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Abstract

This thesis describes high quality magnetisation measurements made on single
crystals of MnSi, FeGe and ZrZn, using a vibrating sample magnetometer. The
measurements on MnSi have also been complemented with neutron scattering ex-
periments.

MnSi is a heavily investigated itinerant helimagnet which exhibits a variety of
interesting phenomena associated with formation of a helical spin density wave prop-
agating along < 111 > directions. Magnetisation measurements were performed as
a function of magnetic field at fixed temperatures stepping through the magnetic
transition observed at 29.1 + 0.05K. These were found to be highly anisotropic
and included observation of the so-called ‘Phase A’ consistent with measurements
using other techniques and providing explanation of apparent anomalies in previ-
ous magnetisation data (Kadowaki et al. (1981)). Further investigation of ‘Phase
A’ using small angle neutron scattering (SANS) was successful in determining the
magnetic state of MnSi within this regime in terms of helix reorientation which is
shown to be broadly consistent with the expression for the free energy derived by
Bak and Jensen (1980) and Plumer and Walker (1981). Reorientation of the helical
spin density wave as a function of magnetic field was also studied using SANS to
complement the magnetisation measurements. The second order process observed
is similar to that predicted by Plumer and Walker (1981) and the form of their
model for the magnetisation of is compared with the experimental results. Finally,
anomalous magnetisation measurements close to the magnetic transition were fur-
ther explored through neutron scattering. The results suggest a possible isotropic
phase pre-empting the helical spin density wave formation.

Cubic FeGe is also capable of supporting a static helical spin density wave and
has a critical temperature of 278.7K with helix propagating along < 100 > directions
above 211K and along < 111 > directions below 211K (for decreasing temperatures).
Magnetisation measurements were made on cubic FeGe with magnetic field applied
parallel to the < 100 > direction and the magnetic phase diagram determined.
Coupled with the SANS data of Lebech et al. (1989) it shows similar processes in
terms of helix reorientation in an applied magnetic field occur for both FeGe and
MnSi. The magnetic phase diagram is in good agreement with that predicted by
Plumer (1990) for magnetic field applied parallel to the < 100 >.

Bak P. and Jensen M. (1980), J. Phys. C13,L881-885.

Kadowaki K et al. (1981), J. Phys. Soc. Jpn. 53, 3624.

Lebech B. et al. (1989), J. Phys.:Condensed Matter 1, 6105-6122.
Plumer M.L. and Walker M.B. (1981), J. Phys. C14, 4689-4699.
Plumer M.L. (1990), J. Phys.:Condensed Matter 2, 7503-7510.
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Chapter 1

Magnetism: an introduction

1.1 Introduction

The first evidence of magnetic phenomena relates to the use of a lodestone compass
by the Chinese, dating back to the fourth century BC. During the nineteenth century
it was found that a similar force was exerted between two current carrying wires.
However, despite its long recorded history, it was not until the advent of quantum
theory this century that magnetic order could be explained at an atomic level. Even
today, although there exist numerous empirical relationships to describe the bulk
magnetic behaviour of materials, no theory yet exists that can adequately describe
the magnetisation of all materials.

To account for such phenomena, the existence of a magnetic field is postulated.
When a substance is placed in a magnetic field H, it has a resultant magnetisation
due to this external field. This field will induce inside the medium a flux density B
which will be dependent on the magnetisation per unit volume M of the medium.
In cgs units, in free space B is numerically equal to H. In any other medium

B=(H;+4rM) (1.1)

where H, = H — H[, and Hp is the demagnetisation field due to the sample geom-
etry.

The magnetisation density M of a quantum mechanical system of volume V,
in thermal equilibrium at a temperature T, in a uniform magnetic induction H; is

defined to be:

M= “V o, (1.2)

where F is the magnetic Helmholtz free energy and H; is the magnetic field acting
on the body (see section Demagnetising Field).

Magnetic materials are usually classified according to the nature of their response
to an applied magnetic field H, that is according to their magnetic susceptibility x.
The susceptibility is a parameter characteristic of the substance considered. In this




thesis, the differential magnetic susceptibility is used and defined as:

oM
X = EY (1.3)
and due to the above definition, is also:
1 8*°F
X= —V@ (174)

1.2 Diamagnetism

Diamagnetism is the property of substances that have a negative magnetic suscepti-

bility i.e. the magnetic field produced in the material opposes the applied magnetic
field.

1.2.1 Susceptibility of Insulators with complete electron
shells (Larmor Diamagnetism)

Consider a solid composed of ions or atoms with complete electronic shells. Such ions
or atoms have a resultant spin and orbital angular momentum of zero in the ground
state. On application of a magnetic field, a change is induced in the orbital motion of
the electrons. In a manner analogous to Lenz’s Law, this change produces a moment
opposing the applied field and hence the magnetic susceptibility is negative. As all
materials (apart from atomic hydrogen) consist of some complete electron shells,
this response occurs in all materials, it i1s however usually very small and masked
by other additional moments present.

1.2.2 Conduction Electron Diamagnetism (Landau Diamag-
netism)

Diamagnetic affects arise from the coupling of the field to the orbital motion of the
conduction electrons. In some high purity materials at low temperature and high
magnetic field this motion is used to map the Fermi surface through the de Haas
Van Alphen affect. Although at higher temperatures and in most materials the
oscillations are not perceptible, the dependence of M on H does not average to zero
and there is a net nonvanishing magnetisation antiparallel to H. This is known as
Landau diamagnetism and is due to the orbital electronic motion induced by the

field.

1.3 Paramagnetism

Paramagnetism is the property of substances that have a positive magnetic suscep-
tibility.



1.3.1 Susceptibility of Insulators containing ions with a
partially filled electron shell

The circulatory motion of a filament current gives rise to a magnetic dipole moment.
If a current i encloses an area S then the dipole moment produced is given by:

my =13 (1.5)

A single electron will have a magnetic dipole moment associated with its motion,
both its angular momentum [ and also its intrinsic angular momentum or spin s.
This is written as:

my = my+m;
€ €
= (—) + g,(— .
(G +9a(5)s (1.6)

where e and m are the charge and mass of the electron respectively and g, is the
gyromagnetic ratio. The integral unit of magnetic moment for the electron, the
Bohr magneton, pp, is that for the lowest orbital state i.e. ug = ;—Z Therefore

[+ g.s
my = uB(‘—hg—) (1.7)

Thus in the case of insulators with a partially filled electron shell, each ion will have
a resultant magnetic moment which is free to be orientated in any direction. The
resultant moment of the ion is dependent on the order in which the one electron
levels are filled in the outer electron shell. This determines both the total angular mo-
mentum L and total spin S of the ion. The degeneracy is lifted by electron-electron
and electron spin-orbit interactions such that the order of filling is deteremined by
Hund’s rules. Thermal effects tend to randomise these orientations whereas the ap-
plication of a magnetic field tends to align the magnetic moments. It can be shown
(see for example ‘Solid State Physics’ by Ashcroft and Mermin) that in the high
field or low temperature limit:

LN u4P?
YT 3V kel (18
C

where N are the number of such ions in a volume V, kg is the Boltzman Constant,
T is the temperature, C is the Curie Constant and P is the ‘effective Bohr magneton
number’ given by P=g,(JLS)[J(J + 1)]7 where J is the total angular momentum
quantum number such that (J = L + S).

This inverse dependence of the susceptibility with temperature and its indepen-
dancy on field is known as Curie’s Law. It characterises paramagnetic systems with
‘permanent moments’ whose alignment is favoured by field and opposed by temper-
ature. It accurately describes the behaviour of insulating crystals containing rare
earth ions which have partially filled electronic f-shells.



1.3.2 Susceptibility of Metals - Independant electron model
(Pauli Paramagnetism)

. The above model applies only to localised moments. However work on the metallic
state with individual conduction electrons not spatially localised produced a band
model. Assuming the electrons to be independent and neglecting their orbital an-
gular momentum, then upon application of an external magnetic field, the magnetic
energy of a conduction electron will be either —Boup if the spin points parallel to
the field or +Boup if it points antiparallel. The effect of the field is to shift the
energy of each electronic level by £ Boup dependent on the spin. Since electron en-
ergy levels will be filled up to the Fermi energy, this results in more electrons with
spin orientated parallel to the field and hence a resultant magnetisation. However
for an electron to move from a spin down state to spin up state, it has to move to
an unoccupied energy level above the highest filled level in the absence of an ap-
plied field i.e. its kinetic energy is increased. An equilibrium between reduction in
magnetic energy and increase in kinetic energy is established which leaves an excess
of up spins. The resultant magnetisation is

M = —pp(ny —n_) (1.10)

where ny i1s the number of electrons per unit volume with spin parallel (+) or
antiparallel (-) to Bo. Application of Fermi Dirac statistics shows that (see for
example ‘Solid State Magnetism’, by Crangle):

x = ugn(EF) (1.11)
where n(Er) is the electron density of states at the Fermi energy.

This is known as Pauli paramagnetic susceptibility and is independant of mag-
netic field.

1.4 Ferromagnetism

Ferro/ferri/antiferro magnetism is the property of materials that exhibit sponta-
neous magnetic order. To explain the occurence of this spontaneous order observed
in some materials below a critical temperature, Weiss (1907) proposed the existence
of an internal field, a ‘Weiss molecular field’ which would align moments in a similar
manner to an external field. In the local moment model this yields the Curie-Weiss
law:

C

= 12
X=75—3 (1.12)

where 6 the Curie temperature marking the onset of internal ordering.

1.5 The Exchange Interaction

The origin of such a ‘molecular field’ was unclear as, to explain alignment, the
magnitude of the field had to be far greater than that generated by dipole interaction

4




within the solid. An interaction of sufficient energy was only discovered with the
advent of quantum theory which also provided the necessary concept of electron
spin.

The Pauli exclusion principle requires that the total wavefunction, ¥, of a system
of N electrons must be antisymmetric, linking the spin state of the system to its
spatial wavefunction. Heisenberg (1928) was the first to demonstrate that this
could lead to magnetic order when he considered the hydrogen molecule. As the
Hamiltonian is spin independent, the solution wavefunction can' be written as the
product of an orbital stationary state and the components of electron spin in a given
direction:

U =1(ry,r)x(1,2) (1.13)

where 1 is the spatial function of two electrons at positions r; and r, and y is
their relative spin direction to a particular axis. If 9,(r;) and ¥(r;) are the spatial
wavefunctions of the atomic electrons a and b respectively and « and 3 are the spin
states up and down respectively, then possible solutions are:

¥ = ¢symmetrichntiaymmetric

= %(d’a(rl)iﬁb(rz) + ¢a(7‘2)¢’b(7‘1)) (0(7‘1)5(7’2) - a("z)ﬂ(rl))

or

V= “l)antiaymmetricx.symme!ric

(Ya(r)¥s(r2) — alr2)in(r1))  (alri)a(rz))

¢

| —

In the case of Y4nsisym the wavefunction vanishes for r; = r; so that the electrons in
the spin triplet state tend to ‘keep away’ from each other and hence have a relatively
small repulsion energy. However, for %,,» the wavefunction does not vanish for
r1 = 5 and the electrons may be very close at certain times, experiencing a stronger
repulsion than ¥4n4isym, raising the energy of the state. The Pauli exclusion principle
introduces a coupling between the space and the spin variables of the electrons which
act as if they are moving under the influence of a force whose sign depends on the
relative orientation of their spins and is known as the exchange force.

More generally, the exchange energy is described by the Heisenberg Hamiltonian
which sums the interaction between neighbouring atoms i and j over all N atoms in

the solid:
N N
He:=-2)" Y J;S..5; (1.14)

=1 j=1
PHPS

where S; is the spin quantum number of the ion. The exchange energy is governed
by the sign and magnitude of J;;, the exchange constant derived by considering the

5



spatial wavefunctions of the electrons from the atoms or ions. For ferromagnetism
to occur J;; must be positive.

The Heisenberg model of magnetism describes the origin of magnetic ordering
through interatomic exchange interactions which tend to align neighbouring elec-
trons at atomic sites either parallel or antiparallel. The model applies to moments
fixed in magnitude on atoms which are well separated so they retain free atom char-
acteristics but whose orientation may vary and has been used with some success to
describe magnetism in insulating materials.

1.5.1 Types of Exchange

The Heisenberg model is an example of an interaction known as direct exchange.
The development of magnetic theory has led to the prediction of other types of
exchange coupling between spins. Superexchange is the coupling of the spins of
magnetic atoms by nonmagnetic atoms via the electronic charge distribution on
the nonmagnetic atoms. Indirect exchange is the coupling of the localised spins of
unfilled inner electron shells via polarisation of the conduction electrons. Finally,
itinerant exchange is that between the conduction electrons which are able to move
within a metal crystal; its development is briefly outlined below.

1.5.2 Development of the Itinerant model of Magnetism

The magnetism of metals has been a controversial subject and the development
of a workable model remains one of the major unsolved problems of solid state
theory. The great difficulty is the fact that metallic magnetism is a truly coopera-
tive phenomenon arising from the corellated motion of a large number of mutually
interacting electrons.

The theory of ferromagnetism prevalent in the 1930s was that developed by
Heisenberg (1928) involving localised electrons in direct exchange interactions. Ap-
plication of this model to metals suggested that the mean magnetic moment should
be an integral number of Bohr magnetons per atom however in the case of Nickel
the experimentally observed value is 0.6 Bohr magnetons per atom. Van Vleck
(1953) suggested the Heisenberg model to still be applicable by assuming the atoms
to posses different electron configurations, i.e. be in different states of ionisation
with d electrons being mobile. Mott (1935) postulated a band model to explain
the experimental observation, with a very marked overlap between 4s and 3d bands
leading to a non integral saturation magnetisation of 0.6 Bohr magnetons. The
main problem with this idea was the explaination of or ‘source’ of ferromagnetism.
According to Slater (1936) in early band calculations, it is the exchange interaction
between electrons in the same atomic shell which produce a parallel orientation.

The first major contribution to the field of itinerant magnetism was made by
Stoner (1938), (1939) through his collective electron model. The Heisenberg model
had given physical interpretation to the molecular field proposed by Weiss. An al-
ternative to this model could continue to use this molecular field hypothesis, leaving



it to later research to interpret this field under conditions of nonlocalisation. On
this basis, and the assumption of Fermi statistics, Stoner produced a model in which
the electrons are treated as unbounded or free, the influence of the periodic lattice
potential is described by an effective mass of the electron and the many body in-
teractions by a field which is parallel to the external field. The Stoner equations
(see for example ‘Introduction to the Theory of Magnetism’ by Wagner or Wohl-
farth (1981)) result in an expression for the number of up/down spin electrons in
an applied magnetic field to be

e E — H
nt = / N(E)[exp(——LTETHBTy | )1 (1.15)
where yu is the chemical potential, kg the Boltzman constant, T the temperature, ug
the Bohr magneton, H the applied magnetic field and e the interaction parameter.

€= %nl{ (1.16)

where n is the total number of electrons (n = ny + n_), I the effective interaction
between particles and ¢ the relative magnetisation i.e. the ratio of the number of
excess parallel spins to the total number of potentially effective spins at full satura-
tion. Stoner originally used an effective temperature 8’ to represent the molecular
field coefficient:

kgb' = %nl (1.17)

The problem was to solve for ¢ = £(T, H,I) on the basis of equation (1.17). By
assuming the density of states curve to be of a parabolic shape, it can be shown (see
for example ‘Intoduction to the Theory of Magnetism’ by Wagner) that in the case
of H=0, T=0, an expression for the spontaneous magnetisation £ is obtained of the

form:
2kgl’

Er
where EF is the Fermi energy. For ferromagnetism to occur at all, i.e. £(0,0,1) > 0,
the Stoner criterion must be satisfied:

= (14 &) — (1 - &)F (1.18)

IN(Ep) > 1 (1.19)

Equation (1.20) has solutions with £ # 0 for certain values of the parameter I and
those such that €(0,0,71) < 1 define the state of weak itinerant ferromagnetism.
This occurs if

2 _ kgt 1
- < <273 1.20
3~ Ef (1:20)
Also in the paramagnetic state, the resulting susceptibility is given by:
_ Xp
X = 1 _ 3kno’ (121)
2Ep

where x, is the noninteracting (Pauli) susceptibility. In the paramagnetic state, the
value of the denominator lies between 0 and 1 and the susceptibility is enhanced by
the exchange interactions. This is known as the Stoner enhancement.

7



Stoner theory is quite successful in explaining the ground state properties of
itinerant systems but calculations of high temperature properties are too simplistic.
It cannot account for the temperature dependance of the magnetisation and predicts
transition temperatures far above those actually observed. Within the Stoner theory
there is no reason why the susceptibility in the paramagnetic state should exhibit
Curie-Weiss behaviour observed over a wide temperature range in weakly magnetic
systems. In this model, because the electrons are independant, the only possible
excitations are due to spin flip processes and this kind of excitation are known as
Stoner excitations.

The importance of the interaction between the excited electrons and holes was
first considerred by Slater (1937) in his theory of bound collective modes in ferro-
magnetic insulators. This was extended to ferromagnetic metals and developed by
Herring (1952), within the so-called Random Phase Approximation (R.P.A.). The
introduction of electron correlations resulted in the appearance of collective spin
wave modes at large wavelengths and lower energies, before merging into the Stoner
continuum at higher energies. The interaction between the spin waves was consid-
ered by Dyson (1956), producing an expression for the modification of the spin wave
energies as a consequence.

Rhodes and Wohlfarth (1963) considered the ratio of the local moment obtained
from the Curie-Weiss susceptibility above the Curie temperature (7,) with the sat-
urated low temperature moment. If the T, is not too high, this ratio gives a useful
measure of the itinerancy of the magnetic electrons. This ratio is expected to be
unity for a localised system and larger than unity for intinerant materials.

A different theoretical approach is that via the development of a Landau Ginzburg
model of ferromagnetism (Edward and Wohlfarth (1967)). For weak itinerant fer-
romagnets, the magnetisation M(T, B) can at all temperatures be regarded as an
order parameter. The free energy can in general be expanded in terms of even
powers of the order parameter due to the symmetry of the problem such that:

A
F(M) = F(0)+-2—M2+§M4+ ...... ~ M.H; (1.22)
assuming A and b are independant of magnetisation and field. This results in an
equation of state where the magnetic field which stabilises a magnetisation M is
given by:
' H; = AM + bM?® (1.23)

For zero magnetic field, this has two solutions:
M(T,0) = 0 above T, in the paramagnetic state.
M(T,0) = ('—bA)% below T, where A < 0.

Also from this expression:

Xt = % = A+ 3bM? (1.24)

This model is successful in explaining some of the experimental properties of
weak itinerant ferromagnets including linear ‘Arrot Plots’ of the form M?*(T, B)

8



vs H;/M(T, B) over a wide temperature range T and magnetic field range H; (a
consequence of the form of equation (2)). Also, qualitative agreement of the experi-

mental behaviour of the magnetisation as a function of temperature can be obtained
by suitable choice of the form of A(T).

Numerous attempts have been made to develop the above analysis by adding
additional terms to the expression for the free energy. The free energy at fixed
temperature T, volume V, number of particles nNa (Na is the number of atoms) and
characterised by a particular magnetisation M can be written in the form (Taillefer
(1986a)),

F(M) = Fo(M) + AgF(M) + A F(M) (1.25)

where Fo(M) is the noninteracting free energy for a given single particle density of
states. AoF (M) is the Hartree Fock correction due to particle interactions of the
form

1
AoF(M) = —§AVM2 where A is the interaction parameter (1.26)

Combined with the first term they define a Stoner theory in which elementary
excitations may be thought of as uncorrelated particle hole pairs in the presence of
a molecular field AM. The last term represents corrections to this Stoner theory
arising from correlations in the motion of these excited particle-hole pairs. These
give rise to thermally excited, enhanced magnetic fluctuations.

Previously, the problems of interacting electrons had been reduced to a prob-
lem of almost noninteracting quasiparticles. The developing model considers the
interactions between electrons in terms of the spatial and temporal fluctuations in
charge and spin densities (Herring (1966)). Both models are equally valid, simply
different sides of the same coin and to descibe the system fully, both may be re-
quired. However, the latter description suggests that narrow band d metals and f
metals may be understood with a single unified picture. The spectrum of magnetic
fluctuations becomes the quantity of central interest, possibly being localised in real
or reciprocal space.

The Random Phase Approximation, whilst predicting spin waves, takes no ac-
count of their effect upon the Stoner equilibrium state. This was done by Murato
and Doniach (1972) and extended by Moriya and Kawabata (1973). However, full
vector analysis was performed by Lonzarich and Taillefer (1985) who considerred
both longitudinal and transverse fluctuations on the system.

Lonzarich and Taillefer (1985) use the local magnetic density as an order pa-
rameter but express it in terms of its mean value M and the slowly varying average
of the deviation of the exact local magnetisation of the mean, m(r,t). It is then
assumed that the local free energy can be expanded in terms of this slowly varying
magnetisation (taking terms to 4th order in M):

f() = fot SIM 4 m(r)P + 2 1M+ m(r)* 4 £ 3 Amu ()P 4 (120)

where m(r,t) is expanded in terms of its Fourier components. As the temperature
is increased from 0K, the available thermal energy will induce excitation of certain



modes of the local magnetisation. For low temperatures and weakly ferromagnetic
metals, long wavelength modes will dominate the excitations. In order to account
for this, a temperature dependant wavevector cut-off is introduced to the model
such that:

m(g) = m(g) ¢ < ¢
m(q) = 0 otherwise

The choice of ¢. is taken so that modes are excited thermally i.e. the elementary
excitations involved obey Bose statistics (whereas Stoner excitations obey Fermi
statistics).

At some temperature T, the spectrum observed in a particular metal is depen-
dant on two elements. The extrinsic thermal energy available for excitation and the
intrinsic susceptibility of the various modes to thermal excitation, contained in the
expression for the dynamic susceptibility x,(¢,w). By producing an expression for
Xv(g,w) based on the Random Phase Approximation but incorporating the affect of
modes already excited, the resulting equation of state is:

H; = AM + bM® whereA = a + b[3 < m> > +2 < m,? >] (1.28)

< m)® > and < m % > are the thermal variances of the local magnetisation parallel
and perpendicular to the average magnetisation M respectively. a and b are two of
four parameters of the complete theory, all of which are measurable experimentally.
This model successfully accounts for:

1. Linear Arrot plots.

The T? fall of the magnetisation as the temperature is raised below T.

The Curie-Weiss paramagnetic susceptibility.

The magnitude of T..

The ratio of the magnetic moments in the ferro and paramagnetic states.

The form of the paramagnetic dynamical susceptibility.

. The magnitude of the spin fluctuation contribution to the enhancement of the
observed affective mass.

NSOk N

1.6 Demagnetising Field

Consider a specimen of finite size placed in a uniform magnetic field. The total flux
density B is conserved and will be the same outside the specimen as in the material
itself. If the applied field is H, the magnetic field effectively acting internally on the
material to produce a magnetic flux is less than the externally applied field. This
is due to the ‘demagnetising field’ produced within the specimen, in opposition to
its magnetisation. The demagnetising field is dependent on the magnitude of the
magnetisation and the specimen geometry The field H; acting inside the body may
be written:

= H-Hp (1.29)
(1.30)
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where Hp is the demagnetising field. The demagnetising factor Np is defined by:

Hp=-NpM (1.31)

1.7 Magnetocrystalline Anisotropy

The energy associated with the magnetisation of a ferro/ferri or antiferromagnet
is dependent on the direction of magnetisation with respect to the crystallographic
axes. The energy is lowest in an easy direction and a higher field must be applied
to make the magnetisation lie in a harder direction. The spins are coupled to
the electronic charge density via the spin orbit coupling and their energy therefore
depends to some extent on their absolute orientation with respect to the crystal
axes, as well as their relative orientation with respect to one another.

In an attempt to minimise the magnetocrystalline energy, a crystal may undergo
a small deformation when magnetised and if not allowed to expand freely may cause
internal stress in the crystal. Conversely the application of stress to a crystal will
affect the lattice and hence the magnetocrystalline energy.

1.8 Magnetic Domains

In order to account for the magnetic properties of ferromagnetic materials, including
the ability to have zero magnetisation both with and without an applied field and
to display magnetic hysteresis, Weiss (1907) postulated the existence of magnetic
domains - separate magnetised regions of macroscopic size in the sample. Each
domain is intrinsically fully magnetised under the influence of exchange interactions.
However, the demagnetised state corresponds to a collection of separate domains
orientated with no net magnetisation. On application of relatively low fields there
is an overall change in the magnetisation due to rearrangement of domains and
the boundaries between them, involving two main processes. In one process, the
volume of domains favourably orientated with respect to the applied field grows
at the expense of those unfavourably orientated (i.e. there is a displacement of
the domain walls). In the other, the magnetisation of the domain rotates toward
the field direction. The two processes may occur either reversibly or irreversibly
depending on the strength of the field and nature of the sample.

Landau and Lifshitz (1935) showed that the subdivision of a specimen into do-
mains resulted in a considerable reduction in the magnetostatic energy, as opposed
to the saturated condition, minimising the demagnetising field. This reduction in
energy through domain formation does not continue indefinetly, as it must be off-
set against the increase in energy due to the necessary creation of new domain
boundaries. The spin near the boundary of a domain will experience unfavourable
exchange interactions with nearby spins in a neighbouring misaligned domain. How-
ever, because the exchange interaction is short ranged, only the spins near the do-
main boundaries will have their exchange energies raised. In contrast, the gain in

11



magnetic dipolar energy is a bulk effect - because of the long range of the interaction,
the dipolar energy of every spin drops when domains are formed.

A domain wall consists of the transition layer which separates adjacent domains
magnetised in different directions. The total angular displacement across a wall
is commonly 180° or 90°. Generally the whole spin change takes place gradually,
being a compromise between the opposing influences of exchange energy and mag-
netocrystalline anisotropy energy. In a crude classical model, the exchange energy
of successive pairs of spins seperated by an angle Z will not be the minimum value

—JS?% but rather
E.. = —JSzcos(I)
n
1,7 2
~ —JS*1—=(= 32
JS*1 5(=)’] (1.32)
If it takes n steps to produce 180° spin reversal, the energy cost will be:
AE ~ n[-JS%os> — (—JS?]
n
2

~ T js?

N o JS (1.33)
which lowers with the steps taken, n. However this will result in more spins lying

out of the the easy direction, increasing the anisotropy energy so that the domain
wall width is the result of a compromise between the two opposing effects.

Thus domain formation results in a lowering of the total magnetic free energy.
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Chapter 2

Manganese Silicide and Cubic
Iron Germanium: an Introduction

2.1 Previous work done on Manganese Silicide
and Cubic Iron Germanium

2.1.1 Manganese Silicide

The metallic alloy MnSi has been the subject of numerous theoretical and exper-
imental investigations pivotal in the development of the self consistent theories of
itinerant magnetism.

In 1966 a paper appeared in the Journal of Applied Physics (Williams et al.
(1966)) on the magnetic properties of the monosilicides of some 3d transition ele-
ments. MnSi was reported to order magnetically at 30K with a magnetisation curve
which is linear up to a field of 6.2kOe where it saturates abruptly. It was also noted
with interest that the saturation moment per Mn atom at 1.4K is 0.4pp which is
smaller than the value one obtains in the paramagnetic region. Brown et al. (1968)
later reported that the neutron diffraction experiments on both powder and single
crystal failed to show an antiferro or ferrimagnetic component to the moment so
suggested that the total moment was derived from the saturation magnetisation.
Fawcett et al. (1970) measured the thermal expansion and specific heat of MnSi
and found the transition to be of second order.

After macroscopic magnetisation measurements in the range 2.5 - 900K and up
to 20kOe, Levinson et al. (1972) reported that the measurements were incompatible
with zero field ferromagnetism below the ordering temperature. Low field magnetic
measurements below the critical temperature on a powder sample showed the mag-
netisation was not completely linear but was curved below the linear response in
fields below 1.1kOe as shown in figure 2.1. Although such magnetic behaviour is
more typical of an antiferromagnet below the transition temperature, neutron exper-
iments failed to observe any additional magnetic reflections. This posed a problem;
magnetisation measurements being inconsistent with simple ferromagnetism whilst
other experiments strongly implied a ferromagnetic structure. To resolve the incon-
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Figure 2.1 Magnetisation of MnSi as a function of applied magnetic field. (After
Levinson et al. (1972)).



sistency, it was suggested (Levinson (1972)) that antiferromagnetic coupling existed
between microscopic ferromagnetic regions. By measuring the depolarisation factor
for polarised neutrons transmitted through a thin sample of MnSi, Levinson was
also able to deduce that the size of each ferromagnetic domain was ~ 500A.

Wernick et al. (1972) and references therein also reported on the low saturation
moment of MnSi and the abrupt manner in which it saturated at 6.2kOe. Magnetic
properties determined by torque measurements suggested MnSi was antiferromag-
netic in zero field at low temperatures while longitudinal magnetostriction studies
indicated it was antiferromagnetic below 0.5kOe and ferromagnetic above 6.0kOe.
NMR measurements also suggested that MnSi was not a simple ferromagnet in an
external field of 6.0kOe.

After high magnetic field and high pressure measurements performed on MnSi,
Bloch et al. (1975) pointed out that it could not be characterized as a simple, weak
itinerant ferromagnet. Despite the difference in effective moments above and below
the low critical temeprature and the lack of saturation at high fields, all consis-
tent with weak itinerant ferromagnetic behaviour, they pointed out inconsistencies
including the nonlinearity of the ‘Arrot Plots’.

In 1976 Ishikawa et al. established the magnetic phase diagram of MnSi. Their
neutron scattering studies carried out at the ILL in Grenoble revealed that MnSi
had a helical spin structure with a long period of 180+ 3A in the equivalent < 111 >
direction: t 4.2K. The helical spin density wave was found to align itself with an
applied magnetic field when the strength exceeded about 2kOe before a cone like
structure is stabilised and the magnetisation is saturated by the process of closing
the cone. The magnetic behaviour above a critical field of about 6kOe is char-
acteristic of an itinerant, weak ferromagnet. A phase diagram based on ultrasonic
absorption data (and later published independently (Kusaka et al. (1976))) detailed
the boundaries between ferromagnetic, helimagnetic and paramagnetic phases. It
should be noted that the phase diagram, reproduced in figure 2.2 also contains
points at 1.5kOe just below the transition temperature in the conical phase where
an additional peak appeared in the ultrasonic absorption coefficient. This data cor-
responds to the magnetic field being applied parallel to the < 001 > direction and
is observation of the so-called ‘Phase A’, later reported by Kadowaki et al. (1981).
The result of Ishikawa was confirmed by both ESR (Date et al. (1977)) and NMR
(Matoya et al. (1976)(1978))

At about the same time, similar measurements on MnSi were being performed
at Risp by Hanson (1976). Hanson (1977) also made magnetic measurements on
a single crystal and showed the low field anisotropy in the magnetisation which is
reproduced in figure 2.3. This was confirmed by Guy et al. (1979) through torque
measurements on a single crystal of MnSi.

Despite the anomalies noted above, MnSi was then used as a typical weak itin-
erant ferromagnet in order to study the magnetic excitations in this type of system
by Ishikawa et al. (1977). There had long been a debate on the electronic state of
unpaired electrons in transition metals and alloys, reducing to whether they were
itinerant or localised spin systems. In the case of an itinerant system, it was thought
that single particle excitations called Stoner excitations would exist in addition to

td
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collective spin wave excitations. These had not previously been observed because
in metallic ferromagnets the Stoner excitations exist in a high energy regime (above
100meV). However, in the case of weak itinerant ferromagnets these excitations
were thought to occur in a lower energy regime enabling the study of both collective
and Stoner excitations through inelastic neutron scattering. The inelastic neutron
scattering from MnSi revealed that well defined spin waves exist only below 2meV
but above this, for increasing energies, the linewidth of the scattering broadens as
shown in figure 2.4. This increase in linewidth was regarded as evidence for the
Stoner boundary, observed as the excitations increased in energy and suggesting the
itinerant model of magnetic carriers to be correct. The excitations in the Stoner
continuum were found to remain almost unchanged even up to room temperature,
whilst the spin wave excitations observed at 5K collapse into critical scattering above
the transition temperature.

Following the work of Dzyaloshinsky (1958) and later that of Moriya (1960),
Bak and Jensen (1980) pointed out that a helical spin structure can arise out of a
Ginzberg Landau expansion of the free energy. Dzyaloshinsky had first recognised
the existence of an antisymmetric spin interaction in magnetic insulators. Requiring
that each term in the free energy satisfy the full crystal symmetry, the antisymmetric
form was shown to be allowed in certain class of crystals of sufficiently low symme-
try. The derivation of the antisymmetric interaction on the basis of a microscopic
Hamiltonian was given by Moriya and extended to include spin orbit coupling in
ionic crystals. Bak and Jensen produced a mechanism underlying the antisymmet-
ric spin interactions in metallic systems. Although Nakanishi et al. also produced
similar work, it was later discovered to be incorrect and a correct version was pub-
lished by Kataoka (1984) together with the previous authors. From renormalisation
theory, Bak and Jensen predicted the phase transition to be of first order.

The spin fluctuation spectrum in MnSi was further investigated by Ishikawa
(1982). Emphasis was put on measurement of the collective spin wave excitations
which were also found to exist above the transition temperature. Theoretical inves-
tigations by Moriya (1981) suggested the magnetic properties of itinerant electron
systems at finite temperature could be understood in terms of the temperature
variation of the mean squared magnetic moments < M? >. In contrast with the
Heisenberg system where < M? > is expected to be constant and independant
of temperature, in a weakly magnetic system, an initial fall of < M? > as the
transition temperature is approached from below with moderate increase above the
transition temperature was predicted. The data was interpreted within the frame-
work of the selfconsistent renormalisation theory (SCR) of Moriya (1979) since in
the paramagnetic phase the lack of distinction between the longitudinal and trans-
verse components of the magnetisation becomes irrelevant. The data, excepting the
low wavevector anisotropy associated with the incipient ordered state in the vicinity
of the transition temperature, is also consistent with the more general model for the
dynamical wavevector dependant susceptibility developed by Lonzarich and Taille-
fer (1985). This work by Ishikawa also interestingly included observation of spin
correlations close to the transition temperature, developing as a ring of scattering
around (0,0) and not the magnetic satellite.
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The experimental observation of spin fluctuations in the paramagnetic state was
extended by Ishikawa (1985) a few years later by making a complete measurement
of paramagnetic scattering for MnSi for the energy region 20meV. Figure 2.5 shows
measurement of the scattering at T=33K using unpolarised neutrons. For small ¢q the
scattering contours are circular about ¢ = 0 but as ¢ increases, a ridge of scattering
can be found extending upwards in energy. This ridge exists for energies above
about 3meV and is suggested to be the lower boundary of the Stoner continuum,
initially observed in (1977). Reservations about this data, including experimental

resolution and ¢ dependant background, led to the work being repeated by Brown
(1990).

Following these experiments on the fundamental nature of itinerant magnetism,
more work was performed on the phase diagram of MnSi to further test the theo-
retical work of Moriya. Matsunga et al. (1982) measured the magnetovolume effect
which was found to become positive above the transition temperature. The mag-
netisation and magnetoresistance of MnSi were studied by Kadowaki et al. (1981)
and also by Sakakibara et al. (1981) in magnetic fields up to 500kOe. The work of
Kadowaki observed anomalous peaks in the magnetisation and magnetoresistance
just below the transition temperature in applied magnetic fields of 1.0 - 2.2kOe and
suggested the existence of two new phases. The complete phase diagram, compiled
using various techniques including ESR, ultrasonics and magnetisation (Kadowaki
et al. (1981) and refs. therein) is reproduced in figure 2.6. It is important to note
that the magnetisation data was recorded by fixing field and sweeping temperature
and that no anisotropy was observed in relation to new phases when the field was
applied along different crystallographic directions.

Following the theoretical work of Bak and Jensen (1980) and their prediction
that the helix in MnSi must be only left or right handed depending on the sign
of the Dzyaloshinsky term in the Hamiltonian, work was done to determine the
handedness of the helix. Shirane et al. (1983) used the fact that a single handed
helix only scatters a particular polarisation of the neutrons to deteremine that the
spiral was right handed only. Tanaka et al. (1985) determined the chirality of
MnSi crystal using convergent beam electron diffraction before Ishida et al. (1985)
investigated the helicity using polarised neutron diffraction. All seven crystals grown
from different seeds were found to belong to the left handed system and the neutron
scattering showed that only the left handed spiral of the helical spin density wave

existed. Thus the left handed spiral must be closely related to the left handed crystal
structure.

Further investigation of the phase diagram of MnSi was performed by Ishikawa et
al. (1984), particularly within the new phase close to the transition temperature and
refered to as ‘Phase A’. This work suggested that ‘Phase A’ was in fact an extension
of the paramagnetic phase into the conical region where the magnetic correlations
exhibited the same characteristics as those found at 29.5K in zero field, namely a
diffuse ring of scatter. The work was performed using pulsed neutron beams with
neutron wavelengths ranging from 3 - 114 and only one crystallographic orientation
was investigated. It was pointed out that the presence of such a phase was not
predicted in the theoretical work of Bak and Jensen (1980) or Plumer and Walker

17




r -v-v- Ultrasonic Absorption
A A ESR
] oo Magnetoresistance
| —e—e— Magnetization
5. Me v
\‘v-,* Induced Ferro. State /’
'k\‘ ’I’
""{x“\ ,'ll’
g v ;\'v‘ "I’
2 4r ¥, s
~ Corical State \ J
G
O3
[
%% Phase){A”
2+ '\\
Hg
1 ]
Domain Reorientation
Region
OL_. 1 |

26 27 28 29 30 31
TEMPERATURE (K)

Figure 2.6 Phase diagram of MnSi near Ty as measured using various techniques.
(After Kadowaki et al. (1981)).




(1981).

The electronic spectrum of MnSi was investigated by Taillefer (1986b) through
band structure calculations and de Haas-van Alphen measurements. The high effec-
tive mass of the electron (15m¢) was noted. The de Haas van Alphen measurements
were later developed by Brown (1990) at lower temperatures and higher fields.

