in chapter 6 was done in collaboration with Ed Corrigan, David 

Fairlie and Ryu Sasaki and has been published:51 
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1. Introduction 

The ancient astronomers held sacred the perfect geometrical shapes of the circle and 

the sphere, and today scientists still believe that symmetry is fundamental to the physical 

laws governing the universe. Symmetries are described mathematically by group theory; 

the groups associated with continuous symmetries, such as those of the circle and sphere, 

are called Lie groups. The symmetry group of the circle is the group of rotations in two 

dimensions, S0(2), which may be represented by 2 x 2 matrices of the form 

A(8) = . 
( 

cos 8 sin 8 ) 

- sin 8 cos () 

These matrices are closed under multiplication, which corresponds to composition of ro­

tations, as 

A(O)A(4>) = A(O + 4>). 

A more useful mathematical structure is the Lie algebra of infinitesimal rotations. In 

two dimensions this is so(2), generated by the matrix 

€=(0 1)· 
-1 0 

The Lie group corresponding to a Lie algebra may be obtained by exponentiating the 

generators of the algebra; here, 

A( 0) = JBe . 

The symmetry group of the sphere is S0(3), and is non-Abelian- that is, the same 

two rotations performed in a different order may have a different result. The corresponding 

Lie algebra of infinitesimal rotations in three dimensions is so(3). This is the algebra 

satisfied by the angular momentum operators, and has long been used in physics. More 

recently hadrons were seen to have the equivalent algebra su(2) as an internal symmetry, 

called isospin. This led to a breakthrough in the understanding of hadronic physics; 

the introduction of quarks and an su( 3) symmetry and the formulation of the theory of 

quantum chromodynamics. This generalization of su(2) to su(3) is one example of a new 

mathematical idea shedding light on a well established physical problem, and shows the 

fundamental importance of Lie algebras for theoretical physics. 
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The 'standard model' of particle physics is firmly based on the idea that the interac­

tions between particles are governed by Lie algebras, specifically the algebra su(2) x u(l) 

for the electromagnetic and weak forces, and su(3) for the strong force. The theory of 

relativity is simply a statement that space-time has an so(3, 1) symmetry, which is the 

symmetry generated by Lorentz transformations. Lie algebras are also of great impor­

tance to quantum theory, where the phase space variables satisfy the Heisenberg algebra, 

and Dirac's quantization procedure involves replacing Poisson brackets by commutators. 

Quantum mechanics may also be formulated in terms of another Lie bracket, the Moyal 

bracket, which is discussed in chapter 3. 

The major questions in particle theory today are those of unification, of the existence 

of some theory predicting the standard model with the correct experimental results for its 

parameters, and of possible theories unifying the standard model and gravity. Many of the 

theories put forward, if not all of them, are based on some new larger symmetry given by 

some Lie algebra. The simplest candidate for a 'grand unified theory' has the symmetry 

group su(5), as this is the smallest simple Lie algebra that contains su(3) x su(2) x u(l) as 

a subalgebra. The theory of supersymmetry posits a new symmetry between fermions and 

bosons, and is described by Lie superalgebras. Making this symmetry local requires the 

introduction of spin-2 fields, and there was a hope that this 'supergravity' theory would 

describe the gravitational force as well as the standard model. However, its predictions 

do not fit with experimental data. 

Superstring theories and conformal field theories have been introduced as 'theories 

of everything', and they have as a symmetry an infinite dimensional Lie algebra, the 

Virasoro algebra. There are many different string theories; one example is the heterotic 

string, which has gauge group Es xEs, a very large symmetry which contains that of the 

standard model. There are also intriguing correspondences between rational conformal 

field theories and Lie algebras. 

New infinite Lie algebras are arising in many areas of theoretical physics. There are 

the conformal algebras on higher genus Riemann surfaces; infinite generalizations of the 

classical finite Lie algebras used in su( oo) Yang-Mills theories, which have connections to 

string theory; the conformal algebras of higher spin, whose infinite limit is a Lie algebra; 

and more. 

Other ideas suggest that the symmetries of the real world are not described by a 

Lie algebra, but by a deformation of one. These structures which describe perturbed 
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symmetries are commonly referred to as 'quantum groups', more accurately as quantum 

algebras or Yang-Baxter algebras, and come into the mathematician's category of Hopf 

algebras. They possess one or more deformation parameters, in some limit of which 

they reduce to a Lie algebra - this is often thought of as the classical limit of some 

quantum mechanical structure. Quantum groups have already found applications in two 

dimensional solvable models, anisotropic spin chains, three dimensional Chern-Simons 

theory, rational conformal field theories and fractional statistics. 

1.1 Finite Dimensional Lie Algebras 

A Lie algebra Lis an algebra over a field F whose product, denoted by [, ], is bilinear, 

antisymmetric and satisfies the Jacobi identity, 

[x + y, z] = [x, z] + [y, z] , 

[ax, y] = a[x, y] , 

[x, y] = -[y, x] , 

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 , 

[6-9] 
where a E F and x,y,z E L. 

(1.1) 

Given an associative algebra it is possible to build a Lie algebra from the 

same set of elements but with a new product, commutation, the commutator [ , ] being 

given in terms of the associative product * by 

[x, y] =X* y- y *X . (1.2) 

It is straightforward to verify the axioms (1.1) for an algebra built in this way. 

A Lie algebra may be defined by the multiplication table of its basis elements under 

the bracket operation. For ad dimensional algebra with a basis Ta, where a E {1, ... , d}, 

these 'commutation relations' may be written* 

where the f:}'b are the 'structure constants', members of the field over which the algebra 

is taken. The d matrices of dimension d defined by (ad Ta)c,l! = f:}'b form a basis for 

* repeated indices imply summation throughout this thesis, unless otherwise stated 
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the 'adjoint representation' of the algebra. A 'representation' of a Lie algebra is a set of 

matrices, such as these, which satisfy the commutation relations, so that 

The associative product underlying the commutator for a matrix representation is 

simply the matrix product. Under this product the matrices will generate an associative 

algebra, which will have the dimension the same as or higher than the original Lie algebra, 

called the 'enveloping associative algebra' of the Lie algebra. 

It is possible to define a metric, a bilinear, basis invariant form, for a Lie algebra, 

the 'Killing form', in terms of the adjoint representation and the matrix product, 

(x, y) = Tr(ad x ad y) . 

A 'simple' Lie algebra is one with no proper ideals, a 'semi-simple' Lie algebra has no 

Abelian ideals. Thus simplicity implies semi-simplicity. An equivalent definition of semi­

simplicity is that the Killing form is non-degenerate. The semi-simple Lie algebras are 

the ones of particular interest to the physicist, usually over the complex or real numbers. 

Any semi-simple Lie algebra may be written as the direct sum of its ideals, i.e. as a direct 

sum of simple Lie algebras. 

An important example is the algebra of 2 x 2 matrices over the complex numbers, for 

which a convenient basis is that of Hermitian matrices 

which satisfy t 

:n. :n. = :n. ' 

laj = O"j 1 = O"j , 

O"jO"k = 8jk:D. + ifj~al , 

and so are closed under matrix product, and all 2 x 2 matrices may be defined as linear 

combinations of these four. This is a four (complex) dimensional associative algebra. Now 

t {j and f are the Kronecker and Levi-Civita symbols respectively 
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under commutation this is a basis for the Lie algebra of 2 x 2 matrices over the complex 

numbers, 

[:n., :n.] = 0 ' 

[:n.,aj] = 0, 

[aj, ak] = 2iEjklal , 

called gJ(2, C), or u(2, C). This is clearly a direct sum of two algebras, one spanned 

by the a matrices, consisting of all traceless 2 x 2 matrices, sJ(2, C) or su(2, C), and 

the other the one dimensional Abelian algebra u(l, C) represented by multiples of the 

identity. These algebras may be generalized toN dimensional matrices, giving gl(N, C)= 

u(l, C) x sl(N, C). 

The unique three dimensional complex Lie algebra is sl(2, C); this has two distinct real 

forms, i.e. real Lie algebras for which it is the complexification. The three dimensional 

real Lie algebras are sJ(2, JR.), real traceless 2 x 2 matrices, and su(2), skew-Hermitian 

traceless 2 x 2 matrices. Inclusion of the identity element leads to gJ(2, JR.) and u(2). A 

convenient basis for su( 2) is Tj = - i a j, so that 

and the algebra is closed over the reals. This is the 'compact' real form of sJ(2, C), the 

unique real form with negative definite Killing form - equivalently, its corresponding 

group is compact. For every complex Lie algebra there is precisely one compact real form. 

This example may also be used to illustrate a change of basis. Any three linearly 

independent complex combinations of the a matrices may be used as a basis for the 

algebra sJ(2, C), such as 

which satisfy the algebra 

[a3, a±] = ±2a± , 

[a+, a_] = 4a3 . 

This new basis is the standard basis, or Cartan-Weyl basis for sJ(2), which is diagonal, in 

that a3 acts on a basis element to give something proportional to that element. As the 

structure constants are real, this is a basis for both sJ(2, C) and sJ(2, R). 
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Any Lie algebra over the complex numbers has a basis of this form, with real structure 

constants, so that one of its real forms also has this basis. In fact, Chevalley has shown 

that this basis may be written with integral structure constants~101 In general the basis 

is built by taking a maximal mutually commuting subalgebra, the Cartan subalgebra, H, 

whose dimension, n, is the 'rank' of the algebra. As these elements commute, their adjoint 

representations ad hj, hj E H, are simultaneously diagonalizable over C. Then there is a 

basis for the other elements, ea, such that 

[h,ea] = a(h)ea, 

where a is called a root. The commutators between different e's may be calculated using 

the Jacobi identity, 

so that 

which means that [ea, e,a] = ea+,B is also a basis element, or {3 = -a and [ea, e,a] E H, 

or [ea, e,a] = 0. The roots can be thought of as vectors in some space, ~' with the 

Cartan elements lying at the origin, and then commutation of two basis elements has 

result proportional to the vector sum of the corresponding roots. If the vector sum lies 

outside the root space, the structure constant must be zero and the elements commute. 

Thus the form of this basis for a general algebra is: 

{ 

Na,aea+,B 

[ea, e,a] = ~ea, e-a)ha 

[h, ea] = a(h)ea 

[hj,hk] = 0 

if a+ {3 E ~ 

if a+ {3 = 0 

otherwise 

As any complex Lie algebra has a basis which may be constructed in this way, a clas­

sification of allowable root spaces amounts to a classification of finite simple Lie algebras 

over the complex numbers. The constraints on the root spaces come from the Jacobi 
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identity, and are quite severe - in particular the only allowed angles between roots are 

integer multiples of 7f /r1. This classification was achieved by Killing and Cartan before the 

end of the 19th century~11 • 121 There are two useful constructions from the root diagram, 

the Cartan matrix and the Dynkin diagram!131 whose classification in turn is equivalent 

to that of complex simple Lie algebras. 

The root diagram forE has the Cartan subalgebra at the origin and a vector for each 

root, such as for sl(2): 

The algebra of sl(3) is eight dimensional, with a two dimensional Cartan subalgebra. Its 

root diagram is: 

The root space may be generated by its 'simple' roots, of which there are n, the rank 

of the algebra. This is the dimension of the root space. For example, for sl(3) above the 

simple roots are a and {3. The Cartan matrix, A, for any root space is defined as 

where aj is a simple root, so for sl(3) this is 

A=(2 -1) 
-1 2 

For every Cartan matrix there is a corresponding Dynkin diagram, which consists of a 

vertex for each simple root aj, with a weight (aj,aj), with AjkAkj lines between vertices 

aj and ak. In fact there are only two possible weights, these are denoted by white and 

black blobs, and the number of lines may only be 0, 1, 2, 3, these numbers coming from 

the (few) allowed angles between the root vectors. The Dynkin diagram for sl( 3) is: 

o---o 

The conditions on allowable root spaces translate to allowable Cartan matrices and 

Dynkin diagrams, which may then be classified. The result of the classification in terms 

7 



of Dynkin diagrams is given in the following tables; there are four infinite series and five 

exceptional cases, all labelled by their rank, n. Also given are the fundamental matrix 

representations, dimension N, the physicist's names for the algebras and their dimensions. 

The classical algebras: 

matrices, (N) dimension Dynkin diagram 

An traceless, sl(n + 1) n( n + 2) = N 2 - 1 o---o- .. . --o---o 

Bn antisym, so(2n + 1) n(2n + 1) = ~N(N- 1) o---o- . . . ---o===e 

Cn symplectic,* sp(2n) n(2n + 1) = ~N(N + 1) • • . . . • 0 

Dn antisym, so(2n) n(2n- 1) = ~N(N- 1) o---o-. .. -----() -
(n blobs) 

The exceptional algebras: 

dimension Dynkin diagram 

78 

133 

Es 248 

F4 52 C>---O====e----

G2 14 a • 
Matrix representations have been found for all the exceptional algebras. Notice that 

D1 is the one dimensional Abelian algebra, A1 ~ B1 ~ C1, B2 ~ C2, D2 ~ A1 x A1 and 

D3 ~ A3. 

(
o -01). * A symplectic matrix M satisfies MT J + J M = 0 where J is block diagonal with blocks 
1 
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For every complex Lie algebra there is a unique compact real form, for sl( N) this 

is su(N). * These are of interest as they correspond to unitary groups, or algebras of 

Hermitian matrices. The compact form of sp(N) is usp(N), represented by Hermitian 

symplectic matrices. There are non-compact forms of so(N), written so(p, q), p + q = N, 

whiCh have metric with signature (p, q ). In a similar way, the non-compact real form of 

su(2), sJ(2, 1R) is sometimes written su(1, 1). 

There is another useful basis for gl(N), the 'physicist's basis', defined in terms of the 

matrices Ejk, which are zero but for a 1 in the j, k position. These satisfy the algebra 

There is a corresponding basis for sl(N), taking Hj = Ej.j - Ej+lJ+l as the (traceless) 

Cartan elements. 

A Casimir operator is an operator which commutes with every element of the algebra. 

It is not actually an element of the Lie algebra, but of the enveloping associative algebra, 

as it is defined in terms of products of the elements of the Lie algebra. For example, in 

su(2) there is a second order Casimir operator defined in terms of the a matrices, 

A Lie superalgebra is an algebra with two types of operators, usually referred to as 

bosonic and fermionic. The bosonic operators Bi satisfy an ordinary Lie algebra. As 

well as these there are fermionic operators, which commute with a bosonic operator to 

regain a fermionic operator. The fermionic operators themselves satisfy anticommutation 

relations; the anticommutator { , } is a symmetric product given in terms of the underlying 

associative product by {A, B} =A* B + B *A (see {1.2)). Two fermionic operators yield 

a bosonic operator on anticommutation, so the general relations are 

[Bi, Bj] = ctBk , 

[Bi, Fj] = dfjFk , 

{Fi, Fj} = fi~Bk · 

* In the physics literature, and indeed elsewhere in this thesis, su(N) is often used to mean its 
complexification, AN -1· 
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A superalgebra must satisfy several Jacobi-type identities, 

[[Bi, Bj], Bk] + [[Bj, Bk], Bi] + [[Bk, Bi], Bj] = 0 , 

[{Fi, Fj}, Bk] + [{Fj, Fk}, Bi] + [{Fk, Fi}, Bj] = 0, 

{[Bi, Fj], Fk} + {[Bj, Fk], Fi} + {[Bkl Fi], Fi} = 0 , 

which follow from the associativity of the underlying product. 

The simplest example of a Lie superalgebra is su(lll), which has four generators, two 

bosonic, B and I, and two fermionic, A±, satisfying 

[B,J] = 0, 

[B,A±] =±A±, 

[I, A±]= 0, 

{A+,A-} =B. 

1.2 Infinite Dimensional Lie Algebras 

Symmetry groups of algebraic or geometric objects of physical interest are not nec­

essarily finite dimensional. This inspires the study of infinite dimensional Lie algebras, 

which have an infinite number of independent operators. These may only be represented 

by matrices of infinite dimension, or by differential operators. 

Indeed, one starting point for infinite dimensional algebras is the consideration of an 

algebra of differential operators. The algebra of vector fields on the circle, Diff( S 1) is the 

Virasoro algebra~14 ' 151 Here the infinite dimensional group is that of smooth one-to-one 

maps S1 
-t S1, with group multiplication defined by composition. The representation of 

the corresponding Lie algebra obtained by considering the action of infinitesimal elements 

on functions of z is given by the differential operators 

L - zl-m_i_ 
m- dz · 

These are closed under commutation, satisfying the algebra 

[Lm, Ln] = (m- n)Lm+n . (1.3) 

The Jacobi identity follows from the associativity of the differential operators. The algebra 
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(1.3) is the centreless version of the Virasoro algebra, 

[Lm, Ln] = (m- n)Lm+n + 1c2m(m2
- 1)6m+n,O . (1.4) 

This is the algebra of the conformal group in one or two dimensions. The central element c 

satisfies [Lm, c] = 0, and in most physical applications this is a constant real number. The 

central extension comes from Dirac's quantization procedure, where the Poisson bracket 

describing the classical system is replaced by a commutator, and an extra term of order 

1i is introduced on the right hand side - this is the central term. The Jacobi identity 

requires that it has the form given in (1.4). 

This algebra is Z-graded, with each grade one dimensional, i.e. the basis elements, or 

'generators', have an integer index and commute to give something labelled by the sum 

of their indices. 

Another important family of infinite dimensional Lie algebras are the affine Lie al­

gebras, or Kac-Moody algebras~16-181 also reviewed in [15]. Given a d dimensional Lie 

algebra with commutation relations 

a second index may be introduced, this time an integer, and the resulting 'Kac-Moody' 

algebra 

satisfies the axioms for a Lie algebra, and is infinite dimensional. These algebras are also 

'Z-graded', with d dimensional grades. As for the Virasoro algebra, there is a central 

extension, 

[ a b] _ Ja,b c + k c:ah c: rm,rn - c rm+n mu Vm+n,O. 

Infinite dimensional Lie algebras remain unclassified. It is difficult even to classify the 

simplest type of such algebras, 

(1.5) 

Z-graded algebras with one dimensional grades. The Jacobi identity imposes a condition 
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on the structure constants Cm,n, explicitly 

The algebra (1.3) is of the form of (1.5), and so one solution for Cm.n is simply m- n. 

There is a further solution, 

the algebra here is equivalent to the Virasoro algebra up to a normalization of the gener­

ators, as the arbitrary function am can be absorbed by redefining Lm to Lm/ am. 

Kaplansky[
191 

has shown that this is the only solution of (1.5) with certain of the 

structure constants non-vanishing, specifically Co,t, C1,-1, C2,-1, C-2,1· Fairlie, Nuyts and 

1[
1
J conjectured that this is the only solution for Cm,n a ratio of multinomials in m, n. 

In fact Mathieu[201 has classified simple Z-graded Lie algebras of growth ~ 1, which 

includes the case discussed here, and has some other results for those of finite growth. 

One interesting approach to the classification of Lie algebras is that of a presentation. 

A presentation of an algebra is the definition of its generators in terms of certain initial 

generators, and a few conditions on their commutators. This has been done for the Vira­

soro algebra~21 ' 221 In this case all the L's may be defined in terms of just two generators, 

L3 and L-2· The imposition of the Jacobi identity then requires the structure constants 

to be m - n as long as six extra conditions are imposed. 

There is in fact another solution of (1.5) for the structure constants~21 

Cm,n =sin 2j(m- n), 

which avoids the hypotheses of the above proofs, and does not satisfy the extra conditions 

in the presentation. The corresponding algebra is 

This algebra is isomorphic to the su(2) Kac-Moody algebra through the identification 

The r's are graded, but with three generators at each level. Each level is conceptually 

the slat of an open Venetian blind; on closing the blind the generators spread out evenly, 
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so there is now one at each level, and the levels are closer together - this corresponds to 

the K's. 