Throughout the past decade, a series of theoretical papers was produced by
Plumer and Walker. A mean field theory was presented and a study of the rotation
of the helical spin density wave into the applied field direction performed (1981).
The model assumes that the helix begins to rotate from < 111 > direction towards
the field direction on application of a magnetic field. The theoretical magnetisation
was produced for magnetic field applied along different crystallographic directions,
reproduced in figure 2.7 and is in good qualitative agreement with the experimental
results of Hanson (1977), showing that rotation of the helix into the field direction
could account for the unusual nonlinear dependence of the magnetisation observed
below 1.5kOe. By incorporating magnetoelastic interactions within the expression
for free energy, (Plumer and Walker (1982)), an expression for the magnetostriction
has been derived which compare well with the existing data of Matsunga et al.
(1982). This model was also developed to produce a theory of the generalised
susceptibility and spin dynamics associated with the helical spin density wave phase
of MnSi by Plumer (1984). Finally, Walker (1989) has presented a paper which
predicts the helical response as the magnetic field is reduced after being large enough
to cause rotation of the helical spin density wave into this direction. He suggests
the rotation of the wavevector from < 001 > to < 111 > direction would occur as
a result of two successive phase transitions. Due to the symmetry considerations,
the helix would first rotate into another direction before rotating into the < 111 >
direction.

More recently, Shekhtman et al. (1992) have further commented on the Dzyaloshin-
sky Moriya interaction and its relevance for the spin anisotropies in La;CuQy (a
‘high T,.’ superconductor). This demonstrates the universality of the symmetry
breaking in MnSi where its consequence can be studied with out the complications
of ‘high T’ superconductivity.

Throughout this review, there has been little agreement as to the ‘type’ of ferro-
magnetism exhibited by MnSi although most agree it does not arise from localised
magnetic moments of fixed amplitude. This is apparent in the panel discussion
on ‘3d Magnetism at Finite Temperatures’ (Arrot (1983)). The problem can be re-
solved by considering a unified magnetic fluctuation picture as described by Taillefer
(1986a). The origin of ferromagnetism in metals lies in the interaction between con-
duction electrons and in the resulting correlation in their motion. The interaction
between electrons can be treated in terms of spatial and temporal fluctuations in the
charge and spin densities. This makes the spectrum of magnetic or spin fluctuations
the quantity of central interest and the difference in behaviour arises from the varia-
tion in the spatial character of the important fluctuations in spin and charge within
the class of metals. At one end, there are the weakly ferromagnetic metals such as
NizgAl or ZrZn, for which all the large fluctuations at low temperatures have long
wavelengths. At the other end, there are the ‘heavy fermions’ such as U Pt; where
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modes of all wavelengths are nearly equally strong. In the intermediate regime one
finds MnSi where shorter wavelengths are becoming more important. Consequently

it is then tempting to stretch the definition of the end categories to include MnSi
in both.

2.1.2 Cubic Iron Germanium

The amount of work performed on cubic FeGe is far less extensive than that on
MnSi, possibly owing to the difficulty of growing single crystals of cubic FeGe.

An excellent, concise review is given by Lebech (1989) summarising work up
to 1989. Lebech studied the magnetic structure of cubic FeGe extensively using
small angle neutron scattering. The metal was observed to order magnetically at
a temperature of 278.7K into a long range spiral of period 683 - 700A propagating
along < 100 > directions at high temperatures and along equivalent < 111 > direc-
tions at low temperatures. The transition at which the direction of the spiral turns
was observed to take place in a temperature interval of 40K and show pronounced
hysteresis (T'2decr. = 211K ,Tyincr. = 245K). Applied magnetic fields of 200 - 400
Oe, depending on temperature and direction cause the spiral axis to rotate into the
direction of the field. As the field is further increased, the amplitude of the antifer-
romagnetic spiral decreases and the ferromagnetic component increases until cubic
FeGe becomes magnetically saturated.

Following the neutron diffraction data of Lebech, Plumer (1990) analysed the
magnetic reordering in the helical spin density wave phase of cubic FeGe in terms
of a Landau-type free energy, similar to that previously used to study MnSi. A
magnetic phase diagram was predicted and is shown in figure 2.8.

More recently, Lebech (1992) suggests that reorientation of the helix into the
field direction in FeGe can occur as a first or second order process (figure 2.9 and
figure 2.10) and is dependant on the angle between the applied field and the initial
modulation vector ¢q. Investigations using SANS at both 250K and 140K (i.e. in
both phases with g|[ < 100 > directions (250K figure 2.9) and ¢|| < 111 > directions
(140K figure 2.10)) show that with a magnetic field applied initially perpendicular
to the helix, a first order transition or ‘flip’ occurs whereas with ¢ initially at smaller
angles, a second order rotation occurs. -
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Figure 2.9 Field dependancies of the angle §, between modulation vector q and
the direction of the applied magnetic field H at 250K in cubic FeGe. The insets
show the relevant parts of reciprocal space and define the orientations of the initial
modulation vector ¢(0) and the modulation vector ¢(H) for a field H along [011].
Both these vectors lie in a vertical plane parallel to the area sensitive detectors.
(After Lebech (1992)).

Figure 2.10 Field dependancies of the angle 6, between the modulation vector ¢ and
the direction of the magnetic field H at 140K in cubic FeGe. The insets show the
relevant parts of reciprocal space and define the orientations of the initial modulation
vector ¢(0) and the modulation vector ¢(H) at a field H along [011]. Both these
vectors lie in a vertical plane parallel to the area sensitive detector. (After Lebech
(1992)).
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2.2 Structure of the Unit Cell

Both MnSi and cubic FeGe have the Byg cubic structure as shown in figure 2.11. The
structure belongs to the space group P2;3 and lacks inversion symmetry. In MnSi,
the unit cell has sides a=4.558A and in FeGe 4.700A. The position of the atoms
in the unit cell are (u,u,u),(3+u,3-u,-u), (-u,34u,3-u) and (3-u,-u,2+u) where upy,
is 0.138, ug; is 0.845 and ug. is 0.135, ug. is 0.842. This structure lacks inversion
symmetry and the unit cell can exist in two chiral forms.

2.3 Origin of the Helical Spin Density Wave in
MnSi and FeGe

The origin of the helical spin density wave HSDW in MnSi and FeGe is still not
clearly understood and numerous peculiarities exist. The wavelength of the spiral
decreases as the temperature is increased (Ishikawa (1984)) and also the helix is be-
lieved to only have one handedness. There are also anomalies close to the transition
temperature in MnSi, with a double transition apparent in the thermal expansion
data of Matsunga (1981) and the ultrasonic attenuation data of Kusaka (1976) at
ambient pressure. Ishikawa (1984) has tried to relate this to the appearance of
a spherical shell of scattering observed in a magnetic field close to the transition
temperature (the so-called ‘Phase A’) without success.

Following the work of Dzyaloshinsky (1964) it was pointed out by Bak and Jensen
(1980) that a helical spin structure can arise out of a Ginzberg Landau expansion
for the free energy. The free energy can be expanded in terms of a slowly varying
spin density S(r) with respect to the symmetry operations of the P2,3 space group.
The most general form for the Free Energy to fourth order in .5; and to second order

mn 5 182

1
F(r) =sA(S. 45,7+ 5.2 +

+ BS.(Y % 5)+ B[V + VS, + VS

1, .95, 8S,* 88,2
+  C(S2+ 87+ 8.2+ D(S:* + S, + 5.4 (2.1)

Due to lack of inversion symmetry this includes a Dsyaloshinsky term of the form
S.(V x S) whose origin lies in the relativistic spin spin interactions $; x S, which
are expected to be small compared to the Heisenberg term S,.S .

In the case where b = 0, B; > 0 and B; > 0 the free energy is minimised through

ferromagnetism however for b # 0 and a slowly varying spin density, the free energy
may be minimised by spin densities of the form:

S(r) = % [Seexp(ikr) + S, exp(—ik.r)] (2.2)
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The expression for the free energy becomes:

1 1

F(E) = SAIS,P + 50k (S, x 5,7) + 5 BikIS,
1
+§132(1c3,2’|51cz|2 + k,%|Sky|* + k.%|Sk.|*) + higher order terms (2.3)
If S, = ax+1Bk then the free energy is minimised %hc = 0 when oy L By, |ak| = |Bk]
and k % (ax X fBx) = 0. The sign of b then determines the handedness of the spiral.
(b > 0) k antiparallel to ax x S
(b < 0) k parallel to ax x B

The direction of k is fixed by the sign of the second order anisotropic term.
In MnSi k lies parallel to [111] and so B, must be negative. For FeGe this con-
stant is temperature dependant with a critical temperature of 278.7K with the helix
propagating along equivalent < 100 > directions above 211K and along equivalent
< 111 > directions below 211K for decreasing temperatures.

The free energy simplifies to the form:

1 1 1
F(k) = (A = [blR)ISk* + (5B1 + g Ba) KISl (2.4)

Minimising this expression 2F|s, = 0 results in the magnitude of the HSDW

|6]
k= — 10
| | B, + %Bz

In MnSi the wavevector is =~ 180A whereas in FeGe it is =~ T00A.

Although this approach predicts that a HSDW should exist, the magnitude of
the parameter b is unknown as is the exact microscopic origin of that term in the
free energy expansion. This work has been extensively expanded in the literature
(Plumer and Walker (1981)) and appears to be able to account for some of the
behaviour of the HSDW under an applied field in terms of the reorientation of the
HSDW however both the temperature dependant behaviour and ‘Phase A’ remain
unaccounted for.

2.4 Domains in MnSi and FeGe

In the introduction, the concept of domains was introduced as a region in a fer-
romagnet where the moments are locally aligned. Domains have been observed in
antiferromagnets, for example Patterson (1985) and hence they may exist in MnSi
and FeGe. Consider MnSi where within the cubic crystal structure there are eight
equivalent < 111 > directions along which the helical spin density wave can propa-
gate. A domain is defined as a region of the crystal where the helix propagates along
a particular direction. They are thought to exist because of temperature variations
across the sample when passing through the critical temperature, as well as due to
various stress variations within the specimen due to dislocations within the lattice.
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The wavelengths of the helical spin density wave in both MnSi and FeGe are
exceptionally long magnetic structures. Although domain size will be dependant
on sample quality, Levinson (1972) measured the length scale of the domains to be
500A i.e. a similar order of magnitude to the helical spin density wave. Within
MnSi a complete wavelength extends across 22 unit cells so it is understandable
that Collins (1989) describes MnSi as a ‘long period modulation of a ferromagnetic
structure rather than antiferromagnetic’.
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Chapter 3

Equipment

3.1 The Durham Vibrating Sample Magnetome-
ter

3.1.1 Outline of the System

The principle investigative tool used in Durham was a Vibrating Sample Magne-
tometer (VSM). This instrument was designed and built in the laboratory by Drs.
S.R.Hoon and S.N.M.Willcock and has been described in detail (Willcock(1985),
Hoon and Willcock (1988)) consequently only a broad outline is given here.

The principle of the operation of a VSM was originally described by Foner (1956).
In essence, the VSM detects the magnetic induction in the vicinity of a selected
sample. The sample is placed in a static magnetic field and vibrated relative to a
series of pick-up coils. This causes the flux through the detection coils to change
and so induces an e.m.f. across them in accordance with Lenz’s Law. This e.m.f.
is proportional to the moment of the sample and the amplitude and frequency of
vibration. The vibrator mechanism also provides an a.c. signal at the vibrational
frequency which can be used as a reference signal for a phase-sensitive detector.
Hence provided that the amplitude and frequency of vibration maintained constant,
the signal is proportional to the magnetic moment of the sample. Calibration of the
system with a known magnetic moment means the magnetisation of the sample can
be measured.

Figure 3.1 shows the principle components of the Durham VSM as used with a
12kOe electromagnet. The vibration mechanism is achieved by means of an electric
motor and crank mechanism. The 180° double throw arrangement of the crank
assembly provides a significant improvement on previous systems in amplitude and
frequency stability, low vibrational noise and high inertial loading. The vibrating
head mechanism is isolated from the rest of the system by a pneumatic seating.

The detection coils are mounted on the pole tips of an 8 inch Newport Instrument
Type D air cooled electromagnet. The geometry of the detection coils is that due to
Mallinson (1986) consisting of two vertical pairs of pancake coils mounted parallel
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to the faces of the pole tips. Data acquisition was via a Brookdeal 5206 lock-in
amplifier used in common mode rejection to detect the signal from the two pairs
of coils. A Hall effect Bell 640 Gaussmeter connected to a Fluke 8860a digital
voltmeter was used to measure the magnetic field. An IBM compatible personal
computer obtained data from these instruments via the IEEE 488 communication
bus and controlled the magnet power supply (a KSM (SCT)) via a Bede Scientific
Instruments Minicam interface system and a purpose built control panel, designed
and built in the Physic Department Electronic Workshop.

The cryostat used was an Oxford Instruments CF1200 gas flow cryostat with
seperate exchange gas filled sample space and controlled by an Oxford Instruments
3120 or ITC4 temperature controller. The sample was located centrally in the
cryostat by a perforated polytetrafluorethylene (PTFE) bush, the cryostat itself
being mounted centrally on the magnet axis.

Calibration was done by means of a Nickel sample. After accounting for demag-
netisation factors, a standard was chosen for the magnetisation of Nickel (Pauthenet

(1982)).

3.1.2 Enhancement of VSM Sensitivity

The Newport magnet and coils on the VSM were initially individually grounded via
the lock-in amplifier which infact held them at a common potential but not earth.

It was found that the sensitivity of the VSM was dramatically increased by
changing the above arrangement. The magnet was earthed directly using thick
braid and then the coils linked directly to the magnet. There was a large reduction
in noise, permitting a reduction in the time-constant used on the lock-in from 1s to
100ms, dramatically increasing the speed of data acquisition.

3.1.3 Data Acquisition System

The VSM at Durham was originally automated by Dr. S.N.M.Willcock using a
PET microcomputer to communicate with Brookdeal 5206 Phase Sensitive Detec-
tor, an 8860a Fluke multimeter and Bede Scientific Minicam Crate which in turn
controlled a Newport Power Supply. Over the passage of time, the computer had
become obsolete and a new power supply (KSM (KCT)) had been obtained for the
electromagnet. As a result, the system was overhauled and new control software
was written by Mr. C.1. Gregory.

The PET was replaced by an ‘IBM compatible’ Elonex 286 PC fitted with a
Scientific Solutions IEEE interface card. The source code of the program controlling
the entire system was written in Turbo Pascal. Routines had previously been written
for IEEE, Fluke, Brookdeal and Minicam individually by Dr. D.B.Lambrick and
these were moulded into a complete control program.

An entire package of programs was written for the VSM to undertake various
tasks and incorporated with a user guide. This descibes the apparatus used in the
system, how it is computer controlled, each program in the package and what it can
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do, and how to set-up the system before taking data (see Appendix A). Data is is
stored in a matrix format and programs to display the data using the PC-Matlab
software package are also included.

In short, the package allows the recording of magnetisation as a function of time,
temperature and manually or automatically altered magnetic field. The complete
control program allows for three field regions where the density of data points can
be varied. It also requires the number of repeated measurements at each field and
the delay between each in terms of the number of time constants to be input. There
is real time display of data in the form of a graph on the screen in all programs.
Well annotated listings of all the programs written are included in Appendix A.

One limitation of the system is that with the KSM power supply there is a region
of 2000e close to the remnant field which is unobtainable when the current polarity
is switched. In order to overcome this, a control program was written incorporating
a smaller Kepco bipolar operational powersupply/amplifier. This program, also
included in Appendix A, is similar to the others and controls the Kepco via the
dac board of a Bede Scientific Instrument Minicam system. The maximum field
obtained is smaller than that using the KSM so the program moves in fixed field
steps but would require little development to incorporate the field regions of the
original program.

3.2 Oxford 120kOe VSM Facility

Some measurements were made in collaboration with Dr. D. B. Lambrick at Manch-
ester Polytechnic using the Manchester VSM facility. This comprises of an Aerosonic
VSM and Oxford solenoid 120kOe superconducting magnet. All measurements were
taken in step mode using a typical time constant of 240ms and a field settle time of
3s. The sample enviroment was provided by an Oxford CF1200 cryostat providing
a temperature range of 2-1200K. Temperatures were monitored by a Au(0.03%)Fe
Cr thermocouple and controlled by an Oxford ITC4 temperature controller.

Calibration of the magnetic field at low fields was performed using a Bell 640
gaussmeter because a small amount of hysteresis due to flux pinning was observed
in the magnet.

3.3 Small Angle Neutron Scattering at Risg

Small Angle Neutron Scattering (SANS) was undertaken at the Risg National Lab-

oratory, Denmark in collaboration with Professor Bente Lebech of the Physics De-
partment.

The SANS facility used is on the reactor DR3 at Risg. This is a heavy-water-
modulated 10MW thermal neutron research reactor. Neutron beams emerge from
horizontal through tubes tangential to the reactor core, the flux being about 3.5 *
10'3n/cm?/s in the centre of the 7 inch diameter tubes. The thermal neutron flux, in
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equilibrium with the heavy water moderator has a Maxwellian distribution peaking
at 1.1A.

The beam used for SANS is then scattered using a so-called cold source (a
chamber filled with a supercritical hydrogen gas at 16 atmospheres and 38K) which
enhances the long wavelength region when compared for example to a thermal water
scatterer. The beam is shared, with a 20m long cold-neutron guide-tube providing
three ports in the ‘Neutron House’. Only neutrons that have undergone total internal
reflection from the Ni coated glass plates in the bent guide tube arrive at the end in
the ‘Neutron House’. As the angle of total reflection is proportional to the neutron
wavelength almost no neutrons below a ‘critical’ wavelength are transmitted. SANS
benefits from both a high flux at long wavelengths and low background enviroment.

The SANS monochromator consists of a mechanical velocity selector giving ac-
cess to wavelengths in the range 3 - 24A with a resolution of 10 - 20%. The 6m long
collimation section allows the neutron source point to be moved from 1 - 6m away
from the sample. Thus the arrangement allows for a suitable choice of scattering
vector range and enables tuning to optimum flux for a given resolution.

The area-sensitive multi-wire proportional detector used has been developed at
Risp. The active volume is 60cm in diameter, 4.5cm thick and the total gas volume
is 15.21. The normal filling is 1 atm 3He plus 1.5 atm Ar and Methane, which
combines high efficiency and spatial resolution together with low 4-ray sensitivity.
The anode grid is used for one coordinate and the two other cathode grids, coupled
in parallel after the pre-amplifiers are used for the other coordinate, resulting in
lem? pixels. A beam stop was placed in front of the detector to remove unscattered
neutrons.

The sample enviroment was provided by a 50kOe split coil, top loading super-
conducting magnet. This offered a temperature range between 4.2 - 300K and 0 -
50kOe vertical field. This was the first occasion the 50kOe magnet had been used
on SANS.

3.4 'Triple Axis Neutron Scattering at Risg

The triple axis spectrometer used at Rise was TAS1 which shares the cold neutron
beam with the guide tube for cold neutrons to the Neutron House. The instrument
has four fixed-incidence take-off angles from the monochromator. which for the
(002) reflection in pyrolytic graphite corresponds to incident energies of the first
order neutrons of 13.7meV, 7.2meV, 5.0meV and 3.6meV. The instrument is fully
automated and operated by means of the fortran program TASCOM running on
a PDP11 computer. The curved monochromator and the planar analyser crystals
are composed of lcm high (002) slabs of pyrolytic graphite. % filters of Be can
be inserted either infront of or behind the sample. The instrument moves on air
cushions and all angles may be set with a precision of a few hundredths of a degree.
The collimations can easily be adjusted to suit the experiment. The background
can be minimized by means of adjustable diaphragms.

The monochromator axis consists of a motorised turntable and a goniometer
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mounted on a turntable. The sample axis consists of a turntable with a goniometer
(£ 15 deg) and an X-Y translation (£12mm). The analyser unit is mounted on
air cushions. The take-off angle from the analyser is continuously variable. The
shielding wedges around the analyser crystal are lifted pneumatically to allow for
automatic change of the analyser setting.
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Chapter 4

Magnetic Measurements on ZrZn,

4.1 Introduction

Magnetic measurements were made on a single crystal of ZrZn, and are included
within this thesis for numerous reasons.

MnSi was used as a typical weak, itinerant ferromagnet by Ishikawa (1977) in
order to study the magnetic excitations in this type of system, both above and
below the critical temperature. However, as discussed in Chapter 2, the assumption
that MnSi is such a material is controversial. ZrZn, on the other hand, is arguably
the best example known of a typical, weak (Wohlfarth (1971)), itinerant (Pickart
(1964)) ferromagnet and has a transition temperature between 20 and 28K i.e. very
similar to that of MnSi. In order to investigate any differences, the magnetisation
of ZrZn, was measured close to the transition temperature.

Both FeGe and MnSi have cubic By structures and are capable of supporting
long range spin density waves at low temperatures. The helix propagate along
high symmetry directions in the crystals and are extremely long range, with repeat
distances ranging from 45 to 175 lattice units. This means that locally the spin
arrangement can be considerred ferromagnetic. ZrZn; can be regarded as a similar
ferromagnetic structure but of infinite wavelength.

Finally, although magnetic measurements have previously been performed on
ZrZn, (for example Knapp ef al.(1971)) and reproduction can be found in general
magnetism texts (Crangle (1991)), there is no report of a detailed study close to the
transition temperature.

4.2 Review of Previous work on ZrZn,

Attention was first excited to ZrZn, in 1958 when Matthias and Bozorth estab-
lished that a compound of ‘approximate composition’ 1Zr:2Zn had become ferro-
magnetic at 35K. Previously it had been assumed that ferromagnetic intermetallic
compounds must contain at least one of the ferromagnetic elements Fe, Co or Ni.
The fact seemed remarkable that neither Zr or Zn were ferromagnetic, but infact
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both superconductors in their pure metallic state. Since then, a great deal of exper-
imental and theoretical interest has been focussed on accounting for the magnetic
properties of this alloy system.

Pickart et. al. (1964) directly observed a large degree of delocalisation of the Zr
spin density in ZrZn, by polarised neutron scattering. Blythe (1966) studied the
paramagnetic susceptibility of ZrZn, above the transition temperature and found
it to follow the Curie-Weiss law. Within this report however, there is reference to
questionable results due to ‘suspect’ samples. The extremely sensitive nature of
the magnetisation to sample quality is evident as Foner (1967) considered whether
the magnetism was intrinsic because of the large differences between samples. It
was the results of Blythe (1968) on high purity samples of ZrZn; that proved the
ferromagnetism was intrinsic. Mattocks (1978) used the same samples as Blythe

and extended the magnetic measurements to find no sign of saturation of ZrZn, in
fields of up to 170kQe.

The magnetisation of ZrZn, and related alloys is discussed by Knapp et al.
(1971). They calculated the effective local moment from the Curie Weiss response
of ZrZn, above the Curie temperature and found P.;y = 1.57up per Zr atom as
opposed to a value of 0.16up at zero field and extrapolated to zero temperature.
(Note this figure was ammended to 0.17zp by Van Deursen (1986)). Their results
suggest that the ferromagnetism observed in ZrZn, is a consequence of the Fermi
level being close to a peak in the density of states curve. As a result, the extra
kinetic energy required for the transfer of a given number of electrons from one spin
state to the other is smaller than the net gain in exchange energy resulting from the
imbalance in population of the two spin states. The density of states curve is such
that this condition is only satisfied for the transfer of a small number of electrons.

The initial homogeneous pressure derivative of the Curie temperature of ZrZn,
was measured by Wayne and Edwards (1969). The value obtained of —(1.95 £
0.1)Kkbar~! was found to be in good agreement with the relationship T.(P) =
T.(0)(1 — P%)% derived from the theory of itinerant magnetism by Wohlfarth (1968).
The experiment was later repeated by Smith et al. (1971) who recorded a critical
pressure of 8.5kbars for the destruction of ferromagnetism.

Wohlfarth and Bartel (1971) showed that the thermal expansion, susceptibility
and pressure effects on the magnetisation are indicative of weak correlation effects
between the itinerant electrons. Clinton et al. (1975) used previously published
data to determine the magnetic entropy. They pointed out that although the broad
features of the behaviour of ZrZn, could be understood within the band model,
modifications would be necessary to account for the partially localised character
of the moments. This comment was reinforced by Brown et al. (1984) who used
polarised neutrons to measure the magnetic structure factor. This was found to
be consistent with a model in which 57% of the magnetisation is associated with
strongly hybridised Zr 4d and 5p wavefunctions, with the remaining magnetisation
very delocalised. Van Deursen et al. (1986) studied the Fermi surface of ZrZn,
through de Haas van Alphen and compared the observed frequencies to band struc-
ture calculations. Their high field magnetisation data showed the ‘Arrot Plots’ to
be curved, this being attributed to structure in the density of states.
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Because of the considerable development in theories of weak itinerant ferromag-
netism (Moriya (1979), Lonzarich et al. (1985)), Law (1988) investigated the spin
density spectrum of ZrZn, through neutron scattering in order to test new ideas.
Hayden (1991) also measured the low temperature magnetisation of ZrZn, and
found results consistent with the model of Lonzarich and Taillefer (1985).

4.3 ZrZny Structure and Sample

ZrZn, has the cubic Laves phase (C15) structure with a lattice parameter of 7.315A,
as shown in figure 4.1. This structure has inversion symmetry. The sample was
prepared by melting high purity zone refined zirconium and zinc contained by Y203
crucible inside a tantalum bomb at 1200°C. The mixture was cooled slowly through
the melting point and then annealed at various temperatures above 500°C over a
period of 5 days. The resulting ingot was found to have resistance ratio (22225 ) in
the range 30-50. The bulk of the specimen was seen to be a single crystal and Back-
reflection Laue X-ray diffraction photos were used to align the crystal and showed
that the crystal mosaic spread was small. The sample has previously been used by
Law (1988) in neutron scattering experiments and more recently by Hayden (1991)
to measure the ac susceptibility. This latter experiment determined a transition
temperature of between 23 - 24K.

4.4 Magnetisation Measurements above the Tran-
sition Temperature

Magnetic measurements were performed on a single crystal of ZrZn,, a disc of
diameter 2.5mm and mass 22.5mg, cut such that the disc is a (110) plane. The
magnetisation was found to be isotropic in the < 111 > and < 001 > directions
both above and below the transition temperature. Data presented in this thesis were
taken with the magnetic field and magnetisation measured parallel to the < 001 >
direction.

Figure 4.2 shows the magnetisation of ZrZn, close to the transition tempera-
ture in magnetic fields upto +0.25kOe. The raw data is plotted as points with a
single line representing the average value of measurements for increasing and de-
creasing magnetic field. The magnetisation is paramagnetic and as the temperature
is lowered the paramagnetism not only increases, but the curvature of the magneti-
sation becomes enhanced as demonstrated in figure 4.3 of the corresponding inverse
susceptibility.

From figure 4.3 it is evident that the inverse susceptibility is parabolic with
applied magnetic field in the temperature regime of 27 - 30K. As the temperature
is lowered, not only does the curvature of the parabola increase, particularly in
low fields of less than 2kQOe, but also the spread of values or error associated with
the inverse susceptibility reduces in low fields. As the temperature is reduced, for
example at and below 25K, the inverse susceptibility changes from being parabolic
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Figure 4.1 Structure of ZrZna.




In figures 4.2 - 4.4 the internal magnetic field (H; = H — Hp) has been called B and
given the units gauss. Magnetisation is measured in units of emucm =3 and can be
converted to units of emug™! using the density of ZrZn, which is 7.5gcm™3.
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Figure 4.3 Inverse susceptibility of ZrZn, (derived from the data of fig. 4.2) as
a function of applied magnetic field. The points on the graphs are the raw data
The solid line is an average through the data points for a particular field value. (a)
30.0K; (b) 27.0K; (c) 26.0K; (d) 25.0K; (e) 24.5K; (f) 24.2K; (g) 23.6K; (h) 23.3K;
(i) 22.0K.
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to a ‘V’ shape, owing to the zero field inverse susceptibility lowering rapidly with
temperature whereas the high field values remain approximately fixed. This trend
continues until at 24.5K the inverse susceptibility is convex with applied field and
a minimum value in zero field.

Figure 4.5 shows magnetisation measurements in a similar temperature regime
but extended to higher fields of 80kOe. Again points mark the raw data with a
single line representing the average value of the magnetisation for a particular mag-
netic field. Within this field scale, the paramagnetic response appears to increase
uniformly as the temperature is lowered. Note also that the magnetisation shows
no sign of saturation above the transition temperature, even upto fields of 80kQe.

4.5 Magnetisation Measurements at and below
the Transition Temperature

As the transition temperature is approached, the low field paramagnetic response
increases and becomes enhanced until at a temperature between 24.5 - 24.2K the
magnetisation becomes ferromagnetic i.e. finite in zero magnetic field (as shown
in figure 4.2) although no hysteresis is observed. The transition temperature was
determined by plotting M? against —AB7 (the ‘Arrot Plot’), which are linear at fixed
temperature upto a field of 2.5kOe as shown in figure 4.4. By noting the highest tem-
perature at which the plot intercepts the M? axis (implying a finite magnetisation
in zero field), the ferromagnetic transition temperature of ZrZn, was determined.
Figure 4.6 shows the ‘Arrot Plots’ of some high field magnetisation measurements.
These are curved, consistent with Van Deurson (1986). Below the transition temper-
ature there is a dramatic increase in the zero field magnetisation as the temperature
is reduced, demonstrated in figure 4.2. The inverse susceptibility below the transi-
tion temperature is similar to that above, except that the low field limit approaches
zero due to the sharpness of the response as the field switches direction, shown in
figure 4.3. Again the inverse susceptibility is convex as the field is increased. The
high field magnetisation data at and below the transition temperature (figure 4.5)
shows that the magnetisation does not saturate below the transition temperature,
even at fields of upto 80kOe.

The magnetisation data on ZrZn, was taken by fixing temperature and altering
magnetic field. As the fields at which the magnetisation was measured were identical
at each temperature, rearrangement of the data allows comparison of the magneti-
sation as a function of temperature. Figure 4.7 shows the magnetisation of ZrZn,
between 24 - 28K i.e. just above the Curie temperature. In low fields of up to 250
Oe the magnetisation remains approximately constant until a temperature of 26K,
below which it increases as the transition temperature is approached. As the field is
increased, the temperature at which the magnetisation begins to increase rises until
at a field of 4000e (figure 4.7(c)) it increases over the complete temperature regime
studied. In fields of upto 1kQOe, the rate at which the magnetisation increases as the
Curie temperature is approached is far greater than in higher fields. The curvature
of the magnetisation against temperature reduces as the field is increased until, in
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In figures 4.5 - 4.6 the applied magnetic field (H) has been called B and given the
units gauss. Magnetisation is measured in units of emucm ™3 and can be converted
to units of emug™! using the density of ZrZn, which is 7.5gem 3.



Figure 4.5 High field magnetisation measurements on ZrZn,. A solid line connects
the raw data points. (a) 28.0K; (b) 27.0K; (c) 26.0K; (d) 25.5K; (e) 25.0K; (f) 24.0K;
(g) 23.5K: (h) 23.0K; (i) 22.0K.
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Figure 4.6 Arrot Plots for ZrZn, derived from the data of figure 4.5. A solid line
connects the raw data points. (a) 26.0K; (b) 25.0K; (c) 24.0K; (d) 23.5K; (e) 23.0K;
(f) 22.0K.
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fields in excess of 1.8kOe, the magnetisation increases approximately linearly as the
temperature is lowered, demonstrated in figure 4.7(f). The magnetisation remains
linear with temperature as the field is increased up to 8kOe although the gradient
of this line gradually reduces with increasing field. This is summarised in figure 4.8
where the rate of change of magnetisation with temperature, in a fixed magnetic
field is plotted against the field. The rate of change of magnetisation was calculated
by curve fitting to the data (note that in fields greater than 1.4kOe the fit was a
straight line). From this it is evident that there is only a dramatic increase in mag-
netisation as the transition temperature is approached in applied magnetic fields
less then 8kOe and that this reduces as the field is increased. In fields in excess

of 10kOe, the increase remains approximately constant, reducing only slightly by a
magnetic field of 80kOe.
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In figure 4.7 the applied magnetic field has been called B and given units of
gauss.



Figure 4.7 Magnetisation of ZrZn, as a function of temperature close to the
transition temperature. (a) 1500¢; (b) 3000e; (c) 4000¢; (d) 8000e; (e) 1kQe; (f)

1.8kOe; (g) 5kOe; (h) 8kOe; (i) 10kOe; (j) 24kOe; (k) 40kOe; (1) 50kOe; (m) 60kOe;
(n) 80kOe.
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Chapter 5

Magnetic Measurements on
Manganese Silicide (MnSi)

5.1 The Sample of Manganese Silicide

Observation of the intrinsic behaviour of highly correlated systems including MnSi
close to the magnetic phase transition places extremely stringent requirements on
sample purity and homogeneity. The single crystal used for these measurements was
prepared to a high standard of purity by Simon Brown at the Cavendish Laboratory,
Cambridge. It was grown by the Czochralski Technique under ultra high vacuum
(Brown (1990)) to ensure an extremely clean enviroment. The sample used was a
2.5mm diameter, 0.7mm thick disk, spark machined from a larger single crystal with
a mass of 22.9mg.

Preliminary characterisation was made by X-ray crystallography. The electrical
residual resistance ratio ( ’;24?—2,"‘:) was measured to be 200. The samples have been

used in other experiments, for example Fermi surface studies by the de Haas-van
Alphen method (Brown (1990)).

The disc was cut in a (110) plane. In order to measure the magnetisation of the
sample in the two crystallographic directions < 111 > and < 001 > the crystal was
rotated about the [110] axis, maintaining the demagnetisation factor approximately
constant. When measuring the magnetisation in the < 110 > direction, the crystal
was orientated with the (110) plane perpendicular to the applied field thus changing
the demagnetisation factor.

The magnetic measurements were made taking field increments of 500e. The
points plotted on the graphs are the raw data and the solid line drawn through them
is the average for increasing and decreasing field measurements.
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5.2 Magnetisation Study of MnSi close to its
Critical Temperature

The inverse susceptibilities in the < 001 > and < 111 > major crystal symmetry
directions are shown in figure 5.1. The most striking observations are the directional
anisotropy of the response, extreme non-linearity and the narrow temperature range
over which this behaviour occurs.

The magnetisation and inverse susceptibility derived from adjacent values of
magnetisation and field is shown in figures 5.2(a) and 5.3(a) for a temperature of
30.0K for the two major symmetry directions. The inverse susceptibility exhibits a
smooth, concave-upward response in both directions showing the magnetisation to
be isotropic above the transition temperature.

In the interval 29.0 £ 0.2K, over a field sweep of + 3.3kOe, we observe the start
of the non-linear response in inverse susceptibility (figures 5.2(b) and 5.3(b)) with
both the directions exhibiting four distinct rounded minima. The high field turning
points may be associated with an induced ferromagnetic state (Bloch (1975)); on
cooling below 29.0K these turning points move out of the selected display window
and are of no further interest to our discussion here.

Cooling below 28.8K and down to 27.4K we see further qualitative and quantitve
changes in the magnetic response as shown in figures 5.2(c) - (e) and 5.3(c) - (e). In
the < 001 > direction at 28.8K there is the onset of a pair (symmetric in positive and
negative field) of three minima, a pair of low field rounded minima and two pairs of
sharp discontinuities at higher fields. Continued cooling to 27.2K and below leaves
only the rounded minima. In between these temperatures the critical field (where
the second sharp discontinuity occurs) remains fixed, with the position of the first
evolving to higher fields.

In < 111 > direction a pair of low field minima persist from 29.0 - 28.8K where
a new pair of sharp minima occur and then disappear by 28.2K, leaving the inverse
susceptibility with a slow, monotonic, concave field dependence. The anisotropy of
the response with respect to the crystallographic direction is marked.

Consider first the magnetic response at the temperature 27.2K (figure 5.2(f) and
5.3(f)), approximately 2K below the critical temperature. In MnSi, the axis of the
helix lies along the < 111 > directions (Ishikawa (1976)) below the critical temper-
ature and from this and neutron scattering it appears the magnetic response in this
direction may be due cone formation of the moments towards the field direction.

In fields above 14000e, the magnetisation in the two directions is very similar,
even down to the values of inverse susceptibility. This suggests a similar process
may be occuring in these field regions. The magnetisation in the < 001 > direction
is clearly different below 14000e and can be divided into two regions; one with
the inverse susceptibility decreasing (approximately linearly) and the second with it
increasing. Numerous processes may be occuring in these regions, including domain
wall motion and domain rotation, but there is evidence that these processes result
in the rotation of the helix or coning system into the direction of the applied field.
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In figures 5.1 - 5.3 the internal magnetic field (H; = H — Hp) has been called B and
given the units gauss. Magnetisation is measured in units of emucm=3 and can be
converted to units of emug~! using the density of MnSi which is 5.82gcm 3.



Figure 5.1 Displayed in the left hand frame is the inverse magnetic susceptibility of
MnSi as measured with an applied magnetic field parallel to the < 001 > direction
at temperatures close to the transition temperature. Complementary values are
given in the right hand frame for the < 111 > direction. The solid line is an average
through the data points for a given field value and is a measure of the experimental

uncertainty.
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Figure 5.2 The magnetisation of MnSi with magnetic field applied parallel to the
< 001 > direction together with the inverse magnetic susceptibility derived from
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Figure 5.3 The magnetisation of MnSi with magnetic field applied parallel to the
< 111 > direction together with the inverse magnetic susceptibility derived from
the magnetisation data. The solid line is an average through the data points for a
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Let us now consider the magnetisation around 29.0K close to the critical temper-
ature (figures 5.2(b) and 5.3(b)). The inverse susceptibility is very different to that
observed 2K below this and there is a great deal of curvature to it. This response
may be isotropic as similar behaviour is observed in the inverse susceptibility along
the < 110 > direction. The temperature difference of 0.1K between the data sets is
significant. It is suggested that this magnetic behaviour may indicate a new phase
or commencement of the helical phase and raises the question of how the critical
temperature should be defined.

In the temperature range 28.8 - 27.6K (figures 5.2(c) - (e) and 5.3(c) - (e)) we
regard the sharp discontinuity in the inverse susceptibility observed in the < 001 >
direction as a phase transition and believe it to be the ‘Phase A’ as reported by
Kadowaki (1981), observed using ultrasonic absorption and ESR. This transition
has not previously been seen in magnetic measurements at a fixed temperature.
The transition is marked by a sudden increase in magnetisation to a region of lower
susceptibility, with inverse magnetic susceptibility similar to the zero field value,
and remains approximately constant throughout the phase. The magnetic response
of ‘Phase A’ is strongly anisotropic and occurs after the ‘new phase’ behaviour close
to the critical temperature. The transition to ‘Phase A’ occurs after the magnetic
response corresponding to rotation of the helix into the direction of the applied
magnetic field.

The resultant phase diagram of MnSi close to the critical temperature with
magnetic field applied along the < 001 > direction is shown in figure 5.4. The
lower points mark the position of minima in the inverse susceptibility corresponding
to domain wall motion and rotation whereas the higher ones mark the position
of the sharp discontinuities thought to be a phase transition. These findings are
in broad agreement with previous work of Kadowaki (1981). Since this technique
selects information on the zero wavevector, static magnetisation density whilst other
techniques used in determining the magnetic phase diagram are sensitive to a range
of wavevector components (possibly both static and dynamic) small differences may
be anticipated.

5.3 Magnetisation of MnSi in ‘Phase A’

Figure 5.5 shows the magnetisation of a single crystal of MnSi measured in the
< 111 > and < 001 > directions in the field regime where ‘Phase A’ is observed
in the < 001 > direction, at a temperature of 28.6K. In the < 001 > direction the
magnetisation sharply increases but to a region of lower susceptibility than that in
< 111 > direction and this lower susceptibility remains constant for a further 8000e
at 28.6K. The sudden change in susceptibility occurs within 1000e, so that in total
the field span in which the magnetisation is different in the two directions (after
domain reorientation) is 10000e at 28.6K. Because the magnetisation increases to
a region of lower susceptibility, the response in the < 001 > direction is initially
greater than that in the < 111 > direction. There then follows a field region where
it is similar in the two directions (still in ‘Phase A’) and finally the magnetisation in
the < 001 > direction is lower than that in the < 111 > direction. When ‘Phase A’
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is complete, the magnetisation increases sharply, again over a field range of 1000e
and returns to being identical in the two directions.

5.4 Magnetisation Below the Critical Tempera-
ture

Thorough investigation of the magnetisation of MnSi at 25K (i.e. well below the
critical temperature) shows anisotropy between the < 111 >, < 001 > and < 110 >
directions studied.

The magnetisation in the < 111 > direction as shown in figure 5.6 (together
with the inverse magnetic susceptibility and the differential of the inverse magnetic
susceptibility) increases linearly with applied magnetic field upto the maximum
field applied of (£35000e€). The inverse susceptibility is constant and has a value
of 42.1 £ 0.7.

The magnetic response in the < 001 > direction (figure 5.7) can be divided
into two regions; the first below 13000e is curved lower than that in the < 111 >
direction while the second region is linear with applied field up to the maximum field
applied. The inverse susceptibility (figure 5.7(b)) corresponding to the first region
can also be subdivided into two regions, both of which are linear with magnetic
field. It has a maximum value of 59.3 £ 0.7 in zero field and decreases linearly
to a minimum value of 29.5 £ 0.6 at a field of 880 + 200e. The inverse magnetic
susceptibility then linearly increases to a value of 41.6 £ 1.3 i.e. the region where it
remains constant.

The magnetisation in the < 110 > direction (figure 5.8) can also be subdivided
into two regions and although similar to that in the < 001 > direction, is not
identical. The most striking difference is the hysteretic behaviour observed in this
direction. This is evident from a temperature of 27K and yet is not observed about
zero field. The magnetisation can again be divided into two regions; the first be-
low 10000e is curved lower than that in the < 111 > direction, but greater than
that in the < 001 > direction. This is evident in figures 5.9 and 5.10 where the
magnetisation in each of the directions is plotted for increasing and decreasing mag-
netic field at a temperature of 25K. Above 10000e the behaviour is linear up to the
maximum field applied of £25000e. Hysteresis is evident over the curved region of
the magnetisation and thus the inverse susceptibility over this region is different for
increasing and decreasing applied fields. The inverse susceptibility has a maximum
value in zero field of 55+ 2 and decreases gradually until, at a field of 3000e there is
a dramatic decrease over a range of 1000e to a minimum value of 35.8+0.8, where it
remains constant for a short field region. This dramatic decrease is evident from the
differential of the inverse susceptibility as a sharp peak. The inverse susceptibility
then linearly increases to a value of 42.5 + 0.8 where it remains constant over the
field region studied. For a decreasing field, the inverse susceptibilty is very similar
to that in the < 001 > direction. At a field of 10000e it linearly decreases to a
minimum value of 35.8 0.6 at a field of 714 £+ 500e from which it linearly increases
to a maximum value of 55 % 2 in zero field.
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In figures 5.6 - 5.10 the internal magnetic field (H; = H — Hp) has been called
B and given the units gauss. Magnetisation is measured in units of emucm™3 and
can be converted to units of emug™! using the density of MnSi which is 5.82gem™3.



Figure 5.6 (a) The magnetisation of MnSi with magnetic field applied parallel to the
< 111 > direction at a temperature of 25K; (b) the inverse magnetic susceptibility
of MnSi at 25K derived from the magnetisation data; (c) the differential of the
inverse magnetic susceptibility of MnSi at 25K. The solid line is an average through
the data points for a given field and direction and is a measure of the experimental
uncertainty.

Figure 5.7 (a) The magnetisation of MnSi with magnetic field applied parallel to the
< 001 > direction at a temperature of 25K; (b) the inverse magnetic susceptibility
of MnSi at 25K derived from the magnetisation data; (c) the differential of the
inverse magnetic susceptibility of MnSi at 25K. The solid line is an average through
the data points for a given field and direction and is a measure of the experimental
uncertainty.

Figure 5.8 (a) The magnetisation of MnSi with magnetic field applied parallel to the
< 110 > direction at a temperature of 25K; (b) the inverse magnetic susceptibility of
MnSi at25K derived from the magnetisation data; (c) the differential ofthe inverse
magnetic susceptibility of MnSi at 25K. The solid line is an average through the
data points for a given field and direction and is a measure of the experimental
uncertainty.




30 4

Magnet isat ion

-30 ¢+

-60 +

MnSi

(111 25K

7S¢+

45 4

30 +

MnSi

(ren

25K

X-2

5 1

-10

MRS

(rn

25K

-2000

Figure 5.6 (a) - (c)

-1000

0

‘go?Gauss)

2000




60

C
o
® MnSi (001 25K
- 34 1
[}
[
[e))
(L)
=
0
-30{
-60 —— e
75J
MnSi (001) 25K

X-2

-5 }

-10 -

MnS

(oon

25K

-2000

Figure 5.7 (a) - (c)

-1000

0

‘ﬁo?causs) 2000



60

MnSi (1100 25K
0]

Magnet Isat ion

-30 ¢

-60 — ——

S+

MnSi (110) 25K

60 +

|

45 ¢+

30 +

X-2

-2000 -1000 0 IgO?Ga ss) 2000
u

Figure 5.8 (a) - (¢)




Magnetisation

Magnetisation

80 — +

MnSi 25K (field increasing)

60 4 !
40 4

20 + 4

<% ’
Lt
0 . . . ,
0 500 1000 1500 2000 2500
B (Gauss)

MnSi 25K (field increasing)

°
° ° 009 %,
.5‘00..00600"0"’°'.‘ L4

[ E

[
s
4 a
SA48ab00088a0088a8an0b0aaa

0 500 1000 1500 2000 2500
B (Gauss)

Figure 5.9 (a) The magnetisation of MnSi for an increasing magnetic field applied
parallel to the < 111 > (complete line), < 001 > (triangles) and < 110 > {(circles)
at a temperature of 25K; (b) the subtraction of the magnetisation of MnSi (for an
increasing field) with magnetic field applied parallel to the < 001 >(triangles)/<
110 >(circles) from the magnetisation with magnetic field applied parallel to the
< 111 > direction.




80 . L
c
0
=]
o o
[ MnSi 25K (field decreasing)
o 60 ¢
©
c
o
)
b
40 4
1 L
20 4 1
0:‘,1‘
0
0 500 1000 1500 2000 2500
B (Gauss)
6 +
c
o
=
@
[% MnSi 25K (field decreasing)
» 4+ -r
o
C
o
@
=
2 A aba, +
o"o ° R a
O+1§ ®0000@009000000000%0000000°0900 080 T
_2 . . N
0 500 1000 1500 2000 2500

B (Gauss)
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In order to investigate further the anisotropic nature of the response, figures
5.9 and 5.10 show the magnetisation in the three principle directions investigated,
together with magnetisation in the < 110 > and < 001 > directions subtracted
from that in < 111 > direction for increasing (figure 5.9) and decreasing (figure
5.10) fields, at a temperature of 25K. The difference of the magnetisation between
< 111 > and < 001 > directions is similar for both increasing and decreasing field,
however that between < 111 > and < 110 > directions varies in both form and
magnitude.

5.5 Observation of Hysteresis in MnSi

As stated above, hysteresis was observed in the magnetisation of MnSi when mea-
sured at 25K in the < 110 > direction. This increases as the temperature is lowered
(see for example the magnetisation in this direction at 17K and below as shown in
figures 5.13 and 5.16).

In the < 111 > direction the behaviour is identical to that described at 25K with
no hysteresis observed, demonstrated in figures 5.11 and 5.14.

In the < 001 > direction at 17K, shown in figure 5.12, hysteresis is now observed
in the region 900 - 13000e but not about zero field. This is made apparent by
the inverse susceptibility varying for increasing and decreasing applied field. The
magnetisation for increasing field is similar to that descibed at 25K in this direction.
As the field is reduced however, the region where the inverse susceptibility remains
constant now extends to a lower field by approximately 2500e. Here a sudden,
dramatic decrease is observed, to a minimum value which is now lower than for
increasing field. Finally the inverse susceptibility linearly increases with similar
gradient to that for increasing field.

In the magnetisation measured in the < 110 > direction at 17K (shown in figure
5.13), the hysteresis observed at 25K is enhanced. It extends from 100 - 10000e
but is not observed about zero field. The form of the inverse susceptibility for
increasing and decreasing fields is similar to that described at 25K but as in the
< 001 > direction with decreasing field, the region where the inverse susceptibility
is constant extends to a lower field. It then sharply decreases to a minimum value
which is lower than for increasing field.

As the temperature is further reduced down to 10K, figures 5.14 - 5.16, the
hysteresis observed in both the < 001 > and < 110 > directions increases whereas
there is still no evidence of it in the < 111 > direction.

5.6 High Field Magnetisation Measurements on
MnSi

Figure 5.17 shows the results of magnetisation measurements performed on MnSi
at high magnetic fields upto 80kOe. Both above and below the transition tem-
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In figures 5.11 - 5.16 the internal magnetic field (H; = H — Hp) has been called
B and given the units gauss. Magnetisation is measured in units of emucm™3 and
can be converted to units of emug™! using the density of MnSi which is 5.82gcm=3.
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measure of the experimental uncertainty.
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to the < 001 > direction at a temperature of 17K; (b) the inverse magnetic sus-
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Figure 5.13 (a) The magnetisation of MnSi with a magnetic field applied parallel
to the < 110 > direction at a temperature of 17K; (b) the inverse magnetic sus-
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Figure 5.14 (a) The magnetisation of MnSi with a magnetic field applied parallel
to the < 111 > direction at a temperature of 10K; (b) the inverse magnetic sus-
ceptibility of MnSi at 10K derived from the magnetisation data. The solid line is
an average through the data points for a given field value and direction and is a
measure of the experimental incertainty.
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Figure 5.15 (a) The magnetisation of MnSi with a magnetic field applied parallel
to the < 001 > direction at a temperature of 10K; (b) the inverse magnetic sus-
ceptibility of MnSi at 10K derived from the magnetisation data. The solid line is
an average through the data points for a given field value and direction and is a
measure of the experimental uncertainty.
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measure of the experimental uncertainty.



perature, the magnetisation shows no sign of saturating in the field range studied.
Below the transition temperature, the magnetisation increases linearly upto a field
of approximately 5kOe at which point there is a ‘knee’ in the response. The mag-
netisation however, does increase significantly as the field is increased above this.
In fields greater then ~5k0Oe the magnetisation of MnSi is similar in form to that of
ZrZn, (see Chapter 4). This is also evident from the ‘Arrot Plot’ shown in figure
5.17(b) which is almost linear for magnetic fields above 5kOe and similar to that
of ZrZn,. This suggests that the magnetisation of MnSi is displaying some of the
characteristics of a weak itinerant ferromagnet in magnetic fields in excess of 5kQe.

As this magnetisation study was concerned with the low magnetic field properties
of MnSi (i.e. in fields less than 3kOe), the ‘Arrot Plots’ of this data correspond to
the initial region of figure 5.17(b) where the value of B/M is approximately constant.
Figures 5.18(a) - (c) show the ‘Arrot Plots’ for a range of temperatures close to the
transition temperature in both the < 001 > and < 111 > directions whereas figures
5.18(d) and (e) are of temperatures well below this. There is curvature to the plots
above the transition temperature, however below this and at higher fields (higher
field — M? large) the plots are linear with a steep negative gradient. The intercept
of this linear region on the B/M axis does decrease gradually as the temperature is
lowered. The reason for the difference in the two directions at lower magnetisation
is due to domain reorientation in the < 001 > direction and also ‘Phase A’ at 28.2K.

5.7 Magnetisation as a Function of Temperature
close to the Critical Temperature

The magnetisation data on MnSi was recorded by fixing temperature and varying
the magnetic field. As the fields at which the magnetisation was measured were
identical at each temperature, rearrangement of the data allows comparison of the
magnetisation as a function of temperature. The data considered close to the critical
temperature was taken within two days and the values of magnetic field quoted do
not take into account demagnetisation factors. Plots compare the magnetisation in
the two directions with M ;1,5 and Mgo;> refering to the magnetisation measured
with magnetic field applied in the respective directions.

When a low field (740e) is applied to the sample, the magnetisation in the
two directions as shown in figure 5.19(a) is anisotropic over the temperature range
considered. M go;> peaks at 29.3 + 0.1K while M y;;> has a maximum value
within the range 29.3 - 29.0K. This peak is regarded as marking the onset of a
phase transition.

M 11> is greater than M o015 below 29.0K as expected, due to the curved mag-
netisation below 10000e in < 001 > direction compared to the linear response in
< 111 > direction. In the < 001 > direction, the magnetisation dramatically de-
creases after peaking and levels off down to 27.0K whereas in the < 111 > direction,
it has already started to increase again by 27.0K.

As the field is increased to 1770e (figure 5.19(b)), the response in the two di-
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In figures 5.17 - 5.18 the internal magnetic field has been called B and given
units of gauss.
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Figure 5.17 (a) High field magnetisation measurements on MnSi with magnetic
field applied parallel to the < 001 > direction for temperatures 292K (squares),
35.0K (triangles) and 28.4K (circles); (b) the ‘Arrot Plot’ for MnSi at 28.4K derived
from the high field magnetisation data with magnetic field applied parallel to the
< 001 > direction.
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rections remains similar to that at lower fields although the peak in the < 111 >
direction is increasingly less defined. In a field of 3290e (figure 5.19(c)) there is a
slight shift in the position of the peak in magnetisation towards 29K. M g0;> then
decreases, again dramatically at first whereas there is a step in the magnetisation
in the < 111 > direction after the peak, below which the response remains approx-
imately constant. With an applied field of 8850e as shown in figure 5.19(d), the
peak in the magnetisation has again shifted towards 29.0K and the magnitude of
the difference in response in the two directions has reduced. This trend continues
until in a field of 10900e (figure 5.19(e)) the magnetisation is isotropic.

On application of a field of 11910e (figure 5.19(f)) the magnetisation in the two
directions is similar apart from a single data point in the M g5 at 28.9K which is
greater than Mcq1,5. This marks the onset of ‘Phase A’ in the < 001 > direction
with the crystal in this phase between 29.1 - 28.9K. There is no evidence of this
transition in the < 111 > direction. As the field is further increased between 1344 -
16980e (figures 5.19(g) - (h)), the position of this second peak in M(go1> lowers in
temperature. The transition at 29K in both directions is now marked by a ‘shoulder’
in the magnetisation.

A short field region, between 18480e and 19200e follows (figure 5.19(i)) where
the magnetisation of the crystal is isotropic. This region is short lived and in a field
of 19480e the peak in Mcgp > is followed by a decrease in the magnetisation in this
direction. In Mcqq,> there is a shoulder at 29.0K below which the magnetisation
gradually increases. The response in < 001 > direction is lower than in the < 111 >
direction down to a temperature of 27.5K after which the magnetisation is identical.
This behaviour continues in the field range 2050 - 22550e (figure 5.19(k)), though
the magnitude of the variation decreases. Finally, at a field of 23530e (figure 5.19(1))
the magnetisation is isotropic with a shoulder at approximately 29.0K.

In the field region 1200 - 24000e the magnetisation of MnSi varies dramatically
as a function of temperature and direction close to the transition temperature. To
summarise, an isotropic response is followed by M g0;> being greater than M ,q,5.
A small field range where the magnetisation in the two directions is similar precedes
a regime where M g5 is lower than M<15 and finally the response is identical.

This behaviour is due to the ‘Phase A’ magnetisation in the < 001 > direction.
As a function of magnetic field, the magnetisation in the < 001 > direction shows
a sudden, dramatic increase above that in the < 111 > direction but to a region of
lower susceptibility. Hence in fields initially after the onset of ‘Phase A’ M g01> is
greater than M.;,5. There then follows a small field regime in which the magneti-
sation is similar in both directions. Finally, the M(go15 is- lower than M<y1;> before
returning to an isotropic magnetisation.

This goes a long way to explaining the results reported by Kadowaki et al. (1981).
The combination of assuming that the magnetisation is isotropic and noting the
position of peaks in the response while sweeping temperature in a fixed field would
result in the apparent observation of the two phases, ‘Phase A;’ and ‘Phase A,’.
‘Phase A,’ corresponds to the region where the M p0;5 is greater than My;;5 and
‘Phase A,’ is the regime where it is lower.
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In figure 5.19 the applied magnetic field has been called B and given the units
gauss.
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5.8 Combination of the Results

Figures 5.20 and 5.21 show three-dimensional plots of the inverse susceptibility as
a function of both applied magnetic field and temperature close to the magnetic
phase transition into the helimagnetic state for both < 001 > and < 111 > di-
rections respectively. In the < 001 > direction above the transition temperature,
the magnetisation is paramagnetic with a large increase in inverse susceptibility at
higher fields associated with an induced ferromagnetic state. The central larger
peak in the inverse susceptibility is believed to be due to domain reorientation while
‘Phase A’ occurs in larger magnetic fields and for a finite temperature range only,
close to the transition temperature i.e. either side of the central peak.

Above the transition temperature the paramagnetic response is identical in both
directions considered although the anisotropy is obvious below this. The small rises
observed in the inverse magnetic susceptibility in the < 111 > direction, close to
the transition temperature, are in comparable field regimes to similar features in the
< 001 > direction and may be due to misalignment of the crystal. It is important,
however, to note that the rises exist over a much shorter temperature region than
the domain reorientation and ‘Phase A’ observed in the < 001 > direction. This is
more likely an isotropic response due to either another phase before, or onset of the
helical phase.

5.9 The Inverse Initial Susceptibility of MnSi

Figure 5.22 shows the inverse initial susceptibility as a function of temperature for
the < 001 >, < 110 > and < 111 > principle directions studied. Above the critical
temperature there is Curie-Weiss behaviour resulting in a value of Oy of 29.1+0.1 K.
The measurement errors involved at higher temperatures are larger than those below
the transition temperature as the signal obtained from the sample is much smaller.
In addition, the results obtained in the < 110 > direction involve measurements
along the cylinder axis and hence involve a different demagnetisation factor. The
values of the initial inverse susceptibility are obtained from the low field magnetic
measurements which are greatly affected by the magnetic domains present and hence
quality of the sample of MnSi.

The inverse initial susceptibility undergoes a minimum response of 21.0 + 1.0

at a temperature of 29.2K below which the response is anisotropic. The response
initially increases in all directions below the minimum value but to different extents:
In < 111 > direction (figure 5.22(a)) the inverse initial susceptibility increases at
the lowest rate and peaks at a value of 28.2 + 1.0 at a temperature of 28.0K before
decreasing and levelling at a value of 15.6 £ 1.0 which remains constant at the lowerst
temperatures measured.
In < 001 > direction (figure 5.22(b)), the inverse initial susceptibility increases and
reaches a maximum value of 35.0 & 1.0, again at 28.0K, before slightly dipping and
then remaining approximately constant at 35.4 £ 1.0 over the lower temperatures
measured.
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Figure 5.20 The inverse magnetic susceptibility of MnSi as a function of both

magnetic field and temperature close to the transition temperature, derived from

the magnetisation data with field applied parallel to the < 001 >.
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Figure 5.21 The inverse magnetic susceptibility of MnSi as a function of both
MhSt ¢l

magnetic field and temperature close to the transition temperature, derived from

the magnetisation data with field applied parallel to the < 111 >.
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Unfortunately there is less data available in the < 110 > direction (figure 5.22(c))
close to the transition temperature. The inverse initial susceptibility increases and
reaches a maximum value of 36.0 £ 1.0, again at a temperature of 28K. This slowly
decreases and levels at a value of 28.1 & 1.0 at 10K.

From figure 5.22(d), well below the transition temperature the value of inverse
susceptibility increases from < 111 > direction through < 110 > to < 001 >
direction. This is due to increasing curvature of the magnetisation away from the
linear behaviour in the < 111 > direction.

The initial ‘bump’ in the inverse susceptibility after the minima in the response
for a temperature range of 2.8K and most apparent in < 111 > direction is perhaps
an indication of either a seperate new phase close to the transition temperature or
the onset of the helical phase.

5.10 Further Work on MnSi

It is suggested that further magnetisation measurements be performed on MnSi
with magnetic field applied along the < 011 > direction, particularly close to the
transition temperature. The main reason for this is the nature of the magnetisation
for increasing magnetic field, especially in fields of less than 10000e where the
response is curved. This is shown in figure 5.8(b) of the inverse suceptibility below
the transition temperature. Of particular interest is the sudden decrease in inverse
susceptibility at a field of 300 £300e at 25.0K as compared to the gradual decrease
in inverse susceptibility over the corresponding field range when applied along the
< 001 > direction.

Another area of investigation currently untouched is magnetic measurements on
MnSi close to the transition temperature but with an emphasis on increasing temper-
ature, in order to investigate how the helical phase collapses in to the paramagnetic
state.

Finally, magnetic measurements could be performed on MnSi with magnetic
field applied along a non principle crystallographic direction in order to study the
incommensurate nature of the helix.
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Chapter 6

Magnetic Measurements on
Cubic Iron-Germanium (FeGe)

6.1 The Iron-Germanium Sample

Magnetic measurements were performed on a single crystal of FeGe which was also
used for the small angle neutron scattering work of Lebech et al. (1989). It was
grown by Richardson (1967) using a method based on a halogen chemical transport
reaction. The crystal is of somewhat irregular shape which can be approximated to
a flattened sphere of diameter Imm, and had a mass of 46.5mg. It was orientated
on the Risp four-circle neutron diffractometer and measurements reported in this
thesis are with magnetic field applied along a < 100 > direction. Measurements were
performed for decreasing temperatures and with field steps of 500e unless otherwise
stated. The points on the graphs are the raw data and the solid line drawn through
them is the average for a particular magnetic field.

6.2 Magnetisation of FeGe close to the Critical
Temperature

Above the critical temperature, the magnetisation of FeGe is paramagnetic (see
figure 6.1(a)), though at 279K not linear with field. It shows a large amount of
curvature with no apparent saturation observed in the field range studied. The
inverse susceptibility (figure 6.2(a) and (d)) reflects this, showing a a parabolic
response in applied field with minimum in zero field, a value of 9.2 + 0.5

As the temperature is reduced below the transition temperature (= 278 K') where
a helical spin density wave forms in equivalent < 100 > directions (Lebech (1989)),
a sharp increase in magnetisation occurs in low magnetic fields (figure 6.1(b) and
(c)), after a ‘knee’ in the response is observed at a field of 1280e. The magnetisation
below this increases linearly with field, and above it, although increasing in a much
reduced manner, shows no sign of saturation. This is apparent in magnetisation
measurements in fields of up to 120kOe (see figure 6.16(a)) and characteristic of
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In figures 6.1 - 6.2 the internal magnetic field (H; = H — Hp) has been called B and
given the units gauss. Magnetisation is measured in units of emucm™3 and can be
converted to units of emug™! using the density of FeGe which is 8.25gcm 3.



Figure 6.1 The magnetisation of FeGe with applied magnetic field parallel to the
< 100 > direction. The solid line is an average through the data points for a given

field value and is a measure of the experimental uncertainty. (a) 279K; (b) 278K;
(c) 277.6K.

Figure 6.2 The inverse magnetic susceptibility of FeGe with field applied parallel
to the < 100 >, derived from the magnetisation data. The solid line is an average
through the data points for a given field value and is a measure of the experimental
uncertainty. (a) 279K, field range £25000e; (b) 278K, field range +£25000¢; (c)
277.6K, field range £25000e€; (d) 279K, field range £5000e; (e) 278K, field range
x3000e; (f) 277.6K. field range £5000e.
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itinerant systems. The response of the inverse susceptibility is similar to that above
the transition (figure 6.1(b), (c), (e) and (f)), though remains constant in the low
field regime at a value of 4.2 +0.5. As the temperature is lowered, again the nature
of the magnetisation remains similar although the low field, linear region extends to
increasingly higher fields.

6.3 Observation of a Field Induced Phase Close
to the Upper Transition Temperature

In cubic FeGe, the magnetic response is very sensitive to small changes in applied
field and ‘saturation’ occurs in a much lower field than in the helimagnet MnSi
(N.B. although there is a well defined ‘knee’ in the magnetisation, application of
large magnetic fields shows the system is in fact far from saturation). Consequently
field steps of 200e were used to characterise the magnetisation of FeGe close to but
below the transition temperature.

Figure 6.3 reveals the magnetisation in low magnetic fields (i.e.< 3200e€) is not
linear with applied field but has a ‘shoulder’ in the field region of 60 - 2000e where
the inverse susceptibility is greater than the other low field region. This occurs in a
temperature range of 277 - 274K. The points on the graphs of inverse susceptibility
in figure 6.4 are raw data derived from the magnetisation while the solid line is the
data after being smoothed (see Appendix B). The distribution of points about the
line gives an indication of the errors involved. It is evident there is a sudden increase
in the inverse susceptibility, well above the noise level. The fields at which this step
occurs are shown in figure 6.6 against temperature, together with the ‘saturating’
magnetic field. At a temperature of 273.4K (figure 6.5) there is no evidence of this
‘shoulder’.

This is tentatively regarded as a field induced phase transition, similar to the
so called ‘Phase A’ observed in MnSi (see Chapters 5 and 7). It is marked by a
region of higher inverse susceptibility and the field at which it commences gradually
increases as the temperature is lowered whereas the magnetic field at which it is
complete remains approximately fixed.

6.4 Magnetic Measurements above the Lower Tran-
sition Temperature

At the temperatures down to 210K, the magnetisation in the low field region in-
creases linearly with field (apart from the small temperature and field space de-
scribed above and shown in figure 6.6), the inverse susceptibility having a value of
3.3 £ 0.3. The lower transition corresponds to rotation of the helical spin density
wave into equivalent < 111 > directions as described by Lebech et al. (1989). There
is ‘pronounced temperature hysteresis’ of the transition and therefore the magnetic
response of FeGe was recorded for both increasing and decreasing temperature in
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In figures 6.3 - 6.5 the internal magnetic field (H; = H — Hp) has been called B
and given the units gauss. Magnetisation is measured in units of emucm ™2 and can
be converted to units of emug™! using the density of FeGe which is 8.25gcm 3.
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the range 245 - 210K. The temperature was in fact lowered to 180K i.e. well below
the second transition temperature.

The low field magnetisation of cubic FeGe (figure 6.7 - 6.10) was linear in both
cases however there is variation in the ‘saturating’ field for increasing and decreasing
temperature data as shown in figure 6.9. Both values of field are shown for each
temperature on figure 6.14 with the ‘saturation’ field for decreasing temperature
being greater than that for increasing temperature. The linear magnetisation regions
have the same value of inverse susceptibility of 3.3 + 0.3 at all temperatures in this
regime.

6.5 Magnetic Measurements Below the Lower
Transition Temperature (211K for decreas-
ing temperature)

Unlike MnSi, FeGe has two transitions with the helix propagating along < 111 >
directions below 211K (for decreasing temperature). Figure 6.11 shows the mag-
netisation below this temperature.

At 210K there is no evidence of this transition with low field behaviour remaining
linear with applied field upto a ‘saturation field’ of 7800e. However, at a tempera-
ture of 200K (figure 6.11(a)), the magnetisation below a field of 800e is a curved,
concave response, before increasing linearly with magnetic field, with the same value
of inverses susceptibility as above the lower transition temperature (3.3 £ 0.3), and
finally ‘saturating’. The curved region manifests itself as a peak in the inverse sus-
ceptibility, with maximum in zero field of 5 + 0.5 (figure 6.12(a) and 6.13(a)) which
then reduces linearly to a minimum before gradually increasing until ‘saturation’ of
the magnetisation.

By 180K (figure 6.11(b)), this low field feature becomes more prominent, with
curved magnetisation extending to a larger field before becoming linear and finally
‘saturating’. This trend continues as the temperature is lowered (figure 6.11, 6.12
and 6.13) and at a temperature of 80K (figure 6.11(g), 6.12(g) and 6.13(g)) the
curved region of magnetisation extends to a field of 4000e. The inverse susceptibility
is a maximum in zero field with a value of 7.2 + 0.3 and decreases linearly to a
minimum value of 2.9 £ 0.3 at a field of 290 + 200e. It then gradually increases
to a value of 5 though is still increasing at ‘saturation’ and is identical for both
increasing and decreasing fields. The field position at which the minimum occurs in
the response is plotted in figure 6.14(b) for temperatures below the lower transition.

6.6 Magnetic Phase Diagram of Cubic FeGe

The magnetic phase diagram of FeGe is shown in figure 6.14 with its constituents
of ‘saturation’ field, domain reorientation field and field induced phase close to the
first transition temperature.
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In figures 6.7 - 6.13 the internal magnetic field (H; = H — Hp) has been called
B and given the units gauss. Magnetisation is measured in units of emucm™3 and
can be converted to units of emug™! using the density of FeGe which is 8.25gcm 3.




Figure 6.7 The magnetisation of FeGe with magnetic field applied parallel to the
< 100 > direction for decreasing temperature. The solid line is an average through

the data points and is a measure of the experimental uncertainty. (a) 240K; (b)
230K; (c) 220K.

Figure 6.8 The inverse magnetic susceptibility of FeGe with magnetic field applied
parallel to the < 100 > direction for decreasing temperature, derived from the
magnetisation data. (a) 240K; (b) 230K; (c) 220K.
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Figure 6.9 (a) The magnetisation of FeGe with magnetic field applied parallel to the
< 100 > direction at 230K when lowering the temperature; (b) The magnetisation
of FeGe with magnetic field applied parallel to the < 100 > direction at 230K but
for increasing the temperature (from 180K).
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Figure 6.10 (a) The inverse magnetic susceptiblity of FeGe with magnetic field
applied parallel to the < 100 > direction at 230K when lowering the tempera-
ture, derived from the magnetisation data; (b) the inverse magnetic susceptibility
of FeGe with magnetic field applied parallel to the < 100 > direction at 230K when
increasing the temperature, derived from the magnetisation data. The solid line is
an average through the data points for a given field value and is a measure of the
experimental uncertainty.




Figure 6.11 The magnetisation of FeGe with magnetic field applied parallel to the
< 100 > direction. (a) 200K; (b) 180K; (c) 160K; (d) 140K; (e) 120K; (f) 100K; (g)
80K; (h) 50K; (i) 20K.

Figure 6.12 The inverse magnetic susceptibility of FeGe with magnetic field applied
parallel to the < 100 > direction, derived from the magnetisation data. The solid
line is an average through the data points for a given field value and is a measure of
the experimental uncertainty. Magnetic field range £35000e¢. (a) 200K; (b) 180K;
(c) 160K; (d) 140K; (e) 120K; (f) 100K; (g) 80K; (h) 50K; (i) 20K.

Figure 6.13 The inverse magnetic susceptibility of FeGe with magnetic field applied
parallel to the < 100 > direction, derived from the magnetisation data. The solid
line is an average through the data points for a given field value and is a measure of
the experimental uncertainty. Magnetic field range £10000e. (a) 200K; (b) 180K;
(c) 160K; (d) 140K; (e) 120K; (f) 100K; (g) 80K; (h) 50K: (i) 20K.
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Figure 6.14 (a) Magnetic field position of the ‘knee’ in the magnetisation of FeGe
with field applied parallel to the < 100 >; (b) complete magnetic phase diagram
of FeGe with magnetic field applied parallel to the < 100 > direction including
internal field position of the ‘knee’ in the magnetisation (points), position of the
onset and conclusion of the increase in the inverse magnetic susceptibility close to
the transition temperature (triangles) and the internal field position of minima in
the inverse magnetic susceptibility below the second transition temperature (circles).



The field at which the ‘knee’ in the magnetisation occurs increases as the tem-
perature decreases and there is a step in the response at the lower transition tem-
perature. The fields marked are for decreasing temperature apart from the region
250 - 210K where increasing temperature are also plotted and are in fact lower.
The errors increase below the second transition as larger field steps were used in
measuring the magnetisation.

The field induced phase close to the first transition temperature is shown in
figure 6.6 where the field at which the discontinuity in inverse susceptibility occurs
is plotted together with saturation field in that temperature regime. The position
of the second sharp discontinuity remains fixed while the field position of the first
increases as the temperature is reduced until it is close to the second at the end of
this temperature regime.

The low field points below the second phase transition represent the field position
of minima in the inverse susceptibility corresponding to domain reorientation. The
field position of this also increases as the temperature is lowered below the lower
transition temperature.

6.7 High Field Magnetic Measurements on FeGe

Figure 6.16(a) shows the results of high field magnetistion measurements on FeGe
close to, but above the transition temperature. The magnetisation shows no sign of
saturating and is similar to that of MnSi and ZrZn,. Unlike MnSi, this magnetisa-
tion study extends to the field where a ‘knee’ in the magnetisation is observed below
the transition temperature. The magnetisation does however increase significantly
as the field is increased above this. The resulting ‘Arrot Plots™ are shown in figures
6.16(b) and 6.17 and are similar in form to those of MnSi. At low magnetic fields,
the value of B/M is approximately constant however, in fields greater than that
at which the ‘knee’ in the magnetisation occurs, the ‘Arrot Plot’ is approximately
linear, suggesting the magnetisation of FeGe shows some of the characteristics of a
weak itinerant ferromagnet. Note that below the lower transition temperature the
‘Arrot Plots’ at low field differ from those above the upper transition temperature
due to domain reorientation.

6.8 Comparison with Magnetic Measurements
on Manganese Silicide

MnSi is a material in the same crystal class as cubic FeGe with the cubic By
structure, however it has a transition temperature of 29 + 0.5k, below which helical
spin density waves propagate in equivalent < 111 > directions (Ishikawa (1976)). In
both materials, above the transition temperature the magnetisation is paramagnetic
which, as the critical temperature is approached, becomes enhanced (similar to
the super-paramagnetic response of small single domain particles) with the inverse
magnetic susceptibility increasing in curvature.
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Figure 6.16 (a) high field magnetisation measurements on FeGe with magnetic
field applied parallel to the < 100 > direction at 279K; (b) ‘Arrot Plot’ for FeGe at
279K derived from the high field magnetisation data.



In figure 6.17 the internal magnetic field (H; = H — Hp) has been called B and
given the units gauss. Magnetisation is measured in units of emucm™3 and can be
converted to units of emug™' using the density of FeGe which is 8.25gcm™3.



Figure 6.17 ‘Arrot Plots’ for cubic FeGe derived from the magnetisation data with
magnetic field applied parallel to the < 100 > direction for decreasing temperature.
(a) 279K; (b) 278K; (c) 277.6K; (d) 240K; (e) 230K; (f) 210K; (g) 200K; (h) 140K;
(1) 120K; (j) 80K; (k) 50K; (1) 20K.
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Just below the transition temperature, MnSi with field applied along the < 001 >
direction and FeGe with field parallel to the < 100 > direction, both exhibit a
field induced phase, manifest as a sharp increase in the inverse susceptibility. This
phase is similar in both temperature and field regime relative to the ‘saturation
field’ and transition temperature. An analogous region has been observed in the
magnetic phase diagram of (Fe,Co)Si, a related compound (Ishimoto et al (1990))
which suggests that such a phase may be characteristic of all materials exhibiting
cubic Bsg crystal structure and supporting a helical spin density wave.

The magnetisation of cubic FeGe at a temperature between the upper and lower
transition temperatures, with field applied along a < 100 > direction is similar to
that of MnSi with magnetic field applied parallel to < 111 > direction. In both
cases the helix lies parallel to the magnetic field and the low field magnetisation
increases linearly with applied magnetic field.

Below the lower transition temperature in cubic FeGe, the helix no longer lies
in the direction of the applied field but rather along the < 111 > direction. The
magnetisation is similar to that observed in MnSi with field applied in the < 001 >
direction i.e. is initially curved in low field. Comparison of the inverse susceptibility
reveals these curved regions to be similar although at low temperatures, MnSi ex-
hibits hysteresis with inverse susceptibility for increasing and decreasing magnetic
fields being markedly different. FeGe does not exhibit this.

6.9 Further Work on FeGe

The most pressing future magnetisation work on cubic FeGe should consist of a
similar study to that performed but with magnetic field applied parallel to other
crystallographic directions. Firstly the field should be applied along the < 111 >

direction, i.e. the direction of helical propagation below the lower transition tem-
perature.

More recent work by Lebech (1992) on FeGe suggests that the reorientation of the
helix into the field direction can occur as a first or second order process, depending
on the angle between the applied field and the initial modulation vector q. These
magnetisation measurements are consistent with this, as a second order process is
observed as the helix rotates 55° from the < 111 > direction into the applied field
direction below the lower transition temperature. In order to investigate whether
a first order ‘flip’ of the helix occurs and the affect of this on the magnetisation,
measurements should also be performed with crystal orientation such that the helix
is initially perpendicular to the applied field direction.

The behaviour of cubic FeGe has been thoroughly investigated close to the up-
per transition temperature however the results are limited around the lower. This
transition should be further studied in greater detail for decreasing temperature to
correspond with the SANS measurements on FeGe (Chapter 7) though it must be
remembered that they correspond to the crystal in ‘virgin state’ with no magnetic
field applied as the temperature is lowered.

Having completed a thorough investigation of the lower transition temperature,
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it would then enable stAudy of the temperature hysteresis reported by Lebech in the
lower transition though application of the magnetic field destroying the ‘virgin state’
of the crystal will again be significant.