K 
[18] 

ac was aware that the su(2) Kac-Moody algebra could be written as a Z-

graded algebra; that the structure constants could be written as an analytic function 

was discovered by Fairlie, Zachos and myself~21 The infinite dimensional Cartan sub­

algebra consists of the generators K3m, and there are su(2) subalgebras generated by 

K3m+b K3m-l, -Ko +em, for all m. Note also the parity automorphism Km ~ -K-m, 

c ~ -c. There is a presentation for this algebra in terms of K5, K-2, K_3!231 

Infinite dimensional Lie algebras may be supersymmetrized, for example the Virasoro 

algebra has two possible supersymmetric generalizations, the Ramond and the Neveu­

Schwarz algebras~24 · 251 given by 

[Lm, Ln] = (m- n)Lm+n + t2(m3
- m)8m+n,O, 

[Lm, Fa]= (lm- a)Fm+a, 

{Fa, Fb} = 2La+b + 1c2 (4a2
- 1)8a+b.O , 

where the indices a, b run over the integers for the Ramond case and the half-integers in 

the Neveu-Schwarz case. 
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2. Generalized-graded Algebras 

New infinite dimensional Lie algebras may be discovered by relaxation of the property 

of Z-grading held by the algebras discussed in the introduction. An alternative, weaker, 

condition on the commutator is that of 'generalized-grading'. Generalized-graded algebras 

are similar to the Virasoro algebra as they have generators indexed by an integer, with one 

generator for each integer. However, the commutator of any two generators is proportional 

to not just one other, but a combination of r others, of general form 

r-1 

[Nm, Nn] = L Ck(m, n)Nm+n-r+1+2k . 
k=O 

(2.1) 

The work described here was done in collaboration with David Fairlie and Jean 

Nuyts~11 We constructed examples of generalized-graded algebras under certain condi­

tions on the Ck(m, n), with the aim of a classification of these algebras, working from 

a completely algebraic point of view. We conjectured that all such algebras may be ex­

pressed in terms of linear combinations of Virasoro generators, and so either they are 

equivalent to the full Virasoro algebra, or they are an infinite subalgebra of it. Evidence 

for this conjecture is given in the final section of this chapter. 

2.1 Introduction 

Generalized-graded algebras were first introduced by Krichever and Novikov~26 ' 271 
as 

an algebraic extension of conformal invariance on an arbitrary genus Riemann surface, 

with applications to string theory and theories of solitons. This leads to algebras of the 

form (2.1) with r = 3g + 1, where g is the genus of the surface. The work of Krichever 

.k h k b h [28
-

341 and Nov1 ov as been ta en up y many ot ers. 

The algebras discussed by Krichever and Novikov have a complicated form, with 

structure constants given in terms of elliptic functions, so at first sight it is surprising 

to find that it is possible to express their generators, at least in the torus case, as linear 

combinations of the generators of the Virasoro algebra~331 
and vice-versa, implying that 

this algebra is actually the Virasoro algebra in a different basis. 
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The case of generalized-grading with r = 1, 

is equivalent to Z-grading, so the Virasoro algebra is a generalized-graded algebra, with 

C(m,n) = (m- n). 

This algebra describes conformal invariance on the sphere (genus 0). This was the starting 

point of Krichever and Novikov in their generalization. The uniqueness of this solution 

to the structure constants is discussed in chapter 1. 

A generalized-graded algebra with r terms on the right hand side in the commutation 

relation ( 2.1) will be described as an r-term algebra. For r > 1 there are many different 

possible solutions of the Jacobi identities. Determining these is an extremely difficult 

non-linear problem - the number of such identities which arise in the r-term case is 

2r- 1. 

Within the conjecture that the operators Nm may be re-expressed as a finite sum of 

contiguous even or odd Virasoro generators Lm, 

r-1 

Nm = L ak(m)Lm-r+1+2k , 
k=O 

(2.2) 

the problem may be transmuted to a simpler, though still difficult, form. The conditions 

for Nm to generate a generalized-graded algebra are still 2r - 1 equations, but the r 

unknown functions ak(m) depend on one variable rather than two. If the relationship 

(2.2) can be inverted to express the L's in terms of a sum (possibly semi-infinite) of the 

N's then the algebra is equivalent to the full Virasoro algebra, otherwise it is an infinite 

sub-algebra. These algebras may have central terms. These will be automatically induced 

by a suitable representation of the Virasoro generators. 

These algebras may be categorized according to the degree of m in the ak(m). The 

constraints for a closed algebra become more complicated as this increases. There is a 
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convenient representation of the Virasoro generators, 

L 1-m d 
m = z dz. 

Within this representation (2.2) becomes a power series in z, 

(2.3) 

There are no constraints for the case of constant ak(m). However for the cases of 

ak(m) linear and quadratic in m, there are eigenvalue conditions for the parameters, the 

solutions of which exhibit remarkable regular integral sequences. 

2.2 Constant Coefficients 

The generalized-graded algebras for which the ak(m) are independent of m correspond 

to the Virasoro case - the structure constants Ck(m, n) are just (m- n) up to multi­

plicative constants. Indeed it is clear from the following theorem that all algebras of this 

form may be expressed as a sum of L's. 

Theorem 1. If the coefficients ak(m) in (2.2) do not depend on m then the Nm form an 

algebra satisfying (2.1) with Ck(m, n) = ( m - n )ak. 

Proof: If the ak(m) are constants, (2.3) becomes 

r-1 

N "'"" k r-1-2k 1-m d 
m = L....Ja z z dz 

k=O 
d 

= g(z)zl-m_ ' 
dz 

defining g(z) as a power series. When forming the commutator [Nm, Nn] terms symmetric 

in m, n cancel, leaving only the part where zl-n is differentiated. 

[Nm, Nn] = (m- n) (g(z)) 2 zl-m-ni_ 
dz 

r-1 · d 
= (m _ n) "'""akg(z)zl-(m+n-r+1+2k)_ 

L....J dz 
k=O 
r-1 

= (m- n) L ak Nm+n-r+1+2k · 
k=O 

Comparing with (2.1) gives the result. 
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Alternatively, if p(z) is an elliptic or hyperelliptic function of z satisfying (p1(z))2 = 

g(p(z)) where g(p) is a polynomial of finite degree in p, then 

(2.4) 

(2.5) 

Commuting (2.4) gives a sum of N's. If g(p) is a polynomial in p2 , the Nm satisfy 

(2.1). Putting Lm = pl-m JP makes (2.5) equivalent to (2.2), with constant coefficients. 

Nuyts and Platten (JsJ have found a presentation for these algebras. 

2.3 Linear Coefficients 

If the ak(m) depend on m the problem is much harder. When forming the commutator, 

g(z) is a function of m so there are more antisymmetric terms and the above proof for 

the constant case no longer applies. Under the assumption that Nm is a sum of L's, the 

Jacobi identities are automatically satisfied. The constraints on the ak(m) come from the 

closure requirement; the result of commuting two such sums of L's must be expressible as 

a sum of N's: 

[N,N] 

l 

? 'EN 

i 
["EL, "EL] ---+ "EL 

Searching for solutions to this problem with the help of the computer algebra package 

REDUCE led to the following ansatz for algebras with linear ak(m). 

(2.6) 

which gives a closed algebra for certain values of the parameter f. Further experiments 

with REDUCE indicate that all such algebras may be expressed as (2.6) or as a gener­

alization given in a later section. Note that this is invariant up to sign under a 'parity 

automorphism' z ~---+ --:!-, m ~---+ -m. This is the remnant of the automorphisms of the Vi­

rasoro algebra generated by Lm ~---+ ±iLAm· The original algebra studied by Krichever and 

Novikov has a different normalization for the N's. In their papers [
26

' 
271 the normalization 
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is chosen so that the end structure constants are given by 

cr-\m, n) = (m- n) ' 

Co ( )---a~(_m_)a_(_n~)--(m,n) = m- n 
a(m + n- r + 1) 

The conditions of parity invariance are then 

N -m = =fa( -m)Nm and a(m)a( -m) = =F1 . 

These equations imply that the general structure of a(m) is given by 

IT
m-{3· 

a(m) = iAm 1 , 
. m + /3j 

J 

where the /3j and A are constants. The ansatz (2.6) corresponds to the case where there 

is only one factor in the product. The merit of this ansatz is that the 2r - 1 conditions 

for closure reduce to r + 1 linear equations for r unknowns, giving a single consistency 

requirement. The commutator may be calculated, 

[Nm, Nn] = (m- n){((m + f)(n + !)z + (m- !)(n- !)!) (z + !) - 4/(/- 1)} 

( 
1 )2r-4 1-m-n d 

x z + z z dz ' 

or, as a power senes 111 z, 

(2.7) 

Equation (2.1) may be also be expressed as a power series in z, using the same ansatz 

for Nm (2.6), and rearranging the summation 

~ (Ck(m, n)(m + n- r + 2k + 1 +f) ) r- 2k 1 r-2 l-m-n d 
[Nm,Nn] = L- Z (z+-:z) z d, 

k=O + ck-1(m, n)(m + n- r + 2k- 1- f) z 
(2.8) 

where c-1(m, n) = Cr(m, n) = 0. 
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The set of r + 1 equations obtained by equating coefficients in (2.7) and (2.8) may 

be written as a determinant which must be zero for all m, n for a closed algebra. This 

determinantal equation may be solved; the general case may be illustrated by explicit 

calculation of the case r = 5. First remove the factor of ( m - n ), and define 

>..=(m+f)(n+f), 

J1 =(m- f)(n- f) , 

11=-4!(!-1), 

(2.9) 

which will be treated as arbitrary parameters in the first stage of the analysis. Then for 

r = 5 the determinant is: 

m+n-4+f 0 

m+n-4-f m+n-2+! 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

m+n-2-f m+n+f 0 

0 m+n-f m+n+2+f 

0 

0 

0 

0 

m+n+2-f m+n+4+f 

0 rn+n+4-f 

(~)A 

(i)A + (~)JL + (~)v 

(;}A+ (i)tt + (~)1" 

mA + (~)JL + (~)v 

(!)A+ (;)It+ (~)v 

(!) JL 

This may be reduced by row and column operations. Put R1' = R1 - R2 + R3- R4 + · · · 
Then it is evident that the combinatorial factors in the last column cancel and that f = 0 

is an eigenvalue. Then perform C5' = C5 + C4, C4' = C4 + C3, etc., giving: 

2f 0 0 0 0 0 

m+n-4-f 2m+ 2n- 6 m+n-2+f 0 0 (~)A+ (~)It+ (~)v 

0 m+n-2-f 2m+ 2n- 2 m+n+f 0 (~)A+ (i)lt + (Dv 

0 0 m+n-f 2m+ 2n + 2 m+n+2+f (~)A+ (~)It+ G}t" 

0 0 0 m+n+2-f 2m+ 2n +6 (!)A+ miL+ G)u 

0 0 0 0 m+n+4-f (!)It 

And finally R5' = R5- R6, R4' = R4- R5', ... , yielding: 

2f 0 0 0 0 0 

m+n-4-f m+n-4+f 0 0 0 (~)A 

0 m+n-2-f m+n-2+! 0 0 (~)A+ (~)IL + (~)1-' 

0 0 m+n-f rn+n+f 0 (~)A+ (~)JL + {i)u 

0 0 0 m+n+2-f m+n+2+f mA + (~)JL + (~)~" 

0 0 0 0 m+n+4-f (~) JL 

This is 2/ times a 5 X 5 sub-determinant which is equivalent to the determinant in the 
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4-term case with I shifted to I+ 1. Thus the 5-term matrix has a zero at I = 0, and 

also at zeros of the 4-term case shifted by one. It is clear that the same row and column 

operations will work for the r-term case, which has zeros at I = 0, f' + 1 where the 

f' are the zeros of the ( r - 1 )-term case. The 3-term determinant has a single zero at 

f = 0, completing the inductive proofthat the r-term case has zeros at f = 0, 1, ... ,r-3, 

regardless of .X, J.L, and 11. It should be noted when I = 0 this reduces to the constant 

coefficient case. Explicit calculation of the 3-term determinant with .X, Jl, and 11 as in 

(2.9) show that the case with r = 3 has extra zeros at I = 1, 2. These zeros do not carry 

over in the induction above as the shift in I removes them. 

This family may be extended by noting that the only properties of the binomial 

coefficients (';) used in the above proof are that 

n 

:~::)-1)i(~) = 0 and 
i=O 

There are other sets of coefficients that satisfy these conditions - those in the expansion 

of (z + i(-q (z- i)q, which we shall refer to as (~t>. When q = 0 these reduce to the 

ordinary binomial coefficients. Note that 

i.e. the parity automorphism still holds, and also that 

This allows a new ansatz, 

(2.10) 

which has three parameters, r, q (q $ r- 2) and p (p = 0, 1), and there is a very similar 

inductive proof that the corresponding algebra is closed for the following values of 1: 

0 if p = 0, q = r - 2 

I= 
0, 1, 2 if p = 0, q = r- 3 

0, 1, ... , r- 3- q if p = 0, q > r- 3 

0, 1, ... , q- 1 if p = 1 

The solution (2.10) has positive parity if r- 1- q +pis even. 
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Abandoning the parity requirement allows more general solutions with two free pa­

rameters, e.g. in the four term case, 

Nm = (m + f)Lm+3 + c(m + f + ~)Lm+l + c; (m + f + !)Lm-1 + 2~(m + f + 2)Lm-3. 

This is simply a transformation of the previous solution, of the form 

The parity requirement is tantamount to the imposition of unitarity or anti-unitarity. 

Thus the eigenvalue condition plays a similar role to the restrictions on the c-number for 

unitary representations of the Virasoro algebra found by Belavin, Polyakov and Zamo­

lodchikov[361 and Friedan, Qiu and Shenker!371 

2.4 Quadratic Coefficients 

This form of construction generalizes to second order in m. Again there is a basic 

ansatz which respects the parity operation: 

In this case there are two eigenvalue equations, as there are r + 2 linear equations for the 

r structure constants. For the simplest example, c = b, one if the eigenvalue equations is 

solved automatically, and the ansatz reduces to 

(2.12) 

with only one eigenvalue equation remaining. Note that if a is zero the ansatz (2.12) is 

trivial as the Ck(m, n) are constant, since the Nm can be renormalized by dividing by 

the factor (m2 +b). Also if b is zero it reduces to the linear case by dividing Nm by m 

and with a replaced by f, so it is no surprise that for this case a must satisfy the same 

conditions as f. For the general case ( 2.11 ), the linear equations which must be solved 
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for the structure constants take the form 

where 

(

F(m + n- r + 1 + 2j)Cj(m,n) ) 

+ H(m + n- r- 1 + 2j)C~- 1 (m, n) 

+ G(m + n- r- 3 + 2j)C3-
2 (m, n) 

4 

= (m- n) L c=~)Ri , 
i=O 

F(m) = m 2 +am+ b , 

H(m) = 2(m2 +c) , 

G(m) = m 2
- am+ b = F(-m), 

Ro = F(m)F(n) , 

R1 = F(m)H(n) + F(n)H(m) + (m~n) (H(m)F(n)- H(n)F(m)) , 

R2 = H(m)H(n) + F(m)G(n) + F(n)G(m) + (m.:n)(F(n)G(m) __,. F(m)G(n)), 

R3 = H(m)G(n) + H(n)G(m) + (m.~n) {H(n)G(m)- H(m)G(n)) , 

~ = G(m)G(n) , 

and where j = 0, ... , r + 1 and c-2(m, n) = c-1(m, n) = cr(m, n) = cr+l(m, n) = 0. 

The conditions for these equations to admit a non-trivial solution are that the following 

(r + 2) x (r + 1) matrix is of rank r for all m, n, 

F(s- r + 1) 0 0 0 L::=O (~=~) Ri 
H(s-r+lJ F(s- r+3J 0 0 L::=O G=~)Ri 
Gcs- r + 1) H(s- r +3J Fcs- r + 5J 0 L::=O G=~)Ri 

0 Gcs- r + 3) Hcs-r+5J 0 L::=O G=~)Ri 
0 0 G(s- r + 5) 0 L::=o (~=~)Ri 

0 0 0 

where s = m + n. This problem may be solved by using row and column operations to 

introduce two rows of zeroes, which puts constraints on a, b, c. 

It proves convenient to define the functions 

~(k, x) = kG(x- 2) + H(x)- kG(x) , 

«P(k) = F(x)- ~(k,x + 2k) + G(x + 2k), 

8(k,x) = ~(k,x)- 2G(x). 
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Note that <I> is independent of x, and may be written as 

<1>( k) = 4k2 
- 4k - 4ak + 2b - 2c , (2.13) 

and also that ~(0, x) = H(x). 

Now subtract each row from the one preceding it, starting at the bottom of the matrix, 

and work upwards: 

~(0) -~(0) 

H(8- r + 1)- G(8- r + 1) ~(0) 

Gc8- r + 1) H(8- r + 3)- G(8- r + 3) 

0 G(8- r + 3) 

0 0 

±~(O) 

=F~(O) 

±~(0) 

=F~(O) 

G(8 +r -1) 

0 

E~=O G=~)R; 

E~=O (~=~) R; 

E~=O (;=!) R; 

"'4 {r-4) R. 
L.Ji=O r-i ' 

Next add columns, starting with the penultimate one and adding the one before, working 

from right to left. Then repeat the previous operation of subtracting rows, this time 

stopping at the second row: 

~(0) 0 0 0 0 

8(0, 8- r + 1) ~(1) -~(1) ±~(1) 0 

G(8- r + 1) 
~(1.8-r+3) 

~(1) - G(8- r + 3) =F~(1) E~=O G=~)R; 

0 G(8- r + 3) ~(1,8-r+5) 
- G(8- r + 5) ±~(1) E~=O (~=~) R; 

0 0 G!8- r + 5> =F~(1) E:=O G=~)R; 

0 0 0 G(8 +r- 1> Ei=o {r~~~J R; 

Repeat the previous operations r times, each time operating on one fewer row and column. 

The top part of the resulting matrix is then: 

~(0) 0 0 0 0 

8(0,8- r + 1) ~(1) 0 0 0 

G(8- r + 1) 8(1.8-r+3) ~(2) 0 0 

0 G(8- r + 3) 8(2,8-r+5) ~(3) 0 

0 0 G(8- r + 5) 8(3, 8- r + 7) 0 

0 0 0 G(8- r + 7> 0 
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and the bottom part is: 

0 cJ>(r - 3) 0 0 Ro - R1 + R2 - R3 + R4 

0 e(r- 3, s + r- 5) cJ>(r-2) 0 R1 - 2Rz + 3R3 - 4R4 

0 G(s+r- 5) 8(r-2,s+r-3) cJ>(r- 1) R2 -3R3 +6~ 

0 0 G(s +r- 3) 8(r-l,s+r-l) R3- 4R4 

0 0 0 G<s+r-1) R4 

All the solutions (i.e. values of c, a and b which give this matrix rank r, corresponding 

to closed algebras) yet found are such that two of the <l?'s are zero, which may be labelled 

<l?(k) and <l?(k + l). If none of the <l?'s are zero it is easy to prove that r = 4. For r > 4 

the possible algebras (2.11) all fit into a parameterization of c, a, bin terms of k, l, and 

j, given by: 

c = b- 2k(k + l) 

a= 2k + l- 1 

b = { (k + j)(k + l- j- 1) 
arbitrary 

l even 

l odd 

{ 

k = 0, ... ,r- 5 
where 

l = 1, ... , r- 4- k 

k=O: l=r-3*,r-2t 

or k = 1: l = r- 4* 

k = 2: 

and where j = 0, ... ,!L-1 (l even), 

the marks *, t, ~ indicating special cases which will be explained later. 