Finally, the variation of the ‘saturation field’ for increasing and decreasing tem-
perature should be extended to include a far greater temperature regime.
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Chapter 7

Small Angle Neutron Scattering
on MnSi and FeGe

7.1 Introduction

The neutron has a number of special properties which result in it being a unique
tool in producing microscopic information about magnetic systems. It is a neutral
particle so can penetrate deeply into most crystals, interacting via its magnetic
moment with that of the electrons strongly enough to be measurably scattered,
but without perturbing the magnetic system too severely. Thermal neutrons have
wavelengths comparable with interatomic spacings and energies comparable with
those of magnetic excitations in solids and so are ideally suited for studying both
spatial arrangement and the dynamics of the magnetic moments.

7.2 Magnetic Neutron Scattering

Magnetic scattering arises from the interaction of the neutron magnetic moment fn
with the local magnetic field B due to unpaired electrons in the atom. The operator
corresponding to the magnetic dipole moment of the neutron is:

B = —TEND (7.1)

where uy = 2‘;':? is the nuclear magneton, m,is the mass of the proton and e its
charge. ~ is the gyromagnetic ratio for the neutron with value v = 1.913 and ¢ is
the spin operator for the neutron in units of 2. The operator corresponding to the

magnetic dipole moment of the electron is:

B, = —gpBs (7.2)

where g is the gyromagnetic ratio of the electron with value g=2, ug is the Bohr
magneton and s is the spin angular momentum operator for the electron in units of

k.
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The magnetic field at a point R from the electron due to its magnetic dipole
moment is:

B, = curlA - (7.3)
where A is the magnetic vector potential and is defined by:
_ (ML X R
A= (L) wp (74)

The magnetic field due to the momentum of the electron is given by the Biot Savart
law, such that the field from a current element Idl is

_ (Mo, dl xR
B = (47r) |R|?

_(ﬂ)zﬂﬂgxﬂ

)k |RP (75)
The interaction potential with the neutron is given by:
V=-p .B=—p (B +B,) (7.6)

The differential cross section for a neutron scattering is given by the first Born
Approximation (see for example Squires(1978)):

d*c K, m

(qaE =y = 5 (Go2) T <ENIVIEN > P8(Ey— Ex + E~E') (1)

for a neutron with wavevector k incident on a scattering system characterised by an
index A. The neutron interacts via a potential V, the state of the neutron changes
from k to k' and the scattering system changes from A to \’.

In the case of the magnetic potential, because it contains the spin operator o
explicitly it is therefore necessary to specify not only the wavevector k of the neutron
but also its spin state o:

d’c m

kl
(deE')'\f’-‘"'a' - I(znrﬁ

)’| < Ko'N|Vin|koA > *6(Ey — Ex + E~ E')  (1.8)

where V;,, is the potential between the neutron and all the electrons in the scattering
system. It is convenient to treat spin and orbital parts of V,,, seperately (V,,=V+V,).
It can be shown (see for example Squires(1978)):

< K|Vi|k >= dmexp(iK.r;) [K x (s; x K)] (7.9)

where K = k — k' and is known as the scattering vector and f\_ is the unit vector in
the direction K.

The orbital contribution is given by:

4 -
< KVilk >= seap(ifi 1) (p, x K) (7.10)
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Combining these we obtain:

Y <KWV, + Vlk>=4rQ, (7.11)
where '
N r oy 1 ~,
Q, =) exp(iK 1) [K x (3 x K) + 37 (p, x K)] (7.12)

Collecting multiplying factors together, and defining the classical radius of the elec-

2
tron ro = 2= then
e

d*c K ’ /
(GagE)ororn = (o)’ £1 < 0'X12.Q oA > ['8(Ex — Ex + E - E')  (7.13)

The operator @  is related to the magnetisation of the scattering system. Separating
Q | into orbital and spin components:

Q,, =) exp(iK.r;) [K x (s; x K)] (7.14)

¢

Defining an operator Q, by

Q,, =k x(Q, xKk) (7.15)

i.e. QJ_ is the projection of the vector @ onto the plane perpendicular to the scat-

tering vector, then

Q, =) expikir)s (7.16)

s
t

The vector operator p,(r) gives the electron spin density:

= Zé(r — s, (7.17)
so @_is the Fourier transform of p,(r)
Q= / rlexp(i\.r)dr (7.18)
The spin magnetisation operator is defined by:
M,(r) = —2upp(r) (7.19)
s0
1
Q, = 2#8 M (r)exp(:K.r)dr
= ——M (K 7.20
i ML) (7.20)

The corresponding calculation for the orbital term is detailed in Squires (1978) and
only quoted here:
1 ,
Q = —Q—#B‘Mz( K)

= /M,(r)ezp(i&.[)dz (7.21)
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Combining these results:

M(K) = M(K)+ M, (K)
2us(Q, +Q,)
= 2upQ (7.22)

Thus @ is closely related to the fourier transform of the magnetisation density.

Using the above equations it is possible to relate directly the neutron scattering to
the magnetisation density.

7.3 Interaction of the Neutron with the Helical
Spin Density Wave

From the above, the neutron scattering cross section is closely related to the fourier
transform of the magnetisation density. The fourier transform of a helix of wave-
length X is a delta fuction, at a position (+27) along the direction of propagation
which will be ‘smeared’ by the resolution of the apparatus. When in the (110) scat-
tering plane, only two points are observed due to the tilting of the plane to satisfy
the elastic condition.

7.4 SANS simulations

Several of the previous neutron scattering experiments on the helimagnets MnSi and
FeGe report observation of a ring of scattering close to the transition temperature
of both FeGe (Lebech et al.(1989)) and MnSi (Ishikawa et al.(1982)) as well as
within ‘Phase A’ of MnSi in an applied magnetic field (Ishikawa et al.(1984)). In
order to invetsigate the possible sources of this result and indeed others that may be
obtained, a simulation program was written by Dr. N. R. Bernhoeft and the Author
(see Appendix C) modelling the response expected from a helix of wavelength ¢
propagating in equivalent < 111 > directions and including resolution affects of the
spectrometer.

The incident wavelength is input into the program together with a parameterised
measure of the incident wavelength spread. The two dimensional ‘simulated sample’
is conceptionally divided into a grid (the sample shape and size should be altered
within the program) from which the incident neutrons scatter. All final possible
wavevectors are computed from each section of the sample to each segment of the
detector in turn. From these the scattering wavevector K for each sample to detector
path is calculated. These values are then filtered ‘top hat’ fashion on a range of
acceptable || = |g| input into the program corresponding to helical wavelength and
taking into account the finite length of the helix. Figure 7.1 shows the simulated
arrangement.

The direction for each K is then calculated using the angles § and w as defined in
figure 7.1(b) and filtered on the values of 8 and w corresponding to helix propagation
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Figure 7.1 (a) Schematic outline of the method used to simulate the small angle
neutron scattering results from both MnSi and FeGe. Source-sample and sample-
detector separation are input into the program together with incident wavevector
and range of acceptable ¢. (b) Details of sample orientation together with the

definition of angles w and 6.



in equivalent < 111 > directions, but including a range of values to account for the
mosaic spread of the crystal and collimation of the beam.

In the simulation we are assuming strictly elastic neutron scattering |k,| = |k;|.
The scattering vector K is orientated slightly out of the detector plane by an angle
a. In order to overcome this, the sample must be rotated by +a so that the scattered
satellites are at the optimum position for the detector. In order to accomodate this,
the program produces scattering assuming the sample has been rotated to optimum
angle for either the left or right hand side or the value of sample rotation can be
input into the program.

Finally, all the K satisfying the magnitude and angular restrictions necessary
such that K = g are summed.

Figures 7.2 and 7.3 show the simulated SANS results on the Risg spectrometer
for MnSi and FeGe in zero magnetic field, below the transition temperature. Both
simulations are for the crystals with (110) plane perpendicular to the incident neu-
trons with < 001 > axis vertical and rotated to optimise for the satellites on the
right of the detector. With MnSi the conditions are such that two satellites are
observed. Experimentally, however, all four are recorded, with two being weaker
than the optimum pair (figure 7.6). This suggests the resolution conditions within
the program are more stringent than those observed experimentally.

Figure 7.3 shows the simulated results for the FeGe crystal used in the work
of Lebech et al. (1989), in the same crystallographic orientation as MnSi, at a
temperature below the lower transition. Although the crystal is orientated such that
the scattering from only two satellites is optimized it is evident that the resolution
conditions or sample shape are such that this has little affect and all satellites in
the scattering plane are observed. Comparing this simulation to the experimental
results (figure 7.13) obtained, four satellites of similar intensity are observed though
whether this was optimised for a particular pair is uncertain.

The helix is defined in real space by the angle # (the angle the direction of helix
propagation makes with the vertical) and w (the angle of rotation of the scattering
plane) as shown in figure 7.1b. By allowing relaxation of the constraints on these
angles in turn, the following magnetic structures were simulated.

6 and w fixed: Propagation of the helix in equivalent < 111 > directions. Figure
7.2a for MnSi and figure 7.3a for FeGe.

0 fixed, w sweep: A cone of helix propagation vectors about the vertical axis.

Figure 7.2b for MnSi and figure 7.3b for FeGe.

0 sweep, w fixed: A disc of helix propagation vectors. In the crystal orientation
used (w = 0) half the disc is in the scattering plane as the sample is rotated by the
angle a. Figure 7.2c for MnSi and figure 7.3c for FeGe.

0 swept in a finite range, w fixed: Two arcs of helix propagation vectors rather
than the complete disc. Figure 7.14 for FeGe.

0 sweep, w sweep: A sphere of helix propagation vectors. Figure 7.2d for MnSi
and figure 7.3d for FeGe.

Table 7.1 lists the input parameters used in the SANS simulation program to
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16.00

Figure 7.2 Simulated SANS results for MnSi for particular ¢ arrangements. The
scattering plane is a (110) plane with [001] vertical and [110] horizontal. The
input parameters used were incident wavevector 0.090A~!, source sample separa-
tion 6000mm, sample detector separation 4000mm, upper limit to the wavevector
¢ 0.036A! and lower limit 0.034A~. These are very similar to the experimental
conditions. The lowest contour is 100 counts and contour separation is 100 counts.
(a) Helix (¢) propagating along equivalent < 111 > directions; (b) a cone of helix
propagation vectors (w sweep); (c) a plane of helix propagation vectors (8 sweep);
(d) a sphere of helix propagation vectors (§ and w sweep).
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Figure 7.3 Simulated SANS results for FeGe for particular ¢ arrangements. The
scattering plane is a (110) plane with [001] vertical and [110] horizontal. The in-
put parameters used were incident wavevector 0.3977A~1, source sample separa-
tion 6000mm, sample detector separation 6000mm, upper limit to the wavevector
¢ 0.009199A~ and lower limit 0.008975A~!. These are similar to the experimental
conditions of Lebech et al. (1989). The lowest contour is 50 counts and the contour
separation is 50 counts. (a) Helix propagating along equivalnet < 111 > directions;
(b) a cone of helix propagation vectors (w sweep); (c) a plane of helix propagation
vectors (0 sweep); (d) a sphere of helix propagation vectors (§ and w sweep).
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MnSi FeGe
incident wavevector/A™! 0.09 0.3977
source sample separation/mm 6000 6000
sample detector separation/mm 4000 6000
range of acceptable q/A~! 0.036 > ¢ > 0.034 | 0.009199 > q > 0.008975

Table 7.1: The input parameters used for the SANS simulation program

produce the results of figures 7.2 and 7.3. These are very similar to the experimental
conditions used by Lebech (1989) for FeGe and those used for the SANS on MnSi
reported in this chapter. As the simulations corresponding to helicies propagating
along equivalent < 111 > directions are similar to the experimental SANS results
obtained for both MnSi (this Chapter) and FeGe (Lebech(1989)), it suggests the
predicted scattering of other helical arrangements to be accurate. The simulations
also show that the sample and scattering conditions are more sensitive to the sample
orientation for MnSi, maximising the scattering on one side of the detector only.

7.5 Experimental Details

The sample enviroment was provided by an Oxford 5kOe top loading, split su-
perconducting magnet. The cryostat was made from Aluminium which had been
strengthened using Lithium. Unfortunately, the dispersion of Al;L: scatters the
neutrons as shown in figure 7.4(a) producing a ring of scattering centred at a radius
of 0.015A~". This scatter produces a similar intensity to the satellites obtained from
the helical spin density waves however these were situated at a larger radius. Figure
7.4(b) shows subtraction of two residuals and that the ring disappears, but noise
level is very high, especially over the region where the ring of scatter is. Although
residuals were subtracted, numerous orientations of the crystal were investigated
as well as in various applied magnetic fields and it was impossible to record all
necessary. This limited the sensitivity of the results obtained.

The incident neutron wavelength was set at 7.1A i.e. above the Bragg cut off.
Count times were 30 minutes and all results are normalised to the monitor.

7.6 SANS on MnSi in zero Field

Figure 7.5 shows the resultant SANS obtained from MnSi in zero magnetic field
and at a temperature of 4.2K. The sample used in zero field work was the same as
for the magnetic measurements of chapter 4 i.e. a 2.5mm diameter disc with (110)
perpendicular to the incident neutron beam and [001] direction vertical.

The sample is orientated in this scan such that four satellites of equal intensity are
observed (infact all lie slightly out of the plane of the detector) along the equivalent
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Figure 7.4 (a) Equal intensity contours, SANS data (log-scale) obtained at 40K
showing the substantial background scattering from the cryomagnet. (b) Equal
intensity contours (log-scale) on subtraction of the residual scatter at 40K from
that at 45K. Although the ring disappears, the noise level is very high.






< 111 > directions, with secondary satellites along the {110] direction and another
pair existing outside the detector along the [001] direction.

The satellites are due to the neutrons diffracting from the helical spin density
wave. The presence of the secondary satellites which are much weaker than the
primary, may be a consequence of a number of processes. Multiple scattering may
be ocurring within the crystal. Within the MnSi crystal, the domains result in the
helical spin density waves only being a finite length. As a result, the helix will also
consist of numerous harmonics and the secondary satellite may be measuring the
second harmonic of the ‘wave packet’. Also, when in a magnetic field there may be
some moment reorientation in order to reduce the energy within the arrangement.
This so called ‘squaring’ of the helix would contribute to the above effect and result
in increasing measure of the second harmonic. Despite this, both explainations
would seem unlikely as the secondary satellite does not lie in the direction of the
helical propagation vector and the intensity does not increase in the presence of a
magnetic field. Another feasable explanation is the existence of two seperate helicies
within MnSi and obviously requires further investigation.

7.7 Study of the Magnetic Satellites Close to the
Transition Temperature

Figure 7.6 shows the results of a temperature study close to the magnetic transi-
tion for MnSi for decreasing temperature. The crystal is orientated such that the
scattering vector for two of the helicies is in the plane of the detector i.e. satellites
on the left hand side. The results show evidence of a helical spin density wave
propagating along the < 111 > direction at 29.1K, after which the intensity of the
satellites dramatically increases as the temperature is lowered.

This is summarised in figure 7.7 which shows the integrated intensity of the de-
tector area corresponding to the position of the top left satellite. Although the error
margins are significant, the dotted line shows a parabola fitted to the data which
acts as a smooth curve through the data points below the transition temperature.
There was no evidence of the diffuse ring of scattering as observed by Lebech et
al.(1989) close to but above the transition temperature of FeGe, although this may
be due to the scatter from the cryostat resulting in a high background noise level.

7.8 SANS on MnSiin an Applied Magnetic Field

SANS was performed on MnSi in an applied magnetic field and figure 7.8 shows
the results obtained at 4.2K. The sample used was a cylinder of diameter 2mm and
length 5mm cut from the same crystal as the previous sample. The magnetic field

was monitored by a Hall probe mounted close to the sample. Count times were 30
minutes.

Again the sample is orientated such that four satellites of equal intensity are
observed in zero field, in the four equivalent < 111 > directions and secondary
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Figure 7.5 Equal intensity contours, SANS data (log-scale) obtained from MnSi
at 4.2K. The crystal is orientated such that the scattering plane is (110) with [001]
vertical and [110] horizontal. The background scattering from the cryomagnet has
been subtracted. The magnetic satellite Bragg peaks are the red-yellow spots ob-
served at ¢ =~ 0.035






Figure 7.6 Equal intensity contours, SANS data (log-scale) obtained from MnSi
close to the transition temperature. Again the background scattering from the
cryomagnet has been subtracted. (a) 29.4K; (b) 29.2K; (c) 29.1K; (d) 29.0K; (e)
28.8K; (f) 28.7K
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Figure 7.7 (a)Integrated intensity of the detector corresponding to the position of
the top left magnetic Bragg satellite; (b) a parabolic fit to the data points below
the transition temperature.



satellites are observed parallel to the [001] direction. Initially as the field is increased,
the satellites remain fixed and apart from slight alteration in background (residuals
at all orientations and fields could not be obtained), there is no change to the
observed scattering from the sample. At a field of 5000e rotation of the satellites
towards the field direction commences, more noticeable by the movement of the
secondary satellites. This trend continues as the field is increased until eventually
at a field of 21600e rotation of the satellites is complete and they lie parallel to the
field. This information is summarised in figure 7.9.

The rotation of the satellite corresponds to the curved region of the magneti-
sation with field applied parallel to the [001] direction. After the helix is rotated
into the field direction the magnetisation is linear with applied field until saturation
occurs. Although no rotations in the scattering plane were performed to follow the
centre of the satellite as it rotated into the field direction, the intensity of the satel-
lites remains approximately constant. This fact suggests that the moments remain
perpendicular to the helical axis during this rotation process.

Rotation of the helical propagation direction to lie parallel with the applied
field results in the magnetic moments being arranged perpendicular to the magnetic
field. This is in fact the lowest energy arrangement of the magnetic moments. The
magnetisation density of a quantum mechanical system of volume V, in thermal
equilibrium at a temperature T in a uniform magnetic induction (Byp); is defined to

be: Y
= 7.2!
where F is the magnetic Helmholtz free energy. From Chapter 1, and the definition
of the differential susceptibility then:
1 9*F
= ——— 7.24
TV 2

The differential susceptibility can be divided into two components such that:

X=X+ x1 (7.25)
Hence the magnetic free energy per unit volume is:

1 1 .
F= __2.X”(Bo),-”2 — 5M(Bo).-ﬁ (7.26)

This expression is minimised with maximum value of y which corresponds to the
moments being perpendicular to the applied magnetic field, as shown by the in-
verse susceptibility when the field is applied parallel to the < 111 > direction (see
Chapter5).

However, the magnetostatic and magnetocrystalline anisotropy should also be
considered when concerning the resulting magnetic moment arrangement. In zero
field, the helical propagation direction defines where the anisotropy energy is greatest
since the moments are arranged perpendicular to this. The fact that the helix is
able to rotate into the field direction in order to minimise the magnetic free energy
is indicative that the anisotropy energy is low. Despite this, note that the rotation
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Figure 7.8 Equal intensity contours, SANS data (log-scale) obtained from MnSi at
4.2K as a function of applied magnetic field. The background scattering from the
cryomagnet has been subtracted. (a) 0T; (b) 0.042T; (¢) 0.075T; (d) 0.100T; (e)
0.125T; (f) 0.141T; (g) 0.158T; (h) 0.166T; (i) 0.174T; (j) 0.183T; (k) 0.191T; (1)
0.2167T.












Figure 7.9 Field dependancies of the angle 8, between the modulation vector ¢ and
the direction of the applied field at 4.2K in cubic MnSi for two seperate experiments,
(green and red) both with increasing magnetic field.






is gradual and requires a minimum field of ~ 4000e before commencing. As the
magnetic field is increased after helix reorientation, the magnetic moments cone
towards the field direction in order to reduce the magnetostatic energy.

7.9 MnSi and ‘Phase A’

In order to investigate ‘Phase A’ SANS was performed on MnSi in an applied mag-
netic field at a temperature of 28.5K as shown in the phase diagram of figure 7.10.
The cylindrical sample was used and count times were 30 minutes.

Figure 7.11 summarises the results; note in particular the different scattering
planes indicated at the top of the figure. In the (110) plane shown on the right,
domain reorientation has occured at 0.14T and the satellites are parallel to the field
direction. At 0.21T the crystal is in ‘Phase A’ and there is no evidence of the
satellites in this plane but at 0.31T they return to lie parallel to the field.

Rotation of the scattering plane shows that within ‘Phase A’ the symmetry is
broken and the helix propagates only along the two < 100 > directions perpendicular
to the field i.e. q || [100] and [010] directions. Above ‘Phase A’ the helix lies parallel
to the field. This rotation of the helix occurs as a ‘flip’ i.e. no other intermediate
orientations are occupied. At the boundary of ‘Phase A’ there is a field region
where there exist some domains with helical orientation perpendicular to the field
and some with it parallel to the field as shown in figure 7.12.

Within ‘Phase A’, as the helix lies perpendicular to the field then some of the
moments will lie parallel to the field, increasing the energy of the system. Conse-
quently there may be some squaring of the helix to reduce this (as shown in figure
7.18 in the case of FeGe), which may be evident in the increasing intensity of the
secondary satellites but unfortunately they are situated outside of the detector.

This result is entirely consistent with the magnetisation measurements obtained
in Chapter 5. The magnetisation of ‘Phase A’ is highly anisotropic, as shown in
the magnetisation measured with magnetic field applied parallel to the < 001 >
direction but no evidence of it when the field is aligned in the < 111 > direction.
The SANS results show the response to be related to crystal structure as with
field parallel to the < 111 > direction there does not exist a < 001 > direction
perpendicular to the field. The magnetisation with field applied parallel to the
< 001 > direction in ‘Phase A’ shows a sudden increase but to a region of reduced
susceptibility. When the spin density wave is perpendicular to the field, some of the
moments will be parallel to the field and hence the sudden increase in magnetisation.
However, once aligned their orientation will not vary greatly with field so the region
has a lower susceptibility.

Previous studies by Ishikawa (1984) suggested that ‘Phase A’ was extension of
the paramagnetic phase into the helical region although only the (110) scattering
plane was investigated. The actual result is more closely related to current theories
and can be explained by a field dependant anisotropy energy. It is also identical to
the results reported on the magnetic phase diagram of (Fe,Co)Si by Ishimoto et al.
(1990), a related helical structure.
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Figure 7.10 Magnetic phase diagram of MnSi near Ty obtained from magnetisa-
tion measurements (see Chapter5). The red circles indicate schematically the field
regions where the small angle neutron scattering data for MnSi were collected.






Figure 7.11 Equal intensity contours, SANS data (log scale) observed in and out of
‘Phase A’ for two different crystal orientations (see text). The background scattering
from the cryomagnet (which was substantial) has been subtracted. The magnetic
satellite Bragg peaks are the red-yellow spots observed at ¢ ~ 0.035A~L. The intense
scattering around (0,0) in the right hand panel is presumably caused by insufficient
subtraction of the central background.






Figure 7.12 Equal intensity contours, SANS data (log scale) observed at the start
of ‘Phase A’ in a magnetic field of 0.12T. The crystal is orientated such that the
[001] is vertical and [100] horizontal in the scattering plane.






7.10 SANS on FeGe

Current understanding of the behaviour of FeGe (with cubic Byg structure) is depen-
dant on the comprehensive study by Lebech et al. (1989) using SANS as a probe.
Some of the results already published are reproduced here by kind permission of Pro-
fessor Lebech in order to explain observations in the magnetisation measurements
and also for comparison with MnSi.

7.11 SANS on FeGe in zero field

Figure 7.13 shows the results of a temperature study on the magnetic structure of
FeGe using SANS. The start of the phase transition is marked at a temperature of
278.86K by a ring of diffuse scatter at a radius of ¢, the wavevector of the helix in
FeGe. As the temperature is lowered to 278.63K, satellites are seen to develop in
the < 100 > directions, initially with low intensity but dramatically increasing by
a temperature of 278.31K. Further lowering the temperature, the satellite intensity
gradually increases and their area becomes slightly larger.

At a temperature of 232.00K, the same satellites are still prominent, but now
have a background of a much less intense ring of scatter. As the temperature is
reduced in this regime, the intensity spreads from the satellites around the arcs of
the ring although still with maxima at their old positions. The lengths of these
arcs increases until at 211K two crescents centred at the previous satellite positions,
covering most of the ring circumference and of uniform intensity exist.

The process occuring below this temperature can best be described as a gradual
collapse of the ring to satellites along the [111] direction, together with secondary
satellites along the [011] and [100] directions. Below 150K, higher orders of satellites
are also observed.

In summary, in FeGe the direction of helical propagation changes with temper-
ature. At temperatures below the upper magnetic ordering temperature and above
the lower, the helix propagates along equivalent < 100 > directions and along equiv-
alent < 111 > directions below the lower transition. The transition at which the
spiral turns is ‘sluggish’, taking place in a temperature interval of 40K and shows
pronounced hysteresis (Tagecr.temp=211K, Taincr.temp =245K).

The macroscopic theory developed by Bak and Jensen (1930) made after sym-
metry analysis of the P;;3 structure shows that a helical spin density wave may exist
as a consequence of the Dzyalloshinsky instability and allowed for two propagation
directions (the two observed in FeGe), depending on the sign of the anisotropy en-
ergy. The behaviour of FeGe can be ‘explained’ by the value of anisotropy energy

being temperature dependant although no description of why this occurs is offered
by the theory.

If the anisotropy energy changes sign continuously, then at some temperature
it will be equal to zero with no defined propagation direction. Observations in the
temperature range 221 - 190K show that the helix does not simply rotate from the
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Figure 7.13 Equal intensity contours, SANS data (log scale) observed in the (011)
plane of cubic FeGe at various temperatures below Ty=278.7K after background
subtraction and normalisation. (After Lebech (1989)). (a) 278.86K; (b) 278.63K;
(c) 278.31K; (d) 277.60K; (e) 256.75K; () 232.00K; (g) 226.44K; (h) 221.06K; (i)
219.65K; (j) 216.65; (k) 211.01; (1) 207.60; (m) 204.13; (n) 198.69K; (o) 190.55K;
(p) 150.09K; (q) 118.77K; (r) 35.84.















[100] to [111] direction, as observed in MnSi for example in an applied magnetic
field, but rather there is an intermediate regime corresponding to the two lobes of
scattering at 207.60K. Although this is similar to the simulations produced for a disc
of helical wavevectors in the scattering plane (figure 7.3), because of the resolution
of SANS it is difficult to clearly differentiate between this and the simulation of an
arc of helix propagation directions between [100] and [111] directions as shown in
figure 7.14. A combination of the two processes may be occuring.

7.12 SANS on FeGe in an applied Magnetic Field

The SANS results obtained on FeGe in an applied magnetic field give some expla-
nation of the magnetisation measurements. The magnetic measurements reported
are those with magnetic field applied along the < 100 > axis.

Below the upper transition temperature but above 211K, the crystal orientation
corresponds to the field being applied along the helix propagation direction. The
magnetisation is linear with applied field and is due to the coning of the moments
into the field direction until FeGe becomes magnetically saturated.

Maintaining the magnetic field parallel to the< 100 > direction below the lower
transition temperature, the helix now propagates along < 111 > directions and
hence is initially orientated at an angle of = 55° to field direction. The magnetisation
is now curved in low fields before becoming linear (with same susceptibility as above
the lower transition temperature) and finally saturating. Figure 7.15 summarises the
results of Lebech (1989) for FeGe at 140K and reveals that for this initial orientation,
the magnetic field causes the spiral axis to rotate in to the field direction. This
corresponds to the curved region of magnetisation. Analysis shows that the rotation
of the helix is similar to that observed in MnSi (with helix not initially perpendicular
to the field direction) in that it requires a finite field before the rotation begins and
it is a second order process with intermediate orientations being occupied. During
rotation into the field direction, the total intensity of the satellites remains ‘nearly
unchanged’ which suggests the moments remain perpendicular to the propagation
direction of the helix. When rotation is complete, the moments cone into the helix
propagation direction.

7.13 Discussion

7.13.1 Helix rotation into the field direction

To understand the mechanisms behind helix rotation, consider the original work of
Plumer and Walker (1981), ‘Wavevector and spin reorientation in MnSi’. From the
assumption that in the presence of a homogeneous external magnetic field, the spin
density (averaged over the unit cell) can be written as:

s(r) = m + Sexp(:Q.r) + S”exp(—iQ.r) (7.27)
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Figure 7.14 SANS simulation results for FeGe for particular ¢ arrangements. The
scattering plane was a (110) plane with [001] vertical and [110] horizontal. The
input parameters used were incident wavevector 0.3977A-!, source sample sepera-
tion 6000mm, sample detector seperation 6000mm, upper limit to the wavevector
0.009199A4~! and lower limit 0.0089754~!. These are similar to the experimental
conditions of Lebech et al. (1989). (a) Arc of possible g between the < 111 > and

< 001 > directions in the scattering plane; (b) plane or disc of g in the scattering
plane.



Figure 7.15 Field dependancies of the angle 6, between the modulation vector
¢ and the direction of the magnetic field 4 at 140K in cubic FeGe. The insets
show the relevant parts of reciprocal space and define the orientations of the initial
modulation vector ¢(0) and the modulation vector ¢(H) along [011]. Both these
vectors lie in a vertical plane parallel to the area sensitive detector.
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where S is called the spin density wave polarisation vector, @) is the wavevector and
m is the homogeneous contribution to the spin density wave which is induced by
the external magnetic field H. Assuming the free energy to be a function of @, m
and S, they obtain an expression for the free energy of: o

F = %Aomz + AgS? + Bn2S® 4 BS* + iBm“
1
+ B'm,g*S*+ (%DQzS2 + ZES4)9 —m)qHcos® —mqHsind (7.28)

where (1DQ?S? + 1 ES*)g is the anisotropy energy; f1,5; and f; are the direction
cosines of Q relative to the crystallographic axes; g=1+61* +5,*+8s*; 0 is the
angle between Q and the external field H; m)i@ and m,q are the components of m
parallel and perpendicular to Q; and all coefficients depend on temperature only.
These definitions are not linked to terms mentioned in Chapter 1.

By minimising the expression for the free energy with respect to m,q, mq and
S? at fixed @Q orientation they obtain solutions to first order in H of:

Eg|Ag], -

myje = xjeHcosd where xjjo = (A — %) ' (7.29)
B’ _

mig = xigHsind where x 10 =~ (A + —B—IAql) ! (7.30)

and A = |C|Q — A:Q%.

When the field is applied at an angle § to the helix propagation vector, the
term B'm;g%S? (B’ > 0) in the free energy will increase. In order to reduce the
contribution of this term, the helix rotates to cause ) to become parallel to the
magnetic field direction, the lowering in free energy being greater than the increase
in anisotropy energy which favours @ lying in the < 111 > direction. Note that
when the helix is aligned with the field, m,o=0 since there is no magnetic field
applied in this direction and the moment arrangement is antiferromagnetic in the
plane perpendicular to Q.

By reinserting the expressions for m) g and m, g into that for the free energy, and
assuming the helix rotation commences on application of a magnetic field (such that

. 2_pg2 . . . . .
sin0 = LSH"S;#—!) where Hgg 1s the spin reorientation field, then an expression for
the magnetisation along < 001 > is obtained:

2 . (Hsp’— H?
Mmeoor> = Xjf — §Ax(—31—i——2——)H forH < Hsp (7.31)
Hsp
From the above :
m = mygcosld + mgsind
= xjioHcos?0 + x1qoHsin0 (7.32)

By considering the difference in magnetisation measured along two different crys-
tallographic directions:

Man> ~ Meoor> = XIIQH - (X||QH00520 + leHsing()) (7.33)
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= sin®0H(x)@ — X1Q) (7.34)
2 2 H? s :
= < Héx — ——5—6x (on substitution for sin?f.) (7.35)
3 3 Hip
The form of this (assuming §x is constant) is shown in figure 7.16 together with
the experimental results obtained. The similarity is obvious and suggests the model
of Plumer and Walker to be successful in this direction although it has certain
limitations. It assumes that helix rotation commences on application of a small field
whereas in fact this requires a finite field of 4000e. The experimental observation of
hysteresis in the field region of Hgp is in no way predicted. Also the experimental
form of m<y11> - Mc110> as shown in chapter 5, is very different for increasing and
decreasing fields which is also not predicted and the model in no way can account
for the presence of ‘Phase A’ close to the transition temperature.

7.13.2 MnSi and ‘Phase A’

Using the expression of Plumer and Walker (1981) for the free energy of the helical
spin density wave, the anisotropy energy term is given by:

1 1
Eq = (§DQ2S2 + ZES‘)g (7.36)
If E4 is positive, then g must be as small as possible hence the helix propagates
along < 111 > (g = 3) as in MnSi in zero magnetic field. However, if E4 is negative,
then g must be as large as possible and the helix propagates along < 100 > (g=2),
as in the upper magnetic phase of cubic FeGe. The variation in helix propagation

direction with temperature in cubic FeGe can be explained by the anisotropy energy
‘being a function of temperature and changing sign.

When considering the helical behaviour in a magnetic field, the terms of interest
in the expression for the free energy are:

F=F + Bmo*S*+ (%DQ%’2 + ;:ES")g —myqHcosd —m gHsing (7.37)
When the helix is aligned parallel to the magnetic field, this reduces to
;1 1
Floum = F' + (§DQ252 + ZE54)9 —myoH (7.38)

Within ‘Phase A’ when the helix ‘flips’ into < 001 > perpendicular to the applied
field, the free energy is

1 1
Fioumy=F'+ (§DQ’52 + ZES“)g + B'm,g*S* —m,oH (7.39)

At a particular field, the helical arrangement will favour the lowest free energy
possible hence for the field and temperature regime of ‘Phase A’

Foin < Foun (7.40)
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Figure 7.16 (a) Theoretical form of the difference in magnetisation measured with
field parallel to the < 111 > and < 001 > directions developed from the work of
Plumer et al. (1981); (b) experimentally determined difference in magnetisation
measured with field applied parallel to the < 111 > and < 001 > directions.



From the magnetisation measurements in a fixed field close to the transition tem-
perature (Chapter 5), within ‘Phase A’ by comparing the magnetisation in < 001 >
and < 111 > directions there are temperature and field regions where my1q > myg
and regimes still in ‘Phase A’ where m,g < m)jq. In ‘Phase A’ with magnetisation
along < 001 > direction there is a positive contribution to the free energy from the
term B'mqS? which suggests the only way the overall free energy can be lower is
if the anisotropy energy has lowered and in fact become negative, causing the helix
to ‘flip’ into a < 001 > direction perpendicular to the applied field.

Note that this is a first order transition, with the helix not occupying any inter-
stitial sites which is very different to the second order rotation of the helix into the
direction of the applied field where, although the anisotropy energy may vary with
applied field, it is assumed to remain negative.

7.14 Theoretical Investigation of the Magnetic
Phase Diagram of Cubic FeGe

Following the experimental work of Lebech et al.(1989), a theoretical paper on the
behaviour of cubic FeGe was provided by M. L. Plumer (1990). FeGe is analysed in
terms of a Landau-type free energy previously used to study the related phenomenon

in MnSi (Plumer and Walker (1981)).

The model developed (in particular for magnetic field applied along the < 100 >)
predicts a first order wavevector transition to occur at the transition from the upper
phase with Q || < 100 > direction to the lower phase with Q || < 111 > direction. For
magnetic field applied parallel to the < 100 > direction, the wavevector reorientation
phase transition is predicted to be second order in the lower phase.

Results of the numerical minimisation of the free energy for the magnetic phase
corresponding to field applied along the < 100 > direction are shown in figure 7.17.
This is similar in form to the experimental results obtained from the magnetisation
study in figure 6.14 although the values of field predicted at different temperatures
are greater than those observed. Also the model does not predict the presence of
the field induced phase close to the transition temperature.

7.15 Further SANS on MnSi

Although the behaviour of the helical spin density wave in MnSi has been determined
as far as rotation into the field direction and ‘Phase A’, there now is a need for
very detailed measurements. Firstly the integrated intensity of the satellites should
be calculated as a function of field to determine whether the helix is deformed in a
magnetic field or whether the amplitude of the spin density wave is a function of field
as well as temperature. This is far from trivial, particularly as the helix propagation
direction changes with field when not applied along the < 111 > direction. This
should be performed at 4.2K and 28.8K when the crystal will enter ‘PhaseA’.
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The background noise level produced by the cryostat greatly affected the sensi-
tivity of the SANS experiment and this will have been crucial close to the transition
temperature. Because there is no necessity for magnetic field, these measurements
could be repeated using different cryostat or displex in order to investigate the crit-
ical scattering close to the transition temperature and how the helical spin density
wave develops from the paramagnetic phase.

Another observation of particular interest is the secondary satellites in the <
001 > and < 110 > directions in zero field. These may be observed for numerous
reasons discussed earlier and in order to investigate this, MnSi should be cooled from
above the transition temperature in an applied magnetic field. This will favour the
growth of one domain and reveal more about the processes producing the secondary
satellites.

Figure 7.18 shows arrangement of the helix propagation vector being perpendic-
ular to the applied field direction for FeGe which corresponds to the helical arrange-
ment observed in the field induced ‘Phase A’ in MnSi. In zero field, no secondary
satellites are observed however in the field regime before the helix ‘flips’ into the
field direction, they are seen to develop and then disappear. Since these satellites
are in the same direction as the helix propagation direction and only appear when
a magnetic field is applied to the sample, they are thought to be a consequence of
‘squaring’ of the helix or rearrangement of the moments. Because the helix propa-
gation direction is perpendicular to the field, some of the moments will be parallel
to the field and some perpendicular. In order to reduce the energy of this arrange-
ment, the moments may reorder so they lie out of the field direction, possibly in two
arcs centred perpendicular to the field (see Lebech (1992)). Similar investigations
of secondary satellites should be performed on MnSi, especially while in ‘Phase A’
to see if a similar process is occuring.

Also MnSi could be cooled in a magnetic field within the ‘Phase A’ regime applied
along the < 001 > direction close to the transition temperature. This would shed
more light on ‘Phase A’ and determine whether or not the helix would form parallel
to the field before ‘fliping’ perpendicular into ‘Phase A’.

Recent work by Lebech (1992) on FeGe suggests that reorientation of the helix
into the field direction may occur as a first or second order process. depending on
the angle between the applied field and the initial modulation vector. Investigations
using SANS at both 250 and 140K show that with a magnetic field applied perpen-
dicular to the helix, a first order transition or ‘flip’ of the helix occurs whereas with
q initially at some smaller angle the rotation is a second order process. In order
ot investigate whether the same behaviour occurs in MnSi, SANS should be per-
formed with MnSi crystal orientated such that the < 111 > direction is aligned
perpendicular to the magnetic field and in the scattering plane.