If <1?( k) = 0 for some k ~ r - 5, then row k + 1 is a linear combination of the previous 

rows, assuming that k is the smallest zero of <I?. Row k + l + 1 is also a linear combination of 

previous rows, provided that <I?( k + l) = 0 (where k + l ~ r - 4) and that the determinant 

made from rows (k + 2), ... , (k + l + 1} and columns (k + 1), ... , (k + l) is zero. For 

example, the top two rows are all zero if <1?(0) = 0, <1?(1) = 0 and e(o, s- r + 1) = 0, the 

determinant in this case being just one element. 
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Now, if <l>(k) = <l>(k + l) = 0, then a, c and the other <l>'s are fixed, 

a= 2k + l- 1 , 

c = b - 2k( k + l) ' 

<l>(k + j) = 4j(j - l) 0 

The size of the determinant is l x l, and it is of the form: 

e(k,x) <l»(k + 1) 0 

G(X) e(k + 1,x + 2) <l»(k + 2) 

0 G(x + 2) e(k + 2, X + 4) 

0 0 G(x + 4) 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 0 Gcx + 2l- 4) 0(k + l- 1, x + 2l- 2) 

If l is odd then the above determinant is automatically zero (independently of b). By 

elementary row and column operations the determinant may be rewritten as an antisym­

metric one of odd dimension and hence vanishes. Otherwise, for even l, the determinant 

vanishes if 

b = (k + j)(k + l- j- 1) for j = 0, 1, ... , il - 1 . (2.14) 

The l = 6 case serves as an example of the general principle. Two further substitutions 

will simplify the expressions, 

b' = b - k( k + l - 1) and u = 2(k- x)- 3. 

The determinant becomes: 

5(u- 3) -20 0 0 0 0 

i(u-13)(u-3)+b' 3u+17 -32 0 0 0 

0 -!(u-9)(u+1)+b' u+33 -36 0 0 

0 0 i(u-5)(u+5)+b' -(u-33) -32 0 

0 0 0 i(u-1)(u+9)+b' -(3u-17) -20 

0 0 0 0 f(u+3)(u+13)+b' -5(u+3) 

All the lower diagonal elements may be made proportional to b' by column operations. 

When this is done the top left element turns out to be zero, so that if b' = 0, the 
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determinant is zero. The determinant may then be restored to a similar continuant form 

to the above by row operations. Repeat the column operations on the last four columns, 

so that the lower diagonal entries have a factor ( b' - 4 ), and again a zero appears on the 

diagonal (in the (3, 3) position). Restore the continuant form again, by row operations on 

the last three rows. Finally repeat the column and row operations on the last two rows 

and columns, giving: 

0 -20 0 0 0 0 

b' -(u- 13) -32 0 0 0 

0 i<u- 13)(u + 3) + b' 0 -36 0 0 

0 0 b'- 4 -!(-u -7) -32 0 

0 0 0 t ( u - 9 )( u + 1) + b' 0 -20 

0 0 0 0 b'- 6 _186 (u- 1) 

Manifestly the value of the determinant is 14400b'(b'- 4)(b'- 6), with zeroes as given by 

(2.14). 

There are two identities relating the Ri,, 

Ro- R1 + R2- R3 + R4 = cJl(O)cJl(1) , 

R1- 2R2 + 3R3- 4R4 = 2cJl(O)((a- 2)(m + n)- cJl(1)) , 

(2.15) 

(2.16) 

which introduce extra solutions for closed algebras. If cJl(O) = 0 or cJl(1) = 0, (2.15) implies 

that there is another zero in the last column, giving an additional value of L for k = 0, 1, 

marked*. If cJl(O) = 0 (or cJl(1) = 0 and a= 2) then (2.16) implies that there are two extra 

zeros in the last column, so there is yet another value of L permitted if k = 0, marked t. 
If cJl(2) = 0 and cJl(r- 2) = 0, and r > 5 there is also a solution. In this case, the cJl(2) 

serves a dual purpose; it allows the third row to be made zero, and allows us to make two 

extra zeroes in the last column, in the (r- 2) and (r- 1) rows. These rows are 

(

0 ... ~(r-3) 0 0 Ro-R1+R2-R3+R4) 

0 .. · 8(r- 3, s + r- 5) ~(r- 2) 0 R1 - 2R2 + 3R3 - 4R4 

But if cJl(2) = 0, then R1- 2R2 + 3R3- 4R4 = ~cJl(O)cJl(l)(s- 4), and the values of the 

cJl and e may be calculated to give 

(

0 .. · -4(r- 5) 0 0 ~(0)~(1) ) 

0 ·.. -2(r- 5)(s- 4) 0 0 ~~(0)~(1){s- 4) ' 

showing that adding the required multiple of column r - 2 to the last column makes the 
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two entries shown zero. Thus the determinant of the same form as above with k = 2 and 

l = r - 2 is the only other condition. These solutions are marked t. 

In the same way as for the linear case, the matrices for r = 3 and r = 4 are special, 

and their eigenvalues must be calculated explicitly. 
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The results are classified in the following table. 

c a 

r=3 b 0 

I 

2 

r=4 b 0 

I 

b- 2a 2 

3 

4 

b-4a+4 4 

r=5 b 0 

I 

2 

b- 2a 2 

r=6 b 0 

I 

2 

3 

b- 2a 2 

3 

b- 4a + 4 5 

r=7 b 0 

I 

2 

3 

4 

b- 2a 2 

3 

4 

b- 4a + 4 4 

6 

•The r = 3, 4 cases arc special. 
*Using (2.15). 
tusing (2.15) and (2.16). 
tsee text. 

b 

free 

0 

free 

free 

0 

free 

2 

5 

3 

free 

0 

free 

free 

free 

0 

free 

0,2 

free 

2 

6 

free 

0 

free 

0,2 

free 

free 

2 

free 

free 

free 

k l 

0 I• 

2" 

3• 

0 I• 

2• 

I I• 
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It is possible to make a similar generalization to (2.10) by replacing some of the factors 

of (z +±)in (2.11) by (z- ±). 
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2.5 Discussion 

In this chapter I have given various examples of generalized-graded algebras. The 

solutions found are surprisingly simple, belying the tortuous route to their discovery, and 

perhaps indicates a deeper explanation. The fact that the determinants possess any zeroes 

for all m, n is due to highly non-trivial cancellations. 

The expression (2.2) gives the N's as a finite sum of L's, 

r-1 

Nm = L ak(m)Lm-r+1+2k . 

k=O 

If the ak(m) are non-zero, this expression can be inverted to give Lm as a semi-infinite 

sum of N's, 

00 

Lm = L bk(m)Nm+r-1-2k , 

k=O 

and this gives a representation of Lm in terms of pseudo-differential operators!381 and the 

algebra of N's is in fact a transformation of the original Virasoro algebra. For the linear 

solutions the ak(m) have zeroes, which prevent this inversion for all L's and thus they are 

genuinely different.* Similar results hold for the quadratic case, when b is such that the 

quadratic F(m) factorizes. Note that this always happens when b is not arbitrary. 

Returning to the problem of whether the generators of any generalized-graded algebra 

can be expressed in terms of a finite sum of Virasoro generators, some evidence for this 

hypothesis comes from an examination of the structure constants for the second highest 

term. In Krichever and Novikov's normalization the leading constant, cr-l(m, n) is simply 

(m-n). The Jacobi identity may be calculated, and the result is a sum of N's ranging from 

Nm+n+p-2r+2 to Nm+n+p+2r-2· The coefficient of the highest N cancels automatically. 

The coefficient of the next highest term is linear in the structure constant cr-2(m, n), 

and is, explicitly: 

[((m- n)cr-2(m + n + r- l,p) + (m + n + r- 3- p)cr-2(m, n)] +cyclic= 0. (2.17) 

This must hold for all values of m, n, p. It is possible to solve for cr-2(m, n) in terms of 

the function of one variable cr-2(m, 1 - r) by looking at the special case of (2.17) with 

* The matrix of the set of linear equations (2.2) from m = -oo to a given m is lower triangular: If 
the diagonal contains any zeroes, it is singular. 
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p = 1 - r, with the result 

cr-2(m, n) = ~{ (m- n)cr-2(m + n + r- 1,1- r) 

- (m- n- 2)cr-2(m, 1- r)- (m- n + 2)cr-2(n, 1- r)} . 

The remarkable property of this solution of the special case p = 1 - r is that it is actually 

a solution of ( 2.17) for all m, n, p. Furthermore if one looks for a representation for Nm 

of the form of (2.2) the coefficients are given by 

ar-l(m) = 1 , 

ar-2(m) = cr-l(m, 1- r) + (m + r)ar- 2(1- r) . 

Of course this is only a first order identification, but it holds promise that similar connec­

tions may be deduced for further terms in the expansion. This conjecture is supported by 

computer experiments using REDUCE. 
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3. The Sine Algebra 

In October 1988 David Fairlie, Cosmas Zachos and I introduced the sine algebra~21 

This is an infinite dimensional Lie algebra, which is graded in a similar fashion to the 

Virasoro algebra, additively and with one generator in each grade; but each generator is 

indexed by a 2-vector m = (m1,m2) where the mi may be integer, real or even complex. 

Algebras which are indexed in this way are referred to as 2-index algebras; the analogue 

of Z-grading for these algebras is Z 2-grading. 

The sine algebra specifies an enormous symmetry. In this chapter I shall demonstrate 

that it contains all the classical finite dimensional Lie algebras~31 and many other Lie 

algebras, either as special cases or as subalgebras. This provides a very useful 'egalitarian' 

basis for Lie algebras, one in which all the generators appear on the same footing, rather 

than being split into Cartan elements and roots. This has the advantage of only having 

one general commutation relation to work with, and the form of the relation is such that 

there is a straightforward way of taking the infinite limit of the classical algebras, yielding 

su( oo ), so( oo) and usp( oo ). 

3.1 Introduction 

The most general form of the algebra is given by 

[Km+b, Kn+b] = rsin K.(m X n) Km+n+b + a.m bm+n,O , 

where m x n = Eijmini = m1n2 -m2n1 and a, bare arbitrary 2-vectors. Unless otherwise 

stated, the mi are taken to be integers, so that the generators lie on a square lattice. Also 

b is taken to be zero - if it is any lattice vector then the generators may be redefined to 

eliminate it. The resulting Z 2-graded algebra is 

[Km,Kn] = rsinK.(m X n) Km+n + a.m bm+n,O. (3.1) 

Of course, r may be absorbed into the normalization of the generators. 

The algebra may only have a supersymmetric extension in the case where a vanishes, 
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i.e. there is no central extension. In this case the superalgebra is: 

[Km,Kn] = rsinK(m X n) Km+n, 

[Km, Fn] = rsin K(m X n) Fm+n, 

{ F m, F n} = s cos K( m X n) K m+n . 

(3.2) 

One of the most interesting special cases of this algebra is the limit algebra where 

r = ~ and K -+ 0 in ( 3.1), labelling the generators L, 

[Lm, Ln] = (m X n) Lm+n + a.m bm+n,O . (3.3) 

As in the above case, there is only a supersymmetric extension for the case with no 

central extension~391 the result being the K -+ 0 limit of (3.2) with r = ~ and s = 1: 

3.2 The Moyal Bracket 

[Lm,Ln] = m X n Lm+n' 

[Lm,Gn] = m X n Gm+n, 

{Gm,Gn} = Lm+n. 

The Poisson bracket of two differentiable functions f and g, 

8f 8g 8f 8g 
{/, 9 hoisson = Bx By - By Bx ' 

is well known. This is a Lie bracket, as it is antisymmetric and satisfies the Jacobi identity 

{{J,g},h} + {{g,h},/} + {{h,J},g} = 0. 

The Moyal bracket, or sine bracket, is a deformation of the Poisson bracket involving a 

parameter K; the bracket becoming the Poisson bracket in the limit as K-+ 0. It is also a 

Lie bracket. 
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There are various ways of writing the Moyal bracket of two functions f and g; in terms 

of a formal operator, 

{!, g }Moyal = lim ~ sin(~~:V x V')f(w )g(w') , 
:1:-+:e' 

a: a 2-vector, or its expansion, 

_ - II: _ j S + · 2s+l-j 2s+l-j · oo ( 1)s 2s 2s+l (2 1) 
{f,g}Moyal-~(2s+ 1)!fo( 1) j (~8y f(x,y))(8x (Yyg(x,y)), 

or as a generalized convolution, 

{f,g}Moyal = 4.;2K, j dw'dw"f(w')g(w")sin~~: (z x z' + z' x z" + z" x w) 

The associative product underlying this Lie bracket is the 'star product', or exponen­

tial bracket, 

f * g = lim exp(~~:V x V')f(z)g(z'), 
:e'-+:e 

which is a deformation of the ordinary product. Just as the antisymmetrization gives the 

Moyal, or sine, bracket, there is a symmetrization giving a symmetric, anti-commutator 

like bracket, the cosine bracket. This was introduced by Baker~401 and in his paper he 

shows that the sine and cosine brackets together form a Lie superalgebra, satisfying the 

super-Jacobi identities. 

The Moyal bracket was introduced by Moyal [411 in an alternative formulation of 

quantum mechanics in terms of Wigner distribution functions!421 f, which are statistical 

distributions on phase space. This work was continued by Baker[401 and Fairlie~431 Baker 

proved that the equations 

8/ 
{/, H}Moyal = fi 8t , 

{/,/}cosine = af , 

require the existence of a wave function 'ljJ which satisfies the Schrodinger equation, and 

in terms of which f may be expressed as 

f = j -/fJ(x- y, t),P(x + y, t)eipyfndy . 

In this context the parameter ~~: is proportional to fi, so in the classical limit the Poisson 

bracket is obtained. 
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A derivation 6 satisfies o(fg) = (6f)g + f(og). The Poisson bracket{/, h} for a given 

h acts as a derivation for the Poisson bracket and for the ordinary product, so 

{{j,g},h} = {{j,h},g} + {f,{g,h}}' {fg, h} = {/, h}g + f{g, h} ' 

It follows from the Jacobi and super-Jacobi identities that the Moyal bracket acts as a 

derivation for itself and also for the cosine bracket. 

3.3 Algebras of Modes 

The Poisson and Moyal brackets are Lie brackets of functions. By specifying a basis 

for the functions, a Lie algebra of generators under commutation is obtained. Given a 

bracket of two functions, define generators L 1 such that [ L 1, g] = { f, g}, which satisfy the 

. algebra 

For the Poisson bracket 

L _ aj !_ _ aj ~ 
I - ax ay ay ax . 

(3.4) 

(3.5) 

Now any choice of a complete set of functions as a basis for j, g may be substituted into 

the above to give a 2-index algebra. In the torus basis em(a:) = -eim.a:, for f =em in 

(3.5) 

L - L . im.a: m x 8 
m = em = -ze {)z ' 

and with g =em (3.4) becomes 

[Lm, Ln] = (m X n) Lm+n, 

which is the centreless version of (3.3)- the Poisson algebra in the torus basis. 

This is effectively a Fourier transformation, in the sense that, for general f, 

m 

and so any other j, g may be expanded in terms of the em to give a linear combination of 

the Lm. A different choice of the basis em( z) will lead to different structure constants, 
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for example the choice em(aJ) = xm1 +1ym2 +1, the plane, leads to the algebra 

This algebra is the Poisson algebra in the plane basis, equivalent to (3.3) up to a change 

of basis. 

The same procedure may be applied to the Moyal bracket. The basis-independent 

differential operator realization of KJ corresponding to (3.5) is[441 

In the torus basis, this becomes 

Km = 2i,., exp(im1x + Km2/x + im2y- Kml /y) 
= 2~ exp(im.aJ)exp(-Km X fw), 

somewhat analogous to the one-variable realization found by Hoppe!451 

The Km's defined here satisfy the centreless sine algebra (3.1)!441 

[Km,Kn] = rsinK(m X n) Km+n, 

the Moyal algebra on the torus. Again, a different set of basis functions will lead to an 

apparently different algebra. 

Thus these 2-index algebras may be thought of as algebras of the modes in the expan­

sion of the algebra of derivatives of continuous coordinates on manifolds, the expansion 

being taken over the basis functions for that manifold. 

The similarity in form of the Poisson algebra in the torus basis, (3.3), to the Virasoro 

algebra, the algebra of diffeomorphisms of the circle, Diff(S1 ), is manifest. It is intriguing 

to note that the Virasoro structure constants may be replaced by a sine function, just as 

they may for the Poisson algebra, obtaining the su(2) Kac-Moody algebra (see chapter 

1 ). 
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The algebra (3.3) constitutes the algebra of infinitesimal area-preserving diffeomor­

phisms of the torus, SDiffo(T2 )~46 ' 471 This may be seen by considering the generator L1, 

which transforms (x, y) to (x - U, y + ~). Infinitesimally, this is a canonical trans­

formation generated by f which preserves the area element dxdy. These infinitesimal 

transformations do not depend on the global properties of the surface, so the algebra of 

area-preserving diffeomorphisms of any 2-surface is related to (3.3) through a change of 

basis. 

3.4 The Finite Algebras 

One of the most interesting features of the sine algebra is that it contains, as special 

cases, all the finite classical simple Lie algebras. The result of this is a trigonometric 

basis for these finite algebras, which has many advantages over the more commonly used 

Cartan-Weyl basis. The particular cases of (3.1) are those which are centreless and have 

"' = 271" / N for some integer N. This choice imposes a modulo- N arithmetic on the 

structure constants, and so generators differing by N in either index may be consistently 

identified. This means that Km+Na is identified with Km for all integral 2-vectors a. 

There remain N 2 distinct generators, Km, mt, m2 = 0, ... , N - 1, lying on a toroidal 

integer lattice. The generators Km may equivalently be thought of as lattice averages, 

n 

Km = lim 4
1

2 ""' Km+N3· . 
n-+oo n L...J 

The resulting finite algebra is, absorbing normalization, 

(3.6) 

This is just the algebra of u(N) for N odd, or u(N/2)4 when N is even, as will be proven 

in a later section. 

First, note some interesting properties of (3.6). The generator K.o,o factors out of the 

algebra, as it commutes with the other N 2 - 1 and cannot result as a commutator of any of 

them. So this is a u(1). Each of the sets of N generators {K.m,o}, {K.o,m}, {K.m,N-m} has 

mutually commuting elements. For N odd these are the maximal such sets, and so may 

be taken as Cartan subalgebras. For N even the maximal mutually commuting sets are 

of size 2N: {Km,o, Km,N/2}, {K.o,m, K.N;2.m}, {K.m,N-rn, Km,N/2-m}; and the generators 
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ICo,N/2• /CN/2,0• /CN/2,N/2 factor out like /Co,o, making four u(1)'s in all. For all N the 

whole algebra may be generated by repeated commutation of /Co,1 and /C1,0· 

For N = 2P M, where M is odd, there are manifest subalgebras consisting of generators 

/C2rj where r ~ p, and the indices j are taken modulo-(2P-r M). These subalgebras are 

equivalent to (3.6) with the new N = 2P-r M. 

Other finite special cases of (3.1) occur when m1 and m2 repeat with different periods, 

i.e. the generators are identified 

for arbitrary a1, a2. It is sufficient to consider t = 1, as the structure constant is unchanged 

by the replacement 

This produces a consistent closed algebra, specifically s mutually commuting copies of the 

finite algebra (3.6). The copies are generated by 

s-1 
~ 21fipqfs K 
~ e m.1 +pN,rn2 ' 
p=O 

where q = 0, ... , s- 1 labels each copy. 

It is also worth noting that there are algebra automorphisms of (3.1), (3.3) and (3.6) 

induced by modular transformations of the index vectors 

where a, b, c, dare integers with ad- be= 1, and a undergoes the inverse transformation. 

3.5 The Trigonometric Basis for su(N) 

I d h . . [481 ntro uce t e two umtary matnces 

1 0 0 0 0 1 0 0 

0 w 0 0 0 0 1 0 

g= 0 0 w2 0 h= gN = hN = :n_, 

0 0 0 1 

0 0 0 w N-1 1 0 0 0 
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where w is an N'th root of unity with period no smaller than N, such as e21ri!N. Then 

define the N x N matrices 

(3.7) 

which satisfy 

Tr J(m1 ,m2 ) = 0 except for m1 = m2 = 0 mod N . (3.8) 

These matrices are all linearly independent, and they are traceless except for J(O,O) which 

is the identity, and so these N 2 matrices form a basis for u( N, CC). 

By virtue of the identity 

hg = wgh, 

these matrices close under mere multiplication: 

J J nxmf2J 
m n = W m+n · (3.9) 

and so satisfy the algebra 

(3.10) 

If w = e21ri/N (3.10) becomes 

(3.11) 

which has an apparent period of 2N. However, due to the symmetry 

J - (-l)(mt +l)a2+(m2+l)a1 J 
m+Na- m' 

only indices in the fundamental N x N cell need be considered, these N 2 distinct operators 

forming a trigonometric basis for u(N). 

For odd N, w = e41ri!N has period N, and the structure constant of (3.10) reduces to 

-2isin ~m x n. Thus for odd N we see that (3.6) is the algebra of u(N). 
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The matrices J were first introduced by Weyl£"81 as a basis for su(N), and have 

been used in various areas of mathematical physics~"9- 571 That it is possible to write the 

commutation relations in this basis with structure functions given by a simple function 

was discovered by Fairlie, Zachos and myself~21 This appearance of N in an analytic way 

allows the consideration of the large N limit of su(N). As N increases, the fundamental 

N x N cell covers the entire index lattice; the operators IC are supplanted by the K's and, 

in turn, since "" -+ 0, by the operators L of (3.3). More directly, it is immediately evident 

that, as N -+ oo, the su(N) algebra (3.1~ goes over to the Poisson algebra through the 

identification: 

An identification of this type was first noted by Hoppe£58
'

591 in the context ofmembrane 

physics: He connected the infinite N limit of the su(N) algebra in a special basis to that 

of SDiffo(S2 ), i.e. the infinitesimal area preserving diffeomorphisms of the sphere. 

As they are closed under the matrix product, the J's defined in (3.7) also satisfy the 

fermionic algebra 

so the same matrices may represent both bosonic and fermionic operators in the corre­

sponding finite case of the superalgebra (3.2). 

This is a realization of the superalgebra which goes back to Weyl £481 and his corre­

spondence rule, 

where (X, P) are canonically conjugate quantum variables with [X, P] 

Baker-Campbell-Haussdorf expansion, the product is 

and therefore 
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3.6 The Algebras so( N) and usp( N) 

In this section, the other classical Lie algebras are exhibited in a 'trigonometrical' 

basis analogous to that of su(N). Since these can fit as subalgebras in su(N), they can 

be extracted from it, and hence so( oo) and usp( oo) out of the limit su( oo ). The 

analysis is done in terms of the matrices J introduced above which satisfy (3.11), and 

form a basis for su(N) for all N. 

The subalgebras may be written as combinations of J's which close on themselves. 

Those of most interest are: 

a=O 

a= m1, N even 

a= m2,N even 

so(N) 

usp(N) 

so(N) 

a= m1 + m2, N = 4M usp(N) 

a= m1 +m2,N = 4M + 2 so(N) 

{

a= 0 so(N) 

a= m1 + m2, N even so(N) 

As an example, consider the second case, with a = 0, N odd. Denoting 

(3.14) 

The number of generators of these algebras is !N(N- 1). The commutation relations 

are: 

The other subalgebras satisfy similar relations. 

It is possible to take the large N limits of these subalgebras of su(N), resulting in the 

infinite algebras so( oo) and usp( oo ). These are infinite subalgebras of the Poisson algebra, 

su( oo ). 
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3. 7 Basis Change for su(N) 

To analyse the structure of these algebras further the transformation from the above 

trigonometric basis to the more usual Cartan-Weyl basis is given. This will show that the 

full algebra in theN even case is u(N/2)4 . 

The Cart an-Weyl basis for su( N) has the following commutation relations, in the 

usual notation (see chapter 1): 

{ 

N afjea+fj 

[eo:, e[j] = ~eo:, e-o:)ho: 

[hi, eo:] = a(h)ea 

[hi, hj] = 0 . 

ifa+.BE~ 

ifa+/3=0 

otherwise 

(3.15) 

(3.16) 

(3.17) 

The cases N odd and even differ slightly in detail, although the principle of finding 

the transformation is the same. In the case of N odd, the combinations of K.'s which give 

this basis are: 

N-1 

EP = "" w(2j-q)px:_. . 
q L- ],q-J ' 

N -1 w - ' 
j=O 

where q = 0 and p = 1, ... , i.(N -1) for the Cartan subalgebra, and q = 1, ... , N -1 and 

p = 0, ... , N- 1, for the remaining generators 

This may be shown by checking the commutation relations as follows: 

N-1 N-1 

[EPt EP2] = "" ""w(2j-qt)pt+(2k-IJ2)P2[K.. -. K.k -k] 
ql' q2 L- ~ ],ql Jl .q2 

j=O k=O 

N-1 N-1 

= L L w( 2j-qdpt+( 2k-q2)P2 sin }V(jq2- kq1)Kj+k,q
1
+q2-j-k 

j=O k=O 

N-1 N-1 _ .1."" ""w(2j-ql)P1+(2k-q2)P2(wiq2-kqt -w-jq2+kq1)Y'· k . k 
- 2i ~ L- "-J+ .ql +q2-]- . 

j=O k=O 
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Putting s = j + k and q = Ql + q2 and then resumming, using the invariance modulo N: 

N-1 
Using 2: wak = N ba,O, and then comparing with the expression for EC, 

k=O 

where the Q2/2 may be defined as an integer (as N may be added to the power of w to 

ensure that this power is even), so the halving of the index is defined by: 

q { q/2 q even 

2 = (q + N)/2 q odd . 

And so 

if 2(P2 -PI) = ±(ql + q2) 

0 otherwise 

which corresponds to (3.15). 

[EC\ EP2] = { ±~E~2 
q 0 

if 2(P2 -PI)= ±q 
otherwise 

showing the basis is diagonal (3.16), and 

as required. 
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For the case N even, the situation is more complicated. This time four of the JC's 

disconnect into u(1 )'s, !Coo, JC!! 0 , JC0 l:! and JCi:!.. l:!. This leaves N 2 - 4 generators, which 
, 2, '2 2 '2 

span four commuting su(N/2)'s. There are slight differences between the cases (a) N = 
0 mod 4 and (b) N = 2 mod 4, but the principle of construction is the same. As before, 

the Cartan subalgebra is spanned by the elements whose indices sum to 0 mod N /2. Note 

that there are 2N - 4 such operators, after excluding the four u( 1) 's. 

For (a), N- 0 mod 4, the generators in the Cartan-Weyl basis are: 

1 N-1 

Es,p = ~ ~ wPi(-l)s(j+a)+a(j+l)JC. . JY.. 
q ~ ~ J,q-J+a2 ' 

a=O j=O 

and for (b), N = 2 mod 4, 

1 N-1 
Es,p = ~ ~ wPi(-l)s(j+1)+(a+1)(j+l+P)JC. . N 

q ~ ~ J,q-J+a2' 
a=O j=O 

(3.18) 

where the q labels the sum of the indices, q = 0, ... , ~ - 1, and s,p take the values 

s = 0, 1,p = 0, ... , N -1. Then for case (a) the elements Eg·P for s = 0, 1; q + p even, odd 

span the four commuting su(N/2)'s. For case (b), the splitting is into those with s + q 

even, odd and p even, odd. 

That the above combinations are the generators of su(N/2)4 in the Cartan-Weyl basis 

may be shown by checking the commutation relations in a similar fashion to the N odd 

case above. Commuting two of the E's gives an expression which may be re-summed so 

that the coefficients of the JC's can be read off. The re-summed expression for (a), with 

a= a1 + a2, j = ii + h, q = q1 + q2 and P- = P1- P2 is 

[EBl ·Pl E82 ,p2] = 
ql ' q2 
1 N-1 1 N-1 L L L L wilP-+P2i sin }V(qil _ jq1 )(-l)(sl+·~2)(al+il)+s2(a+j)+a(j+1)JCj,q-j+~a, 

a=O j =0 a1 =0 }1 =0 

The separation into s = 0, 1 is evident as the only dependence of the coefficient of the JC 

on a1 is of the form ( -1 )(.~ 1 +s2 )a1 , so if s1 f. s2 then the two terms in that sum exactly 
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cancel. When s1 = s2, the coefficient indexed by a, j becomes: 

iv-1 
( -1 )sl(a+j)+a(j+l)wP2i t L whP- (whq-jqt _ w-hq+iqt) 

it=O 

= (-1)st(a+j)+a(j+l)wp2j /'f (w-jq16 O _ wjq16 _ o) 
' P-+q, P- q, 

The 6's are both zero if Pl + q1 and P2 + q2 have different parity, showing the overall split 

into four commuting subspaces. This coefficient may be compared that in (3.18), and the 

commutator rewritten as 

Similarly for (b), 

[Es~,pt Es2 ,p2] = 
ql ' q2 

1 N-1 1 N-1 L L L L wilP-+Pzi ( -1)(81 +s2)(it+1)+alp-+a(j+pz+l)+j(s2+1)+p_ 

a=O j=O a1=0 i1=0 

• 271"( . . )JC sm N q)l - )q1 j,q-j+lfa . 

This time, the coefficient of a1 in the exponent is P-, so the space splits into p even, odd. 

The coefficient of the JC here is 

N-1 
( -1 )s1 +s2+(s2+a+1)j+a(p1 +l)wP2i t L ( -1)it(s1+s2)whP- (whq-jql _ w-j1q+jq1) 

it=O 

( -1)sl+s2+(sz+a+l)j+a(pl+l)wP2i ty (w-jq16 N _ wjq16 N) 
z P-+q,(s1+s2)2 P--q,(st+s2h· 

Both 6 functions are zero if s1 + q1 and s2 + q2 have different parity. In performing the 

above manipulations the fact that wlf = -1 has been used. Thus, for Pl = P2 mod 2, 

where q = q1 + q2 mod N /2, and s = q + q1 + q2 mod 2, so that s + q = s1 + q1 -

s2 + q2 mod 2. 
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3.8 Basis Change for so( N) and usp( N) 

In a similar way, the subalgebras may be transformed to their Cartan-Weyl basis. As 

an example, consider (3.14). It is convenient to label the generators by q = m1 + m2, the 

sum of the indices. Those with q = 0 mod N all mutually commute, and this is taken 

as the Cartan subalgebra. Forming the Cartan-Weyl basis amounts to simultaneously 

diagonalizing the matrices which are the el~ments of the Cartan subalgebra in the adjoint 

representation, i.e. the matrices of structure constants on commutation of h with the ea 's; 

[h, eo:] = L Maf3ef3 . 
{3 

(3.19) 

These matrices are block diagonal, with a block for each q = 1, ... , N - 1, of size r = 
!(N- 1). The blocks are all of the form, independent of q, of 

0 0 

0 0 

0 0 

0 1 

1 0 

Thus the combinations of the generators with a given q proportional to the eigenvectors 

of Mr are diagonal. 

The characteristic polynomial, Pr, of Mr is given (up to sign) by the recurrence relation 

Pr = >..Pr-1 - Pr-2 , 

with Po = 1 and P1 = >.. - 1. This may be solved by writing >.. = 2 cos¢, then 

Pr = cos r</J - l-.co~ 1/J sin r¢ 
Sill 

= s~¢(sin(r + 1)¢- sin r¢) 

= 81~¢ cos(r + !)<P sin t . 

This vanishes when <P = <Pk = (2k- 1)1r / N, k = 1, ... , N. 
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Defining 

so that prk = Pr - 0. Then the eigenvector of Mr corresponding to the eigenvalue 

).. k = 2 cos ¢k is 

Now it is clear that the combinations of generators which diagonalize the basis are: 

r-1 

s; = L Pf Jrt(q+2j-1).t(q-2j+1)J , 
j=O 

The Cartan elements are Ha: = J[a,-a]· 

Working out the commutation relations in this basis, 

r-1 

[Ha, s;J = [J[a,N-a]l L Pf J[t(q+2j-1),t(q-2j+1)]l 
j=O 

r-1 

= L sin\pk (sin(j + l)¢k- sinj¢k)[J[a,-a]' J[t(q+2j-1),t(q-2j+1)]] 
j=O 

2
. . 1r r-1 

= - 't ~m¢"faq L ( sin(j + 1 )¢k - sin j ¢k) 
sm . 

0 }= 

( J[t(q+2j-1)+a,t(q-2j+1)-a] - J[t(q-2j+1)+a,t(q+2j-1)-aJ) 

Now consider the coefficient of J[t(q+2z_1),t(q-2l+1)]· This is 

2
. . 1r 

- ~ sm Naq ( k k k . k) . k sin(l- a)¢ - sin(l- a- 1)¢ + sin(l +a)¢ - sm(l +a- 1)¢ 
S111 ¢ 

-4i sin f;aq cos a¢k ( . z,t..k . (l ),t..k) 
S111 '+' - Slll - 1 '+' • 

sin¢k 

So 

showing that this is the diagonal basis. 
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A similar identification of some subalgebras was made by Pope and Romans~601 They 

introduce a basis for so( N) and another for usp( N) which are extensions of the Weyl [481 

basis to make the identification. FUrthermore, they identify the infinite limits of these 

subalgebras with the group of diffeomorphisms acting on two dimensional manifolds with 

different topology from the torus; in the one case a Klein bottle, in the other a projective 

plane. 

3.9 Casimir Invariants 

The construction of Casimir invariants is modelled upon that for the finite algebras 

discussed by Patera and Zassenhaus~531 The quadratic Casimir is 

There are in general two Casimir invariants of each degree above the quadratic. They are 

the real and imaginary parts of 

~ iK-mxn K K K L..J e m n -m-n , 

m,n 

"' (rr i~>(mcrxm,a)) K K K K L..J e m1 m2 · · · m, -ml-m2-"·-m, · 
m1,m2, ... ,mr o:<fJ 

Taking the imaginary part, a generic coefficient will be of the form 

sin(K(m x n + m x p + n x p + .. ·)) . 

By use of the addition formula for sines, this will always be reducible to terms with a 

typical sin K( m x n) factor. Whenever the remaining factor in such a term is symmetric 

in m and n, after use of the commutation relations to make Km and Kn adjacent, it is 

easy to see that this contribution to the Casimir may be reduced to one of one degree 

lower. For example, in the case of the cubic, 

m,n m,n 

Re-summing over m + n and m - n the right-hand side diverges, without an infinite 

renormalization of Km. Such a renormalization, however, would make the cosine-like 

contributions vanish. 
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The Casimirs of the Poisson algebra (3.3) follow by a K, ~ 0 limiting procedure, again 

there are apparently two for each degree, one of which can be reduced in degree as above, 

with a divergent result. 

In the matrix representation given by the J's, the Casimir operators are all propor­

tional to the identity, as the sum of the indices of each of their terms is zero. 

3.10 Triangular Lattices 

It is possible to realize similar infinite algebras on other lattices. In this section results 

for triangular lattices are given. 

It is convenient to choose a system of barycentric coordinates, and index K by three 

integers mt, m2, m3 where m1 + m2 + m3 = 0. (Barycentric coordinates measure the 

perpendicular distances of any point from the edges of the fundamental reference triangle, 

as in the Dalitz plot.) 

For this case, the relations are 

[Km, Kn] = sin(K,u.(m X n)) Km+n , 

where K, = 1rjN, and u is the vector (1, 1, 1). As before, finite algebras are found by identi­

fying generators at lattice points equivalent modulo N in each index. When N = 0 mod 3 

the generators whose indices are congruent modulo N all disconnect into u(1)'s. This 

leaves a hexagonal lattice, and the algebras obtained are u(N/3)6 . When N ¢ 0 mod 3, 

the fundamental lattice vectors of points reduced modN contains only one disconnected 

member, (0, 0, 0), and the remaining N 2 - 1 points are associated with generators which 

close on su(N). This situation is parallel with that for the square lattice. 

3.11 Applications 

There has been a lot of interest in 2-index algebras and their physical applications. 

The apparently different algebras appearing in the literature are all equivalent to the 

Moyal algebra or its special case, the Poisson algebra, but in different bases. In chapter 4 

I shall show that all2-index algebras are the Moyal algebra in some basis. The applications 

may be summarized in terms of the basis used. 
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As mentioned above, on the torus the Moyal algebra is the sine algebra (3.1), which 

contains all the classical finite Lie algebras as special cases. The representation theory of 

this algebra is treated by Floratos~61 ' 621 

Saveliev and Vershik [
63

-
651 have studied this algebra and some of its applications. 

They use a formalism intermediate between a bracket and a 2-index algebra, and Fourier 

transform just one variable, giving Z-graded algebras with the elements of each grade 

indexed by a continuous parameter .. They also transform the Poisson algebra to the 

Cart an-Weyl basis. In my notation, the Cart an-Weyl basis for the infinite algebra of L 's 

given by (3.3) is 

EP - ""' ipi L 
q - L...., e !(q+j),t(q-j) · 

j 

This result may be obtained by checking the commutation relation 

(3.20) 

In Saveliev and Vershik's notation, 

00 

Xq(f) = J f(p)E:dp. 
-00 

Thus, multiplying equation (3.20) by f(P1)9(P2) and performing this integral transform 

yields precisely their equation for the su( oo) commutator 

They also consider the non-linear equations associated with these algebras, in particular 

the generalization of the Liouville equation, the 'heavenly equation'. 

On the torus, the Poisson bracket algebra is in its simplest form, and has also been 

studied by N ovikov et al. [66
. 

671 It first appeared in the work of Arnold~46 ' 471 As has been 

shown, the Poisson algebra on the torus may be thought of as su( oo ). Floratos, lliopoulos 

and Tiktopoulos [681 utilized Hoppe's identification [58
' 

591 of SDiffo( S2) with su( N) to 

take the limit of su( N) gauge theory. In this context an intriguing connection to strings 

emerges~3 ' 44
' 

69
' 

701 as there is a correspondence between the classical vacuum states of the 
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resulting su( oo) Yang-Mills theory and the configurations of the classical string in terms 

of the quadratic Schild-Eguchi [
71

-
741 action density. This is also a symmetry of toroidal 

membranes!
75

' 
761 which provides an explanation for the connection between membrane 

theories and su( oo) Yang-Mills theory. It is possible to build another gauge invariant 

theory by replacing the Poisson bracket by the Moyal bracket, but it is not clear what 

system this represents. 

On the sphere, basis functions Ym1 m2 (x, y), there are also applications in membrane 

h . [45, 58, 59, 77-81] d . h . h . [82, 83] p ys1cs an m atmosp enc p ys1cs. 