Finally MnSi could be studied with magnetic field applied along a direction not
corresponding to a principle crystallographic direction.
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Chapter 8

Critical Magnetic Neutron
Scattering on MnSi

8.1 Introduction to Critical Phenomena

Critical phase transitions were systematically investigated by Andrews (1869) through
his studies of carbon dioxide. The phase boundary between vapour and liquid sim-
ply dies out at a point known as the critical point and the two phases, liquid and
vapour become identical. There is a seemingly continuous transition from one phase
to the other where vapour can become liquid without experiencing any discontinuous
change in properties.

Phase transitions that pass through a critical point are known as critical phase
transitions and phenomena observed close to this point are known as critical phe-
nomena. In a magnetic system where a continuous phase transition occurs from an
ordered ferromagnetic state to a paramagnetic state, the critical point is at zero ap-
plied field and at a temperature known as the Curie Temperature. In critical phase
transitions, short lived microregions of one phase in the other are always found and
if the two phases exhibit different ‘densities’, give rise to critical scattering. The
linear extent of these regions (the correlation length) tends to infinity as the critical
point is approached from any direction. The response time of the system i.e. the
time taken to create or destroy such regions of local order also tends to infinity as
the critical point is approached and is known as critical slowing down. Such transi-
tions are generally descibed by an order parameter 7, for example in the case of a
ferromagnetic transition the parameter is the magnetisation. The order parameter
is a continuous function of temperature; it is zero for temperatures above T, and
nonzero for temperatures below T..
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8.2 Review of Previous Critical Scattering on
MnSi

The critical scattering of MnSi has previously been studied by Ishikawa. Ini-
tially it was included in the study of low energy paramagnetic spin fluctuations
above T, (Ishikawa (1982)) which was performed with a triple axis spectrometer at
Brookhaven. Figures 8.1 and 8.2 summarise the results, with figure 8.1 showing the
development of a ring of scattering centred at (0,0) and the subsequent collapse into
a helix propagating along the < 111 > direction. Figure 8.2 shows the cross section
of the ring as a function of temperature. As the temperature is increased 1K above
that of helix formation, the ring disappears and the intensity of the scattering tends
to increase with decreasing wavevector.

Ishikawa (1984) also studied the magnetic phase diagram of MnSi near the critical
temperature by small angle neutron scattering. Again reference is made to a ring of
scattering close to the transition temperature and is reproduced in figure 8.3. This
ring of scattering was also thought to be present in ‘Phase A’ below the transition
temperature in an applied magnetic field.

Hayden and Brown (1990) repeated a more detailed study of the cross section
of this ring of scattering close to the transition temperature at the ILL in Grenoble
and this is reproduced in figure 8.4.

Other measurements of interest close to the transition temperature include the
ultrasonic study of the magnetic phase diagram of MnSi by Kusaka (1976) and
also the magnetovolume effect in MnSi measured by Matsunga (1982). Figure 8.5
shows the temperature dependance of the attenuation of ultrasonic waves near the
transition temperature in fixed magnetic field. It is evident that two peaks ap-
pear around 30K. The lower temperature transition is very sharp while the second
is much broader and flatter. Simulatneous measurement of the attenuation and
static susceptibility show that the sharp peak corresponds to where the tempera-
ture derivative of the susceptibility diverges and hence onset of the helical phase.
Figure 8.6 reveals that the thermal expansitivity of MnSi also exhibits a two step
transition. There is a sharp transition at 30K, followed by a broad bump one degree
above it.

Makoshi (1979) has calculated the effect of spin fluctuations on the ultrasonic
attenuation coefficient on the basis of previously developed theory of helical spin
structure in itinerant electron systems. Although the double peak structure in the
attenuation coeflicient can be explained in terms of ‘rather high magnetic fields’,
the presence in zero applied field remains unaccounted for.

Recent measurements of the heat capacity of MnSi by Bernhoeft et al. (1992)
also reveal a similar two stage transition as shown in figure 8.7(a) and (b). Again
the lower temperature transition is very sharp, followed by a broader peak. Finally,
neutron scattering on MnSi by Brown (1990) suggests the intensity associated with
this ‘prephase’ may be greater and temperature regime broader on application of
homogeneous pressure to the sample. The results are reproduced in figure 8.8.
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8.3 Measurement of Magnetic Critical Scatter-
ing

Initial attempts to observe the critical scattering of MnSi were made on SANS at
Risg as descibed in Chapter 7 in a similar manner to Lebech et al. (1989). However
the sensitivity of this was limited by the scattering from the cryostat used. In order
to overcome this, the experiment was repeated on a triple axis spectrometer using
a displex to cool the sample.

8.3.1 The Triple Axis Spectrometer

The triple axis spectrometer is so called because neutrons are scattered about three
parallel axis through angles 205, ¢ and 26,4 as shown in figure 8.9. A ‘white’ neutron
beam is incident on a single crystal monchromator which is aligned so as to reflect
neutrons of a particular wavelength k. These neutrons are incident on the sample
and scattered through an angle ¢ onto the analyser crystal which is arranged to
reflect neutrons of wavevector k' into a detector. Within this experiment elastic
neutron scattering is being studied and because of the angular degrees of freedom,
the scattering function (see Chapter 7 for the magnetic scattering cross section)
can be deteremined at any desired value of scattering vector A within the limits
0 < K < 2k, and the geometrical limit of the spectrometer. Interest lies in values
of K near to magnetic reciprocal lattice points and measurements were made by
scanning K along some path in reciprocal space.

8.3.2 Experimental Details

The experiment was performed on the triple axis spectrometer TAS1 at the Rise
National Laboratory in Denmark. The sample used was a single crystal described by
Brown (1990) as ‘sample 2’ and used in the ambient pressure neutron experiments
to investigate the spin fluctuation spectrum above the transition temperature. The
single crystal has a maximum diameter of 8mm, length of 60mm and was the source
of cylindrical sample used on the SANS in an applied magnetic field described in
Chapter 7. The crystal was mounted in a sealed, helium filled can and placed in a
displex. A calibrated Germanium thermometer was used as a temperature sensor
and mounted close to the sample position. The temperature was controlled to within
+0.01K by means of a Risg A1931a Digital Temperature Controller.

Both the curved monochromator and planar analyser used are pyrolytic graphite
(crystal mosaicity of 30') with the (002) Bragg reflection providing the required
wavevector. Neutrons of incident energy 5meV were used with Be filters inserted
infront of the sample to remove neutrons with integer fractions of the desired wave-
length. The horizontal collimation of the neutron beam used was 60’/30'/30' /60
and the vertical collimation was 120’/120'/120'/120’.

The crystal was orientated in the neutron beam such that the scattering plane
was the (110) plane. Magnetic Bragg scattering from the sample at 15K around

12
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Scan | Calculated width | Measured width
A1 A-1
(110) crystal Bragg peak (45K) 0 —26 0.012 0.019
¢ 0.019 0.010
(111) magnetic Bragg peak (29K) | 6 — 20 0.0180 0.015
¢ 0.0003 ~0.003

Table 8.1: Calculated and measured peak widths for both crystal and magnetic
Bragg peaks.

the forward direction (0,0) was compared to that around the (110) reciprocal lattice
point. Since the magnetic scatter around the (110) lattice point was weaker than
around the straight through beam, the experiment was performed around (0,0).
The bulk of the data was recorded measuring elastic scattering, scanning & along
reciprocal space at a fixed temperature close to the transition. The K scans were
performed along the [110] and [111] directions, passing radially through the (110)
and (111) magnetic reciprocal lattice points from the (0,0) centre.

Figure 8.10(a) shows equal intensity contours of a compilation of scans of the
(110) crystal Bragg reflection at 45K with scans taken along the marked lines. This
was used to calculate the half width contour in figure 8.10(b). Table 1 shows the
calculated (Lebech et al. (1975), Nielson et al. (1968)) and measured resolution
widths for the (110) crystal Bragg peak at 45K and the (111) magnetic Bragg peak
measured about (0,0) at 29K, also shown in figure 8.11(a) and (b).

From Table 1, the calculated and measured values for the (110) crystal Bragg
peak at 45K are the same order of magnitude (particularly as the mosaicity of the
crystal is unknown) and hence the peak is resolution limited. However the ¢ scan
of the magnetic Bragg peak has a width over resolution of approximately a factor

10.

Residual scans were recorded at 45K and subtracted from the raw data at lower
temperatures. A Gaussian function was fitted to the resulting data using the Risg .
program FGRAF which performed a least squares refinement to the fit. The pa-
rameters for the Gaussian fit at each temperature are listed in Table 2 for [110] scan
and Table 3 for the [111] direction scan. Figure 8.12 shows some specific examples
of the Gaussian fit to some of the data recorded along the [111] direction.
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Figure 8.12 Specific examples of the Gaussian fits to the residual corrected critical
scattering of MnSi close to Ty with ¢ scan along the [111] direction. (a) T=32.0K;
(b) T=31.0K; (c) T=30.0K; (d) T=29.6K; (e) T=29.4K; (f) T=29.3K; (g) T=29.1K;
(h) T=29.0K; (i) T=28.9K; (j) T=28.8K; (k) T=28.4K; (1) T=28.0K; (m) T=27.0K;
(n) T=26.0K; (o) T=25.0K.
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Temp./K | Peak(c/2.5E6) | Error | Posn.(A™!) | Error | GFWHM(A™!) | Error
28.40 2192 102 0.0297 0.0024 0.0437 0.0038
28.50 2175 71 0.0330 0.0013 0.0379 0.0024
28.60 2453 64 0.0298 | 0.0012 0.0424 0.0020
28.70 2545 115 0.0277 | 0.0025 0.0461 0.0036
28.90 3661 130 0.0270 0.0018 0.0439 0.0026
29.00 6773 60 0.0297 | 0.0030 0.0305 0.0061
29.05 8684 224 0.0273 | 0.0011 0.0350 0.0015
29.05 8668 77 0.0294 0.0003 0.0294 0.0006
29.10 9468 207 0.0275 | 0.0087 0.0339 0.0013
29.10 9300 81 0.0293 0.0003 0.0295 0.0006
29.15 9700 216 0.0267 | 0.0091 0.0352 0.0013
29.15 9473 79 0.0287 | 0.0003 0.0308 0.0006
29.20 9306 61 0.0296 | 0.0022 0.0292 0.0042
29.30 8742 85 0.0291 0.0039 0.0309 0.0073
29.40 8038 63 0.0296 0.0031 0.0312 0.0061
29.50 7094 164 0.0277 0.0093 0.0371 0.0014
30.00 4220 118 0.0304 0.0013 0.0421 0.0022
30.20 3635 63 0.0299 | 0.0010 0.0412 0.0025
32.00 780 38 0.0375 0.0034 0.0555 0.0075
35.00 247 44 0.0435 0.0110 0.0540 0.0300

Table 8.2: Gaussian parameters for the curves fitted to the data measured in the
[110] direction.

8.4 Critical Scattering Results

The peak height of the Gaussian fit to the critical scattering for the [111] and [110]
directions are shown in figure 8.14(a) and (b) respectively, close to the transition
temperature. Above a temperature of 29.2K the peak heights are identical in the two
direction scanned. Below a temperature of 29.15K the peak height of the scattering
in the [110] direction sharply decreases over a temperature interval of 0.3K whereas
the scattering along the [111] direction continues to increase. The rate of increase is
dramatic between 29.15 - 28.9K and the complete results are shown in figure 8.14(c¢).

Figure 8.15 shows the full width at half maximum (FWHM) of the Gaussian fit
to the data in the two directions scanned close to the transition temperature. In the
[111] direction, the FWHM of the Gaussian fit decreases smoothly with temperature
from a maximum value of 0.0854~! at 32K to a value of 0.025A~! at 29.1K. There
is then a sharp reduction in a temperature interval of 0.3K to a value of 0.015A4!
at 28.8K below which it remains constant over the remainder of the temperature
regime studied.

In the [110] direction, the FWHM of the Gaussian fit to the data has a broad
minimum with value of 0.03A~! centred at 29.1K, probably due to this being the
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regime of maximum scattering in this direction. At a temperature difference of +1 K
from this the FWHM values are greater but show no obvious trend.

Figure 8.16 shows the peak position of the Gaussian fit to the data for the two
directions scanned close to the transition temperature. In the [111] direction it is
evident that the peak position increases smoothly to a value of 0.025A~! until at
a temperature of 29.15K there is a sharp increase of 0.006A4~! in a temperature
interval of 0.3K. The peak position has a maximum |Q)]| value of 0.0361A! at a
temperature of 28.9K after which it gradually decreases to a value of 0.0347A! at
25K. It is immediately pointed out that the observed peak position below 28.9K
is consistent with the Q value of 0.035A~! reported by Ishikawa (1984). Also the
data is consistent with the fact that the wavelength of the helix increases as the
temperature is lowered (Ishikawa (1984)). This behaviour is opposite to that of the
spin density wave in Cr whose wavelength decreases as the temperature is lowered
(see for example Fawcett (1988)).

The peak position of the data recorded in the [110] direction does not show any of
the trends observed in the {111] direction as the temperature is varied. The values,
especially between 28K and 30K are consistent with a single value of 0.0294A~1,
note the same value of the peak position in the [111] direction before the dramatic
increase at 29.1K. The errors associated with these values are a similar order of
magnitude whereas the magnitude of the errors recorded in the [111] reduce, owed
to the increased scattering and hence more accurate fitting of the Gaussian function.

8.5 Discussion

From the results of the magnetic critical scattering in the [111] direction it appears
that there are three distinct regions over the temperature regime studied. This is
evident from the logarithmic plot of peak height against temperature shown in fig-
ure 8.17(a). The first region, above 29.2K is characterised by broad scattering in
reciprocal space, with low peak position which gradually increases as the tempera-
ture is lowered from 32K. There is both a gradual increase in the peak position and
narrowing of the FWHM as the temperature decreases. There then follows a tem-
perature regime of 0.3K where there is a dramatic increase in peak height coupled
with sharp narrowing of FWHM and rapid increase in the peak position.

Measurements in the [110] direction appear very similar over the complete tem-
perature range studied. The peak position remains approximately fixed and the
FWHM shows no consistent behaviour apart from a slight decrease where the scat-
tering is greatest. Although the peak height reduces sharply after 29.15K this is

not as dramatic as the increase observed in the [111] direction as shown in figure
8.17(b).

In numerous phase transitions studied, various parameters including suscepti-
bility and specific heat diverge as the critical point is approached (see for example
Stanley (1971)). In an analogous way the magnetisation tends to zero, so the recip-
rocal of the magnetisation tends to infinity. In general, it is observed experimentally
that (see for example Collins (1989)) the magnetisation (and numerous other pa-
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Temp./K | Peak(c/2.5E6) | Error | Posn.(A™!) [ Error | GFWHM(A™!) [ Error
25.00 820256 10759 0.0347 0.0001 0.0161 0.0002
26.00 723603 9151 0.0351 0.0001 0.0161 0.0002
26.60 659214 7865 0.0353 0.0001 0.0161 0.0002
27.00 603565 7238 0.0354 0.0001 0.0161 0.0002
27.20 575122 7239 0.0355 0.0001 0.0162 0.0002
27.40 545701 6095 0.0356 0.0001 0.0161 0.0001
27.60 518053 6940 0.0357 0.0001 0.0160 0.0002
27.80 484321 5861 0.0358 0.0001 0.0161 0.0002
28.00 451534 6660 0.0359 0.0001 0.0160 0.0002
28.20 409373 4493 0.0359 0.0001 0.0162 0.0001
28.40 368684 4280 0.0360 0.0001 0.0161 0.0001
28.60 318726 3171 0.0360 0.0001 0.0162 0.0001
28.80 261959 2942 0.0361 0.0001 0.0162 0.0001
28.90 212552 2172 0.0361 0.0001 0.0163 0.0001
29.00 97818 1007 0.0358 0.0001 0.0169 0.0002
29.05 37718 347 0.0353 0.0001 0.0185 0.0002
29.10 18356 164 0.0338 0.0001 0.0222 0.0003
29.15 13331 151 0.0318 0.0003 0.0266 0.0005
29.20 11586 54 0.0315 0.0001 0.0270 0.0003
29.30 10222 69 0.0302 0.0003 0.0299 0.0005
29.40 9303 66 0.0304 0.0003 0.0303 0.0006
29.60 7660 64 0.0312 0.0004 0.0329 0.0008
29.80 6263 40 0.0300 0.0003 0.03539 0.0007
30.00 5186 34 0.0291 0.0009 0.0388 0.0020
31.00 1807 58 0.0278 0.0028 0.0577 0.0051
32.00 1099 224 0.0130 0.0181 0.0863 0.0240

Table 8.3: Gaussian parameters for the curves fitted to the data measured in the
[111] dirrection.
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rameters) obey a simple power law and have a leading divergence close to the critical
point of the form (T, — T)? where 3 is defined as the critical exponent.

Considering the expression for the magnetic neutron scattering cross section
(Chapter 7), the peak height is related to the magnetisation of the sample perpen-
dicular to the scattering vector. It is thus regarded to be a measure of the ‘order’
or an ‘order parameter’ at the particular temperature.

SANS results of Chapter 7 suggest MnSi has a critical temperature of 29.14+0.1K
however from these measurements magnetic scattering is observed as high as 32K.
Thus in order to determine the transition temperature, an attempt is made to reduce
the data to linear form as shown in figures 8.18(a) - (c) for numerous transition
temperature values. From this it is evident that a linear form is obtained using
a transition temperature close to 29.0K. Also note the curvature of the data and
how it is dependant on the choice of transition temperature, even for In(T, — T) >
—1. The further from the transition temperature, the closer the points from the
individual graphs become, suggesting they would converge asymptotically. Although
the graphs approach linear form over the temperature range studied, the resulting
gradient of each is sensative to critical temperature used. The resulting value varies
from 0.372 for a critical temperature of 28.6K to 0.536 for a critical temperature of
29.4K as demonstrated in figure 8.18(c). Figure 8.18(d) shows the resulting linear
form of the data for a transition temperature of 29.04K, the value of critical exponent
obtained being 0.435. This compares favourably with the range of experimental
values of 0.2 - 0.4 observed for other critical magnetic systems (see for example
Stanley (1971)). The onset of linearity of the data with a transition temperature
of 29.04K appears entirely linked to the formation of the helical spin density wave
along the < 111 > directions and is consistent with the SANS results. However, it
offers no explaination to the magnetic scattering observed above this temperature.
This analysis suggests the helical spin density wave forms at a critical temperature
of 29.04 + 0.05K below which the peak height of the neutron magnetic scattering
increases with a critical exponent of 0.435, at least down to a temperature of 25.0K.

The magnetic critical scattering observed in the two directions above 29.2K is
identical and different in form to that observed below 29.0K in the [111] direction.
The peak position gradually increases from close to zero scattering vector which
is opposite to the behaviour below 29.0K. This may be intuitively expected as it
develops from the paramagnetic state. Also the peak height increases such that over
the temperature region close to helix formation

peak height = Ae™™ (31K > T > 29.2K) (8.1)

where A is a constant, as demonstrated in figure 8.19. This scattering may be
related to the broad peak observed in the ultrasonic attenuation (Kusaka (1976))
and also in the magnetovolume effect (Matsunga (1982)) which prempts the helical
spin density wave formation. It could possibly be linked to the structure of the
inverse initial susceptibility of MnSi close to the transition temperature reported in
Chapter 5. Since it is isotropic in the directions studied, the scattering is very similar
to that observed by Ishikawa (1984) as a ring of scatter using SANS at 29.4K and
also related to the similar observation on FeGe by Lebech (1989). The first evidence
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of a peak in the scattering is at a temperature of 32K which corresponds to the

temperature at which the heat capacity of MnSi begins to increase, as shown in
figure 8.7(a).

This scattering may be onset or a prephase to helix formation. It is evident from
Chapter 7 that application of a magnetic field (= 1.5kOe) can cause reorientation
of the helix to align it parallel to the field, which suggests the anisotropy energy
is small. If initially the anisotropy energy is zero, then the helix could propagate
in all directions, resulting in a ring of scatter from SANS (see neutron simulations,
Chapter 7). As the anisotropy energy increases (perhaps due to a change in lattice
constants), the sphere of helix may then collapse into the < 111 > directions.

Finally, in the temperature regime 28.9 - 29.2K there is a dramatic increase in
the scattering observed in the [111] direction which also corresponds to the region
of sharp decrease in the peak height in the [110] direction. This temperature region
is thought to be the phase transition into the helical phase. Figure 8.20 shows the
differential intensity of the scattering in the two directions. Figure 8.20(c) shows
how the magnitude in the [111] direction is far greater than that in the [110] direction
and also demonstrates the similarity of the measurements at temperatures in excess

of 29.2K.

8.6 Further Work

This work is a detailed study of the critical scattering initially observed in MnSi by
I[shikawa (1982) however the study is only along the [111] and the [110] directions.
As these directions correspond to major crystal symmetry directions, it is felt that
further scans should be performed in other more random directions, one in the (110)
scattering plane and the other out of this plane to investigate whether this scattering
is truely isotropic. Another region of great interest is the temperature regime 28.9
- 29.2K which marks the transition between the types of scattering measured. In
order to find the cause of this transition it may be worthwhile monitoring the lattice
constants of MnSi in this temperature regime.

Finally, the work of Brown (1990) may suggest the intensity associated with this
‘prephase’ is greater and temperature regime broader on application of homogeneous
pressure on MnSi. Thus in order to discover more about this phase it may be nec-
essary to perform more measurements on MnSi under homogeneous pressure. With
this in mind, a pressure cell was designed and built by the author to make magnetic
measurements under uniaxial stress and homogeneous pressure. The design and
initial measurements are described in detail in Appendix D.
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Chapter 9

Conclusions

From this magnetisation study of MnSi, FeGe and ZrZn, it is evident that the
magnetisation of MnSi in magnetic fields above ~6kQe is very similar to that of
ZrZn,. The magnetisation of both ZrZn; and MnSi in this field regime are de-
scribed by the model of Lonzarich and Taillefer (1985) which is discussed in Chapter
1. However, this study concentrates on the low field properties of MnSi where the
magnetisation is very different to that of ZrZn,. It is believed that the reason for
this low field difference is the interaction of the itinerant electrons in MnSi with the
lattice structure (Bak and Jensen (1980)), in particular due to the lack of inversion
symmetry of the system.

Initial magnetisation measurements close to the magnetic transition temperature
of MnSi observed anomalous behaviour between 29.1 - 29.0K. This was further inves-
tigated using neutron scattering which suggests that MnSi exhibits some magnetic
order at temperatures as high as 32K, 3K higher than the generally accepted value
of the transition temperature of 29.101+0.05/K" observed through small angle neutron
scattering (SANS) and magnetisation measurements within this thesis. This is evi-
dent as a ring of scattering (possibly isotropic) about (0,0). The wavevector radius
of this ring gradually increases until at a temperature of 29.1K the ring ‘collapses’
and the scattering observed in the [111] direction dramatically increases together
with a sharp increase in wavevector. The neutron scattering associated with the
formation of the helix in the [111] direction increases with a critical exponent of
0.435. The behaviour of the helical spin density wave is now consistent with pre-
vious measurements including wavevector of ¢ =~ 0.035A4~" (Ishikawa (1976)) which
decreases as the temperature is lowered (Ishikawa (1984)).

On formation of the helical spin density wave, propagating along equivalent
< 111 > directions, the induced magnetisation under applied magnetic field becomes
anisotropic. SANS reveals this to be due to reorientation of the helical spin density
wave parallel to the applied magnetic field. This process results in an increase in
the magnetic susceptibility of MnSi and hence reduction in the magnetic Helmholtz
free energy. Although the reorientation causes an increase in the anisotropy energy
of the arrangement, the total energy is reduced. The rotation of the helix is gradual
with applied magnetic field and the magnetisation measurements are similar to those
predicted by minimisation of the expression for free energy produced by Plumer and
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Walker (1981). As the magnetic field is further increased, the magnetic moments
cone towards the field direction in order to reduce the magnetostatic energy which
becomes the dominant term in the expression for the free energy.

The magnetisation was also observed to be anisotropic in response to the so
called ‘Phase A’, being evident only with magnetic field applied parallel to the
< 001 > direction, as a sharp increase in the magnetisation but to a region of re-
duced magnetic susceptibility. This explains the apparent anomalous magnetisation
measurements of Kadowaki (1981) with ‘Phase A,’ correponding to to the magnetic
field regime where the magnetisation in the < 001 > direction is greater than that
in the < 111 > direction, and ‘Phase A,’ is the regime where the magnetisation is
lower. SANS within ‘Phase A’ exposed the reason for the close link with crystal
orientation. With magnetic field applied parallel to a < 001 > direction, in ‘Phase
A’ the helix ‘flips’ from parallel to the applied magnetic field to propagate along
the two < 100 > directions perpendicular to the field. This can be incorporated
in the framework of the theory of Bak and Jensen (1980) and that of Plumer and
Walker (1981) in terms of the anisotropy energy being both field and temperature
dependent, changing sign within the temperature-magnetic field regime of ‘Phase
A’.

Consequently, the low field magnetisation of MnSi was measured and explained
in terms of helical spin density wave orientation and can be understood within
the framework of the models of Bak and Jensen (1980) and the expression for the
free energy of Plumer and Walker (1981). The nature of the magnetic transition
however, requires further investigation, in particular the magnetic order observed in

MnSi above 29.1K.

The magnetisation measurements on cubic FeGe coupled with the SANS of
Lebech (1989) highlights many similarities in behaviour between cubic FeGe and
MnSi. Cubic FeGe also has the By crystal structure and hence is a candidate for
supporting a helical spin density wave due to the lack of inversion symmetry of
the lattice. The SANS results of Lebech (1989) reveal a helical spin density wave
forms in FeGe at a temperature of =278K, propagating along equivalent < 100 >
directions although the propagation direction does change at ~211K to < 111 >.

As the transition temperature of cubic FeGe is approached, a ring of scattering
is observed in SANS which may correspond to the critical scattering observed in
MnSi. Also, the magnetisation measurements suggest the possible existence of a
field induced phase, close to but below the transition temperature similar to ‘Phase
A’ observed in MnSi. From both the SANS and magnetisation measurements, it is
evident that the response of the helical spin density wave to an applied magnetic field
in both cubic FeGe and MnSi is identical. This includes linear magnetisation when
the magnetic field is applied parallel to the helix propagation direction (below the
‘knee’ in magnetisation) and rotation of the helix into the field direction as a second
order process when the orientation of both is neither parallel nor perpendicular.

The high field response above the ‘knee’ in the magnetisation of cubic FeGe
is similar in form to the magnetisation of ZrZn, and MnSi in the corresponding
regime. This is reinforced by comparison of the ‘Arrot Plots’ of cubic FeGe and
MnSi and suggests the magnetisation of cubic FeGe above the ‘saturating’ field
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is indicative of a weak itinerant ferromagnet. Finally, the form of the magnetic
phase diagram of cubic FeGe predicted by Plumer (1990) using a similar model to
that applied to MnSi is in good agreement with that determined through magnetic
measurements.

Although further work has been suggested after each chapter, I feel one of the
most pressing measurements required are SANS on MnSi with helix propagation
direction initially perpendicualr to the applied magnetic field. This would determine
whether the helix reorientation parallel to an applied magnetic field in MnSi is a
first order ‘flip’ for helix perpendicular to the magnetic field as reported recently
by Lebech (1992) in cubic FeGe. Another important experiment to be performed
is SANS on FeGe close to the transition temperature in an applied magnetic field,
to investigate whether a phase comparable to ‘Phase A’ in MnSi exists. If these
phenomena were observed it would extend further the similarity of the behaviour of
the helical spin density waves of MnSi and FeGe in an applied magnetic field. This
generality may extend to all related materials. An anomalous region in the magnetic
phase diagram of (Fe,Co)Si identical to that of ‘Phase A’ in MnSi has been reported
by Ishimoto (1990).

Further investigation into the magnetic properties of other materials with cubic
By crystal structure is also encouraged with emphasis on the reasons for range of
magnetic behaviour as well as range of transition temperatures and wavelength for
those supporting helical spin density waves.

It is evident from this thesis that there are many similarities between MnSi and
cubic FeGe. The magnetisation of MnSi, both above the transition temperature and
below in magnetic fields above which the ‘knee’ in the magnetisation occurs, is well
described by the model of Lonzarich and Taillefer (1985) (see for example Taillefer
(1986a)). Consequently, I recommend the growth of a larger crystal of cubic FeGe
to enable investigation as to whether the magnetisation of cubic FeGe can also be
decribed by the same model. This would also enable further study of the critical
scattering from cubic FeGe.
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Appéndix A
Programs Written to Automate
the Durham VSM

This appendix consists of the computer programs (fully annotated) written to au-
tomate the Durham Vibrating Sample Magnetometer. It can be broadly split into
three sections:

1. User manual for the Durham VSM.

2. Control programs written for the Durham VSM.

3. Constituent modules written by Dr. D. Lambrick.
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Introduction

The Vibrating Sample Magnetometer being used was designed by Dr. S.R.Hoon
and built by S.M.Willcock in 1984. A sample is placed in a static magnetic field
and vibrated relative to a series of pick-up coils. The voltage induced is then com-
pared to that produced by a sample of known magnetisation and thus the actual

magnetisation is obtained.

Equipment used:

1. Computer (enabling automatic data collection.)

2. KSM power supply and control panel.

3. Minicam crate together with IEEE board, A-D board and GPOB.
4. EGandG 5206 two phase lockin analyser.

2. Fluke.

Programs available in this package and summary of what they do!

1. VSMTIME: Measures the in-phase signal from the pick-up coils after a given
time increment. It can be used to see if a particular temperature has stabilized,

decay of magnetisation or stability of the pick-up coils.

2. VSMTEMP: Measures the in-phase signal from the pick-up coils and IN-
CREASING temperature as displayed on the fluke. The field should be set and
temperature controller connected to the fluke (however any temperature sensor

can be used as long as output is on the fluke.)
3. VSMTMPD: As above but with decreasing temperature.

4. VSMCONT: A control program for the VSM allowing manual field alteration
before recording both field and induced voltage. Any power supply can be used.



5. VSMRUN: Complete control program allowing a full hysterisis curve to be

recorded.
Displaying the Output.

Output can be disi)layed using the MATLAB maths package which requires
a computer with a second coprocessor. Output data files are written in Matlab
format with the first element being the number of actual data points recorded.
Data starts at row four and there are four columns in each matrix. Columns are
field, error on field, voltage, error on voltage for programs 4 and 5.Temperature,
0, voltage, 0 for programs 2 and 3 and time, 0, voltage, O for program 1. Matlab

programs have been written for each corresponding control program.
1. TIMPLT M: plots time vs induced voltage.
2. TEMPLT.M: plots temperature vs induced voltage.
3. TEMPLT .M.

4 and 5. VLTPLT.M: after subtracting a residual, plots field vs induced volt-

age.

4and 5. MAGPLT.M: after subtracting a residual, plots magnetisation vs

induced voltage.



FLUKE 8860a digital multimeter

The computer reads the display on the fluke. It is used in programs VSM-
CONT,VSMRUN,VSMTEMP and VSMTMPD displaying either field or temper-
ature. The fluke may be used as a resistance meter so can be used with other
temperature sensors eg RhFe resistor, to monitor the temperature together with

computer.

IEEE address 16

This is set in PSD5206.pas in the routine from line 35 down.



LOCKIN AMPLIFIER

An EGandG 5206 lock-in amplifier is used. The computer reads the sensitivity
ofit each time before reading channel 1 display and reads the time-constant at the

start of the program.

The lock-in is to be set up by the operator. Firstly, to perform a device clear
SELECT and SENSITIVITY should be depressed at the same time. It should
then be PHASED on a large signal such as a nickel crystal and is done using
the autofunctions with SELECTED on SET and then the RUNCLEAR button
pressed. The phase should be recorded and compared to previous values as it’s
value should not change significantly between runs. For calibration purposes the
signal produced by a sample of known magnetisation should be recorded eg a nickel
crystal. This should be done in a field which saturates the magnetisation and in

both positive and negative fields.

This process should be repeated at the start and end of the run and averaged

incase the sensitivity of the VSM coils varied.

The lockin can be set-up as required by the operator but a typical set-up is to
have NORMAL and LOW set as modes. There is no internal frequency and the
external one is set on F. The phase is inserted i.e. the value obtained using the
nickel. Typical time constants used are either 300ms or 1s. The sensitivity can
be changed manually during the run or the AUTORANGE function used and to

isolate all the keys, the remote button can be used.

The phase should not be alterred during a run nor the time constant!

IEEE address 10.

This is set in the program PSD5206.PAS from line 35 down!



Power Supply

A KSM (stabilised power supply type SCT) is used together with a control
panel designed by SMT, BKT, DBL and Electronics workshop. The panel was
then built by Chris Mullaney of EWS in Feb '91.

The manual box is self explanatory:- depressing a particular key results in that
operation. The disable button overrides everything and the enable light must be
OFF before logic is reversed.

The computer is linked via a minicam unit with particular lines performing
corresponding tasks as above. An A-D board reads the logic state while the opto-
isolated lines of a GPOB set lines low and high to operations ON and OFF. The
minicam cards should NOT be earthed as accidental earting of the magnet coils will

result in the driving current passing through the lockin, minicam and computer!!
When computer controlled, setting a line LOW results in the operation.

When the power supply is switched on, the control panel is switched on un-
der manual control. This should not be switched to computer control until the

computer program gives the necessary prompt.

The rate at which the field ramps is set by two oscillator frequencies, one each
for both manual rate and computer rate which can be alterred seperately. However
the computer program has been written with a particular frequency in mind and if
the oscillator period is changed then the magnet must be recallobrated using the

program CALIBR.PAS to obtain the tesla per second rate for the magnet.



MINICAM UNIT

A Bede minicam crate is used together with IEEE board, GPOP and A-D.
The GPOP is used to set lines low or high thus operating the control panel as
designed by EWS, and the A-D reads the logic state! The minicam crate must be
turned OFF before removing any of the cards.

IEEE address of the minicam crate is 6. This is set in PSD5206.pas in the

routine from line 35 down.

A-D board address 1. This is set as a constant at the beginning of the main

control program.

GPOP (opto-isolated ports) address 41. Again set at the start of the main

control program.

Process field-up, GPOP line 13, Input line 2 to supply,B sends line low
Process field-down, GPOP line 12, Input line 1 to supply,A sends line low
Process disable, GPOP line 14, Input line 3 to supply,D sends line low
Process reverse, GPOP line 15, input line 4 to supply,H sends line low
Process logic read, A-D board

Lines 30-33 of GPOP are common and go to line 6 of the supply. A line is

then taken to give the A-D board a reference.



SETTING UP

Before starting a run, the VSM has to be set-up! Firstly the head should be
elevated off the table by inflating the tyre! The nickel crystal should then be put
on the rod in a field and set vibrating. The height of the rod should be adjusted
(by inflating the tyre) until the signal obtained is a maximum. The position of the
rod moving parallel to the field should be changed so as to maximise the signal
and finally position of the rod perpendicular to the field alterred to minimise the

induced voltage.

The gaussmeter should the be zeroed and junction of the thermocouple put in

liquid nitrogen if temperature is to be monitored.

The lockin should then be phased using the nickel, recording phase and mag-

netisation in a saturating field.

When switching the powersupply and minicam on, check the control board is

on manual in case it was switched off while under computer control.



VSMTEMP,VSMTMPD

This program measures the induced voltage in the pick-up coils and INcreas-
ing/DEcreasing temperature which is displayed on the fluke. The field should be
set and temperature controller connected to the fluke (however any temperature

sensor can be used as long as output is displayed on the fluke.)

Data collection commences when the program is started. The input conditions
required are the FINAL TEMPERATURE which is a real and the NUMBER of
REQUIRED DATA POINTS which is an integer.

It is important to remember that the temperature sensor is NOT attached to
the sample but a Be-Cu block at the bottom of the cryostat! Thus there will be a

phase lag between voltage and temperature.

The data is in MATLAB format, ready for use with the package. It is a matrix
with data starting on row 4 with format TEMPERATURE, 0, VOLTAGE, 0 and
the program TEMPLT.M has been written to display the data. /end



VSMTIME

This program measures the signal from channel one of the lockin after a given
time increment. It acn thus be used to see when the signal has stabilized per-
haps because an equilibrium temperature has been reached, show the decay of

magnetisation or stability of the pick-up coils.

The input data required is the time interval between points and the number
of required points. The maximum time between points is 65s and both inputs are

required as integers.

It is important to consider the time constant used with relation to the time

between points as only one measurement is made per time interval.

The data is saved in MATLAB format for use with the package. This is
a matrix with data starting at row 4, the format being TIME, 0, INDUCED
VOLTAGE, 0. The TIME files have extension .TIM and the matlab program
TIMPLT.M has been written to display the data. The real time display is more

to give a feel for the data and show if anything is wrong!



VSMRUN

This program is the complete control program allowing a full hysterisis curve
to be recorded. The program allows for three field regions where the density of
data points can be varied. These are input as real numbers with the maximum
field being 1T and the minimum field being greater then the remnant field. The
computer then requires input of the number of data points in each region which
in turn defines the fields to be set- these are input as integers. Finally it requires
the number of repeated measurements at each point and the delay between each

in terms of number of time constants- both again input as integers.

The system has numerous limitations which must be pointed out. Firstly,
between ENABLE, positive logic and ENABLE, negative logic there is a region
of approximately 200 gauss which is unobtainable. If this region is required it is
suggested that the smaller power supply is used together with VSMCONT.

The system is very slow because of the long settle time of the power supply.
A particular field is set by dividing the required field increment by 2 as the field
is approached. If another power supply were used, the program could be speeded
up by reducing the delay lenghts in procedure SET FIELD TO. Also the tesla per
second calibrations used in the procedure SET LINE TIME are for one oscillator
speed only, and if this is changed for computer control then the magnet should
be recallobrated using CALIBR.( This raises a line for some length of time as set
in the program and measures the field change because of this. A data point is
taken by pressing any key except P which stops the program.) The one danger is
that the program overshoots while setting a particular field, but if this occurs the

program is stopped after saving the data!

Above 0.1T the program sets the field to within 1 percent of the new field.
Below 0.1T the field is set to within 10 percent of the value and around 50 gauss
to within 10 gauss. These conditions can be alterred in the program and are
included in the procedure SET FIELD.

The enable light can’t always be set easily and as there isn’t a flag from this to



inform the computer then this must be set manually- resulting in the program not
been fully automated. The computer actually reverses the logic when the enable
light is OFF and prompts when ne. EWS hope to fit a the ENABLE light requires
switching ON. EWS intend to fit a flag to the panel soon after which the program
can be fully automated.

Finally, when the logic has been switched to positive the computer requires
integer input of the number of field regions required before completion (1-3)! Thus

when the program is complete, there is still current flowing through the magnet.

The output is in MATLAB format ready for use with the package. This is
a matrix with data starting on row 4 with format FIELD, ERROR ON FIELD,
VOLTAGE, ERROR on VOLTAGE. Matlab program VLTPLT.M also uses a resid-
ual run which it subtracts before displaying the data. MAGPLT.M uses a residual
but then displays magnetisation vs field.



VSMCONT

This program for the VSM allows manual field alterration before recording
both field and induced voltage. Any power supply can be used!

The input data required is the NUMBER of MEASUREMENTS to be made at
each field and the number of TIME CONSTANTS delay between each one. Both
should be input as integers! The computer reads the time constant at the start of
the program so this should not be changed during the run however the sensitivity

is read before channel 1 is read on each ocassion.

The field should be allowed to settle before data is taken, which commences

when key P is pressed and the program terminated when key Z is pressed.

The output file is in MATLAB format to be used with the package and has an
extension .VDT. This is a matrix with data beginning at row 4 and having format
FIELD, ERROR on FIELD, VOLTAGE, ERROR on VOLTAGE. The Matlab
program VLTPLT.M is written and requires a residual which is subtracted from
the raw data and displays voltage vs field. The program MAGPLT.M is similar
but displays magnetisation vs field.



ERROR MESSAGES

Within the control program there is an error procedure which can be called
upon at any point in the program depending on whether a particular condition has
been satisfied. Each error has a code, enabling the cause to be located and other

error conditions included in the program. teh errors are:

1. The max. field input was greater than 1T. To get round this the condition
can be alterred in the program if the power supply can produce such a field.

2. The minimum field step is less than 10 gauss. This can again be alterred

and is dependant on the power supply used.

3. The number of points in the complete curve exceeds 600, which is the size

of the data array. This condition can be alterred if the array is made bigger.
4. The field ranges have been input in the wrong order.

5. While trying to locate a particular field, the computer has exceeded the
value! The point separations may be too small or the program may be trying
to locate the field too precisely in which case the constant 'near enough’ can be

alterred in the procedure ’'set field to’.

6. The remnant field is greater than the first field region so the first region

must be lowered or magnet demagnetized.

It is intended that as the program is used and more errors become evident,

that these be incorparated within the program.
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program field_pulse_calibration;
{SN+}

uses vsmglob,psd5206, fluke, crt, graph, dos, icccom, minicam;

var

{Temporarily stores voltage from the gauss meter}

fid_vit :  double;

{Data stored in MATLAB format i.e. 4 column matrix}

data : arrayl[l..500,1..4] of real:;
ndps, i :  integer;

{The time unit the field up line is held low}]

time 1 word;

pp,testf :  char;

const

{Values sent to the minicam GPOP board to perform various tasks}

pane.!}

gpcp_address = '417; {GPQOP address in minicam crate)
high = *0’;{Sets all lines high}
field_up = ‘B’;{Lowers the field up linej
4isable = *D’;{Lowers line to disable the control
procadure get_data_point;
fFeccrds voltage frem the gJaussmeter ten times, then calculates -he average

and resords this and compound time the field_up line has been low}

van

M :integer;
fluke val :double;
hegin

fld_viv:=0.0;

for j:=1 to 10 do
begin

delay (1000);
fluke_val:=read_fluke;
fld_vit:=fld vit+fluke_val;
end;

fld_vlt:=fld vit/10;
data{i,1j:=fld_vlt;
data[i,2):=0.0;
datali,3]:=time*ndps:
data[i,4]:=0.0;
end;

procedure set_line(gpop_address, state :str5;time : word) ;

{procedure to set a particular line of the GPOP low for a given time and

the return all lines high}
var dumstr :  str25S;

ceg:.n

Jdumstr:=dal {gpop_address, state);
Jelay {time);

dumstr:=dal (gpop_address, high);
end;

procedure save_data(ndps integer);
{Stores data in a file in MATLAB format}

var

i : integer;

filnam : strd;

filnamext : strl2;

£ : text;

begin

WLiL@ N (f - rm o r o oo o e e e e m e s mmo— oo 'y
writeln(’ OATA STCRAGE’ )

WAL LN mmm oo o e e e e e e e s oo mmomo oo B

write{’'Name of file in which to store data (max 8 characters):’):
readin(filnam);

filnamext:=filnam+’ .vdtr’;

writeln(’3Storing data in ‘, fiinamext);

assign(f, filnamext);

rawoitetil;

dara ., 3j:=0.0;da%all, 4i:=0.%;

data 2, 11:=0.9;datai2,2):=0.0;data{2,31:=0.0;data’2,4]:=0.3;

data 3,ij:=0.%;data!?,2]:=0.0;4a%ai3,3]1:=2.0;dac2{3,4):=0.0;:
1 => ndps-1 d2

-ain(f, danaii, tiil, L, darafi, 2, f,danacl, Tl data i, 4

init_ieee;

ser_line(gpop_address, high,1000);

{Af-er setting all lines of GPCP high, the contrzl parel is switchel to
cemputer controll

writein(’Switzh to computer ccntrol’);

delay (2000)

rereat

inir _fluke;

delay (500):

writeln('Did flke display all zeroces (y/n)?’);readln(testf);
until testf="y’;

ndps:=0;i:=1;time:=5000; {Time unit which £field up_line held low (5s)}

repeat

get _data_point;
ndps:=ndps+l:
Li=i+1;

set_line(gpop_address, field_up,time);



delay(11C00);
pp: =readkey;
:ntil pp='p’:;{Input character ’'p’ terminates the program}

data 1,1 :=ndps:
save_datatndps);
end.
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(* Program to read 5206 lockin and fluke 8860A for YSM rurns ) procedure get_data_point;
(* with manual field alteration ) var
(* by C.I.Gregory June’9l *) n rinteger:
{* *) sumf, sumC1l :double;
(ot--qtn".~~tnc~~wqtt.tutttt--tttt.a-.nn-a.ta.-.t-n--nanw-an.:--a-«---.---..) sder:o: fluke,sder:or_Chl,

var_fluke,var_Chi ireal;
(For annotation see VSMRUN.PAS which includes automatic field control} tiuke,lhl rarray(i..4C) of real:
program vsmtemp; begin

if statusactive then begin

{SD+, L+} if autorange _set then not_ready
{SN+} else over_load;

sumf:=0;sumCl:=0;var_fluke:=0;var_Chl:=0;
for n:=1 to num_measurements do
begin
fluke[n]:=read_fluke*gauss_range_tes’a;

uses vsmglob,psd5206, fluke, crt, graph, dos:

var

statusactive, read_Chl (Chlin});

graphmodeset : bocolean; sumf:=sumf-fluke[n};

fld_vit : double; sumCl:=sumCi+Chl(n};

maq_vlt,scfact, delay{t_const*num_time_const});
end;

xscale,yscale,
sderror_mag_vlt,
sderror_fld vle,
sensitivity,
old_sensitivity,
Jauss_range_gauss,

fld_vit:=sumf{ num_measurements;
mag_vlt:=sumC./num_measurements;
for n:=1 to num_measzurements do
begin
var_fluke:=(fld vit-fluke n)*(f.3_vit-flukein})~var_Zluke:
var_Chl:=(mag_viz-Chl{n])*(mag_vic-Chi{ni}rvar_chi;

gauss_range_tesla : real;
data : array(1..200,1..4]) of real: end;
i, graphmode, bdeal, flke, zderrac_fld_vit:=sgr(var_fluke’ (num_measurements-l})/sqrirum_Teasurements)
ndps, xcen,p,m, £lagd : integer; sderrr_maq_ r=sqrtvar_CThl,/ (num_measurement3-1)} /s5qrinum_meai.rements);
scX, stY, ycen, xborderl, end
num_~ime_const, 2lse
num_measurements : integer;
char:
strd; @y
strl; 13
str8;
longint; procedure save_data(ndpts @ ointeger)
VY3
orocedure over_load; i.nc integer;
var year,m.nth, dayv, dJaywk :owWerd;
r rinteger; date_num : longint;
£ : otext:;
begin ¢£:lnam : str8;
r:=0; tm_str :ostr2;
repeat N filnamext : strl2;
delay (1000); sammass, refmass, vref, fieldup : real;
r:=r+l;
until (lockin_ok); begin
if r > 1 then delay(t_const*6); restcrecrtmode;
end; Writeln (! e-—--s e e et e et m e c— e ——— - *y;
writeln(’ DATA STORAGE');
procedure not_ready: WEiteln (/e m e e e e e e e e e — - Y
writeln;
begin write{’Mass of sample (3) = ’); readln(sammass);
repeat write{’Mass of ref (g3) = '); readln(refmass):
delay (1000); write ('Ref voltage (V) = '); readln(vref);

until lockin_ok; write (‘Field at which ref measured (T) = '); readln(fieldup);



write(’Name of file in which to store data ( max B crars):'); 27 yraphmode (graphmode) ;
readln(filnam) ; wpcrderl:=round(getmaxx/19);
getdate (year,month, day, daywk) ; socrderr:=round(getmaxx-xborderl);

str (year, yr_str); Jcrrderz:=round (getmaxy,/:03);

str(month,mn_str);if month<l0 then mn_str:='03’'+copy(mn_str,i,1); vEorderk:=round(getmaxy-ybordert);

str(day,dy_str); if day<10 then dy_ str:=’0’+copy (dy_str,1,1); yht:=yborderb-ybcrdert;

tm_str:=copylyr_str,3,2); yscale:=yht/ (2*yreadl):
date_str:=tm_str+mn_str+dy_str; xlngth:=xborderr-xborderl;

val (date_str,date_num,nc); if frac(xreadl)<-:.5 then xrmax:=int (xreadl)+0.5
writeln(’Date: ’,date_num); else xrmax:=int (xreadl)~1.0;
filnamext:=filnam+’ .vdt’; xscale:=xlngth/ (2"xrmax);

writeln(’Storing data in ’, filnamext): ycen:=ybordert+{yht div 2);

assign{f, filnamext); xcen:=xborderl+ (xlngth div 2);

rewrite (f); rectangle {(xborderl div 2,ybordert div 2, xborderr+(xborderl div 2}
data(l,2]:=0.0; data(l,3):=date_num; data(l,4}:=0.0; yborderb+ (ybordert div 2));
dataf2,3]:=0.0; data(2,4}:=0.0; data(3,2]:=0.0; data{3,4]:=0.0; movetetxcen, ybordert); lineto(xcen, yborderp):
data(2,1l]:=sammass; data(2,2):=refmass; movetc (xborderl, ycen); linetol{xborderr,yvcen);
data{3,1):=vref; data[3,3):=fieldup; ii:=roundlint (2*xrmax}):

for i:=] to ndps+3 do setcextstyle(smailfont,C,4);

begin settext justify(centertext,centertext);

writeln(f,data(i,1]:12,’ ’,data(i,2]:10,’ ’,data(i,3]:12,’ ’',datal{i, 4]:10); for i:=-1i to ii do

end; ktegin

close(f); moveto{round(i*0.5*xscale+xcen), ycen);
end; iineto(round(i*0.5*xscale+xcen), ycen-(ycen div 2%));

movetro{round(i*0.35%xscale+xcen), ycen+ (ycen div 23));

procedure in_grph; str(i*0.5%xsf:3:1,xlabkel);

var <lakel:=nlabeli;

graphdriver : integer; suttext (xlabel};

errorcode : integer; end;

moveto {xborderr- (xborderr div 15), ycen+(ycen div 1i0));

begin Suttext (xaxis)y;

if (not graphmodeset) then begin
graphmodeset:=true;

graphdriver:=detect;
initqgraph{graphdriver, graphmode, 'C:\tpS’);

reto(wcen-{xcen div 7)), ybordertv+(yht 3iv 10¥):
ststyletsma’.font, vertdir, 4y

~t (yari
=9

errorcode;:=graphresult; tegin
if errorcode <> grOK then Jer 1ata poLnty
tegin Move:ot:;und(xcen-fid_vl:‘xscaie),rcund(y:en-ysca;e'mag_wl:)r;
writeln('Graphics errcr : ‘,grapherrormsglerrorccae)}); and;
wrizeln(’..program aborted...’); if flagd=1 then
hale (1); begin
end; Moveto(round(xcen+dataf4,1l]*xscale), round(ycen-yscale*datai4,3)));
end end;
else setcolor(d):
setgraphmode (graphmode) ; end;
rectangle (0,0, getmaxX, getmaxY); vrocedure redraw;
setlinestyle(solidln, 0, normwidth);
restoreCRTMode; begin
end; set_scrn_plt (gauss_range_tesla*l.2, (old_sensitivity*1.2),1,’Field T',’Ma3zn (V)');
for p:=4 to (ndps+«2) do
procedure set_scrn_plt (xreadl,yreadl,xsf : real; xaxis,yaxis : strl0); begin
var lineto(round(xcen+dataip,l]*xscale), round{ycen-yscale*data(p,3}})):
xborderr, ybordert, yborderb, end;
xlngth, yht, i,ii : integer; end:
<rmax : real;
xlabel : stri0; procedure plt_point(i:integer);
begin kegin

in_grph; data(ndp=+3,1]:=£1d_vit;



data{ndps+3, 2] :=sderror_£1ld_vit;
data(ndps+3, 3] :=mag_vit;
datalndps+3, 4] :=sderror_mag_vlt;
lineto(round(xcen+fld vlt*xscale),round(ycen-yscale*mag_vlt)):
{writeln(data(y,1],’ ’,data{i,3]);}
end;

{START OF MAIN PROGRAM}
begin
graphmodeset :=false;
statusactive:=true;
if not statusactive then begin
fld vit:=-1.20;
mag_vlt:=le-2;

end;
if statusactive then
begin
WEiteln(’ =mmm e e e e e e )
writeln(’ PROGRAM TO OPERATE THE VSM (manual field aiteration})’}:
WEiteln (/== m e e e Yy

writeln(’ The program operates by reading the fluke and the’):
writeln(’lock-in after the field has been alterred manually’);
writeln(’When a data point is required i.e. the field is set,’):
writeln(’by pressing key "p" this is done by the computer.’}):
writeln('Key "z" completes the program.’):

writeln(’Insert the number of points required at eacrh field’):
writeln(’must be greater than 1%);

readln (num _measurements):

writeln(’Insert number of -ime constant delay between pcints:-’);
readln(num_time_const):

writeln(’Insert gauss meter range (gauss):’):
readln(gauss_range_gauss);
jauss_range_tesla:=gauss_range_gauss/led;

init_ieee;

repeat
inic_fluke;
delay(150);
writeln(’'Did the fluke display all zerces?{y/n)’);readin(testf);
until testf="y’;

end;

delay (100)

get_time_const (t_const});
delay (2000) ;
get_sensitivity(sensitivity);
old_sensitivity:=sensitivity;
delay (200);
flagd4:=0;
set_scrn_plt (gauss_range_tesla*l.2, (old_sensitivity*l.2),1, 'Field (T)’,'Magn
ndps:=0;
repeat
delay (500);
get_data_point;
ndps:=ndps+1;
get_sensitivity(sensitivity):
if (sensitivity > old_sensitivity) then
begin
cld_sensitivity:=sensitivity:
redraw;
end;
plt_point (ndps);

(V1"y;

sound(22¢); delay(130); nosvund:

repeat

delay (40);

op:=readkey;

until (pp='p’) or (pp='2’');
antil pp="2’;

datail, lj:=rdps:

repeat until keypressed;

if statusactive then save_data({ndps);
end.
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[ Program for automatic data collection using the Durham VSM ")
(* C.I.Gregory June ‘91 *)

G o

[GAAALE AL R R A A AR e R AL R AN R R

program vsmrun;

(SD+, L+}
{SN+}

uses vsmglob,minicam, ieee, icccom,psd5206, fluke, crt, graph, dos;

const

{constants which are sent to the GPOP to lower particular lines}
gpop_address = ’41’;({address of GPOP in minicam cra:e!
high = ‘0’;{sets all lines high}

field_up = 'b’;{sets field up line low}

field down = ra’;

disable = rd’;

reverse a 'h';

var

graphmodeset : boolean;

time . word;

date_str ¢ strd;

state ;. strS;

yr_str : strd;

mn_str,dy_str : str2;

~estf, pp :  strl;

{stores data in in array, max number of points set here (62J);
dara array(l..600,1..4] of reai;
fstores field regions}

field_region rarray(0..3) of real;

istor2s number of data prints in each section}

rumbter points rarray({l..2} of integer:;

istores field separation between points in each regizn}

field separation :array(l..3] of real:

(flag-used to check if prccedure remnant_field should be used

flagZ-show logic has reversed and to get out of do loop

flagl-show passed through zerc field without logic reversal ie -ve remnance
flag4-show procedure redraw is being used}

logic, i, flag,ndps,vy, z,

flag2,n, increase, flaq3d,

total_number points,a,

graphmode, bdeal, flke,

xcen, p,m, scX, scY, ycen,

xborderl, num_time_const,

num_measurements, flagd : ‘nteger;
t_const : longint;
current_field, field,

fld_vit : double;

next_field,mag_vlt, scfact,

xscale, yscale, sderror_mag_vlt,
sderror_fld_vlt, sensitivity,
old_sensitivity,

gauss_range_gauss,

gauss_range_tesla :  real;

proceaure set_lire(gpop_address,state : strd;time :werd):
itn sew a particular line of GPOP high for a given time before
sett.ngy all low}

YAY

dumst = 15tr255;

pegin

dumstr:=dal (gpop_address, state);
delayitime);

dumstr:=dal (gpop_address, high);
end:;

procedure logic_read;
{to read A-D, reading the returned string upto chr(l3) or (59)
which gives logic state}

var
dumstr, dummstr 1str25%;
x rreal;
code,p, g rinteger;
begin

dumstr:=adl(’1’);
p:=0;dummstr:='";
repeat
p:=p+l;
until (dumstr(pi!=chr(l3)) or {(dumstr{p|=chr(59)):
for g:=1 ¢z (p-i) do

cegin

dummse r s =dummst r+dumstrigi;

end;

val{dummstr, x,ccde)

if o o» 1000 then logic:=1 else lisgic:=-1;
end;

begin
old_izgic:=logic;
repeat
se~_line (gpop_address, reverse, 1000)
deilay (1300
logic_read;
until logic<>old_logic;
end;

procedure try_reverse_logicy
{to at-empt to reverse logic once onlyl

begin

set line(gpop_address, reverse, 1000);
dely (1500);

end;

procedure save_data(ndps : integer);
fto save data in MATLAB format in a file whose rame is input}
var i,nc¢ : integer;

year,month, day,daywk : word;



date_num : longint;

f i text;

filnam : str8;

tm_str : str2;

filnamext : strl2;

sammass, refmass, vref, fieldup : real;

begin
restorecrtmode;

WELIL@LN (f mmm e e e e e e e

writeln(’ DATA STORAGE');

Writ@lN (e e e e e e e e me e

writeln;

write(’'Mass of sample (g) = ’); readln(sammass);

write ('Mass of ref (g) = ’); readln(refmass):

write('Ref voltage (V) = '); zeadln(vref):;

write(’'Field at which ref measured (T) = ’); readin(fieldup):
write('Name of file in which to store data ( max 9 chars):’);
readln (filnam);

getdate (year,month, day, daywk) ;

str(year,yr_str);

str(month, mn_str);if month<l0 then mn_str:='J’+copy(mn_str,1,1};
str(day,dy_str);: if day<10 then dy_str:='0’+copytdy_str,l,1);
tm_str:scopyl(yr_str,3,2);

date_str:=tm_str+mn_str+dy_str;

val (date_str,date_num,nc);

writeln(’Date: ',date_num);

filnamext:=filnam+’ .vdt’;

Wwriteln(’Storing data in ', filnamext);

assiqn(f, filnamexzt);

rewrite(f);

‘{first three lines of matrix:[(1l,1] number pts,{2..] sample mass
'2,0] refererce mass, {3,1])iduced voltage from reference, {3,3] {..ld
t> oktain reference signali

datail,2):=0.7; datall,2]:=dare_num; datalil,4!:=0.3;
data{2,3):=0.0; data{2,4]):=0.93; dazal3,2}:=9.0; dazal2,4;:=5.0;
datai2, l]:=sammass; datal2,2!:=refmass;

datald, 1) :=vref:; data(3,3):=fieldup;

f>r i:=1 to ndps+3 do

isaves all data in matrix format

field, arror on field, voltage, error on voltage!}

begin

writeln(f,data(i,1):12,’ ’,data{i,2}:10,’ ’,datali,3!:12," ’,data(i,d}:

and;
close(£);
end;

procedure errar(error_number rinteger);
{to set all lines high ie OFF,save data taken then print error code
showing cause}

begin
set_line (gpop_address, high,1000):
if ndps > 1 then save_data(ndps) else restorecrtmode;

L0y

writeln (' The program has been alterred as an error has ocurred, error code’);

writeln{error_number):

writeln(’For information about this see the instruction manual’);
halt (0);

end;

crocedure remnant _fleldivar p iinteger);

{¢> read remnant field, zalcnlate number poirts misseddue to this
and :alculate next field ir region to be measured retuzning the
integer to be used in the do loop}

var .
smnt_field :double;
pts_missed :real;
begin

rmnt_field:=read_fluke*gauss_range_tesla;
if abs(rmot_field) > abs(fielu_region[l]) then error(6);
pts_missed:=abs(int (rmnt_field/field_separation(l]))+1:
if loagic/rmant Cield < 0.0 then

begin

pi=-l*roundipts_missed)+1:

end;

if logic/rmnt_field > 0.7 then
begin
p:=round(pts_missed);

i

current_field:=pts_missed*field_seraration{l]*(abs(rznt_£field,.

current_field:=(pts_missed-1)*fieii_separaticnil!*{ats(rmnt_Z.e.

end;
if p=2 then
begin
p:=1;
current_field:=3.0;
and;

next_field:=currert _field~lcqgic*field_separation(ij;
flag:=1
end;

procedure raise_l:.ne
iazes thne Tim

me(field_incr :real;fiileld :doukie);
:.red -o rarse a line to set a garticular

5]

acs{fiela)<=2.4 tner tesla seccnd:=8.2e-4;
£ abs{field)>=0.7 tren -esla_second:=4.Je-4;
if (abs(field)>d.4) ancd (abs(field)<0.7) then tesla_second:=5.5e-=;
cime:=round(ifield _incr tesla_secu:d) "1000);
if time»65000 then time:=65000;

if vime<! then zime:=1;
end;

procedure in_grph;

{Checks for and sets up graph mode}
var

graphdriver : integer;

errorcode ¢ integer;

begin
if (not graphmodeset) then begin
graphmodeset:=true;
graphdriver:=detect;
InitGraph(graphdriver, graphmode, ' C:\tpS5’);
errorcode:=graphresult:
if errorcode <> grCK then



tegin ertedy

writelrn (’Graphics error : ’,grapherrormsg(errorcode)); £1d_vir:=sumf,/num_measurements;

writein(’..program abcrted...’); mag_vit:=sumCl/num_measurements;

halt(1); for n:=1 to num_measurements do
end; begin
end var fluke:=(fld_vlt-fluke[n])*(fld_vlt-fluke nl)+var Zluke;
eise var_Chl:={(mag_vlt-Chl[n])*(mag_vlt-Thlin})+var_Chl;

setgraphmode (graphmode) ; end;
sderror_fld_vlt:=sqr(var_fluke/(num _measurements-1))/sgqr(num_measurements)

rectangle (0,0, getmaxX, getmaxY) ; sderror_maqg_vlt:=sqr(var_Chl/(num_meas:rements-i)) 'sgr(num_meas.rements);

setlinestyle(solidln, 0, normwidth) ; end
restoreCRTMode; else begin
end; £ld_vit:=fld_vie+0.1;
mag_vit:=0.9e~2*f1ld_vlt;
procedure over_load; end;
{if manually setting sensitivity, to check for overload and wait six ndps:=ndps+l;
time constants after it is cleared} end;
var
r :integer;

procedure set_scrn_plt(xreadl, yreadl,xsf : real. xaxis,yaxis : strl0);
isets up graph axis, dependant on sensitivity of lockin}

begin

r:=0; var xborderr, yberdert, yborderb,

repeat 2lngth,yhe,i,ii : integer:
delay (1000) ; xrmax : real;
c:=r+l; xlabel : strll;

until (lockin_ok) ;
if r > 1 then delay(t_cons-*6);
end;

procedure not_ready;
{if autoranging, waits until lockin is in state to transfer datal

begin

repeat
delay(1020) ;
unnii lockin_ok;
2nd;

procedure get_data_point:
ireads fluke and lockin when ready numercus times to get data

criert-t

and error on data} cccrderl«d dav )

var rectangle(xberdert div 2,vbordert div 2, xtorderc-i{xborderi div 2,
n :integer; vocrderz - {ykorders =iv 21}
sumf, sumC1l :double; movers(xcen, ypordert): linevo(xcen,yborderp):

sderror_fluke, sderror_Chl, move=o {xborderl, ycern): linetol{xborderr,yzen);

var_fluke,var_Chl ireal; iiseround(int (Z*xrmax));

fluke,Chl rarray(l..40]) of real:; settextstyle(smailferne,0,4);

settext justify (Centertext, centertext);

begin for 1:=-ii to ii do
if statusactive then begin begin
if autorange_set then not_ready moveto(round(i*0.5"xscale+xcen), ycen);
else over_load; lineto(round(i*0.5*%scale+xcen),ycen-(ycen div 25));
sumf:=0;sumCl:=0;var_fluke:=0;var_Chl:=0; moveto (round (i*0.5*xscale+xcen),ycen+ (ycen div 25));
for n:=1 to num measurements do str(i*0.5*xsf:3:1,xlabel}:
begin xlabel:=xlabel;
fluke(n]:=read_fluke*gauss_range_tesla:; outtext {xlaktel);
read_Chl(Chlln]); end;
sumf :=sumi+flukefn]; moveto (xborderr~ (xborderr div 135),ycen+(ycen div 10));
sumCl:=sumCl+Chl(n}; outtext (xaxis);

delay(t_const*num_time_const); moveto (xcer- (xcen div 10}, ybordert+(;ht div 10)):



settextstyle(smallfont,vertdir,4};

outtext (yaxis); procedure set_field tcoinew_field :real);

{if first time setup then gets data psint and moves to it on axis} fto set field to a aparticular value}

if flag4=0 then 73r

begin field_incr,tc_go,

get_data_point; near_enough :real;
Moveto (round{xcen+fld_vit*xscale), round(ycen-yscale*mag_vlt)); old_field :douc.e;
end;

{if using redraw moves to first data point as a reference} begin

if flag4=1 then Movetc(round(xcen+data(4,1l)*xscale), round(ycen-datal4,3}*yscale)); old_field:=read_fluke*gauss_range_tesla;
setcolor (4); field _incr:=abs(new_fileld-old_field)/10:
end; if field_incr > 0.005 then (to account for smallest step size-50gauss)

begin

procedure redraw;
{redraws data on a new axis as sensitivity of lockin increased}

ifirst moves to 60% of value}

£or i:=1 to 6 do
begin
field:=field+lcaic*increase*field_incr;
raise_line_time(fieid incr,field):;
if increase=1 then state:=field up else state:=field_down;
sez_line(gpop_address,state,time);

begin

flagd:=1;

set_scrn_plt (gauss_range_tesla*l.2, (cld_sensitivity*l.2),1,'Field T’,"Magn (V)');
for p:=4 to {(ndps+2) do

begin delay (5000);
lineto(round(xcen+data(p,1l]*xscale), round(ycen-yscale*data(p,3})}); field:=read_fiuke*gauss_range_tesla:
end; if (y=1) and (increase=-1) then check_reverse;
and; ard;
end;

procedure check_reverse;

{checks if attempt to reverse logic is successful ie enable light OFF,
then alters condition in program to get out of do loops and prompt
user ¢ make sur enable light is on}

:=read_fluke*gauss_range_tesla;

var © wo and moves to this fiel.i. Fereat until
sld_legic :integer; i rewfield)
pegin

logic_read;

oid_lzcgic:=logic:

try_reverse_logicy

legic_read;

if (old_logic <> logic) and (flag3=0) then
begin
z:=1;

y:=1;flag2:=1;i:=6;increase:=1;flag:=0;

Vofnate: >
_ etjpop_address, state, timej
delay(10002)y;

field:=read_flukerzaus
{y=1) and (increase

range_tesia;
1) then check_reverse;

5
=-

(inTrease=1) ang ((abs(field))>(abs(new_fie.3)*1.2)) then errcz(5);
repeat if (increase=-1) ardi ((absi(field)*l.2)<(abs(new_field))) and (acsifiel:
restorecrtmode; near_enough:=0.01*rew_field;{to within 1% of e fieidl

writeln(’Is the enable light on (y/n})?’);readinitestf);

1% absi{new_field) <= 0.1 <hen near_enough:=0.
delay (500}

new_field;

if apsinew_field)< 1.001 <hen near_encugh:=C.II1%1;
until testf='y’; until ((abs(new_field-Zield)<=abs(near_encugh))) 3r (flag2=1);
end; end;
if (old_logic <> logic) and (flag3=l) then
begin end;
increase:=1;flag:=0;
repeat

restorecrtmode;
writeln(’Is the enable light on (y/n)?’);readln(testf);
delay (500) ;

until testf='y’;:

rrocedure plt _point(ndps:integer);

stores result in array data then plots new point:
kegin
dataindps+3,1]:=£1d_vlc;

end; : data(ndps+3,2]:=sderrcr_fld vit;
writeln(’after logic check’); data(ndps+3, 3] :=mag_vlt;
redraw; data(ndps+3,4]:=sderror_mag_vlie;
end;

lineto(round(xcen+Ild vit~xscale),rcund(ycen-yscale*mag_vlt));



{writeln(darta!i,1l],’ ‘,datali,3});}
end;

{START OF THE MAIN PROGRAM}

begin

graphmodeset:=false;

statusactive:=true;

init_ieee;

{set minicam lines high before switching to computer controel}
set_line(gpop_address,high, 1000);

writeln(’Switch to computer control’):;

delay (5000) ;

repeat

init_fluke;

delay (500);

writeln(’Did fluke display all zeroes (y/n}?’);readln(testf);
until testf="y’;

delay (2000} ;

{check for positive logic}
logic_read:
(if logic<0 then reverse_logic:}

field region(0]:=0.0;
{input required informaticn}
writeln(’'Input first field region (Tesla):’):;readln(field_region{l}]);

writein{’'Input number of points in this region:’);readln(number_pointsii]);

writeln(’Input second field region:’);readln(field region{2));

writein(’Input number of points in this region:’);zeadln{number_points 2}

writein(’ Input maximum fie.d:*):;readln(field regionl!3}):
if field_region(3] > 1.0 then error(l};

rire n(’ Input number »f points in this region:’);readln(rumper _goints 2!}
izeln(’Insert number of points required at each field’);
rireln(’Must be greater than one!’};
gadln (num_measurements) ;

writeln{’ Insert the number of time constants delay between points:-'}:
readln(num_time_const);

writeln{’ Input gauss meter range (gauss}’):
readln (gauss_range_gauss});
gauss_range_tesla:=gauss_range_gauss/led;

{-hecking input data}
if (field_region(l]>=field_region({3]) or (field region[l]>=field_regicn(2])
or (field_region(2]>=field_region{3]) then error(4);

total_number_ points:=0;

for i:=1 to 3 do

begin
field_separation(i]:=(field_region[i]l-field_region{i-1])/number_pointsi}:
if field_separation(i] < 10e-4 then error(2);

total _number points:=total_number_ points+number points{i];

end;

if (total_number_points*4) > 600 then error(3);

for it:71 to ? de

begin
writeln(field_region{il):
writeln (number_pcints([il);
writelnifield separation{i]);
end;

ndps:=.;flag:=0;flagd4:=0;flag3:=0;flag2:=0;increase:=1;testf:="n’";

repeat

writeln(’Is the enable light on (y/n)?’);readln(testf);
delay (5001

until testf=’y’;

delay(120);

{read .ockin for required values!

get_time_const (t_zonst);

delayi:000);

get_sensitivity(sensitivity);

old_sensitivity:=sensitivity;

delay (200}

set_scrn_plt(gauss_range_tesia*l.2, (old_sensitivity*1.2),1,’Field

ndps:=;

Jet_da-a_point;
lz _pzint(ndes);

_rcints vl
rtren remnant_fleldiz);
required field}
ield_tcnext Iield);

3

‘gens data point}

data_point;

izheck if graph needs redrawing}

ge-_sensitivicy(sensitivicy):

if (sensitivity > old_sensitivity) then
begin
cld_sensitivity:=sensitivity;
redraw;
end;

{plots new point}

pit_point (ndps);

end;

end;

increase:=-1;

{second quadrant}

for y:=3 downto 1 do



cen

n:=

for zi=number_points(y} downto 1 do
pegin

1
0

~urrent_field:=field region{yl-n*field_separationiy];
next_field:=current_field-field_separation{y}:

set_field to(next_field):;
get_data_point;

get _sensitivity(sensitivity};

if (sensitivity > old_sensitivity) then

begin
old_sensitivity:=sensitivity;
redraw;
end;

pit_point (ndps}):

n:=n+i;

end;

end;

flag2:=0;testf:='n’;flag3:=1;

get_data_point;
plt_point (ndps);
{=hird quadrant}
fcr y:=1 2o 3 do
begin
f£5r z:=1 to number _pointslyj dc
begin

next_fieli:=-l*z*field_separation(y)-field_regicniy-1];
if z=numker points{y} then next_field:=-l<field_reqioniy.;

if flag=" -hen remnant _field{z):

set_fleld ro(next_field);

jer _data_zoing;
get_sensitivity(sensitivity);

f (sensizivity > old_sensitivity) then

begin
old_sensitivity:=sensitivity;
redraw;
end:
plt_point {ndps);
end;
end;

increase:=-1;flag3:=0;testf:='n’;

{fourth quadrant}
get_data_pcint:

for y:=3 downto 1 do

pegin

n:=0;

for z:=number_points(y] downto 1 do
begin

next_field:=-1"field region([y]+(n+l)*field_separation(y];

set field_tol{nexr_tield);

get _data_point;

get_sensitivity(sensitivity);

if (sensitivity > old_sensitivity) then
begin
old_sensitivity:=sensitivicy;
redraw;
end;

p.t_point (ndps);

n:=n+l;

end;

ernd;

flag3:=1:flag2:=0;

{repeat as much of first guadrant as required!
restsorecrtmode;

writeln (' How many field regions do you want the computer

readin(a);

redraw:

get_data_point;
plt_point (ndps)

cegin
next_field:=z*field separationiy]+
i

fileld
if z=number_pcinxs!yi then next fleld:=

1

€
_field_t=(ne
_dana_painsg

sancinivity (zens:

ol _point(ndps):
nd;

n

end:
datail, lj:=ndps;
{save data in file!

save_data (ndps);

end.

regi
leld_

In

2

-
3z

i
2

TO go positive?(l-3)');

A
Nyl
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(* *)

(* Program to record the induced voltage picked up in the coils as *)
(* a function of time. *)
(* C.I.Gregory 10/09/90

[ ")

[RAAARESEARAL R R AR AR R AR R R R AR R R R R R A R

program vsmtemp;

{SD+, L+}

{SN+}

uses vsmglob,psd5206, fluke, crt, graph;

var

graphmodeset : boclean:
statusactive : boolean;
tmp, temp : double;
time,time_interval rinteger;

sensitivity,
old_sensitivity,
final_temp, step_size,
mag_vlt, scfact,

xscale,yscale,tnr : real;

data : array{1..400,1..4]) of real:
i, graphmode, bdeal, flke,

ndps,p,nrps, flagd : integer;

scX, scY, ycen, xborderl : integer;

testf : char;

procedure get_data_point;
{Reads channel one of the lockin once only after a given time delayi
neqin
if ziatusactive then begin
read_Chl (mag_vlt);
end
else begin
mag_vlt:=6e-5;
end;
end;

procedure save_data(ndpts : integer);
{Saves data in a .TIM file of MATLAB format}
var i : integer:

f 1 text;

filnam : str8;

filnamext : strl2;

sammass, refmass, vref, fieldup : real;

begin

RestoreCrtMode;

TextColor (Cyan);

writeln(’=-ee-mreccccr e e e e e e e me e e e — e 'Y
writeln(’ DATA STORAGE’);

writeln('==----rem e et e em e e m e - N
writeln;

write(’'Mass of sample (g) = ’); readln(sammass);

write(’Mass of ref (g) = ’); readln(refmass);

write(’'Signal from reference (V) = ’); readln(vref);

write(’Field at which ref measured (T) = ’); readin(fieldup);

=d (K) ='); readin(tnr);
3 chars):’);

write (' Temperature at which reference was measu
write(’Name of file in which o store data ( ma
readln{filnam);

filnamext:=filram+’ .tim’;

writeln{’Storing data in ‘, filnamext);
assign(f, filnamext);

rewrize(f):

datall,21:=2.9; data(l,3j:=0.0; datafl,4}:=0.0;
data(2,3}:=0.0; data{2,4):=0.0; data{3,2):=tnr; daca{4,4!:=0.0;
data(2,1]:=sammass; data{Z,2]:=refmass:

data(3,1]):=vref; datal3,3]:=fieldup;

for i:=1 to ndps+3 do

begin

writeln(f,data[i,1}:12,’ ’,data(i,2}:10,’ ’,data[i,3]):12,’' *,datafi,4]:.0):

end;

clos:(f);
end;

procedure in_grph;
{Sets up graphics mode}

var
graphdriver : integer;
errcrcode : integer;
begin

if (nct graphmeodeset) then begin
qraphmodeset:=true;

graphdriver:=detect;
:nitgraph(graphdriver, graphmcde, ' C:\tp5');
errorccde:=3raphresulz;

if errsrzeode <> 3roK then

bagon

WL

Sraphics ezcrcr @ ', grapherrormsglerrzzcode) )
wrimein(’..pr>3gram aported. . .");
hal=f(.);

2nd;

and

wmode (graphmeae) ;

recrangle (0, 2, yermaxX, getmaxY),
rerijirestyle(solidln,d, normwiuthi;
restcreCRTMode;

end;

procedure set_scrn_pltixreadl, yreadl,xsf : real; xaxis,xunit : str3);
(Sets up graph axis dependant on lockin sernsitivizy for real time data
output}

var

xborderr, yybordert, yborderb,

xlngth, yht, i,ii : integer;