Bender and Dunne[841 study quantum mechanical systems, finding exact solutions 

of the Heisenberg operator differential equations by finding a quantum analogue of the 

classical action-angle variable. Their operators satisfy the Moyal algebra in a basis for 

the plane, xm1 +Iym2 +1. The Poisson algebra on the plane was studied by Fuks!851 as the 

algebra of Hamiltonian vector fields. This is also the algebra of conserved currents of the 

Kadomtsev-Petviashvili equation, as investigated by Case and Monge~86 ' 871 

Other algebras of interest are the Zamolodchikov W N-alge bras!881 the conformal alge­

bras of spin ~ N, which are not Lie algebras, as they are not closed under commutation, 

but are non-linear. Work of Bakas!89
' 

901 and Bilal!911 demonstrates that the infinite limit 

of these algebras is a Lie algebra, explicitly, the Poisson algebra on the cylinder, basis 

functions em(z) = em1x1 x;n2 -l, so that 

This basis for the algebra has a manifest Virasoro subalgebra, the generators L(m,2)· 

Further work by Pope et al. [92
-

941 finds a deformation of this which has central exten­

sions at all spins; this is also a Lie algebra, as shown by Fairlie and Nuyts!
951 

the Moyal 

algebra on the cone, basis functions em1 x/Yy2(m2 +l). In their paper, Fairlie and Nuyts 

have three 2-index algebras, the first is a renormalization of that of Pope et al., the other 

two are the Moyal algebra on the cylinder and with hypergeometric basis functions. 

The allowable central extensions in these cases depend on the particular basis, so for 

physical applications this choice is of great importance. However, the fundamental algebra 

and its underlying associative product is the same in all these varied applications. 
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4. The Uniqueness of the Moyal Algebra 

As discussed in the previous chapter, the Moyal bracket has intriguing connections 

with quantum mechanics, and its algebras of modes appear in many varied areas of theo­

retical physics. In this chapter I present a proof of the uniqueness of the Moyal bracket, by 

proving that all Lie brackets of functions which satisfy the Jacobi identity may be trans­

formed to the Moyal bracket. I show that any 2-index algebra may be written in terms 

of some Lie bracket of functions, and thus that all 2-index algebras are locally equivalent 

to the sine algebra, or one of its subalgebras~41 

4.1 Introduction 

There is a detailed paper by Bayen et al.~961 which includes a statement that the 

Moyal bracket is the only deformation of the Poisson bracket which may be used for 

a phase space formulation of quantum mechanics. The main assumption they make is 

that their posited bracket is a function of the Poisson bracket. A more recent paper by 

Arveson 1971 gives a more direct proof that the only function of iterated Poisson brackets 

which satisfies the Jacobi identities is the Moyal bracket. 

I will consider a more general bracket. The form of brackets most easily dealt with is 

that of a sum of derivatives of the functions, such as, for the Moyal case 

_ - /'1, _ j S + 28+1-j · · 28+1-j oo ( 1)8 28 28+1 ( 2 1) 
{/,g}Moyal-~(2s+ 1)!~( 1) j (ax /Yyf(x,y))(~ay g(x,y)), 

( 4.1) 

as given in the previous chapter which in the limit "' ---t 0 becomes the Poisson bracket 

at ag 8f ag 
{f, g }Poisson = ax ay - By ax · ( 4.2) 

The most general possible bracket of this form is 

oo oo r 8 

{f,g} = L L ,r+8- 2 L L brj,8k(~a~-i f)(a!a;-kg), ( 4.3) 
r=l .~=1 j=O k=O 

where the b's are arbitrary constants. 
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As discussed in the previous chapter for the particular cases of Moyal and Poisson, 

from any bracket algebra many seemingly different 2-index algebras may be written down 

by choosing a basis for the functions. Conversely, for any 2-index algebra there is a 

corresponding algebra of functions under the operation of some bracket. This has also 

been shown by Dorfman and Gelfand;[981 here I give a simpler argument with a slight 

restriction on the structure constants. The general 2-index algebra is 

( 4.4) 

where m etc. are integral 2-vectors and summation is implied. 

First rewrite (4.4) as an algebra of functions. Let em(w) be a basis of functions, and 

define Lem = Lm. Then any LJ is defined through the composition f(w) = Lm fmem(w) 

to be Lm fmLem· The commutation relations become 

This is equivalent to a bracket algebra of the above type if there is some bracket such 

that {em, en}= C~nep. Now if e's are powers, em(w) = xi1+81 x22+82
, for sufficiently 

large integers s1, s2, and the structure constants C~n tend to zero as p - m - n tends 

to infinity, then it is possible to write 

L C~nep = L br,j~em8~-jen, 
p r,j 

This expression is a polynomial in xt, x2, and by equating coefficients the b's may be 

determined in terms of the (given) C's, and thus the algebra may be written as a bracket 

algebra of the form ( 4.3). 

Here I provide a straightforward proof that all 2-index infinite Lie algebras correspond 

to the Moyal algebra (or its special case, the Poisson algebra) in some basis. This is done 

by showing that any bracket algebra satisfying the Jacobi identities may be transformed 

to the Moyal bracket algebra. This also means that the only allowable associative product 

is that corresponding to the Moyal bracket, the exponential bracket; or star product, 

which in the limit becomes the ordinary product. This basis-independent formulation of 

2-index algebras in terms of brackets does not allow the discussion of central extensions, 

the existence and form of which depend on the basis used. 

* which is a.n associative product, not a. Lie bracket 
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4.2 Case r = s 

First consider a bracket of the following form: 

oo r r 

{!, g} = L Kr-1 L L br;k( Bt:a;-i !)( ~a;-k g) . ( 4.5) 
r=l j=O k=O 

When K = 0 this reduces to the Poisson bracket, antisymmetry forcing bwo = bn1 = 0, 

bno = -bwl· Here there is an overall normalization, bwt, which may be set to 1. In 

general, antisymmetry requires brjk = -brkj' and there will be one overall normalization, 

corresponding to a choice of b101· The parameter K may be absorbed into the b's, and 

henceforth this is done. 

It is also necessary to factor out by transformations of the independent variables x, y, 

such as 

(::) ~ (: :) (~) . 

This transformation changes the b's but does not indicate a genuinely different bracket. 

The coefficient of (8y/Ox9- Bx/Byg) transforms from b101 to (ad- be)b101 so ad- be is 

chosen to make the new b101 =1. This is merely a choice of overall normalization. There is 

still some freedom; that of transformations of the above type with ad- be = 1, which leave 

this choice unaffected. Given a bracket of the above form, with arbitrary b's, a, b, e, d may 

be chosen to transform the b2 's to a simple form. Under the above change of variables 

they are mapped 

2bd 

be+ ad 

2ac 

Note that this mapping preserves b~02 - b201 b212 = rt The matrix 

1 ) ( 1 0) 
- b2b:o~!] ~ b 

for b2o1, 'f/ =I 0 

makes b201 = b212 = 0, b202 = "'· When b201 = 0 the corresponding matrix is 

When 'TJ = 0 there are certain subtleties, but detailed analysis shows that this is equivalent 
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to the case b201 = b212 = 0, b202 = 'f/ = 0. Thus any bracket of the form ( 4.5) can be 

transformed to this case with general ry. 

Further constraints on the b's are given by the Jacobi identity 

{ {/, g }, h} + { {g, h }, /} + { { h, /}, g} = 0 . ( 4.6) 

00 t t 

{{J,g},h} = LL L bam(a~a~-l{J,g}q)(a~a~-mh) 
t=l l=O m=O 

The Jacobi identity requires that this expression plus cyclic permutations in /, g, h 

must be zero. This must be true for arbitrary functions/, g, h, so each derivative of these 

functions must have coefficient zero. Let the coefficient of 

be T(!x, /y, g:r;, gy, hx, hy), and then T +cyclic{!, g, h) = 0. 

summing under the constraints: 

/z = j + n 

/y = r- j +p 

Yz = k + l- n 

gy = r - k + t - l - p 

ha: =m 

hy = t- m 
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which may be rewritten as 

t =h.,+ hy 

T = (f.,+ fy + gz + gy - h., - hy)/2 

j = f., +g., - k - l 

p = r + t - gy - k - l 

n = k + l- g., 

g.,, f.,+ g.,- T ~ k + l ~f.,+ g.,, T + t- gy 

from which any T can be calculated by summing over allowed k, l. 

Now the Jacobi identities are 

The b's can be determined by looking at certain of these, in particular:* 

CT(/3, o:- /3, {, o:- {, 1, 1) = 2b201ba-l,,B,1 - 2b212ba-l,,B-1,,-1 

+ (21- o:)ba,,B,{ + (2/3- o:)ba,.B,/ 

=0 

CT((, 0:- (, 0:- ( + 1, (- 1, 0, 2) = (ba,(,a-(- b201ba-l,(,a-(- 2b2o2ba-l,(-l,a-( 

- b2olba-1,(-1,a-(+1 + (o:- ( + 1)ba,(-1,a-(+1 

=0 

CT(o:, 0, 0, 0:- 1, 1, 2) = b312ba-2,0,a-2 + !o:(o:- 1)ba,O,a 

- ba-l,O,a-2b212- (o: -1)ba-1,0,a-1b202 

=0 

which may be solved to give the following recurrence relations for the b's: 

ba,B1 = a-b-1 (b2mba-1,,B,1 - b212ba-1,.13-1a-1) for o: :/: f3 +I , 

ba,(,a-( = t(((- 1- o:)ba,(-l,a-(+1 + b201ba-l,(,a-( 

for ( :/: 0 , 

There is a unique solution to these recurrence relations* in closed form in the case 

* The calculation of the T's and the solution of the recurrence relations are given in appendices. 
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b2o1 = b212 = 0 and b2o2 = rJ: 

b r r = ~( TJ_-......:.p....:....)<_,_( "'-=--+~p ):...._a-_<_-_(::....:_TJ_+...:..p-=--)'...:....( TJ:._-__:P~)_a-_C 
a,.,,a-., 2p(!( a - ()! ' 

where p = .j 6b3o3 - 3rJ2 and baf31 = 0 if a =/: f3 + I· 

If rJ = 0 this is the Moyal bracket, where ba,(,a-( =pa-l /(!(a-()! if a is odd, zero 

otherwise, so 

{/ 9} =""" - K """(-1)i s + (af.a2s+1-iJ)(82s+l-J()!9) 
oo ( 1)s 2s 2s+l ( 2 1) 

' Moyal L.....t (2s + 1)! ~ . x y x y , 
s=O J=O J 

where s = (r- 1)/2, K = ip. 

In fact the rJ dependence may be removed as there is a convolution of the arbitrary 

functions that transforms this from any rJ to rJ = 0. This corresponds to a change of origin 

for the independent variables, where f(x, y) is replaced by a convolution: 

00 00 

(
2
:)

2 
j j exp (i(x- x'~(y- y')) f(x',y')dx'dy'. 

-oo -oo 

The iteration of this expression with a second parameter rJ' just reproduces the same 

formula with parameter rJ + rJ1
• 

This convolution takes any bracket of the above type to Moyal form, and so all brackets 

of the form ( 4.5) which satisfy the Jacobi identities are equivalent to the Moyal bracket. 

4.3 General Case 

There is a more general bracket than that considered above, one in which the functions 

J, 9 are not always of the same order in derivatives, that is r and s are not necessarily the 

same in the following expression: 

oooo r .~ 

{/,9} = L L Kr+s-2 L L brJ,sk(Bta~-J f)(a;a;-k9). (4.7) 
r=ls=l j=Ok=O 

The analysis of the previous section may be applied to this more general case, and in a 

similar way produces recurrence relations defining the b's in terms of those at the lowest 

56 



level. In particular, all the b's with r of:. s are defined in terms of boo,w and boo,ll· But there 

are transformations which take the general bracket above to one with these particular b's 

vanishing, and so the Jacobi identities imply that all the b's with r =f s must vanish. 

The K = 0 case of this bracket is 

{/,g}o = boo,w(/8yg- g8yf) + boo,ll(/Bxg- g8xf) + bw,n(By/Bxg- 8yg8xf), 

the last term of this being the Poisson bracket. If the basis functions are multiplied by a 

factor and simultaneously the coordinates are changed: 

f(x, y)-+ exp(boo,wx- boo,HY)F(x, y) 

g(x,y)-+ exp(boo,1ox- boo,HY)G(x,y) 

( X y) -+ (X Y) = _l_(_l_e-2boo,nY _l_e2boo,10x) 
' ' 2./2 boo,n ' boo,lo ' 

this reduces to the Poisson bracket, 

{/,g}o = bw,11(8vF8xG- 8yG8xF). 

Thus all brackets of the form ( 4. 7) may be transformed to a bracket with boo,lo = 

boo,u = 0, and any such bracket satisfying the Jacobi identity must be of the form of 

( 4.5), and so these, too, are all equivalent to Moyal. 

4.4 Discussion 

Almost all of the many Lie algebras discussed in the physics literature are somehow 

encompassed by the Moyal bracket. All the classical finite Lie algebras are special cases 

of the sine algebra, or indeed of the Moyal algebra on any manifold. The exceptional 

algebras have not been found explicitly, although they are dearly contained as subalge­

bras of sufficiently large members of the An series. It may be possible to find a more 

tasteful expression of them in a trigonometric basis, as part of some infinite series, as the 

exceptional Lie algebras may be thought of as being part of E, F and G series, the lower 

cases being isomorphic to classical algebras, and the higher cases being infinite algebras. 

The Virasoro algebra is present as a subalgebra of the Poisson algebra, and in a 

similar way the su(2) Kac-Moody algebra in its Z-graded form (discussed in chapter 1) 
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is a subalgebra of the Moyal algebra. As for the higher Kac-Moody algebras, they may 

be constructed by affinizing the finite Lie algebras in this basis, introducing a third index 

on the K's. 

As discussed in [2), there are Lie algebras whose generators carry more than two 

indices, so that they lie on ad dimensional integer lattice, m = (mt, ... , md), satisfying 

where the Zp are arbitrary d-vectors. However, a rotation in d dimensions brings ZI to 

the form (x, 0, ... , 0), and thus reduces the d dimensional lattice algebra to a stack of 

( d- 1) dimensional ones, with the first component of the generators labelling the position 

in the stack, and not appearing in the structure constants. This process may be repeated 

until the algebra becomes the sine algebra with d - 2 extra inert indices, which merely 

add under commutation. 

These extra indices are just the same as those introduced in the formulation of Kac­

Moody algebras. Bakas and Kiritsisl991 discuss the algebra W~, associated with sym­

plectic diffeomorphisms in four dimensions, and find the algebra ( 4.8) with d = 4, the 

generators indexed by two 2-vectors, 

[Li Lk ] . 7r ( )Lj+k 
m• m = Sin N m X n m+n . 

An interesting algebra is introduced by Savvidy !1001 the general algebra of vector fields 

on the torus, Vect(T2). The generators carry three indices, a 2-vector m, over which the 

algebra is Z 2-graded, and also an index taking the values 1 or 2. The commutation 

relations are 

[L!n, L~] = (m1- nl)L!n+n , 

[L~, L!J = (m2- n2)L~+n , 

[L!n, L!J = m2L!n+n- n1L~+n . 

This was generalized by David Fairlie and myself to the 3-index algebra 

[L~, L~] = (mj- nj)L~+n, 
. k j k 

[L~, LnJ = mkLm+n- niLm+n . 

It is not clear how such algebras fit into a bracket formalism. 
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The exponential bracket, or star product of two functions of two variables is 

f * g = lim exp(KV x V')f(z )g(z') , 
:~:'-+:~: 

and may be generalized in a straightforward way to functions of r variables by[1011 

00 n r 1 an f an 
f * 9 = "" "" "" Kn g L- L-~ (n- s)!s! axf!'-Sayf! axf!ayf!'-S 

n=O s=O J=l J J J J 

By antisymmetrizing and choosing a set of basis functions, infinite dimensional Lie alge­

bras with an arbitrary number of indices may be built. It is also possible to consider a 

generalized product of more than two functions of an arbitrary number of variables~1011 
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5. Quantum Algebras 

Some of the many applications of Lie algebras to physics have been discussed in the 

previous chapters, and it is evident that these mathematical structures are of importance 

in our understanding of the physical world. However, as yet there is no genuine unified 

theory based on a symmetry described by a Lie algebra. The generalizations to infinite di­

mensional algebras indicated in this thesis are one basis for new unifying theories; another 

is the introduction of quantum algebras. 

Quantum algebras, variously referred to as Yang-Baxter algebras, quantum universal 

enveloping algebras or quantum groups, are algebraic structures which describe perturbed 

symmetries, one source of such perturbations being quantum corrections to some classical 

structure. They have one or more parameters, in some limit of which the quantum algebra 

becomes a Lie algebra; this may be thought of as the classical limit of the algebra. In this 

sense quantum algebras are deformations of Lie algebras. 

These structures have appeared in many areas of mathematical physics, amongst 

others; two dimensional solvable models; anisotropic spin chains; three dimensional Chern­

Simona theory; rational· conformal field theories; and non-standard quantum statistics. 

There are several good reviews of the subject!
102

-
1051 

From the point of view of the mathematician these algebras are Hop£ algebras, which 

are bialgebras, and have a coproduct, counit and antipode as well as the ordinary product. 

I shall give a brief definition of these structures, taken from [105], but in most quantum 

algebras described in later sections I will not give the coproducts explicitly. 

5.1 Introduction 

The first quantum deformations of Lie algebras were studied by Kulish and Resheti-

kh
. [106] 
Ill, who found a deformation of su(2), 

[J J ] = sinh(21iJo) 
+' - 2sinhn ' 

which retrieves su(2) in the limit n --+ 0. Equivalently, in terms of a parameter q, q = e't, 
the deformed commutator is 

which may be written more simply in terms of 'q-deformations', where the q-deformation 
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of x is defined by the Chebyshev polynomial of the second kind, 

and then the algebra becomes 

(5.1) 

Drinfeld [1071 and Jimbo[108
'

1091 have also studied this deformation, and the su(N) 

case, with reference to their applications as solutions to the Yang-Baxter factorization 

equations in the S-matrices of two dimensional solvable models. Another application of 

this deformation of su(2) is in the theory of spin chains, where certain Hamiltonians are 

invariant under this algebra~1101 

Many alternative deformations of Lie algebras, in particular of su(2), have been in­

troduced. The example above is unusual in that is involves the exponential of one of the 

generators. Almost all of the other deformations of interest are of order no more than 

quadratic in the generators. One exception is the algebra of Sklyanin~1111 

[So, Sa]= 0, 

also studied by Macfarlane~1121 

[Sa, S±] = ±(SoS± + S±So) , 

s5 - s§ tanh 2 u = 4 sinh 2 u ' 

A coproduct, ~' is an algebra homomorphism V ---+ V ® V, where V is the vector 

space spanned by the generators. For the algebra (5.1) one possible coproduct is 

~( Jo) = Jo ® :n. + :n. ® Jo , 

Note that the ~( J) also satisfy the algebra (5.1 ), and that the coproduct is coassociative 

but not cocommutative. 

A counit, E, is an algebra homomorphism which reverses the effect of the above co­

multiplication. This satisfies 

where m is the multiplication map m( a® b) = ab For the example above, it is ~:( Ja) = 0, 

t:( 11.) = 11.. 
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Finally, an antipode, S, 1s an algebra antihomomorphism, S(JaJb) 

satisfying 

a(~(S(Ja))) = (S ® S)~(Ja), 

where a is the permutation map a(a®b) = b®a. Here, S(J±) = -q±1J±, S(Jo) = -Jo. 

5.2 Deformers and Representations 

Curtright and Zachos[1131 shed considerable light on the field of quantum algebras 

through their definition of 'deformers'. They provide a set of simple invertible functionals 

which transform between the a Lie algebra and any of its deformations, and hence between 

any two deformations of a given algebra. Substituting any representation of the Lie algebra 

into these functionals consequently produces a representation of the quantum algebra, and 

thus there is a correspondence between the representations of quantum algebras and their 

undeformed counterparts. Through these deformers comultiplication rules can be deduced 

from those of the classical algebra. 