Mrmas : real;

xiabel : strl0;

begin
in_grph:
setgraphmode (graphmode) ;
vborderl:=round(getmaxx/10);
sborderr:=round(getmaxx-xborderl);
ybordert :=round(getmaxy/10):



vberderb:=rec.nd (getmaxy-ybordert); ond;

yht :=ybordert-ybordert; end;
yscale:=yht/yreadl;
xlngth:=xborderr-xborderl; : 3TART OF THE MAIN PROGRAM}
if frac(xreadl)<=0.5 then xrmax:=int (xreadl)+0.5S beain

else xrmax:=int (xreadl)+1.0; graghmodeset :=false;
xscale:=xlngth/xrmax; statusactive:=true;

if not statusactive then begin

ycen:=ybordert+ (yht div 2);
mag_vlt:=2e-4;

rectangle (xborderl div 2, ybordert div 2, xborderr+ (xborderl div 2),

yborderb+ (ybordert div 2})); end;
moveto (xborderl, ybordert); lineto(xborderl,yborderb): if statusactive then
moveto (xborderl, ycen) ; lineto(xborderr, ycen) : begin
ii:=round(int (xrmax)); ClrScr:
settextstyle(smallfont,0,4); Writ @ N (f mmm s m e e e e e )
settext justify(centertext, centertext); writeln{’ VSMTEMP:~ a PROGRAM TO RECORD M vs TIME I[N FIXED B'):
P S R B N e e e el "y

{for i:=1 to ii do
bexin
moveto (round(i*xscale+rborderl), ycen):;
lireto(round(i*xscale+xborderl),ycen-(ycen div 25));
moveto (round (i *xscale+xborderl), ycen+ (ycen div 25));
str{i*xsf:5:0,«xlabel):
xlabel:=xlabel+xunit;
outtext {xlabel);
end; |}
moveto (xborderr- (xborderr div 15),vcen+{ycen div 10});
outtext (xaxis);
if flagd=0 then
begin
get_data_point:
Movets (round (xborderl), round(ycen-yscale*mag_vlit));
end;
if flag4=1 tren
begin
Movetc tround (zborderl), round(ycen-yscaie*dataid, il ;
end;
sezzolor(d);
ena;

writeln(’ ’);

writelnt’ The program is used to measure magnetisation as a’);
writeln(’function of time.’});

writein(’The program operates by reading the lock-in after’);
Wwritein(’a given time deiay’}:

writeln(’Care should be taken with cheice of time constant’);
writeln(’and time interval between points’);

writeln('Insert time interval between pointsis:-');readln(time_interval):
writeln(’Insert number cf data points’);

wrizeln(’Maximum number of Jata points 2090%);

readln(nrps);

init_ieee;

flagd:=0;

time:=time_interval*nrps;

ger _sensitivitylsensitlvity):

nid_sensitivity:=sensitivity:

beqg:n

rzcedure plt_point(i:integer);
P pLh_s 9 delay(time_inzerval*1i30);

{5tores the recently taken data point in an array and plots this point

p ; Jet sensitivatyl(sensitivity);
* Y
cn “he screen; (s

(sensitlvity > old_sensitivity) then

begin begin
ir 21 icivity:= itiviey;
data(i,1l]:=time_interval*ndps; :;:;z§751 vity:=sensitivity
datafi,2}:=0.0; end; '

datafi, 3] :=mag_vlt;
data(i,4):=0.0;
lineto(round(time_interval*ndps*xscale+xborderl), round(ycen-yscale*mag_vliti):
{writeln(data(i,1),’ ’,data(i,31):1}
end;

ndps3:=ndps+1;

get _data_point;

plt_point (i);
end;

data(l, l]:=ndps;
save_data(ndps);
end.

procedure redraw;
{Redraws the output on a larger scale if the sensitivity of the lockin is
increased}

begin

set_scrn_plt {time, (old_sensitivity*2.5),500, 'Time’,’s’);

for p:=4 to {ndps+4) do

begin
lineto(round{(data(p,1]}*(p-3)) *xscale+xborderl), round(ycen-yscale*dataip, 3])):
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{* Program to read induced voltage on the lockin as a function of

{* temperature(Version 1.2 temperature decreasing)
(* by C.I.Gregory October ’90
(*

v
b
.
*
M

R A R e A A R AR

{For annotation see version 1.1}
program vsmtemp;

($SD+, L+}
{SN+}

uses vsmglob,psd5206, fluke, crt, graph;

var

graphmodeset : boolean;

statusactive : boolean:
tmp, temp : double;
temp_vlt,

sensitivity,

old_sensitivity,

final_temp, step_size,

mag_vlit, scfact,

xscale,yscale, tnr : real:;

data : array[l1..200,1..4] of real:
i, graphmode, bdeal, flke,
ndps, p, nrps, flag4 : integer;
scX, scY, ycen, xborderl : integer;
testf : char:
procedure get_data_point;
begin
if statusactive rhen begin
remp_vlt:=read_fluke;
read_Chl (mag_vlit):
end
else begin
temp_vlt:=temp_vlt-(0.05)*3.20;
mag_vlt:=6e-5/temp_vlit;
end;
end;
procedure save_data(ndpts : integer);
var
1 : integer:;
£ : text;
filnam : str8;
filnamext : strl2;
sammass, refmass, vref, fieldup : real;
begin
RestoreCrtMode;
TextColor (Cyan) ;
Wwriteln(/===---ccc-cc e e e Yy

writeln(’ DATA STORAGE’):

writeln(/-——==---e-ce e e e e m e e e e e e e s e c s e ")y

wioteln;

write('Mass of sample (3) = ’'): readln(sammass);

wr.te(’Mass of ref (g) = ’'); readin(refmass);

wiite(’Signal from reference (V) = '); readln(vref):

write ('Field at which ref measured (T) = ’}; readln(fieldup):

write(’ Temperature at whizh reference was measured (K) ='); readin(tnr);

write(‘Mame <f file in which <o store data ( max 3 chars):’):
readln(filnam);

filnamext:=filnam+’ .tem’:;

writeln(’Storing data in ', filnamext);

assign(f, filnamext);

rewrite(f):

datal{l,?1:~0.0; datall,3]:-0.0; datall,4}:=0.0;
data{2,3):=0.0; data(2,4):=0.0; datal3,2;:=tnr; data[4,4):=0.0;
dataf2,1):=sammass; data(2,2]:=refmass;

data([3,1):=vref; data(2,3]:=fieldup;

for i:=] to ndps+3 do

begin

writeln(f,datali,1}:12,’ ',data[i,2]:12,’ ’',dataii,3}:12," ’,daza[i,q4::.0);

end;
close(f):
end;

procedure in_grph;

var
Aaraphdriver : integer;
erroroode : integer;

begin

if (rot graphmodeset} =-hen begin
arazchmcdeset:=true;
agrachdriver:=detect;

tniz3raphigraphdriver, 3raphmede, "C:\tpi’)
arrirote: =jyraghresa

2rrarcade <» K tren

2ln(’Sraphics er
rireln(’..program a

o on
[N
"
ot
12
G

end

else
set3rar-mode (graphmode) ;
reczangle (0, {0, getmaxX, getmaxyY);
se%.inestyle (solidlin, 0, "ormwidch);
restoreCRTMode;

end;

procedure set_scrn_pit (xreadl, yreadl,xsf : real; xaxis,xunit : strl);
var
xborderr, ybordert, yborderb,

xlngth,vht,i,1iid : integer;
xrmax : real;
xlabel : strl0;
beqgin
in_grph:

setgraphmode (graphmode) ;
wborderl:=round(getmax»/10);



xborderr:=round(getmaxx-xborderl):
ybordert :=round(getmaxy/10);
yborderb:=round (getmaxy-ybordert);
yht :=yborderb-ybordert;
yscale:=yht/yreadl;
xlngtn:=xborderr-xborderl;
if frac(xreadl)<=0.5 then xrmax:=int (xreadl)+0.5
else xrmax:=int (xreadl)+1.0;
xscale:=xlngth/xrmax;
ycen:=ybordert+ (yht div 2);
rectangle(xborderl div 2,ybordert div 2,xborderr+(xborderl div 2),
yborderb+ (ybordert div 2)):
moveto (xborderl, ybordert); lineto(xborderl, yborderb);
moveto (xborderl, ycen) ; lineto (xborderr, ycen);
ii:eround(int (xrmax));
settextstyle(smallfont,0,4);
settext justify(centertext, centertext);
for i:=1 to ii do
begin
moveto (round (i*xscale+xborderl), ycen);
lineto(round(i*xscale+xborderl),ycen-{(ycen div 25));
moveto (round (i*xscale+xborderl), ycen+ (ycen div 25));
str{i*xsf:5:0,xlabel);
xlabel:=xlabel+xunit;
outtext (xlabel);
end;
moveto (xborderr- (vborderr div 15),ycen+(ycen div 10));
outtext (xaxis);
if flagd4=0 then
begin
jet _data_point;
Moveto (round(temp_vlt*xscale+xborderl), round(ycen-yscale*mag_vit}),
end;
if flag4=1 then
begin
Moveto (round(dara(4, i!*=scale+vborderl), souniiycen-ysca.a*datald, 2 1)
end;
setcolor(4);
flagd:=1;
end;

procedure plt _point (i:integer);
begin

dataf{i,1):=temp_vlt*100.0:

datafi,2):=0.0;

dataf{i, 3] :=mag_vit;

data(i,4]1:=0.0;

linetn (round{temp_vlt*xscale+xborderl), round(ycen-yscale*mag_vlt)):
end;

procedure redraw;

begin

set_scrn_plt (temp_vlit, {old_sensitivity+*2.5),100,’Temp’, 'K’);

for p:=4 to (ndps+4) do

begin

lineto(round( (data{p,1)/100) *xscale+xborderl), round(ycen-yscale*data(p,3]})}):
end;
end;

i ZTART OF MALIN PROGRAM}
begin
graphmodeset:=false;
statusactive:=true;
if not statusactive then begin
temp_vlt:=3.00;
mag_vlit:=2e-4;
end;
if statusactive then
begin
ClrScr;
writeln (! —cem=-omcs s e e e e e mssem e ')
writeln(’ VSMTEMP:- a PROGRAM TO RECORD M vs T IN FIXED B*):
writeln{’ —==e---eerom— e e m e e "y
writeln(’ *);
writeln{’ The program is used toc measure magnetisation as a’);
writein(’function of temperature.’);
writeln('External output of the temperature controller is’);
writeln(’inserted into the fluke and the program operates by’):
writeln(’reading in turn the fluke and lock-in after a given ’);
writeln(’temperature step.’):
writeln(’ N.B. It must be remembered that the temperature ‘}:
writeln(’displayed is not that of the sample but of the heat’);
writeln{’exchanger. The slower the cooling rate, the cioser’);
writeln(’'this temperature will be to that of the sample’):
writeln(’'temperature.’};
writeln(’Version 1.2:-decreasing temperature,start program’);
writeln(’at required temp’):
writeln(’Insert final temperature/K:-');readln{final_temp):
writeln(’ Insert number of data points’);
writein('Maximum number of data points 200%);
read. n(nrps);
iniz_ieee;
repeat
wnic_fluke;
dalay (109,
wrine('0id the fiuzke display all z=2:zzes’(y.n)'):readilnizesté:
unTil testf='y’;
nd:
la3d:=
emp:=read_fluke;
tmp:=nemp*100;
temp_vlt:=temp;
step_size:=abs(tmp-final_temp)/nrps;
get_sensitivity(sensitivity):
old _sensitivity:=sensitivity;
set_scrn_plti{temp_vlt, (cld_sensitivity*2.5),100, ' Temp’,’ K’);
get _data_point;
plt_point(4);
ndps:=1;

vt e D

for i:=5 to nrps do
begin
repeat
tmp:=read_fluke;
tmp:=tmp*100;
delay (100);
until ((abs(tmp-datali-1,1]))>=step_size) or (tmp<final_temp):;
get_sensitivity(sensitivity);
if (sensitivity > old_sensitivity) then
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(*
(*
(*
(*
(*

Program to record induced voltage as a function of temperature
which is displayed on the fluke (Version:1l.l increasing temp)

by C.I.Gregory October ‘90

")
*

)
")
")

RAASEA R AN R RN R R e e R N R R R RN A SR RS RN

program vsmtemp:

{SD+, L+}

{SN+}

uses vsmglob,psd5206, fluke,crt,graph;

var
graphmodeset boolean;
statusactive boolean;

tmp, temp double;
temp_vlt, {temporarily stores read temperature}
sensitivity,

old_sensitivity,

final_temp, step_size,

mag_vlit,scfact, ({temporarily stores induced voltage on lockin}
xscale, yscale, tnr : real;

data

: array{l..200,1..4) cf real;

iarray used to store all the data-array size set herel
i, graphmode, bdeal, flke,
ndps, p, nrps, flag4 : integer;

scX, scY, ycen, xborderl
restf

integer;
char;

procedure get _data_point;
ireads temperature displayed on the fluke and then induced voltage on
<hannel onel}

end;

procedure save_data(ndpts

~atusactive then begin

temp_vlt:=read_fluke:
read_Chl (mag_vlc);
end
else begin
temp_vlt:=temp_vlt=-{(0.05)*2.00;
mag_vlit:=6e-5/temp_vit:
end;

integer);

{Stores data in an input file name in MATLAB format}

var

begin

integer;
i text;

filnam : str8;
filnamext : strl2;
sammass, refmass, vref, fieldup : real;

RestoreCrtMode;
TextColor{Cyan);

wrizeln(’

wWrite ! LATA GUURAGE! b 5

- B B e it

wrizeln;

write{’Mass of sample (g) = '), readln(sammass);
write(’Mass of ref (g) = ’); readln{(refmass);
writa(’Signal from reference (V) = ’); readln{vref);

write(’'Fileld at which ref measured (T) = ’); readin(fieldup);
readln(tnz);
write('Name of file in which to store data ( max 8 chars):’);

write{’ Temperature at which reference was measurad (K) =');

readln(filnam);

filnamext:=filnam+’ .tem’;

writeln(’/Storing data in ’, filnamext):
assign(f, filnamext);

rewrize(f);

data(i,2]:=0.0; data(l,3]:=0.0; data{l,4):=0.0;

data{2,3]:=0.0; data{2,4):=0.0; data(3,2):=tnr; 4datal4,4]:=0.0;

data‘l, l]:=sammass; data(2,2]:=refmass;
data(3,1l:=vref; datal2,3]:=tieldup:
for i:=l to ndps+3 do

begin

writein(f, data{i,1}:12,’ ’,data’i,2):10,’ ',dazaii,2]:12,’

end;
close (f);
end;

procedure irn_grph;
f{Checks for and sets up Jraphs model}
var

graphdriver integer;
integer;
tegin
1I (nct graphmodeset) znen begin
Jraprmodeses: thrue;

Jraghdriver:=dezect;

wrizein(’3raphics error
writein(’..prozram asorted...’});
halz (1)s

end;

end

else

setgraphmode (graghmode) ;

’,Jrapherrormsgl{errcrcode));

rectangle (0, 0,getmaxX, getmaxY);
setlinestyle(solidlin, 0, normwidth) ;
restoreCRTMode;

end;

procedure set_scrn_plt{xreadl,yreadl,xsf : real; xaxis,xunit
(Sets up graph axis for screen output}

var
xborderr, ybordert, yborderb,
xlngth,yht,i,ii integer;
xrmax ¢ real;
xlabel : strl0;

’,data(i,4):19)

strd);

H



beqgin begin

in_grph; set_scrn_pltitemp_vlt, (old_sensitivity*2.5),100, Temp’, "K'} ;
setgraphmode (graphmode) ; for p:=4 to (ndps+4) do
xborderl:=round (getmaxx/10); begin
xborderr:=round (getmaxx-xborderl) ; lineto (round( (data{p, 1!/100) *xscale+xborderl), round(ycen-yscale*datalp,3)1);
ybordert :sround (getmaxy/10) ; end;
yborderb:=round (getmaxy~ybordert) ; end;
yht :=yborderb-ybordert;
/scale:=yht/yreadl; {START OF THE MAIN PROGRAM}
xlngth:=xborderr-xborderl; begin
if frac(xreadl)<=(0.5 then xrmax:=int (xreadl)}+0.5 graphmodeset:=false;
else xrmax:=int (xreadl)+1.0; statusactive:=true;
xscale:=xlngth/xrmax; if not statusactive then begin
ycen:=ybordert+(yht div 2); temp_vlt:=3.00;
rectangle (xborderl div 2, ybordert div 2, xborderr+(xborderl div 2), mag_vlt:=2e-4;
yborderb+ (ybordert div 2)); end;
moveto (xborderl, ybordert): linetc (xborderl, yborderb): if statusactive then
meveto (xborderl, ycen) lineto (xborderr, ycen): begin
ii:=round(int (xrmax)); ClrSer:
settextstyle(smallfont,0,4): Writeln (/m=—— s c et "y
settext justify(centertext,centertext); writeln{’ VSMTEMP:- a PROGRAM TO RECORD M vs T IN FIXED B’});
for i:=1 to ii do Writeln(/ —mc e o m o e e emem y:
begin writeln(’ ’);
moveto (round (i*xscale+xborderl), ycen); writeln(’ The program is used to measure magnetisation az a’};
lineto({round(i*xscale+xborderl), ycen-(ycen div 25)}; writaln(’ function of temperizure.’);
moveto (round(i*xscale+xborderl), ycen+(ycen div 25)); writeln(’External output of ~he temperature cont:zciler is’);
strii*xsf£:5:0,xlabel); writein(’incerted intc the fluke and the program cperates by’);
xlabel:=xlabel+xunit; writelni’reading in tuzn the fluke and lock-in after a given ‘):
ocuttext (xlabel); writein(’rarperature step.’);
end; wrirein(’ N.2. It must Ze remembered that the zemgerat:rce ')
movetn (xborderr- (xborderr div 15),ycen+{ycen div 10)): writeint(’disclayed 1s not than of the sample but the neat’);

of
suttext (kaxis); ireln('exchanger. The slower the cocling rate, -he c.oser’);
¢ flag4=0 then te o =hat 27 the sa

ein{’'th.s ~emper .7:

begin
jet_data_point; prozram’);
Movet s ({round(temp_vlt*xscale+xborderl}), round(ycern-yscale may_viz)1;
and; ature /X:-');readintinal _12mp) s
1f flagd4=1 then ~a peints’; -
begin daza points 2007}
Moveto (- "und(data(4, 1] *xscale+xborderl), roundi  ten-yscale*data{s,3])): readln(nrps);
end; iniz_ieee;
setcolor(4); repeat
flag4:=1; init_fluke;
end; delay (160
write(‘C:d the fluke display all zeroes?{y/ni’);readln(testf);
procedure plt_point (i:integer); tntil testis'y’;
{Stores the data in an array and then plots the point on the screen} end;
flag4:=0;
begin temp:=read fluke;
data(i,l]:=temp_vit*100.0; tmp:=temp'f00;
datafi,2]:=0.0; temp_wvlt:=final_temp/130;
data(i,3]:=mag_vlt; step_size:=abs(tmp-final_temp)/nrps;
data(i,4]:=0.0; get_sensitivity(sensitivity);
lineto(round(temp_vlt*xscale+xborderl), round(ycen-yscale*mag_vlt})): old sensitivity:=sensitivity:
{writeln(datali,1l},’ ‘,data(i,3]):} set:sc:n_plt(temp_vlt.(sensitivity'Z‘S).100,'Temp',' XK'y
end; get_data_point;
plt_point{4);
procedure redraw; ndps:=1;

{Redraws the graph on the screen if the lockin sensitivity is increased}



for i:=% to nrps+3 do
beg:n
repeat
tmp:=read_fluke;
“mp:=tmp*100;
delay (100);
urtil ((abs({tmp-datali-1,1]))>=step_size) or
{Delay until required temperature is reached,
ge-_sensitivity(sensitivity);
i1f (sensitivity > old_sensitivity) then
begin
old_sensitivity:=sensitivity;
redraw;
end;
get_data_point;
p-t_point(i);
néops:=ndps+l;

end:

data'!l,.):=ndps:

save_data(ndps);
1 end.

(tmp>final_zemp):
fluke read every (.1s}



R R R R AR RS cioselfy;

[ ") end;
(* Program to calibrate a Au-Fe thermocouple against a Rh-Fe *)
{* resistor. Reads voltage on a keithley 175 and four probe ‘) teqin
{* resistance on a keithley 1937 *) writeln(’A program used to calibrate a AuFe therocouple by reading the’):
(* C.I.Gregory January ’'92 «) writeln({’thermocouple voltage and RhFe resistance cn the Keithley mezers.’):
(* *) writeln(’W#hen a data point is required, press key "p" and key "z"');
R R R R R R T PR RPN writeln(’terminates the program.’);
ndpts:=0;
program calibrate; init_ieee;
init_k175;:
{SD+, L+} init_k197;
{SN+)
repeat

get_data_point;
ndpts:=ndpts+l;
record_data_point (ndpts);

uses dos,crt,keithley, vsmglob, psd5206;

var
data : array{l1..%39,1..4] of real; writeln(’Data point number’, ndpts);
thermo_voltage,RhFe resistance . real; writeln{(’'Rh-Fe resistance’,RhFe_resistance);
ndpts - - : integer: writeln(’ Thermocouple volitage’,thermec_voltage):
PP . char: writeln;
procedure get_data point: repeat

e e delay (40);

{Reads both keithleys in turn to record a data point}
pp:=readkey;

var
range, rangel sstr3; until {pp=‘p’) or {(pp="2'}):
begin antil pp="z’';

thermo_voltage:=k175_com(kl75initstr,’'R’, range);
RhFe_resistance:=kl197_com(kl97initstr,’R’, rangel);
end;

dara:il, lj:=ndpts;
save_data(ndpts):
and.

procedure record_data_point(i: integer);

begin

dara(ndpts+l, l]:=thermo_voltage;
dara(ndpts+l, 2| :=RhFe_resistance:

end;

procedure save_data(ndpts : integer):;
{saves data in a file whose name is input. Data stored in 2D matrix}
var

i : integer;

filnam :1strf;

filnamext:strl2;

£ itext;

begin

writeln(’Data stored in a two dimensional array :thermo_voltage , RhFe resistance’):
writeln(’Input name of file in which to store data (max 8 characters):’);
readln{filnam);
filnamext:=filnam+’ .VDT’;
writeln(’Storing data in ’, filnamext);
assign(f, filnamext);
rewrite(f);
datafl,2):=0.0;
for i:=2 to ndpts+l do
begin
writeln(f,data(i,1):12,’ ’',data(i,2]:12):
end;



R R R N AR RN

(* ")
(* program for automatic data collection using the Durham VSM *)
(* by C.I.Gregory June ’'91 *)
(* ammended to use kepco as a power supply Jan ' 92 *)

(* )

(N R N R AR R AN R N R R AN A AR R AR RN AR AR RN TR AR N AT NI NN b AT

{The kepco is a bipolar power supply which can provide a field of +/- 0.5T
It is controlled by a DAC minicam board with an output of 0-4095, 2048
giving zero field. Because the fields obtained are small, the field steps
are fixed and dependant on the number of data points required. The step can
be as low as 2gauss}

program vsmkep;

{SD+,L+}
{SN+}

uses vsmglob,minicam, ieee, icccom,psd5206, fluke, crt, graph, dos;

const
dac_address = '531’;

var

graphmodeset : boolean;
rime :  word:;
date_str : strB;
state,b : ostrS5;

yr_str :  strd;
mn_str,dy str : str2;
cestf,pp : strl;

data rarray(l..600,1..4] of real;
iflag4-show procedure redraw is being usedi
i, ndps,

total_number_points,a,
jraphmode, bdeal, flke,
xcen, p,m, scX, sc¥Y, ycen,
<borderl, num_time_const,
num_measurements,

flagd,z,r,0,q9 : integer;
t_const : longint;
fid_vlit : double;

next _field,mag_vlt,scfact,
xscale,yscale, sderror_mag_vlt,
sderror_fld_vlt, sensitivity,

old sensitivity,

gauss_range_gauss,

gauss_range_tesla : real;

procedure save_data(ndps : integer);
{to save data}
var i,nc : integer;
year,month, day,daywk : word;
date_num : longint;
£ : text;
filnam : str8;
tm_str :ostr2;

filnamext : stril;
sammass, refmass, vref, fieldup : real;

begin

restorecrrmode;

R S - e i ittt bttt "y:
writeln(’ DATA STORAGE’) :

P D N R R e R A e T T ‘)

writeln;

write(’Mass of sample (g) = ‘); readln(sammass);
write{’Mass of ref (g) = "); readln(refmass);
write ('Ref voltage (V) = ’); readln(vref):

write(’Field at which ref measured (T)

=');

write(’Name of file in which to store data

readin{filnam);
Jetdate (year,month, day, daywk} ;
striyear,yr_str);

str(month,mn_str);if mcnth<l0 then mn_str:='0’+copy(mn_str,

readln(fieldup);

( max 8 chars):");

1
-

1):

str{day,dy_str); if day<10 then dy_str:='0’+copy{dy_str,1l,1);

tm_str:=copy(yr_str,3,2);
date_str:=tm_str+mn_str+dy_str;
val {(date_str,date_num,nc);
writeln(’Date: ‘,date_num);
filnamext:=filnam+' .vde’;
writeln(’3toring data in
assign(f, filnamext);
rewrite(f);

'

+first three lines of matrix:(l,!]| number pts,(2,.
{2,Z] reference mass, [3,1]iduced voltage from reference, (3,3}

obtain reference signall

,filnamext);

data{l, 2}:=0.0; datal,l}j:=date_num; datall,q):=C.0;

datafZ2,3):=0.9; data:2,4):=0.0; dara(3,2]:=0.0;
tataf(2, !} :=sammass; datal2,2):=retmass;

darafl, l}j:=vref; data 3,3):=fieldups
v 4 3 de

cegin
writeln(f,davaii, i’ :22,’ *,datali,21:190,
and;
ciose(f);
end:
procedure error({error_number :integer);

datai3,4]:=9.

sample mass

field

0.
vy

f,3azafi, 4l i)

{to set all iines high e OFF,save data zaken then print error coce

showing cause?

begin

if ndps > 1 then save_data(ndps) else restorecrtmode;
writeln (’The program has been alterred as an error has ccurred, error code’);

writeln({error_number);

writeln('For information about this see the instruction manual’);

halt (0);
end;

procedure in_grph;
var

graphdriver : integer:
errorcode : integer;



begin
if (not graphmodeset) then begin
graphmodeset :=true;
graphdriver:=detect;
InictGraph(graphdriver, graphmode,’C:\tp5’):
errorcode:=qraphresult;
if errorcode <> grOK then
begin
writeln(’Graphics error : ’',grapherrormsg(errorcode));
writeln(’..program aborted...’};
halt(l);
end;
end
else
set graphmode {graphmode) ;

rectanqgle (0,0, getmaxX, getmaxy¥) ;
setiinestyle(solidln, 0, normwidth);
restoreCRTMode;

end;

procedure over_load;

(if manually setting sensitivity check for overload and wait six
time constants after it is cleared)
var r rinteger;

beqgin

r:=C;

repeat

delay (1000);

r:=r+l;

until {(lockin_ok);

if £ > I then delay(t_const*6);
end;

procedure not_ready;

{1 autoranginy, waits until I3ckin is in state to -ransfer data)
oeg.n

rapeat

delay (1000) ;

unt il lockin_ok:

end;

procedure get_data_point;
{reads fluke and lockin when ready numerous times t> get data
and error on data}

var

n rinteger;

sumf, sumC1l :double;
sderror_fluke, sderror_Chl,

var_fluke,var_Chl ireal;

fluke,Chl :array(l..40) of real;
begin

if statusactive then begin
if autorange set then not_ready
else over_load;
sumf:=0;sumCl:=0;var_fluke:=0;var_Chl:=0;
for n:=1 to num_measurements do
begin
fluke([n]:=read_fluke*gauss_range_tesla;
read_Chl (Chl{n]);

sesumf+fluke(n);
sumCi:=sumCl+Chl([n];
delay(t_const*num_time_const);
end;
flid_vlt:=sumf/num_measurements;
mag_vit:=sumCl/num_measurements;
for n:=1 to num measurements do
begin
var_fluke:=(fld_vit-flukelnj)«(flid v
var_Chl:=(mag_vlt-Chl(nj}*(mag_vlz-Chl[nj)+var _Chl;
end;

sderror_fld_vlt:=sqr(var_fluke/ (num_measurements-1))/sqr(num_measurements)
sderror_mag_vlt:=sqr{var_Chl/(num_measurements-1))/sqgr (num_meas.:rements);

end
else begin
fld_vit:=fld_vlt+0.1;
mag_vit:=0.9%e-2*f1l3_vit;
end;
ndps:=ndes+1;
end;

procedure set_scrn_plt (xreadl, yreadl,xsf : real; xaxis,yaxis : stri);

{sets up graph axis, dependant on sensitivity of lockin}

var xborderr, ybordert, yborderb,
xlngth,yht, i, il : integer;
Krmax : real;
«.avel : ostrlls
begin
in_zren;

sergraphmode (graphmode)

<berderl:=roundigetmaxx. 10}

zberderr:=round(getmaxx-=bcrderiy;

vbordert:sround(getmaxy/12);

vbcraerb:=round(getmaxy-ybordert);

yht:=ybordert-ybordert;

yszale:r=yho/ (I*yreadl);

i=xbcrderr-xporder:;

ac(xreadl)<=0.5 then xrmax:=int{(xreadi)«J.3
else xrmax:=int (xresai)+i1.2;

«scale:=xlngth/(2*xrmax);
vcen:=ybordert - iyht div 2);
xcen:=xborderl«(xlngth div 2);
rectangle (xborderl div 2,ybordert div 2,xborderr+(xborderl div 2),
yborderc+ (yborder:t div 2));
movet¢ (xcen, ybordert): lineto(xcen, yborderb):
moveto (xborderl, ycen); linetc(xborderr,ycen):
ii:=round(int (2*xrmax)};
settextstyle(smallfont,0,4);
settext justify(centertext,centertext);
for i:=-ii to ii do
begin
moveto (round (1i*0.5%xscale+xcen), ycen);
lineto(round(i*0.5*xscale+xcen),ycen-(ycen div 25));
moveto (round(i*0.5*xscale+xcen), ycen+{ycen div 25));
str(i*0.5%*xsf:3:1,xlabel);
x)label:=xlabel:
cuttext (xlabel);
end;
moveto (rborderr-(xborderr div 15),ycen+(ycen div 10});

vit-fiukelin])+var_Iluke;
1
hl



cuttext (xaxis); SRt tentfe’ot;

moveto(xcen- (xcen div 10),ybordert+(yht div 10)): delay (2000);

settextstyle(smallfont,vertdir,4):

cuttext {yaxis); writeln(’Insert the total number of data points required:-');
{if first time setup then gets data point and mcves to it on axis} readin(tctal number points);

if flag4=0 then - -

begin writeln(’Insert number of points required at each field’);
get_data_point; writeln{’Must be greater than one!’);
Moveto{round(xcen+fld_vlt*xscale), round{ycen-yscale*mag_vlz)); readln (num measurements);

end; h

{if using redraw moves to first data point as a referencei writeln(’Insert the number of time constants delay between points:-'};
if flag4=1 then Moveto(round(xcen+data(4,1]*xscale}, round{ycen-data(4,3]*yscale)); readln (num time const):;

setcolor{4); N -
end; writeln(’Input gauss meter range (gauss)'):

readln(gauss_range_gauss);

procedure redraw; gaurs_range_tesla:=gauss_range_gauss/led;

{redraws data on a new axis as sensitivity of lockin increased}
begin

flagd:=1; if (votal_number_points) > 670 then error(3);

set_scrn_plt (gauss_range_tesla*l.2, (old_sensitivity*1.2),1,’Field T’,"Magn (V)'}); -

for p:=4 to (ndps+2) do r:=trunc(total number_points/4);

begin o:=trunc((2046*4)/total _number_points):

linetc (round (xcen+data(p, 1) *xscale), round(ycen-yscale*data{p, 3])); q:=2047;

end; writeln(r,o,q):
and; deiay(S0C0);

procedure plt _point (ndps:integer);

{stores result in array data then plots new point} naps:=0;<iagd:=0;teszf:="'n";
begin
data[ndps+3, 1) :=£f1d_vlt; delay (1903
data(ndps+3,2] :=sderror_fld_vit; fread laockin for required values:
data(ndps+3, 3] :=mag_vlt; jet_time_zonst (t_usonst)
data({ndps+3,4] :=sderror_mag_vlt; delay(2000);

lineto{round(xcen+fld_vlr+*xscale), round(ycen-yscale*mag_viz)); Jen_sensitiv
lwriteln(datali, 1), ’,dataf{i,3));}

2nd/

a*l.l,nla zensicia: Ly, L, Faeld iyt M ¥agn (VY s
procedure dac_set(nstps : strS5):
{procedure to raise the outout of the dac by a fixed step afser 39t _data_point;
each data point} p.i_peoint (ndpst;
var f2r z:=] to r do

dumstr :  str255; begin
delay (20009);
{gets data poi--}

begin
dumstr:=dal (dac_address, nstps); get _data_point;
end; {check 1if graph needs redrawing}

get_sensitivity(sensitivity);
1f (sensitivity > old_sensitivity) then

{start of main program} begin
begin old_sensitivity:=sensitivity;
graphmodeset :=false; redraw;

end;

statusactive:=true;
init_ieee; {plots new point}
plt_point (ndps);

ndps:=ndps+1:

repeat q:=q+o;
init_fluke; stz(q,b);
delay (500} ; dac_set (b);

writeln(’Did fluke display all zeroes (y/n)?’);readln(testf); end;



q:=4095;
for z:=r downto -r do

begin

delay (20000}

get_data_point;

get_sensitivity(sensitivity):

if (sensitivity > old_sensitivity) then
kegin
cid_sensitivity:w=sensitivity;
redraw;
ernd;

plt_pcint (ndps):

q:=q-c;

strig,2);

dac_set(b);

erd;

q:=0;

for z:=_ to (r+15 do

a_pcint;

sitivity(sensiziviuy);

»¥ tgensitivity » cld_sensitivity) ther
zegir
cld_sensitivity:=sensitivity;
redraw;
end:

plt_goint (ndps);

q:=g-3;

striz,b):

dac_set (b):

end;

data(l,1; :=ndps;
{save data in file}
save_data (ndps);

end.



¥Program writzen in MATLAB using the MATLAE mathemarics passage
$ro display the data taken using the VEM.
¥Program VLTPLT.M used to subtract a residual signal from the data
%and display the induced voltage as a function of field.
$For annotation see MAGPLT.M

fa:

dir

danfil=input (‘Data file (no ext):’):
resiil=input ('Residual file (") :’);
ext=’ ,vdt';

df=[datfil,ext];

rf={resfil,ext];

eval([’load ’,df]);

eval({’load ’,rf)):

Ve

eval ({’data=’,datfil,’;’]);
eval({’'resid=’, resfil,’;’]);
ndps=data(l,1);

nrps=tresid(l, 1);

xd=data (4 :ndps, 1},

yd=data(4:ndps, 3);

xr=resid(4:nrps, 1);

yr=resii(4:nrps, 3);

p=polyfitixr,yr,1):

rfit=polyval (p, xd) ;

ydc=yd-rfit;

gr=polyfit (xd, ydcc, 1) ;

yE=polyval (gr, xd) ;
piot{xd,yde, g’ ,xd, cfit,'w’ ,xd,yd, '0’)
grid

xlabel ('Field - Tesla’)
ylabel(’Signai-v')

DrOACAm o Wwrltten in

yof -~ ime.

MATLABR whl:h uses

LY
ddisplay data saken on thz YSM.
YThes program is TIMELT.M which disglays

L annotatizn see MAGPLT.M

La:
dir

datfil=input(’'Data file

ext='.tim’;
Af=[datfi.,ext;;
eval ([’ load ',df]);
fe:

eval ([’data=',dacfil,”’
ndps=data(l, 1)

t ime=data(4:ndps, 1)
vits=data(4:ndps, 3);
plotitime, vits, "3’
grid

»label('Time-s’
viabeli’Signal-V*)

.

(no ext):’);

ire

[




¥A preogram written in MATLAB which uses the MATLAB matns pac<adye rOo
%display the data obtained on the VSM.

%This program is TEMPLT.M which displays the induced voltage =n the
%VSM as a function of temperature.