However, there are certain special values of the deformation parameters for which the 

above deformers are not invertible, usually when q is some root of unity. These special 

cases of quantum algebras and their representations have to be treated differently. 

As an example, consider the Lie algebra su(2) in the Cartan-Weyl basis, 

[jo, i±l = ±j± , (5.2) 

and its deformation (5.1) 

The Casimir invariant of (5.2) is 

C = 2j+i- + jo(jo- 1) = 2j_j+ + io(jo + 1) = j(j + 1) , 

defining the operator j, and the corresponding invariant for ( 5.1) is 

The deformers between these algebras give the generators of the deformed algebra 

in terms of functionals, Q, of those of the Lie algebra, and for the case of Hermitian 
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(113] 
operators 

Jo = Qo(jo) = jo, 
Uo + j)q[jo - 1 - j]q . 
(jo + j)(jo - 1 - j) J+ ' 

Now representations of (5.1) may be found by substituting representations of su(2) into 

the deformers. The fundamental representation of su(2) is also a representation of the 

quantum version- this is often the case- and so 

Jo=! G ~~) ' ~c J+ = .../2 0 ~) ,J_ = J1' 

satisfies (5.1). Another representation of su(2) is given by 

3 0 0 0 0 v'3 0 0 

. 1 0 1 0 0 . 1 0 0 2 0 
Jo = 2 

0 0 -1 0 
)+ = V2 

0 0 0 v'3 
0 0 0 -3 0 0 0 0 

which maps to 

0 J{3T; 0 0 

J - 1 
0 0 [2)q 0 

Jo = io, +- .../2 0 0 0 v'[3T; 
0 0 0 0 

In the special case q = e27ri/3 , [3]q = 0, and the 4 representation above reduces to 

1 EB 2 EB 1. This type of reduction always takes place for q a root of unity with period 

smaller than the dimensionality of the representation. 

5.3 Quommutator Algebras 

One way of deforming a Lie algebra is to introduce one or more parameters into the 

left hand side of the commutation relations, replacing the commutator by a q-commutator, 
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* or 'quommutator', 

(5.3) 

where the Qjk are some parameters, real or complex numbers. The quommutator is made 

antisymmetric, 

by requiring Qkj = qjk1
, and in the limit Qjk ___. 1 this becomes the ordinary commutator. 

The quommutator is defined in terms of a product (5.3), the condition that this prod­

uct is associative puts a constraint on the possible algebras, just as the Jacobi identity 

dictates possible Lie algebras. A sufficient, though not necessary condition for the asso­

ciativity of the underlying algebra is that the 'braiding relation' is satisfied. Starting with 

a product of three generators, there are two distinct ways of turning the order around; 

by swapping the first pair using the quommutation relations, then the second pair, then 

the first pair once more; or the second pair, the first, and the second; as shown in the 

following diagram: 

YXZ ___. YZX 

/ 
XYZ ZYX 

/ 
XZY ___. ZXY 

The condition that the results of the two processes are equal for any three generators 

X, Y, Z is the braiding relation, so-called as it corresponds to the equivalence of the two 

braids: 

In the Qjk - 1 limit this reduces to the Jacobi identity. 

So a quommutator algebra may be written down starting with any Lie algebra in any 

basis, and all that is required is that the braiding relation holds. This gives conditions on 

the allowable values of Qjk· In a different basis, the same Lie algebra may give a different 

quommutator algebra. Thus there are many deformations of even the simplest Lie algebra, 

su(2). 
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One basis for su(2) is the cyclically symmetric basis, 

[X,Y] = Z, [Y,Z]=X, [Z,X]=Y. 

A parameter may be introduced into each commutation relation, giving 

[X,Y]q = qXY- ~YX = Z, 

[Y,Z]r = rYZ- ~ZY =X, 

[Z,X]p = pZX- ~XZ = Y. 

The braiding relation may be calculated, 

Lzyx + P
2 
z2 - !!..y2 + ~x2 = Lzyx + P

2 
x 2 - !!..y2 + ~z2 . 

r2q2 r2q r2 r r2q2 q2r q2 q 

(5.4) 

If X 2, Y2, Z 2 are independent, this requires p 2 = q2 = r 2, and so there is one free param­

eter remaining. This algebra has been studied in detail, and irreducible representations 

of arbitrary size have been found, by Fairlie~1141 It has also been studied by Odesskii~1151 

On the other hand, if ~X2 = ~Y2 = ~Z2 , so there are some further quadratic rela­

tions between the generators, the braiding relation is satisfied for all p, q, r. There is a 

representation for which this is true of this three parameter algebra, given in terms of the 

a matrices by 

- i..JP y - - 2 Cl2 , - !.:B. z-- 2 Cl3 • 

However, it is possible to prove that this is the only irreducible representation of this 

algebra. 

In the Cartan-Weyl basis, the commutation relations for su(2) are 

and again, parameters may be introduced into each commutator, the braiding relation this 

. . . 1 d" . 1 t h . t t al b 11141 time 1mposmg on y one con 1tlon, so t 1a t ere 1s a two parame er quan urn ge ra 

[Jo, J+]r = rJoJ+ - ~J+Jo = J+ , 

[Jo, J+h/r = ~JoJ- - rJ_Jo = -J_ , 

[J+, J-hts = :;J+J-- sJ_J+ = Jo. 

S · 1 f h. h b d. d b w· 11161 • h r. d u.r · 11171 pec1a cases o t 1s ave een stu 1e y 1tten, w1t r = v s, an vvoronow1cz, 

with r = s2. Again, its representations have been found by Fairlie!
1141 
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5.4 Quadratic Algebras 

The most general form for a quadratic algebra is given by 

(5.5) 

summation implied. The special case of this with syr: = hkbj· is 

a Lie algebra with structure constants CJk· 

The braiding relations for such an algebra may be calculated: 

QmQnQp = s::nQaQbQp + c:-nnQrQp 

= s::nsg;QaQcQl + c::nnQrQp + s~ncbpQaQs 
= s:nsg;s~~QjQkQl + c;nnQrQp + s::nc~QaQs + s::nsg;c!cQtQl 

QmQnQp = s:!;QmQaQb + c~pQmQr 

= s:;st::aQjQcQb + c~pQmQr + s~~c:naQsQb 
= S:!;S!;:as~tQJQkQl + C~pQmQr + S:!;C~wQsQb + S~~S~~aC~bQJQt 

These two expressions must be equal. The condition that the cubic terms in cancel is the 

Y B t 
. (ll8, 119] 

ang- ax er equatiOn, 

S ab 8ct 8 jk _ sabsJc skt mn bp ac - np ma cb (5.6) ' 

which is satisfied for the Lie algebra case s;J: = b~bj. There are also conditions from 

the quadratic terms, giving conditions on C, which in the Lie algebra case reduce to the 

Jacobi identity. 

It is possible to simplify notation, and avoid the many indices in the above expressions. 

Let V be the vector space in which the Q's live. Then the Yang-Baxter equation is an 

equation in the space V ® V ® V. The operator S acts on V ® V, and so we denote S 
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acting on the a and f3 copies of V in the triple space V ® V ® V by Saf3· The Yang-Baxter 

equation may now be written more transparently as 

A quommutator algebra, 

is equivalent to the general algebra (5.5) with Sj''J: = 8~8jq~j (no summation implied), 

and the Yang-Baxter equation is satisfied automatically. There are other solutions, such 

another deformation of su(2) stud-ied by Witten [1161 

[Eo, E-h!P = -E_, 

The problem of classifying algebras of this type is a very difficult one. 

5.5 Higher Quantum Algebras 

The generalization of the original deformation of Kulish and Reshetikhin to quantum 

su( N) for general N, and their affine versions, was done by Drinfeld [1071 and Jimbo~108 ' 1091 

I repeat here the deformations of su( n + 1) in the notation of Pasquier and Saleur [
1101 

, 

with generators Ea, Fa, q±Ha 12, where a = 1, ... , n. The relations are 

qHo. /2 Ef3q-Ho. /2 = qao.{j/2 Ef3 
1 

qH"/2Ff3q-H"/2 = q-aatJ/2Ff3, 

[Ea 1 Ff3] = 8a{3[Ha]q , 

[Ea, Ef3] = 0 if aaf3 = 0 , 

[Fa, Ff3] = 0 if aaf3 = 0 , 

Ea
2 
Ef3- (q + q- 1)EaEf3 Ea + Ef3 Ea

2 

= 0 if aaf3 = -1, 

Fa
2 
Ff3 - ( q + q -I) Fa Ff3 Fa + Ff3 Fci = 0 if aaf3 = -1 , 

where aaf3 denotes the elements of the Cart an matrix. Quatum versions of so( N) and 

sp( N) were introduced by Reshetikhin~1201 
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There is an alternative deformation of su(N) for arbitrary N in terms of the physicist's 

basis, 

This has a differential operator representation, 

One interesting property of this basis is that the structure constants do not involve N. 

The indices are taken over 0 ~ j, k < N, and by letting N tend to infinity this produces 

an alternative basis for su( oo ). 

This may be deformed to [1211 

which satisfies the braiding relation when 

q .k ~ q9km-9kn+Yin-Yjm 
J mn- ' 

where 9jk is antisymmetric. At first sight the number of q parameters is simply ~N(N -1), 

but some of them never appear in the relations, and the actual number is i(N -l)(N -2). 

The su(2) case is undeformed, the su(3) has one deformation parameter, and so on. This 

is an interesting algebra, as the cases for N > 2 all have subalgebras of ( undeformed) 

su(2) x u(l), which has possible implications for an understanding of the standard model 

in terms of a quantum algebra. 

This deformed algebra may be represented in same way as the Lie algebra, by consid­

ering the parameters to lie in a quantum space and replacing the derivatives with quantum 

derivatives. These ideas are discussed further in the next chapter. The same procedure 

may be carried out for the alternative representation of su(2) * given by 

8 
Jo = x-' 

8x 
2 8 

J_ = x 8x' 

resulting in the deformation of su(2) studied by Woronowicz and mentioned above. The 

* more accurately, su( 1, 1) 
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corresponding basis for su( N), generated by the N 2 - 1 operators 

may also be deformed. 

5.6 Infinite Quantum Algebras 

It is interesting to ask whether there are quantum analogues of infinite dimensional 

algebras, in particular the Virasoro algebra and the sine algebra. Consider a graded 

quommutator algebra satisfying the relation 

(5.7) 

where j, k may be integers or integral 2-vectors, satisfying Cki = -Cik and qki = qjj}. 

The conditions from the quadratic terms in the braiding relation on QmQnQp is 

qnmCmnQm+nQp + q~mqpmCmpQnQm+p + q~mq'fnnqpnCnpQn+pQm 

= QpnCnpQmQn+p + q'fmqpmCmpQm+pQn + q'fmq;mQnmCmnQpQm+n , 

no summation implied, which may be re-expressed using (5.7) to give 

qnmCmnQm+nQp + q~mqpmCmp(q;+p,nQm+pQn + Qm+p,nCn,m+pQm+n+p) 

+ q~mq'fnnqpnCnpQn+pQm 

= qpnCnp(q~+p,mQn+pQm + qn+p,mCm,n+pQm+n+p) + q;nqpmCmpQm+pQn 

+ q~qinnQnmCmn(q;n+n,pQm+nQp + Qm+n,pCp,m+nQm+n+p) · 

The terms quadratic in the generators give the condition 

and (5.8) 

and if this condition is satisfied the coefficient of the linear term simply reduces to the 

Jacobi identity on the structure constants, 

If the indices are integers, the only solutions to (5.8) are Qjk = (±l)i+k, unless extra 

conditions are imposed on the Q's, so there is no genuine quantum analogue of the Virasoro 
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algebra. The two cases corresponding to plus or minus are the Virasoro algebra and its 

Neveu-Schwarz supersymmetrization. 

The algebra 

• [113] 
put forward by Curtnght and Zachos may be represented by 

-m { q2x8 _ 1) 
Lm =X -1 ' q-q 

but only satisfies the braiding relation if extra quadratic conditions are imposed on the 
[122] generators. 

If the indices are 2-vectors there is an alternative solution to (5.8), 

mxn 
qmn = q ' 

giving a two parameter quantum Moyal algebra, discovered by Chand Devchand, David 

Fairlie, Tony Sudbery and myself, which supports a linear central extension, 

This may be represented in terms of the K's of the sine algebra, and elements g, h such 

that gh = qhg* by 

This algebra has finite cases when p and q are both roots of unity, which are versions 

of quantum su(N). The finite algebras only close in the case where both parameters are 

roots of unity, so this is not a deformation with a general q parameter. 

* for example, the matrices discussed in chapter 3 
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6. Quantum Groups 

An alternative approach to deformed symmetries is to consider the deformations of a 

Lie group, rather than the algebra. The correspondence between quantum algebras and 

quantum groups is not as simple as the exponential function relating Lie algebras and Lie 

groups; this has been studied by Woronowiczl1171 and Sudbery!1231 A more straightforward 

idea of quantum groups is that of matrix groups which act as transformations of, in the 

simplest case, a deformed, or quantum, plane. This deformation manifests itself through 

non-commutativity of the coordinates, and thus the elements of the transformation ma­

trices must themselves be non-commutative, obeying sets of bilinear product relations. 

In some limit of the parameters a Lie group is obtained. Quantum groups arise in quan­

tum inverse scattering theory and as representations of transfer matrices in statistical 

h · Th 1 f 1 · f h' h (103, 124-1271 mec ames. ere are severa use u revtews o t 1s approac . 

This chapter is based on work done in collaboration with Ed Corrigan, David Fairlie 

and Ryu Sasaki!51 developing ideas arising principally from the viewpoint of Manin!1281 

His starting point is to define a quantum group as effecting linear transformations upon 

a space whose elements, or coordinates, are non-commutative. The conditions for such 

a mapping to be an endomorphism constitute the quantum group relations. The group 

GLq{2) is studied in detail, and its dual introduced. This is generalized to the quantum 

supergroup GLq{111), and to higher quantum groups and supergroups. 

6.1 The Quantum Plane 

Manin introduces what he calls the quantum plane Rq[2, 0], whose elements are pairs 

:e = (x, y), where the components x, y are assumed to satisfy the algebraic relation 

-1 xy = q yx, (6.1) 

where q is a complex number. Clearly, in the q ---t 1 limit the classical plane is retrieved. 

The components neither commute nor anti commute unless q = ± 1 respectively. A Grass­

mannian quantum plane Rq[O, 2] dual to the (x, y) plane is also introduced, with elements 

e = ( ~' 1]) which are required to satisfy 

e =0, 2-0 "' - ' 
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A quantum matrix, 

effects simultaneously linear transformations of the quantum plane and its dual, 

a:'= Ma: E Rq[2,0], 

f.' = M f. E Rq [0, 2] . 

The condition that the images a:', f.' lie in the appropriate planes, i.e. their components 

satisfy (6.1) and (6.2) imposes restrictions upon M, giving the GLq(2) relations* 

ab = q-1ba, 

-1 ac = q ca, 

cd = q-1dc, 

be= cb, 

ad- da = (q-1 - q)bc. 

(6.3) 

It is relatively simple to show that these quantum matrices possess a comultiplication, 

counit and antipode. A suitable comultiplication is simply given by 

with corresponding counit and antipode just the ordinary matrix identity and inverse, 

S (: :) =(ad_ bc)-1 ( ~c ~b) . 

Using the relations it is easy to show that DetqM =ad- q-1bc commutes with all the 

elements a, b, c, d and thus may be considered as a number, the 'quantum determinant'. 

The choice DetqM = 1 restricts the quantum 'group' to SLq(2) by analogy with the clas­

sical restriction to the special linear group. Because DetqM commutes with the elements 

of M there exists an inverse 

( d -:b) ' M-1 = (Det M)-1 
q -1 -q c 

which is both a left and right inverse forM. Note that M-1 is a member of GLq-1(2) 

rather than GLq(2), and thus GLq(2) is not strictly speaking a group. Furthermore, it is 

* The elements of Mare supposed to commute with x,y,{,TJ. 
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clear that if 

M= (: :) and 
(

.a' b') M' = E GLq(2) , 
c' d' 

and (a, b, c, d) pairwise commute with (a', b', c', d') then M M' and M' M are both GLq(2) 

matrices. Also 

Detq(M M') = Detq(M' M) = (DetqM)(DetqM') , 

reinforcing the identification with a determinant. 

The relations (6.3) may be expressed in terms of an R-matrix[103
'

124
-

1261 

(6.4) 

where ~jkl is a matrix, whose explicit form is given by 

(k, l) 

q -1 0 0 0 

0 1 0 0 
{6.5) 

( i, j) 
0 q-1- q 1 0 

0 0 0 q -1 

where the rows are all pairs ( i, j), i, j = 1, 2 in natural order, and similarly the columns are 

pairs (k, l). The expression {6.4) may be expressed in the tensor product form introduced 

in the previous chapter, 

and the R-matrix satisfies the Yang-Baxter relation, in a slightly different form, 

{6.6) 

which for x, y = 0 is a sufficient condition for the associativity of the quantum matrices. 

Expression ( 6.5) is a member of a general class of R-matrices, each labelled by an addi-

. 1 d h . d . h f h 1 . 1 ffi L' 1 b r107
' 

1271 
tiona parameter x, an eac associate wit one o t e c assica a ne Ie age ras. 
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An explicit form of the R-matrices for the classical series is given by Jimbo. For An it is 

R(x) = (q-l- xq) L Eaa ® Eaa + (1- x) L Eaa ® E1313 
a:j;{3 

+ (q- 1
- q) (L +x L) Ea/3 ® E{3a. 

a</3 a>/3 

(6.7) 

In this expression, the indices i, j, k, l have been suppressed for the sake of clarity. The 

i, jth element of the matrix Ea/3 is given by 

For At, and x = 0, the matrix (6.5) is recovered. 

A curious property[sJ of 2 x 2 quantum groups is that if M E GLq(2) then Mn E 

GLqn(2), where the product is the ordinary matrix product, not the comultiplication 

which preserves the relations (6.3). It is interesting but appears neither to generalize nor 

to fit into a proper algebraic scheme.* 

6.2 Quantum Supergroups 

Returning to the quantum plane (x,y) and its dual (e,ry), suppose there is a linear 

transformation M which maps the plane into its dual and vice-versa, i.e. 

' A e =M~, 
~' = £Ie, 

and again impose the quantum plane conditions upon (e', ry') and (x', y'). If the elements 

of M are designated by 

then the constraints are ten in number; 

a/3 + q/Ja = 0 , 

a1 + q1a = 0, 

136 + q8/3 = 0 ' 

,6 + q6/ = 0' 

a6 + 8a = 0, 

131 + 113 + (q- q-1 )6a = 0 ' 

a2 = 132 = 12 = 82 = 0 . 

(6.8) 

These relations may be considered as a deformation of a Grassmann algebra on four 

Tl . b . h l b d b z . {129, 130) * us o servatwn as a so een note y ummo. 
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elements (a, /3, 1, 6). As with the quantum matrix, they may be expressed in terms of an 

R-matrix in the form ( 6.4) 

RMM=-MMR, 

q + q-1 0 0 0 

R= 
0 2 q- q-1 0 

where 
0 -(q- q-1) 2 0 

0 0 0 q + q-1 

Note that in the classical limit (i.e. q -4 1) R becomes twice the identity matrix. This 

matrix R is (6.7) evaluated at x = -1. Notice also that although the algebra (6.8) 

is an associative algebra of the matrix elements of M, R does not satisfy the Yang­

Baxter equation (6.6), thus demonstrating that the Yang-Baxter relation is not a necessary 

condition for associativity. 

Since M is entirely Grassmannian, an mverse proper cannot exist. However, the 

analogue of left and right adjugate matrices can be constructed, giving 

( 

q6 

-I 
~1 ) (a /3) = (/31 + q6a) ( 

1 

-q a 1 6 0 

(
a {3) (-q-16 f3) (1 = (1!3 + q6a) 
1 6 -1 qa 0 

0) 
1 ' 

~) 
(6.9) 

The combination /31 + q6a may be thought of as a left quantum determinant and tl.L 

and 1/3 + q6a as a right quantum determinant tl.R. The expressions, tl.L, tl.R satisfy the 

relation 

~1 ) tl,.R' -q a 

which is a consequence of (6.9) and associativity. 

In a similar manner one can construct the quantum analogue of GL(111), GLq(111), 

the group of linear transformations acting upon a quantum superplane with one bosonic 

and one fermionic coordinate. t Consider a quantum superplane and its dual, 

(;) ' (:) ' 

t The convention of Roman (Greek) script for bosonic (fermionic) quantities is used. 
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satisfying: 

xe- q-1ex = 0 

e2 = o 

Define a GLq(lll) matrix 

and require 

and 
'f/2 = 0 

'f/Y- qyry = 0 
(6.10) 

and impose (6.10) once again on the transformed variables. It is assumed that {3 and 'Y 

anticommute withe and"'· Then 

a{3 = q-1 {3a , 

a1 = q-1,a , 

d{3 = q-1 {3d ' 

d' = q-1,d , 

eight relations are obtained 

f3'Y + 'Yf3 = 0 ' 

ad - da + q - 1 f3'Y + q'Y {3 = 0 . 

In this case the left and right inverses may be defined and are equal 

where .6.1 = ad - qf31 and .6.2 = da - q'Yf3· The theorems in section 2 also apply to 

GLq(lll). In particular, if ME GLq(lll) then Mn E GLqn(lll). Similar results may be 

deduced for the dual matrix 

which transforms the superplane into its dual. Quantum supergroups have also been 

t d. d b M . [131] d th [132, 133J s u 1e y amn an o ers. 
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6.3 Higher Quantum Groups 

It is obviously desirable to extend the analysis to the quantum analogues of linear 

transformations in higher dimensional spaces. Consider first GLq(N). Instead of the 

quantum 2-plane, take a vector 

Xt 

:1!= E Rq[N,O], 

and impose the relations 

(6.11) 

Adjoin a dual quantum space 

E Rq[O, NJ, 

with the relations 

(6.12) 

The relations (6.11) , (6.12) can be written in the form 

where Gkl is a matrix whose entries are all zero except for the kith and the lkth, i.e. 

k < l, 

Similarly 

k < l, 
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Now 

(6.13) 

by construction. This enables us to write the quantum matrix condition very succinctly. 

Suppose the matrix of linear transformations is given by M, i.e. 

~' = M ~ , e' = Me . (6.14) 

Then, ~T MT Gij M ~ = 0 implies that MT Gij M is a linear combinations of G's, i.e. 

MTGijM = LAijklGkl' 
k,l 

MT FijM = L BijklFkl . 

k,l 

Due to orthogonality (6.13) there are sets of relations 

(6.15) 

The number of relations oft he first kind is simply the number of independent G's, ! N ( N-

1) multiplied by the number of independent F's, !N(N + 1) giving t(N4 - N 2 ), and 

similarly for the second kind, resulting in !N2(N2 - 1) relations, the full set for GLq(N). 

Notice that the relations (6.15) imply also that MT is a quantum matrix, as it satisfies 

the same bilinear algebra. In fact, the dual (Grassmannian) plane can be dispensed with 

in setting up the quantum group conditions, by simply taking 

~' = M~ E Rq[N,OJ, 

~" = MT~ E Rq[N,O]. 

In the classical case q = 1, and Gij spans the space of antisymmetric matrices, while 

Fij spans the symmetric ones. The quantum case of Gij is referred to as q-antisymmetric, 

and F as q-symmetric matrices. 
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It is now relatively easy to construct an R-matrix, and to exhibit these relations in 

the form of equations (6.4). 

Define the N 2 x N 2 matrix 

(6.16) 
i,j k,l 

where J.L and v are arbitrary parameters. Then, on account of the orthogonality relations 

(6.13) together with the additional orthonormality conditions 

Tr( G~Gkt) = 8ik8il , 

Tr(Fi] Fkt) = 8ik8jt , 

the equation (6.16), written with explicit indices as 

i,j i,j 

(6.17) 

(6.18) 

is just the eigenvalue expansion of an N 2 x N 2 matrix with two degenerate eigenvalues 

with degeneracies !N(N- 1) and !N(N + 1). The sets of quantities (Gij)st, (Fij)st are 

eigenvectors in the sense that: 

( Gij )ts Rst,uv = J.L( Gij )uv 

(Fij)tsRst,uv = v(Fij)uv 

Imposing the conditions 

or 
G~R = J.LGii 

pT:R=vF· 
~J t) 

(6.19) 

produces a set of equations whose content is just (6.15), as may be readily derived by tak­

ing the trace of (6.19) with (Gij)T Fkl and (Fij)TGkl· The orthogonality properties (6.13), 

(6.17), (6.18) ensure that Gij and Fij are eigenvectors of R, and since the eigenvalues 

differ, the equations (6.15) are a consequence of (6.19). Note, however, that the relations 

(6.19) are not all necessarily independent, while (6.15) are, by construction. No further 

conditions result from taking the trace of ( 6.19) with the combinations ( F.ij f Fkl and 

(GijfGkl· It is easy to see that (6.16) gives R(x), (6.7) for J.L = -q+xq-I, v = q-1 -xq. 
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The extension for the dual Grassmann matrix M is very much the same. Postulate a 

similar ansatz for the R-matrix, but with different eigenvalues, J.L, v. Then impose 

The eigenvalues of Rare ±(q + q-1 ), i.e. x = -1 in (6.7). This fact has the consequence 

that this time the matrix elements of this relation which do not vanish are those of the 

trace with Gij(Gkl)T and Fij(Fkl)T, while those with a mixed G and Fare automatically 

satisfied, thus giving ! N 2 ( N 2 + 1) independent relations for the quantum Grassmann 

group 

These provide the generalization of ( 6.8) to arbitrary N. 

(6.20) 

( 6.21) 

This generalization gives the class of R-matrices associated with the Lie groups of the 

AA • 

1127
' 

107
] I . al 'bl t . b t th d' t . t th n senes. t 1s so poss1 e o enqmre a ou e correspon mg ex enswn o o er 

series, e.g. the Cn series. What must be done is to obtain the Cn, i.e. the Sp(2n) series is 

to adjoin to the quantum plane conditions (6.14) an additional symplectic requirement, 

where € is anN x N matrix (N = 2n), with non-vanishing elements only fori+ j = N + 1, 

i.e. on the anti-diagonal, where they are 

N l£+1 l£_1 1 
q ' ... 'q 2 'q 2 ' ••• 'q, . 

The quantum "group" condition can be writtem in a form analogous to (6.15) after re­

defining matrices 

so that they are orthogonal to (in the sense of (6.20), (6.21). Then the quantum conditions 
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can be written as 

Tr(MTG~jM F~lT) = Tr(MT FfjMG~lT) = 0, 

Tr(MTG~jMET) = Tr(MTFfjMET) = 0, 

Tr(MTEMG~jT) = Tr(MTEMFfjT) = 0. 

The number of such relations is 

!N(N- 1)(N2 + N + 2)- 2. 

(6.22) 

(6.23) 

For N = 2 this gives 6, as before, and for N = 4 it gives 130, a number which agrees with 

computer calculations in REDUCE, using the Sp(2) R-matrix of Jimbo to define quantum 

group conditions via (6.4). 

In an analogous fashion the dual group relations can be found by replacing (6.22) by 

the number of relations being 

(6.24) 

As is to be expected, this is complementary to the previous calculation; the sum of (6.23) 

and (6.24) is N 4 . 

6.4 Further Generalizations 

The assumptions made for the quantum hyperplane conditions (6.11) and (6.12) need 

not be the only viable structures. In fact, there is a natural generalization of the Clifford 

sequence. Start with a quantum plane (a:, y) and its dual (e, 1J ). Then construct the 

quantum matrix M and its dual M. Now view the elements of M as constituting the 

coordinates a, b, c, d in a quantum hyperplane, with M furnishing the dual coordinates, 

and take the relations (6.3) and (6.8) as those to be preserved by linear transformations 

M', M' acting upon the quantum hyperplanes. This leads to conditions on the 16 elements 

of M' and those of M', which in turn can be thought of as the requirements for a 16 

dimensional hyperplane, subject to a linear transformation M" etc. This sequence will 

generate a quantum Clifford sequence. 
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This approach to quantum groups raises the obvious question of the representation of 

the elements of the quantum plane, and of the quantum matrix itself, by finite dimensional 

matrices whose elements themselves commute. That such representations do exist with q 

an nth root of unity is demonstrated by setting x = g andy= h, where g, hare then x n 

matrices discussed in chapter 3, given by 

1 0 0 0 0 1 0 0 

0 w 0 0 0 0 1 0 

g= 0 0 w2 0 h= , gn = hn =I, Wn = 1 . 

0 0 0 1 

0 0 0 wn-1 1 0 0 0 

It is easy to verify that gh = w-1hg, the quantum plane condition. 

It is difficult to find representations of M with Detq(M) f. 0 and q f. ±1. A specific 

example for A1 is 

where n = 6 and q = w 2• Others have been found by Floratos~ 1341 

It is also possible to create infinite dimensional representations, such as 

where Pl, P2 and x1, x2 satisfy the commutation rules appropriate to canonically conjugate 

variables and q = e-ia
2

, though this has Detq( M) vanishing. An alternative example, 

found by Weyers~1351 with unit determinant, is 

where q = eia/3 and a/3 = a1 + 2?Tn for some integer n. 
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by: 

For An quantum groups a representation of the quantum hyperplane (6.11) is given 

Xl = X ® X Q9 X Q9 · · · Q9 X 

x2 = y ® x2 ® x2 ® · · · ® x2 

x3 = x ® y ® x2 ® · · · ® x2 

Xn+l =X® X Q9 • • • Q9 X Q9 y. 

Manin [1311 and Sudberyr1361 have introduced quantum groups of dimension greater 

than two with more than one q parameter. 

6.5 The q-derivative 

The introduction of the quantum plane naturally leads to the question of whether 

there is some quantum analogue of derivatives. There is; and the consequent q-calculus 

and q-analysis have been studied!
137

-
1391 Here I shall give a brief outline of the ideas. A 

useful starting point is the Leibniz rule for the q-derivative qDx [1391 

qDx(f(x)g(x)) = (qDxf(x))g(x) + f(qx)(qDxg(x)). 

This, with the condition that 

qDx(g(x )f(x )) = qDx(f(x )g(x )) , 

defines the q-derivative to be 

Dx f(x) = f(qx)- f(x) 
q x(q- 1) 

This satisfies, for example, 

D n [ ] n-1 q xX =qnX where 
1- qn 

q[n] = 1- q ' 

h h 1 f h . 1 . . b (139,140] w ere t e q-ana ogue o t e exponentla 1s gtven y 

00 

expq(x) = ""-t:nxn . L...J q[1lJ: 

n=O 

It is the replacement of the ordinary derivative by this quantum derivative that leads 
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to the quantum analogues of su(N) in the physicist's basis discussed in chapter 5. The 

quantum groups that correspond to these quantum algebras are the multiparameter defor­

mations of GL(N) studied by Manin[1311 and Sudbery~1361 In a similar way, the quantum 

group of Woronowicz[1171 corresponds to the algebra of the quantum differential operators 
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Appendices 

Al Calculation ofT's 

T({3,a- {3,"{,a- "f, 1, 1): 

m=1,t=2,r=a-1 

0,"'- 1 ~ k ~a - 1, "f => k = "f- 1 ("! i 0) or k = 1 ("/ i a) 

1, {3 + 1 + 1 - a :5 k + l :5 {3 + 1, "/ + 1 => k + l = 1 ({3 i a) or I + 1 ({3 i 0) 

=> j = {3,p = 1,n = 0 => 0 

"'- 1, 2 k,l = 
{

1-1.1 

1,0 

=> j = {3- 1,p = O,n = 1 => 2b221ba-1,{3-1,")'-1 

=> j = {3,p = 1,n = 0 => 2b2olba-l,f:J,'Y 

I' 1 => j = {3- 1,p = O,n = 1 => 0 

T({3,a- f3,1,a- "{, 1, 1) = 2b2olba-l,f:J,"'f- 2b212ba-l,f3-l,"'f-1 

where baf31' = 0 for {3, "f < 0 or {3, 1 > a. 

T("!,a- I• 1, 1,{3,a- {3): 

m = {3,t = a,r = 1 

0, 0 ~ k ~ 1, 1 => k = 0 or k = 1 

1, "' ~ k + l :5 a, "' + 1 => k + l = "f or 1 + 1 

{ 

0,1 => j = 1,p =a - 1, n = 1- 1 => lba1'f3buo 

0, 1 + 1 => j = 0 => 0 
k,l = 

1.1-1 =>j=1=>0 

1.1 => j = O,p =a- 1 -l.n = 1 =>(a- l)bl0lba,")',{3 

T(J, a- I• 1, 1,{3, a- {3) = (21- a)ba,f3,"'f 

and, interchanging {3 and 1, f and g, 

T(1, 1,{3,a- f3,1,a- "!) = (2{3- a)ba,f3,"'f 

85 



T((,a- (,a- ( + 1,(- 1,0,2): 

m = 0, t = 2, r = a - 1 

O,a- ( :5 k :5 a -1,a- ( + 1 => k =a- (or k =a- ( + 1 

2, a - ( + 1 :5 k + l :5 a + 1, a - ( + 2 => k + l = a - ( + 1 or a - ( + 2 

{

a-(, 1 

k,l = a- (.2 => j = ( -l.p = O,n = 1 => 2b220ba-l.(-1,a-( 

a-(+1,0 =>m=l=>O 

a- ( + 1,1 => j = ( -l.p = O,n = 1 => b21oba-1,(-l,a-(+1 

=> j = (,p = 1,n = 0 => b21oba-1,(,a-( 

T((, a- (,a - ( + 1, ( - 1, 0, 2) = -b201 ba-1,(,<>-( - 2b2o2ba-1,(-l,a-( - b2o1ba-1,(-1,<>-(+l 

T(a- ( + 1,( -1,0,2,(,a- (): 

m.=(,t=a,r= 1 

0, -1 :5 k :5 0, 1 => k = 0 

0, a - ( :5 k + l :5 a- 1, a- ( + 1 => l = k + l =a - ( or a- ( + 1 

k,l = { O,a- ( => j = 1,p = (- 1,n =a- ( => (b110 ba,a-(,( 

O,a-(+1 =>j=O=k=>O 

T(a- ( + 1,(- 1, 0, 2,(,a- () = (ba,(,a-( 

T(0,2,(,a- (,a- ( + 1,( -1): 

m=a-(+1.t=a,r=1 

0, ( + 1 -a :5 k :5 1, ( => k = 0, 1 

(,( -1 :5 k + l :5 (,( + 1 => k + l = ( 

{
0,( =>j=O=k=>O 

k l = 
' 1, (- 1 => j = O,p = 1, n = 0 => (a - ( + 1)b1o1ba,(-1,a-(+1 

T(0,2,(,a- (,a- ( + 1,( -1) =(a- ( + l)ba,(-1,<>-(+1 
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T(a, 0, 0, a- 1, 1, 2): 

rn=1,t=3,r=a-2 

0,-1::::; k::::; a- 2,0 =::} k = 0 

0:51:53 

0, 2::::; k + l::::; a, 2 * l = k + l = 2 

k, l = { 0, 2 =::} j =a- 2,p = 0, n = 2 =::} ba-2,a-2,ob321 

T(a, 0, 0, a - 1, 1. 2) = b312ba-2,0,a-2 

T(O, a - 1, 1, 2, a, 0): 

m=a,t=a,r=1 

0,-1 ::::; k ::::; 1,1 =::} k = 0,1 

1, 0 ::::; k + l ::::; 1, a- 1 =::} k + l = 1 

{ 
0, 1 =::} j = 0 = k =::} 0 

k,l = . 1 
1,0 =::} J = O,p =a- 2,n = 0 =::} 2a(a- 1)ba,o,ablol 

T(O,a -1,1,2,a,O) = !a(a -1)ba,O,a 

T(1,2,a,O,O,a -1): 

m=O,t=a-1,r=2 

0, 2 ::::; k ::::; 2, a=::} k = 2 

o::::;l::=:;a-1 

a - 1, a :5 k + l :5 a+ 1, a+ 1 =::} k + l = a, a+ 1 

{ 
2,a- 2 =::} j = 1,p = 1,n = 0 =::} ba-l.a-2,0b212 

k,l = 
2,a -1 =::} j = O,p = O.n = 1 =::}(a -1)ba-l,a-l,ob2o2 

T(1, 2, a, o. 0, a- 1) = -ba-l,O,a-2b212 - (a- 1)ba-l,O,a-lb202 
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A2 Solution of Recurrence Relations 

Since b2o1 = b212 = 0, b2o2 = TJ, the recurrence relations become 

baf3'Y = 0 for a :/; f3 + 1 , 

(ba,(,a-( = -(a- ( + 1)ba,(-l,a-(+1 + 2T}ba-1,(-l,a-( , 

a(a- 1)baoa = 2(3b3o3- 2b~o2)ba-2,0,a-2 + 2b2o2(a- 1)ba-l,O,a-1 . 

It is possible to rewrite the last of these as 

by defining b~ = a! baoa, b3o3 = e, which may be solved by putting b~ = A-\}+ BXi] in 

the normal way. The solution is: 

where p = ..j6e- 3TJ2. 

Putting 

b~,( = (!(a - ()!ba,(,a-( , 

the other recurrence relation becomes 

b~.(- 2T}b~-l,(-l + b~.(-1 = 0 , 

which has solution 
( 

b~,( = L (~)(-1)(-k(217)kb~-k,O. 
k=O 

This may be seen by considering the following diagram: 

a,( ~ a,( -1 ~ a,(- 2 ~ ~ a,O 

""" """ """ """ a- 1, ( -1 ~ a- 1, (- 2 ~ ~ a -1,0 

""" """ """ a- 2,(- 2 ~ ~ a- 2,0 

""" """ 

""" a- (,0 
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Each horizontal brings in a factor -1, each diagonal 2ry, so the coefficient of b~-k 0 is , 
( -1 )C -k ( 2ry )k, and the number of ways of getting there is given by a binomial coeffecient. 

These may be put together to give the final result 

(TJ- p)C(TJ + p)a-(- (TJ + p)C(TJ- p)<>t-( 
ba,(,a-( = 2p(!( a _ ()! 

89 



References 

1. D. B. Fairlie, P. Fletcher, and J. Nuyts, 'Eigenvalue equations for Krichever-Novikov 

algebras', J Math Phys 30 (1989) 957. 

2. D. B. Fairlie, P. Fletcher and C. K. Zachos, 'New infinite dimensonal algebras with 

trigonometric strucure constants', Phys Lett B218 (1989) 203. 

3. D. B. Fairlie, P. Fletcher and C. K. Zachos, 'Infinite dimensional algebras and a 

trigonometric basis for the classical Lie algebras', J Math Phys 31 (1990) 1085. 

4. P. Fletcher, 'The uniqueness of the Moyal algebra', to appear, Phys Lett B (1990). 

5. E. Corrigan, D. B. Fairlie, P. Fletcher and R. Sasaki, 'Some aspects of quantum 

groups and supergroups', J Math Phys 31 (1990) 776. 

6. H. Samelson, Notes on Lie algebras (Van Nostrand Reinhold 1969). 

7. J. E. Humphreys, Introduction to Lie algebras and representation theory (Springer­

Verlag 1972). 

8. R. Gilmore, Lie groups, Lie algebras, and some of their applications (John Wiley 

1974). 

9. J. F. Cornwell, Group theory in physics, v2 (Academic Press 1984). 

10. C. Chevalley, 'Sur certains groupes simples', Tohoku Math J (2) 7 (1955) 14. 

11. W. Killing, 'Die Zusammensetzung der stetigen endlichen Transformationsgruppen', 

Math Ann 31 (1888) 252, 33 (1889) 1, 34 (1889) 57, 36 (1890) 161. 

12. E. Cartan, 'Sur la structure des groupes de transformations finis et continua' (Ph. D. 

Thesis, Paris, 1894). 

13. E. B. Dynkin, 'The structure of semisimple Lie algebras', Amer Math Soc Trans 1 

9 {1950) 328. 

14. M. A. Virasoro, 'Subsidiary conditions and ghosts in dual resonance models', Phys 

Rev D1 (1970) 2933. 

15. P. Goddard and D. Olive, 'Kac-Moody and Virasoro algebras in relation to quantum 

physics', Int J Mod Phys A1 (1986) 303. 

16. V. G. Kac, 'Simple graded Lie algebras of finite growth', Func Anal Appl 1 (1967) 

328. 

90 



17. R. V. Moody, 'Lie alegbras associated with generalized Cartan matrices', Bull Amer 

Math Soc 73 (1967) 217. 

18. V. G. Kac, Infinite dimensional Lie algebras (Birkhauser 1983). 

19. I. Kaplansky, 'The Virasoro Algebra', Comm Math Phys 86 (1982) 49. 

20. 0. Mathieu, 'Classification des algebres de Lie graduees simples de croissance ::.; 1', 

Invent Math 86 (1986) 371. 

21. D. B. Fairlie, J. Nuyts, and C. K. Zachos, 'A presentation for the Virasoro and 

super-Virasoro algebras', Comm Math Phys 117 (1988) 595. 

22. J. L. Uretsky, 'Redundancy of conditions for a Virasoro algebra', Comm Math Phys 

122 (1989) 171. 

23. C. K. Zachos, private communication (1988). 

24. P. Ramond, 'Dual theory for free fermions', Phys Rev D3 (1971) 2415. 

25. A. Neveu and J. H. Schwarz, 'Factorizable dual model of pions', Nucl Phys B31 

(1971) 86. 

26. I. M. Krichever and S. P. Novikov, 'Algebras of Virasoro type, Riemann surfaces 

and structures of the theory of solitons', Func Anal Appl 21 (1987) 126. 

27. I. M. Krichever and S. P. Novikov, 'Virasoro-type algebras, Riemann surfaces and 

strings on Minkowsky space', Func Anal Appl 21 (1987) 294. 

28. L. Alvarez-Gaume, C. Gomez, G. Moore and C. Vafa, 'Strings in the operator 

formalism', Nucl Phys B303 (1988) 455. 

29. L. Bonora, M. Bregola, P. Cotta-Ramusino and M. Martellini, 'Virasoro type alge­

bras and BRST operators on Riemann surfaces', Phys Lett B205 (1988) 53. 

30. L. Bonora, M. Martellini, M. Rinaldi and J. Russo, 'Neveu-Scwarz and Ramond 

type superalgebras on genus g Riemann surfaces', Phys Lett B206 (1988) 444. 

31. L. Bonora, M. Rinaldi, J. Russo and K. Wu, 'The Sugawara construction on genus 

g Riemann surfaces', Phys Lett B208 (1988) 440. 

32. L. Mezincescu, R. Nepomechie and C. Zachos, '(Super)conformal algebra on the 

(Super)torus', Nucl Phys B315 (1989) 43. 

33. R. Kubo, S. Ojima and S. K. Paul, 'Relations between Virasoro algebra and Krich­

ever Novikov algebra on a torus', Mod Phys Lett A4 (1989) 1423. 

91 



34. J. Alberty, A. Taormina and P. van Baal, 'Relating Kac-Moody, Virasoro and Krich­

ever-Novikov algebras', Comm Math Phys 120 (1988) 249. 

35. J. Nuyts and I. Platten, 'Presentation of the constant r-term Krichever-Novikov 

type algebras', J Math Phys 31 (1990) 527. 

36. A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, 'Infinite conformal sym­

metry in two dimensional quantum field theory', Nucl Phys B241 {1984) 333. 

37. D. Friedan, Z. Qiu and S. H. Shenker, 'Conformal invariance, unitarity and critical 

exponents in two dimensions', Phys Rev Lett 52 {1984) 1575. 

38. A. Beilinson, Yu. Manin and V. Schechtman, 'Sheaves of the Virasoro and Neveu­

Schwarz algebras', Springer Lecture Notes in Maths 1289 (1987) 52. 

39. I. Bars, C. Pope, and E. Sezgin, 'Central extensions of area preserving membrane 

algebras', Phys Lett B210 {1988) 85. 

40. G. A. Baker, 'Formulation of quantum mechanics based on the quasi-probability 

distribution induced on phase space', Phys Rev 109 (1958) 2198. 

41. J. Moyal, 'Quantum mechanics as a statistical theory', Proc Camb Phil Soc 45 

(1949) 99. 

42. E. P. Wigner, 'On the quantum correction for thermodynamic equilibrium', Phys 

Rev 40 (1932) 749. 

43. D. B. Fairlie, 'The formulation of quantum mechanics in terms of phase space inte­

grals', Proc Camb Phil Soc 60 (1964) 581. 

44. D. B. Fairlie and C. K. Zachos, 'Infinite-Dimensional algebras, sine brackets and 

SU( oo )', Phys Lett B224 (1989) 101. 

45. J. Hoppe, 'DiffAT2 and the curvature of some infinite dimensional manifolds', Phys 

Lett B215 (1988) 706. 

46. V. Arnold, 'Sur la geometrie differentielle des groupes de Lie de dimension infinie et 

ses applications a l'hydrodynamique des fluides parfaits', Ann Inst Fourier XVI:1 

(1966) 319. 

47. V. Arnold, Mathematical Methods of Classical Mechanics Appendix 2.K, p339 

(Springer Verlag, New York, 1978). 

48. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, 1931 ). 

92 



49. J. Schwinger, 'Unitary operator bases', Proc Nat Acad Sci 46 (1960) 570. 

50. G. 't Hooft, 'On the phase transition towards permanent quark confinement', Nucl 

Phys B138 (1978) 1. 

51. A. Belavin, 'Hidden symmetry of integrable systems', JETP Lett 32 (1980) 169. 

52. G. 't Hooft, 'Some twisted self dual solutions for the Yang-Mills equations on the 

hypertorus', Comm Math Phys 81 (1981) 267. 

53. J. Patera and H. Zassenhaus, 'The Pauli matrices inn dimensions and finest gradings 

of simple Lie algebras of type An-!', J Math Phys 29 (1988) 665. 

54. J. Patera and H. Zassenhaus, 'The four sets of additive quantum numbers of SU(3)', 

J Math Phys 30 (1989) 2756. 

55. V. Rittenberg and D. Wyler, 'Generalised superalgebras', Nucl Phys B139 (1978) 

189. 

56. K. Fabricius and C. P. Korthals-Altes, 'Twisted large N fields at high temperature', 

Nucl Phys B240 (1984) 237. 

57. M. Liischer and P. Weisz, 'Efficient numerical techniques for perturbative lattice 

gauge theory', Nucl Phys B266 (1986) 309. 

58. J. Hoppe, M.I.T. Ph.D. Thesis (1982). 

59. J. Hoppe in Constraints Theory and Relativistic Dynamics - Florence 1986 p267, 

eds. G. Longhi and L. Lusanna (World Scientific, 1987). 

60. C. N. Pope and L. J. Romans, 'Local area-preserving algebras for two-dimensional 

surfaces', Class Quant Grav 7 (1990) 97. 

61. E. G. Floratos, 'The Heisenberg-Weyl group on the ZN x ZN discretized torus 

membrane', Phys Lett B228 (1989) 335. 

62. E. G. Floratos, 'Spin wedge and vertex operator representations of trigonometric 

algebras and their central extensions', Phys Lett B232 (1989) 467. 

63. M. V. Saveliev and A. M. Vershik, 'Continuum analogues of contragredient Lie 

algebras', Comm Math Phys 126 (1989) 367. 

64. M. V. Saveliev and A.M. Vershik, 'New examples of continuum graded Lie algebras', 

Phyt~ Lett A143 (1990) 121. 

93 



65. R. M. Kasaev, M. V. Saveliev, S. A. Savelieva and A. M. Vershik, 'On non-linear 

equations associated with Lie algebras of diffeomorphism groups of 2D manifolds' 

in Ideas and Methods in Mathematics and Physics (1990). 

66. B. A. Dubrovin and S. P. Novikov, 'On Poisson brackets of hydrodynamic type', 

Sov Math Dokl 30 (1984) 651. 

67. A. A. Balinskii and S. P. Novikov, 'Poisson brackets of hydrodynamic type, Frobe­

nius algebras and Lie algebras', Sov Math Dokl 32 (1985) 228. 

68. E. G. Floratos, J. Iliopoulos and G. Tiktopoulos, 'A note on SU( oo) classical Yang­

Mills theory', Phys Lett B217 (1989) 285. 

69. C. K. Zachos, 'Hamiltonian flows, SU(oo), SO(oo), USp(oo) and strings', Proceed­

ings, Strings '89, Texas. 

70. I. Bars, 'Strings from reduced large N gauge theory via area preserving diffeomor­

phisms' (IASSNS preprint, 1990). 

71. A. Schild, 'Classical null strings', Phys Rev D16 (1977) 1722. 

72. T. Eguchi, 'New approach to the quantised string theory', Phys Rev Lett 44 (1980) 

126. 

73. J.-L. Gervais and A. Neveu, 'String structure of the master field of U( oo) Yang­

Mills', Nud Phys B192 (1981) 463. 

74. Y. Hosotani, 'Hamilton-Jacobi formalism and wave equations for strings', Phys Rev 

Lett 55 (1985) 1719. 

75. E. Floratos and J. Iliopoulos, 'A note on the classical symmetries of the closed 

bosonic membrane', Phys Lett B201 (1988) 237. 

76. I. Antoniadis, P. Ditsas, E. Floratos and J. Iliopoulos, 'New realisations of the 

Virasoro algebra as membrane symmetries', Nucl Phys B300 [FS22] (1988) 549. 

77. B. de Wit, J. Hoppe, and H. Nicolai, 'On the quantum mechanics of supermem­

branes', Nucl Phys B305[FS23] (1988) 545. 

78. B. de Wit, J. Hoppe, and H. Nicolai, 'Area preserving diffeomorphisms and super­

membrane Lorentz invariance', Comm Math Phys 128 (1990) 39. 

79. T. A. Arakelyan and G. K. Savvidy, 'Co-cycles of area preserving diffeomorphisms 

and anomalies in the theory of relativistic surfaces', Phys Lett B214 (1988) 350. 

94 



80. T. A. Arakelyan and G. K. Savvidy, 'Geometry of a group of area preserving dif­

feomorphisms', Phys Lett B223 (1989) 41. 

81. J. Hoppe, 'Diffeomorphism groups, quantisation and SU(oo)', Int J Mod Phys A4 

(1989) 5235. 

82. J. S. Dowker and M. Wei, 'Area preserving diffeomorphisms and the stability of the 

atmosphere' (MUTP-90/9). 

83. V. Yu. Zeitlin, 'Algebraization of 2-dimensional ideal fluid hydrodynamical systems 

and their finite mode approximation' (Kiev preprint). 

84. C. M. Bender and G. Dunne, 'Integration of operator differential equations', Phys 

Rev 040 (1989) 3504. 

85. D. B. Fuks, 'Finite dimensionality of homologies of the Lie algebra of Hamiltonian 

vector field on the plane', Func Anal and Appl 19 (1985) 305. 

86. K. M. Case, 'Constants and pseudoconstants of the KP equation', Proc Nat] Acad 

Sci 82 (1985) 5242. 

87. K. M. Case and A. Monge, 'Explicitly time-dependent constants/symmetries of the 

higher order KP equations', J Math Phys 30 (1989) 1250. 

88. A. B. Zamolodchikov, 'Infinite additional symmetries in two dimensional conformal 

quantum field theory', Teo Math Fiz 65 (1985) 347. 

89. I. Bakas, 'The large N limit of extended conformal symmetries', Phys Lett B228 

(1989) 57. 

90. I. Bakas, 'The structure of the W'J(j algebra' (PP#90-085). 

91. A. Bilal, 'A remark on theN- oo limit of WN algebras', Phys Lett B227 (1989) 

406. 

92. C. N. Pope, L. J. Romans, and X. Shen, 'The complete structure of W X)', Phys Lett 

B236 (1990) 173. 

93. C. N. Pope, L. J. Romans, and X. Shen, 'A new higher-spin algebra and the lone-Star 

product' (CTP TAMU-17 /90). 

94. E. Bergshoeff, C. N. Pope, L. J. Romans, E. Sezgin, X. Shen and K. S. Stelle, 'woo 

gravity' (CERN-TH.5703/90). 

95 



95. D. B. Fairlie and J. N uyts, 'Renormalisations and deformations of W 00 ' (CERN­

TH-5691/90). 

96. F. Bayen, M. Flato, C. Fronsdahl, A. Lichnerowicz and D. Sternheimer, 'Deforma­

tion theory and quantisation', Ann Phys NY 111 (1978) 61. 

97. W. Arveson, 'Quantization and the uniqueness of invariant structures', Comm Math 

Phys 89 (1983) 77. 

98. I. M. Gelfand and I. Ya. Dorfman, Func Anal Appl13 (1980) 248, 14 (1980) 248, 

15 (1981) 173, 16 (1982) 241. 

99. I. Bakas and E. Kiritsis, 'Grassmanian coset models and unitary representations of 

w 00 I (LBL-28969 (1990) ). 

100. G. K. Savvidy, 'Renormalization of infinite dimensional gauge symmetries' (TPI­

MINN-90/02-T). 

101. D. B. Fairlie, 'Remarks on a paper of Olver' (DTP-90/47). 

102. M. Jimbo, 'Introduction to the Yang-Baxter equation', Int J Mod Phys A4 (1989) 

3759. 

103. L. D. Faddeev, N. Reshetikhin and L. A. Takhtajan, 'Quantisation of Lie Groups 

and Lie Algebras', Alg Anal 1 (1988) 129. 

104. S. Majid, 'Quasitriangular Hopf algebras and Yang-Baxter equations', Int J Mod 

Phys AS (1990) 1. 

105. C. K. Zachos, 'Paradigms of quantum algebras' in Symmetries in Science V eds 

B. Gruber et al (Plenum 1990). 

106. P. P. Kulish and N. Reshetikhin, J Sov Math 23 (1983) 2435. 

107. V. Drinfeld, 'Hopf algebras and the quantum Yang-Baxter equation', Sov Math Dokl 

32 (1985) 254. 

108. M. Jimbo, 'A q-difference analogue of U(g) and the Yang-Baxter equation', Lett 

Math Phys 10 (1985) 63. 

109. M. Jimbo, 'A q-analogue of U(gl(N + 1)), Heeke algebra and the Yang-Baxter 

equation', Lett Math Phys 11 (1986) 247. 

110. V. Pasquier and H. Saleur, 'Common structures between finite systems and confor­

mal field theories through quantum groups', Nud Phys B330 (1990) 523. 

96 



111. E. K. Sklyanin, 'Some algebraic structures connected with the Yang-Baxter equa­

tion', Func Anal Appl 16 (1982) 263. 

112. A. Macfarlane, 'On q-analogues of the quantum harmonic oscillator and the quantum 

group SU(2)q', J Phys A22 (1989) 4581. 

113. T. Curtright and C. K. Zachos, 'Deforming maps for quantum algebras', Phys Lett 

B243 (1990) 237. 

114. D. B. Fairlie, 'Quantum deformations of SU(2)', J Phys A23 (1990) L183. 

115. A. Odesskii, 'An analogue of the Sklyanin algebra', Func Anal Appl 20 (1986) 152. 

116. E. Witten, 'Gauge theories, vertex models, and quantum groups', Nucl Phys B330 

(1990) 285. 

117. S. L. Woronowicz, 'Twisted SU(2) group. An example of a non-commutative differ­

ential calculus', Publ RIMS-Kyoto 23 (1987) 117. 

118. C. N. Yang, 'Some exact results for the many body problem in one dimension with 

repulsive delta function interaction', Phys Rev 19 (1967) 1312. 

119. R. J. Baxter, Exactly solved models in Statistical Mechanics (Academic Press, 

London 1982). 

120. N. Reshetikhin, '*' (Steklov preprints LOMI-E-4-87, E-17-87). 

121. A. Sudbery, private communication (1989). 

122. A. Polychronakos, 'Aspects of the quantum Virasoro algebra', Proceedings of the Ar­

gonne Workshop on Quantum Groups, ed. T. Curtright, D. B. Fairlie and C. K. Za­

chos. 

123. A. Sudery, 'Coordinate algebras for representation spaces of quantum groups' (York 

preprint, 1989). 

124. P. P. Kulish and E. K. Sklyanin, Springer Lecture Notes in Physics 151 (1981) . 

125. V. Drinfeld in Proceedings, International Congress of Mathematicians (Berkeley 

1986). 

126. L. A. Takhtajan in 'Quantum Groups and Integrable Models' Proceedings of the 

Taniguchi Symposium (Kyoto 1988). 

127. M. Jimbo, 'Quantum R-matrices for the generalized Toda system', Comm Math 

Phys 102 (1986) 537. 

97 



128. Yu. I. Manin, 'Some remarks on Koszul algebras and quantum groups', Annales de 

L'Institute Fourier, Grenoble 37.4 (1987) 191. 

129. B. Zumino, private communication (1989). 

130. S. Vokos, B. Zumino and J. Wess, 'Properties of quantum 2 x 2 matrices' (LAPP­

TH-253/89). 

131. Yu. I. Manin, 'Multiparametric quantum deformation of the general linear super­

group', Comm Math Phys 123 (1989) 163. 

132. P. P. Kulish, 'Quantum superalgebra osp(211)' (RIMS-615 1988). 

133. C. Devchand, 'A q-analogue of the Lie superalgebra osp(211) and its metaplectic 

representation' (Freiburg preprint (1989)). 

134. E. G. Floratos, 'Representations of the quantum group GLq(2) for values of q on 

the unit circle', Phys Lett B233 (1989) 395. 

135. J. Weyers, private communication {1989). 

136. A. Sudery, 'Consistent multiparameter quantisation of GL(n)', J Phys A23 {1990) 

L697. 

137. J. Wess and B. Zumino, 'Covariant differential calculus on the quantum hyperplane' 

(CERN-TH-5697 /90). 

138. J. Schwenk, 'Differential calculus on then-dimensional quantum plane', Proceedings 

of the Argonne Workshop on Quantum Groups, ed. T. Curtright, D. B. Fairlie and 

C. K. Zachos. 

139. D. B. Fairlie, 'q-analysis and quantum groups' in Symmetries in Science V eds 

B. Gruber et al (Plenum 1990). 

140. D. B. Fairlie and I. M. Gelfand, 'The algebra of Weyl symmetrised polynomials and 

its quantum extension' (HUTMP 90/B226, DTP-90/27). 

98 