$For annotation see MAGPLT.M

ta:

dir

datfil=input ('Data file (no ext):’);:

ext=' .zem’;

df=(datfii,ext];

eval ([’load ’,df]);

lc:

oval ({"data=’, dat £iLl, ;" 1)

ndps=data(l,l);

cemp=data(4:ndps, 1)

slts=data(4:ndps, 3);

plot (temp,vlts,’g’)

grid

xlabel (’ Temperature-K’)

ylabei(’Signal-V’)

Amranameown e e MATLAL Lo en MATLAR oL 4 e e b ay
i-re .3 sEtainel 2n the VEM,

1This .5 MAGPLT.M which subtracts a residua:i signal data ard
i-oryer<s this £0 a measure of magnetisaticn us:in <f

¥ e. Talibration.

ta:¥lani read in on flepey disc.
dir

datfil=2nput ('Data file (ne
resfii=inpgut (‘Residual file
ext="_v4t’;
df=(dar7il,ext]);
rf=(resiil,ext];

eval ([ load 7, dt

)i’} :%Two data sets are inpuz-the da
:’);%and a residual £:i1

eval (1" load ", rt});

e

eval ([’data=’,datfil, ;"1
eval(|’resid=",resfil, ;" }):
%Extracts required information from the top of the datza matrix.
ndps=dazatl, 1) ;¥%number 5f datra points in the file.

nrps=resid(l, 1);%number ~f data peoints in the residual file.
sammass=data{2,1);%mass cf sample from the data fiie,
refmass=data(2,2);%mass cof reference used from -he data file.
vref=43za(3, 1) ;%induced voltage from the Ni sample.
temp=data(3,2);%temperature a= which this was rezcorded.
~d=1-6.%4e-6"temp . .5-..35e-23*2emp"2.5;%temperatire dependance 57
magnetisanion of Nickel.

i=%3, rd; ¥Magnetisation of Ni extraptla

nitzeimass/ (vr2f 700 sammasc) s dcon

ndps, 1} ; 3Appited magreris flel 3.
d4a%a(d:ndps, 31 ;¥induced sample voltage.
=data(4:ndps, sy %3tandard errzr on induced
“a{dinrcp ;%apr.ied magretic

2(d:nres, el residual

Mitbel ("Tield - Tesla’

ta

“he




units :osre8;

iany declarations following originated in "MINICAM.DEF"} end;
{type declarations for minicam interface functions} iactype = record
ddcname : strlé;
unit minicam; address,
interface windewpt,
uses vsmglob; range,
sense,
type channel : lnteger;
minicamtype = record polarit : char;
call ¢ str3; v_ref,
address, volts_per unit ¢ real;
num, units : str8;
tim : integer; {in minicam units!} end;
result : strlé;
end:; ralaytype = racord
boardname ¢ strle:
address,
motortype = record {applies to stepper and dc motors} windowpt,
motorclass : (stepper, dcmotor}; {switchj relays_on : integer;
name : str8; {both} relay_cn : array.l..8] of boolean:
plus,minus, feither stepper relayname ; array(i..8) of strlé:
module addresses, eni;
or dc databus values}
address, {dc module address! sciptype = record idigital ingut pores)
maxspeed, {steps/sec} gpicname : ostr8;
backlash : integer; ({steps; not ye: usedt adidress, .. integer;
unics : str3; {steppers}
steps_per_unit, range, lowlimit : real; {steppers}
width, decpts, {3repprers) JTODT L = rexurd ~digirtal sutput sortsi
windowpt : integer:; 'kathl} IEOPRAT : 3tr9;
searchrange, iderauls values ¢ integer;
firstrange, fon t
searchstep, " ind '
defaultscanrange, TLlan
defiultstepsize : oreal; ! o
end;
“a.endar =
scalertype = record day,mcnth, y rinteger;
scalername : str8;
gatetime : real; {secnnds }
auto, ibargraph display! ~osRer~ = record
switchedon : boolean; {on/off t ax,bx, zx, 4¢,be, 51,44, 45, o5, flags Dinteger;
span, (£cr display ! erd;
2off : real; {fcr display |}
address : integer;
Hz, fcount rate |} jaussmetertype = record
scanstopcount, range,
searchstopcount : real; {peakfind criterion} units_per_volt : real;
end; units : stré;
windowct : intege:;
adctype = record end;
adcname : strlé6;
address, magnettype = reccrd
windowpt, maxIurrent : real;
range ¢ integer: remanentfield : real;
volt_range, end:

units_per_volt 1 real;



lockinzype = record

datachannel : integer;
¢ integer;
sensitivity : integer;
dyr.reserve : integer:
tireconst : integer;
end:;
filernames = record
ena;
motors = array(0..B] of motortype:;
scalecs = array(l..8] of scalertype;
adcs = array|l..8] of adctype;
dacs = array(l..B] of dactype;
relavcoards = array{l..8] of relaytype;
gpips = array(l..8] of gpiptype:
gpops = array(l..8]! of gpoptype:
gaussTeters = arrayl(l..8) of gaussmetertype:
magrets = array(l..8) cof magriettyre:
lock:.ns = array(l..8) of lockintyre:
filessztype = array(1..30) of filenames:

.10 of string{25%};

_nteger;
tnar;

y_flag : boolean;
datastring : =string{255j};
filram : namiil;
sar : stray;
devla,devta : devadd;

implementatisn
end.

zddr, lastintl,dat,poll_resp, ieeestatus,srg : integer;
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[ ")
(* UNIT psdS206 - Brookdeal 5206 lockin amplifier routines )
(v 12/04/89 D.B.Lambrick )
{* init_ieee and lock_int ammended by C.I.Gregory 12/06/31 ")
[t )

R R R R R

unit psdS5206;

interface
uses vsmglob, leee,utils,crt;

procedure init_ieee;

procedure psd_com(comstr : strl2);

function lock_in(instr:strl2;rep:char) :real;
procedure init_lockin;

prr--edure read_Chl(var Chl_value:real);
procedure ave_Chl (var mean_Chl:real);

function 1lockin_ovld : boolean;

procedure set_sensitivity(n_val:integer);
procedure range_lockin;

procedure get _time_const(var t_const : longint);
procedure get_sensitivity(var sens_volt : real):
function lock_int (insuc:strl2;rep:char) :real;
function autorange_set : boolean;

function lockin_ok : boolean:

impiementation

:22dure init ieee;

flag:=false;
addr:=1;

intistat:=0;
{These are the address numbers as used by the computer and are set belcw!}
bdeal:=1;

fike:=2;

mcam: =4,

k173
kl37:=

{A very important section of the program set! The IEEE addresses of the devices

are thanged here as far as the computer is concerned}
devia{l].prim:=10; {¢converts the device at address 10 to address one for the
cemputer}

devta{l].prim:=10;{10 is the lockin address. All lockins in the lab shculd be

at address 10. If not, then put address here}
devia[2!.prim:=16; {fluke address}

aevetal2] .prim:=16;

aev.a{4].prim:=6; {minicam address}
devzaf4].prim:=6;

dewvia[5].prim:=3;{keithley 175 address}
devra[S].prim:=3;

devla[6].prim:=2; {keithley 197 address)

devta o) .prom:=2;
init;
end:;

procedure psd_com({ comstr : strl2 };

begin
init:
eois:=chr(1d);
iors:=‘1i";
datastring:=’"";
datastring:=comstr;
wr_str(bdeal):

functiecn lock_in( instr : strl2; rep : char ) : real;

var dumstr : strS;
dummy : real;

begin
psd_~cm(instr);
if rep = "R’ then 'begin
reai_stribdeal);
r:=decipher (datastring);
« ln:i=

delay 3030y
end =lse
1

delay (5,

precedure read_Chitvar chl_value : reai);
var sensitivity : real;

begin
chl_value:=lock_in(’21’,’R");
delay (50):
get _sensitivity(sensitivity);
chl_value:=(chl_value/2000) *sensitivity;
end;



procedure ave_Chl(var mean_Chl : real); str{n:Z,dumst:);
dummy :=lock _int’ 3¢ +dumstc, "N")

var sum, end else
dummy : real; begin
t_const : longint; strin_vai:2, dumstr);
dummy :=lock_in{(’S’+dumstr, ‘N’};
peqin end:
sum:=92.0; end else
! 3et _time_const{t_const); } delay(200):
for 1:=1 to 10 do end;
begin
read_Chl (dummy) ; i etttk ataiidiedte sttty
sum: =sum+dummy;
delay(1000); procedure range_lockin;
end;
mean_Chl:=sum/10; var dummy ; real;
end; dumd : inteqger;
dumstr2 : strl;
[ e e e e e m e mm e m e mm e = i dumstr3 : strl;
function lockin_ovld : boolean; begin
if statusactive then
var dummy : real; begin
irtdum : integer; if lockin_ovid thendrepea: . ,
umstrl:i=’"; umstr3:="";

begin dummy i =lock_in('G’,"R");

statusactive:=true; dume : == runc {(dummy) ;
if statusactive then L€ duml tnen dumlis=dmIel;
begin str{dum , dumstr2y
dummy:=1lock_in(’N’,'R’)}; dumstr3:='G’ +dumstrl;
if (dummy <>0) then lockin_ovld:=true jummy :=lock_inidumstr3, 0y
else lockin_svld:=false; delay (43305
Latilofnct lockin ovid) coooaumI=24);

e oz tr
[

crucezure set_sensitivity(n_val : integer);

the firs

var  iummy @ real;

o : integer;
Jumstr : str2; functizn lock_intd{ inst: : strlld; rep :char ) : real;
var dumstr :strS;
tegin dummstr :strs;
if statusactive then dummy :reail;
begin p,Code,q :intejer;
if n_val=0 then begin
begin psd_com(instr);
dummy : =lock_in(’S0’,"N"); 1f rep = 'R’ then begin
delay (2500) ; read_str (bdeal):
n:=0; p:=0; dummstr:="";
repeat repeat p:=p+l;
n:=n+l; until datastring{pl=',’;
str(n:2,dumstr}; £z q:=1 to (p-1) do
dummy:=lock_in(’S’ +dumstr, "N’); tegin
delay(2000); dummstr:=dummstr+datastriralql;
until lockin_ovld; end;

if n<>24 then n:=n+l:; val (dummstz, dummy, Code) ;



lock _int:=dummy;
end
else lock_int:=0.0;

procedure get_time_const;
var dummy : real;
i : lorngint;
begin
dummy:=iock_int (‘T’,’R’);
i:=trunc{dummy);

case i of

0 : t_const:=100000;
i t_const:=30000;
2 : t_const:=10000;
2 : t_const:=3000;
4 t_const:=1000;
5 t_const:=300;
6 r_const:=100;
7 : t_const:=30;
) n_=onst:=10;
2 r_const:=1;
|39 t_const:=1;
2n4;
end;

pr:cedure ger_sensitivity;
var dumro, dum:i @ real:
vegin
dumr:i=isck_int’3’,'R");
delay143);
aumir=dumrc~(truncidumr,/2)*3)-i;
of dum chen dumi:=5;
PR 5% rhen dumi:=1;
sens_volt:=exp(-trunc(dumr/3) *1n(17)) *dumi;
2na;

functinn autorange set : boolean;
var dummy :real:;
begin
dummy :=lock_in(‘Al’,’R’);
if dummy > 0.0 then autorange_set:=true
else autorange_set:=false;
end;

function lockin_ok : boolean:
var dummy : real:
intdum : integer;

begin

dummy:=lock_in(’2’,'R’);

if dummy=32.0 then lockin_ok:=true
else lockin_ok:=false;

end;
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Wwr_stridevnum:integer);
[Ihd .y I3

wr _from file(filnam:inamiii;devnum:inieger);

(= UNIT ieee - Pascal routines for Scientific 3olutions RevD board i crocedure rd_byte;

(+ 12/04/89 D.B.Lambrick ) pracedure wr_byte(dat:integer);

(" .) vrocedure par_poll;

(* Rd_Byte Amended 7/7/88 . procedure unconfig;

(*~ Conversion to Turbo 5.0 21/3/89 - Unit conv. 12/04/89 <) procedure disab_poll(devnum:integer);

[ .) procedure read_bus_stat;

R R R Ry R D R R R R R R R R R procedure sei_dev_clridevnum:integer):
procedure sel_dev_remtdevnum:i:teqer);

unit ieee:; procedure ser_poll(devnum:integer);
procedure pp_en(devnum:integer);

g gy } procedure all_loc;
procedure all rem;

interface procedure trnsfr{devnum:integer);

procedur: my_la;
ccedure my_ta;
ocedure listen{(devnum:integer);
zzedure talk(devnum:integer):
rccedure unlisten;
procedure untalk;
procedure tcsy;
rscedure Tisy;
procedure rov_cntrli

)

uses vsmglob;

x

‘00

-

const Bdadd : integer = $310:;

kel

type laddr = record
prim : integer;
sec : array(l..l0] of integer;

end;
devadd = array(l..10] of laddr: procedure pass_cntrl(devnum:integer);
stray = array(l..10] of string(255}; oratedure set_20i;

procedure rdsup{devrum:integer):
trutedure rd_arry(sar:stray;sep, lastchac: cnar;devnumiintezaer);

intlstat,my_addr, lastintl,dat,poll_resp, ieeestatus,srq : integer; provedure zern_add;

bit,sense,i,nl : integer;

@ois,iors : char;

cntrllir, last,my_flag, firstln,statusactive: boclean;
darastring,petfile : str2SS;

filram @ namfil;

sar : stray;

levla,devra : devadd;

Llvar @ zext;

ccfile @ strid;

=ment ation

Lo dure

o
v jummy @ ilnteger: !

prccedure ibclear;

procedure waitll;

rrccedure tci(comm:integer)
prccedure fetch_laldevnum:integer);
crocedure out_ta(devnum:integer);
procedure init;

procedure gtsby;

procedure go_idle;

procedure gtscnt;

procedure abrt;

prccedure abort:

procedure devclr;

procedure getrigg{devnum:integer):
procedure devloc (devnum:integer);
prccedure llo;

procedure my_rsp(devnum:integer):;
procedure read_setup (devnum:integer);
procedure read_end;

procedure read_str (devnum:integer);
procedure read_to_file(filnam:namfil;devnum:integer);
precedure write_setup (devnum:integer);

Szt [Bdadd-li;
2dum and I) = 2;

procedure tci(comm:integer):
var dummy : integer:




pr2cedure fetch la;

Jar 3 :integer;

begin
if devla{devnum}.prim =
alse begin

my_addr then my_flag:-true

Port [Bdadd+0) :=devla(devnum] .prim+$20;

je=1;

while (devla[devnum].sec[j] <> Q) {or (j=1})} do

begin

Port [Bdadd+0] :=devla[devnum].sec (3] +$60;

jrmi+l:
end;
end;
end;

procedure out_ta:
var 1 : integer;
pegin

waitlz;

Port {Bdadd+0) :=devta[devnun] .prim+5$40;

i:=1;

while (devta[devnum).secl(]]

begin
waizl2;

<> 0) do

Por~ (Bdadd+0] :=devta(devnum} .sec[j]+$60;

jr=j+L;
and;
end;

procedure init;
var dummy : integer:
ragin
dummy o sPore [bdadd] s
Zar;

crtlzdadd+9) :=S€£2;
tore 2dadd+S) =82
3dadd+3}:=825;
vt (3dadd+ij =533,
rt (Bdadd+2]:=50;
r% 3dadd+3):=50;
T

2

2
[~}
Ps
Pe
Do
Fo

T

© 'Bdadd+5] :=$80;
v _3dadd+5] :=Sal;
t iBdadd+6}:=51;
or~ {3dadd+6} :=5e0;
ibclear;
Port (Bdadd+8) :=50;
ibclear;
Port [Bdadd+8] :=5a0;
tcitSed);
repeat
dummy : =Port [Bdadd+9]}
until (dummy and 1) <> 0:
Port [Bdadd+4] :~580;
Port {Bdadd+5]) :=§0;
end;

el
>

procedure gtsby;
begin

tci(sfe);

end;

Tl'ear IBF |}

Nait for IBF lcw |}

“eser 89292 :

Sesen 3Z231A

nit Ti delay |}

3221A intrr enbue !

4291A intrr enble 2}

3221A serial poll mcde i
8291A Aux mode A }

3291A Aux mcde B, enab.e :zt
8291A addr mode - bd is [}
Disable addr 1 i

Clr 8292 err mask |}

Enable teci |}
Read 8292 cont status reg }

pro edure e Biley

procedure abrt:
begin

ibclear;

Port {Bdadd+91:=5£9;

end;

pi.cedure abort;

Sort {Bdadd+ 4] :=¢
Pore {Bdadd+5) :«50;
zntrl H

© Bdazdel i=2iis
son Datdevnumy

Pozt (Bdadd+0]:=53f;
Terch_latdevnum)
waitl2;
PoruBdadd+0):=1;

end;

i

procedure llo;
begin

waltlsd:

Porev [Bdadd+0]:=Sii;
enc;




cut_ta(devnury: end;

waitl2;
Port {Bdadd+0] :=my_ addr+$20; vrocedure read_to_file;
waitl2; - var latout : file of char;
Port [Bdadd+4] :=540; 1obyt @ integer;
Port {Bdadd+5] :=0; achar : char;
tci(Sfey; begi
end; assign(datout, filnam);
rewrite t(datout);
procedure read_setup; read_setup (devnum) ;
var dummy : integer; intistat:=Port [Bdadd+1l];
begin while ((intlstat and l)i=1) and ((intlstat and $111<>$1l) do
if eocis=’’ then dummy:=13 else dummy:=ord(eois); begin
Port [Bdadd+7) : =dummy; iobyt:=Port [Bdadd+0];
if iors=’s’ then Port (Bdadd+5]:=586 else Port[Bdadd+5]:=$82; achar:=chr(iobyt):;
if my_flag then my_rsp(devnum); write(datour,achar};
if cntrllr then begin intlstat:=Port (Bdadd+1l];
waitl2; end;
Port {Bdadd+0} :=S3f; reaa_end;
my_rsp ldevnum) ; c.ise(datout)
end; end;
if nct (my_flag or cntrllr) then repeat
dummy : =Port [Bdadd+4 ] ; prccedure write_setup:
until (dummy and 4)=90; var dummy : integer;
end;

if znrrlilir then cegin
procedure read_end;

waitlZ;
var dummy @ irteqger; 3tsby;:
vegin ssys

if entrllr then begin

tci(Sfd);
Port [Bdadd+4}
Port [Bdadd~-Sj:
Port 'Bdadd~S]:
Port [Bdadd-3]:

end

e.se begin

Port [Bdadd-5]:=3580;
lastintl:=intlstat;
Port [Bdadd+3]:=52;
dummy : =Porc {Bdadd+0];

end;

iBdadd+3 | :=my_addr-540;

=Po:z |Bdadd+4 ;
{ (iummy arnd 2V=1);
t{lastintl ard 2)=2)

end; ari;

procedure read_str;

pretedure wr_str;
var iobyt : integer: rar iobyr,striont o integer;
achar : string[l}: schar stringill:
begin achar char;
read_setup (devnum) ; begin

datastring:=’"’; write_setup (devnum);

repeat for strcont:=1 to length(datastring)-1 d:
intlstat:=port [Bdadd+l}; cegin
if ((intlstat and 1)<>0) then schar:=copy (datastring, strent, 1),
begin achar:=schar(l!;
iobyt:=Port [Bdadd+0]; icbyt:=ordiachar);
achar:=chr (iobyt}: Fort [Bdadd-0) i=icbyt:
datastring:=datastring+achar; waitlZ;
end; end;
until ((intlstat and $10)=3510); schar:=copy (datastring, length (datastring), 1);
read_end;

achar:=scharl};:



ilbyni=ordiachar);
+€ .zrs®»’i’ then begin
Port [Bdadd+5] :=$6;
Port [Bdadd+0] :=iobyt;
end
else begin
if achar <> eois then begin
Port [Bdadd+0]) :=isbyt;
writeln(icbyt):

waici2;
end;
Port [Bdadd+0] :=ord(ecis);
{ writeln(ord(eocis)); }
end;

lastintl:=intlstat;
if 2ntrllr then tcsy;
end;

procedure wr_from_file;
var datin file of char;
schar : string(l]):
achar : char;
begin
assigni(datin, filnam);
raset (datin) ;
write_setup (devnum);
regaat
raai(datin, achar);
«t..e not ecf(datin) do
pegzin
>rt {Bdadd+0]) :=ord(achar);

~3itlZ;

E (datin);
i’ rthen begin
Port [Bdadd-S!:=86;
Port iBdadd+)}:=ordtachar);
end
else begin
if achar <> eois then begin
Port [Bdadd+0] :=crd(achar):
waicll;
end;
Port [Bdadd+0] :=ord(eois);
end;

clore(datiny ;
laszintl:=intlstat;

if znerellr then tei($fd):
end;

procedure rd_byte:;
begin
repeat
intlstat:=Port (Bdadd+1l]; )
until ((intlstat and 1)=1) or ((intlstat and $10)=510);
if i1intlstat and $10)=510 then begin
if (intlstat and $1)=S1 then begin

dat :=Port [Bdadd+0];

last:=true;
end

and

end;

procedure wr_byte;
begin
Port [Bdadd+0) :=dat;
if not last then waitl2;
if not last then write(chridat));
if last then writelnichridat));
end;

procedure par_poil;
var Jummy integer;
begin

Port {Bdadd+4] :=540;

Port [Bdadd+5] :=0;

repeat

dummy : =Port (Bdadd+3!};
untii ((dummy and 2)<22);
Por+t Bdadd+9]:=5£5;
tepest

durry : =Port (Bdadd«+l;/
until ({dummy and 11<>0);

pol. resp:=P:crvbdadd-2i;

i
Py Bdadd+d ) =330
Bare Zdaddesi =370

Ll
Wl Ll
P3re 3dadd+0;:=5:3%;
and;

croce jure disab_poil;
pregin

waitl2;

Por= Sdadd+d|:=33f;
tetch laddevnum)
waitl2;

Pore '3dadd+0]:=5%;
waitll;

Port [Bdadd+0]:=570;
uncontig;
end;

procedure read_bus_stazt;

var dummy integer;
begin

tcitSe?);

Por:  3dadd+3]:a3e7;
regear

durmmy :=Port |Bdadd+2);

oegin
dan:
iast
end;
‘Bdadd-3!:



urtil not ((dummy and 1)=0);
reeestatus:=Port {Bdadd+8]:;
srq:=leeestatus and 1;

end:

procedure sel dev_clr;
begin

waiti2:

Port [Bdadd+0] :=S3f;
fetch_la(devnum);
waitlz;

Port (Bdadd+0] :=54;
end;

procedure sel_dev_rem;
tegin
wairla;
grsby;
L SY3
{ Port[Bdadd+0):=53f;}
tzi(Sf8);
fetch_la(devnum) ;
{ 3tsby: }
end;

procedure ser_poll:
rar dummy : integer;
begin

waitil;

Pore {3dadd+0] :=$3f;
waltl2;
Zorei3dadd+0]:=518;
“ut_taldevrnum) ;
Waltls;

:=Porr {Bdadd+ 1],
. not ((dummy and 1)=0);
: il resp:=Port [Bdadd+0]:
£ore iB3dadd+4) :=$80;

fort [Bdadd+5) :=540;

Lois s

waitid;

Port 'B8dadd+0]:=519;
end;

procedure pp_en;
begin

waitl2;

Port [Bdadd+0] :=$3¢€;
fetch_la(devnum);

waitl2;

Fort {3dadd+0] :=5¢;

waitl2;

fort [Bdadd+0] :=$60+bit+sense;
end;

procedure all_loc;

Hegin
€citsSE7y;
end;

pro
beadin

tci(Sf3dy;
end;

cedure ali rem;

procedure trnsfr;
var dummy : integer;
beqgin
waitl2;
Port {Bdadd+0] :=S3f;
fetch la(devnum);
vt oot my_ Fflag then
beqgin
cut_tafdevoum);
i1f e>is="' <hen dummy:=13 else
Port (3dadd~-"] :=dummy;
if izrs='s’ then Por:  Bdadd-+5S]
Port [Bdadd+d}:=549;
Por= 3dadd+S) =80

to21888)

repeat

{Bdadd-i

- (3dadd-3 )
 5dadd-4

rmi3aadd+d ] =

f24add+n = 32;
iasv:isialse;

and;

orocedure my_ta;
pegin

waitll;

Port [Bdadd+Q!:= my_addr + $40;
waitll;

last:=false:
end;

procedure listen:
begin

fetch_la(devnum);
end:

rrocedure talk:
begin

dummy :=ord(eois):

;=587 else Porct[Bdadd+5]:=$83;

stat and S10)y=0y;



out_ta(devnum);
end;

procedure unlisten;
begin

tcsy:

waitl2;

Pore {Bdadd+0] :=$3f:
gtsby:
end;

procedure untalk;
begin

tcsy:

waitl2;

Port {Bdadd+0] : =$5¢f;
gtsby:

end;

procedure tcsy:;
begin

tci(Sfd):

Port {Bdadd+5]) :=580;
Port [Bdadd+5]) :=$3;
Pors (Bdadd+4):=580;
Port {Bdadd+5] :=$0;
end;

procedure tasy;
begin
tcitSfoy:
Por~ [Bdadd+51:=580;
Por- |Bdadd+%):=8§3;
Por- {Bdadu-+3):=S880;
Porw i8dadd+S]) :=50;

=nd;

procezdure rov_cntrl;
vAar dummy,comm @ integer;
pegin
1f not cntrllr then
beqin
if not ((lastintl and 128)=128)

repeat
Fummy :=Port [Bdadd+4];
unzil not ((dummy and 2)=0);
comm:=Port {Bdadd+5]);
Port (Bdadd+5) :=5f;
comm: =comm and 127;
if comm =92 then begin

then repeat
intlstat:=PortiBdadd+l);

until not ((intlstat

Port [Bdadd+4]:=$80;
Port [Bdadd+5]:=50;

entrlir:=true;
tei($fa);
end

else begin
writeln(’Error
end;

- undefined command’):

and

29 =0y,

end;

riroedure pass_entrl;

if net cntrliir then begin
out_ta(devnum);
waitli2;
Port (Bdadd+0d]:=59;
waitl2;
Port [Bdadd+4]:=$1;
Port [Bdadd+5] :=Sal;
Port [Bdadd+5} :=80;
lastintl:=0;
cnerlir:=false;
tci(Sfly;
end;

and;

procedure set_eol;
begin

Port (Bdadd+5) :=56;
iast:=true;

end;
procedur= rdsup;
var dummy o inteder;

my _rsp(devnum)

caT o durmy, Lok, L

atrnar

(3dadded =531
¢ tdewvnum} ;

sar{i}:="";
repeat
regeat
durmmy :=Port {Biadd-1];
unt1l not ((dummy and 1}=0);
:=Port [Bdadd+?2];
< =chr(iopyt);
ar i;:=sar(i)+achar;

1% (achar <> iastchar) <hen Port [Bdadd+3!:

until (achar=sep) or (achar=lastchar):
unt il (achar=lastchar):
end:



procedure zero_aid;
var i @ .nteger;
begin
for i:= zo 10 3o
begin
w.uh z2:zvlali. do begin
prim:=0;
secil):=0;
sec(2]:=0;
sec{3):=0;
sec[4]:=0;
sec(5):=0;
sec|6]:=0;
sec[71:=0;
sec(8]:=0;
sec{9]:=0;
sec([10}:=0;
end;
do begin
prim:=0;
sec{l]:=0;
sec|2):=0;
sec([3]:=0;
secldi=0;
sec|5]:=0;
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[ ")
[ UNIT to communicate with FLUKE BB60A digital multimeter *)
te 12/04/89% D.B.Lambrick ")
[ ")

('."'k'lﬁ"'iﬁ'"ﬁ.'lﬁﬂﬂ".k..'.‘ﬁ..'.ﬁ't.ﬁﬁlﬁk('.'t"'-"tt'tt'tltx'k'tt)
{SN+}
uanit fluke;

interface

uses vsmglob,utils, ieee;

procedure fluke_com(comstr:strl2);
crocedure cr_eoi;

orocedure init_fluke;
functinn read_fluke : double;

implementation

procedure fluke_com;

neqgin
eois:=zhr(10);
iors:='i’;
datastring:=comstr+chr(12) +chr(10);
init;

vcrozeduire init fluke;
SED %

ET]

',

lors:=’1{
qtsby:
tcsy:
tci(S£8);
wr_byte($30);
gtsby:

tory:
wr_byte(S$3f);
wr_byte($5f);
wr_byte($30);
grsby;
wr_byte($2a);
wr_brre($54);
wr _brre($30);
wr_byte($S0d);
set_eoi;
lasz:=true;
wr_byte($0a);
last:=false;

and:

finorion read_fluke;
var dum : double;
ec : int=ger;
begin
eois:=chr{il);
.,
:

v

lors:="1
qtsby;
tcsy;
read_str(flke);

datastring:=copy(datastring,l, length{datastring)-2};

val (datastring, dum, ec) ;
read_7luke:=dum;
end:
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[ ")
[ UNIT vsmglob - Global variables for VSM programs *)
[ 12:.4/89 D.B.Lambrick *
e Updazed by C.1.Gregory 10/06/91 *)

(- )
l't'»'!'r"ﬁﬁ""lli"..l'ﬁ.‘ﬂ'ﬂ"'t!'ﬂ"'t'l""'ll""".l""'lQ’ﬂ.‘l'!)

unit vsmglob;

tring(12];
s-ring(l];
string{2;j;
sering{3;
swring{4};
string(5);
stringi€];

&.,flke,mzam, k197, k174 : integer;
cve are acrreviations of ¢ erert devices -n the IEEEZbus.
The values are set in psd5206.pas }

const
k1@ lnitstr = ' GOKODOTS'
kl7f.nitstr = ' GOKODOTS’ ;
‘These are the constants sent to the keithley instruments in corder to be

arle «o =alk to them. }
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[

[ Minicam Routines -

*)
Version One ‘)

[ D.B.Lambrick August 1987 ")

I

*)

AR R R R A e A R AR AR

uanit izccom;
inrerface
uses vsmglob,minicam, psd5206, ieee;

function adl (madd : strS5) : str255;
function ad2(madd : str5) : str255;
function dal (madd,n : str5) : str25S;
function da2(madd,n : strS5) : str255;

~ype mcamstr = string(20];
var amstr : mcamstr;
i : integer;
volt : real;
reply: str255;

implementation

procedure mcam_con( comstr : mcamstr );

cegin
| zero_add;
cntrilr:=true;

dev ald4) . .prim
imees 4 (41 prim:
tatastring:=comstr+chr{lii;
inis;
wr_str{mcam);
read_str(mcam);
and;

function stl(madd,t,n : s%rS): str2SS;
var cComstr : mcamstr;
tegin
comstr:=’STl,’ +madd+’,’+t+’,' +n;
mcam_con (comstr);
stl:=datastring;
end;

function st2(madd,t,n : str5) : str255;
var comstr : mcamstr;
begin
comstr:='ST2,’ +madd+’, ' +t+',’ +n;
mcam_~on(comstr);
st2:=datastring;
end;

fanssian adl(madd @ oszod)
varoomstr mcamstr;
tedin

zemstr:='ADL, ' +madd;
mcam_zan(comstr)
adl:=dacastring;
end;

function ad2(madd : strS)
var somstr mcamstr;

begin
comstr:='AD2, ' *madd;
mcam_con {comstr);
ad2:=datastring;

end;

funcricn col{madd,t : stcd)

VYAr COomSir mcamstr;

begin

comstz:=’'COLl, " ' +madd+’, '+t
mcam_zcon {comstr)
col:=datastring;
and;
functian colimadd,r : stzd
vAr Zametr o mTamstr;
bregrn
somstri='COZ, " ~madd+-’, '+t
(comstr);
astring;
dal madd,n : 3::%
amstr:
POAL, mmadde’ ) en

o
"

ir=darastring;

STYr : mIamstr:
real;
i ¢ integer:;
begin
val tmadd, bdadd, i) ;
bdadd: =bdadd=+312:
stribdadid, madd);
comstr:=’DA2,’ +madd+’,’ +n
mcam_con (comstr)
daZ:=datastring;
and;

function gpl(madd : stzf)
var cComstr mcamstr;
beqgin

comstr:='GPl, ‘+madd:
mcam_con{cemstr)
grl:=datastring;

dal (madd,n : st

SLEl0;

str255;

stz2583;



end;

function m00 : str2S5;
var comstr : mcamstr;
begin

comstr:='M00’;
mcam_con (comstr) ;
m00: =datastring;
end;

function m0l : str255;
var comstr : mcamstr:
begin

comstr:="MO1’;
mcam_con {(comstr) ;
m0l:=datastring;

end;

function mi2 : str255;
var comstr : mcamstr;
beqgin

comstr:='M02’;
mcam_con (comstr) ;
m02:=datastring;

end;

function m02 : str255;
var comstr : mcamstr;
begin

comstr:='M03’;
mcam_zon(comstr) ;
m03:=datastring;

Legin

comstri=c4047

mcam
mdd
end:;

conlcomstr)
=datastring;

funczion m05 : str25S:
var comstr : mcamstr;
begin

comstr:="M0OS’;
mcam_con (comstr) ;
m05:=datastring;

end;

function rdl : str2S5;
var comstr : mcamstr;
begin
comstr:='RD1l’;
mcam_con (comstr) ;
rdl:=datastring;
end:

function rdZ2(madd : str5)

var comstr : mcamstr;

comstri="RD2, ' +madd;
mcam_con(comstr);
:dis=datastring;

2nd;

funzsricn vplimadd, <, n
var ~omstr @ mcamstr;
pegin

coms+<r:='VP1,’ rmadd+’,’

mcam_-zon{comstr);
vpl:=datastring:;
end;

function vpZimadd,t,n
var zomstr : mcamstr;
vegin
comsTr:
mzam_con{cemstr)
vp2:=datastring;
end;

erd.

='YpP2, ' +madd+’, " ~t+’, " -0
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(* )

(* Unit keithley: to communicate with keithley 175 and 197, ")
{* M.R.Delap )
(* for complete listing see DELAP PhD Thesis *)

o *)

R R R R e R R A R R R A SRR AR AL

unit keithley:

{unit to talk to keithleys}
interface

uses ieee,crt,dos,vsmglob,psd5206;

funcricn decipher_keithley(instr:str80; digits:integer): real;
function kl197_com{comstr:str80; rep:char; var range:str3): real;
precedure init_k197;

function kl197_range_check{intended:str3): boolean;

function k175_com{comstr:str80; rep:char; var range:str3): real;
function k175_range_check (intended:str3): boolean;

procedure init_kl175;

("‘."".Keithley 197 & 175 roucinesi!tttﬂ'ttitﬁaaﬁta-t-tﬂ-n.-'t.ttttt-ll ’
implementation

furction decipher keithley{instr:strB80; digits:integer) : real;
var -

dummy  : oreal;

dummyZ : integer;

zumstr : str80;

veain
tirmylr=digicosee;
jumstr:=copylinstr, 3, dummys)

AL tdumst o, dummy, dummy2)
jecipher_keithley:=dummy;

an:i;

tunction k197 _com(comstr:str30; rep:char; var range:s*r3) : real;
beain
{ init_ieee; |}

acis:=cho (10

[
;

irrsr='1
datastring:=comstr+’'X’'+chr(l13);
wr_strikld7);
x137_com:=0.0;
range: =’ ‘;

if (rep='R’) then begin
read_str(k197);
k197_com:=decipher_keithley (datastring,5):
range:=copy (datastring,2,3);
end;
end:

procedure init_k197;

Vot

dummy @ real;

dumatr : strl3;

k!27initstr @ strd;
begin

sel_dev_rem(kl97):
dummy : =k 197_zom(kl37initstr, 'N’, dumstr);

end;
function k197_range_check(intended:str3) : boolean;
var
dummy : real;
dumstr : strd;
begin

dummy :=k197_com(’3G0°, 'R’, dumstr);
if (dumstr->intended) then kl97_range_check:=false
else k197 range_check:=true;
end;

functicon k175_com{comstr:str80; rep:char; var range:str3)
begin
{ init_ieee;}

Sanci.n %175 range -~macy(intended:stel) @ boolean:

dummy i =ki75_com{’ ', 'R’,dumstr);
if (dumstr<>intended) then kl7%5_range_check:=false
else k173 range_check:=czu
and;

procedure init_k175;
var
dummy : real;
dumstr : str3;
kl73initstr : str§;
kejin
sel dev_rem(kl?5);
dummy :=k175_com(k175initstr, "N’ , dumstr);
end;

real;

vidarastzing, 4);
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DIMENSICH Y(1024),B(1024),EB(1024),E¢ (1024
REAL PTS

NUMBER CF DATA POINTS
N=100

SIZE OF SAMPLING WINDOW
PTS=3
0o 1 I=1,N

READ IN THE DATA
READ (1, *) B{(I),Y(I)

1 CONTINUE

CALL THE SMOCTHING ROUTINE

CALL SMOOFT(Y,N,PTS)

> WRITE QUT THE SMOOTHED FITLE

00 3 I=1,N
3 WRITE(2,*)B(I),Y(I)
10 TORMAT (1H ,2El14.5)
3TOP
END

SUBROUTINE SMOOFT (Y,N,PTS3)
PARAMETER (MMAX=1024)
UIMENSION Y (MMAX)
M=2
NMIN=N+2, *PTS
i IF(M.UT.NMIN)THEN
M=2*M
50 TO 1
INDIF
IF(M.GT.MMAX) PAUSE 'MMAX too small’
ZONST=(PTS/M) **2

IR S

TAS) =T ) =RNL* (7L (N=-0) 2YN=(J-0))
TONTINUE
IF{N+1.LE.M) THEN
DR 12 F=N+1,M
TiJy=9.
iz CONTINUE
ZNDIF
MOZ2=M/2
TALL REALFT¢,MC2,1)
Y{ly=Y(l)/M02
FAC=1.
00 13 J=1,M02-1
K=2*J+1
IF (FAC.NE.OQ.) THEN
FAC=AMAX1(0., (1.-CONST*J**2) /MCZ)
Y (K) =FAC*Y (K}
Y(K+1)=FAC*Y (K+1)
ELSE
Y(K)=2.
Y(K+1)=0.
ENDIF
13 CONTINUE
CAC=AMAX1(0., (1.-0.25*PTS**2) /MO2)

x.f2r to zmooth data using smocfr.for and realfz.ra
7

14

s

)
TALL REALFT{Y,MCZ,-1)
Looid J=i,N
YA =PNTA (70 (N=D +YN* (J=11) +Y (D)
CUNTINUE
RETUEN
ZHL

L) EE

SUBROUT:INE REALFT (DATA,N, I5SI3N)

REAL*8 WR,WI,WPR,WPI,WTEMP, THETA

DOUBLE PRECISION WR,WI,WPR,WPI,WTEMF, THETA
DIMENSION DATA(*)
THETA=6.2831853071795300/2.CC0/DBLE (N}
215005

IF (IZIGN.E¢. i) THEN

>
FCURI(DATA, N, +1)

WPR==-0.000 D5IN({D.5CO"THETA)Y ** 2
AP I=CSINITHETA)
AF=1.0DC~WFR

~WI WP -WE
FeWTEMP <ATI-W!

TA(LY=Cl* (HIR-DATA(2))
TA{2)=CL" (HIR=-DATA (D))
ALL FOURI(DATA,N, -1}
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SUBRIJUTINE FJUR] (DATA, NN, ISIGN)

REAZ"8 WF,wi,WPP,WPI,WTEMP, THETA

DOUE_E PRE{ISION WR,WI,WPR,WPI,WTEME, THETA
DIMELSION TATA(*)

N=2°uN

TEMPI=IATA(J+1)
CATA (T =DATA(])
CATA(J-y=DATA(I+1)
CATA{I)=TEMPR
CATA{I-.)=TEMPI

IF (I{M.32.2).AND.(J.GT.M)) THEN
I=3-M
REH

¢l T4l

THEN

LTGTOLG ) (TEIGNTMMAK)

J=1<124RX
TEMF®=5NGIL (WP) *DATA (J) -SNGL (WI) *DATA (I~
TEMF I =ZNGL (WR) "DATA (J+1) +SNGL(WI) *DATA ()
DATA 1 7)y=DATA (1) -TEMFR
DATA 1 +1)=DATA(I+1)~-TEMPI
DATAR17)=DATA (1) +TEMPR
DATAiZ+1)=DATA(I+1)+TEMPI
ZONTINVE
“TEMP=WR
WR=WR*WPR-WI*WPI+WR
AI=WI*WPR+WTEMP "WFI+WI
TUTINUE
M/2XelSTE?
GO Tl 2
ENLIT
RETURN
END



Appendix B
Data Smoothing

The concept of data ‘smoothing’ lies in a very murky area and is probably most
justified as a graphical technique to guide the eye through a forest of data points.
Consequently, when data was smoothed, (x™! vs B for FeGe in the temperature
range 277 - 274K) it was only when absolutely necessary and included with the raw
data.

The inverse magnetic susceptibility was calculated by subtraction of adjacent
magnetisation and magnetic field values for both increasing and decreasing field.
Since the magnetisation of FeGe is highly sensitive to field and the field width of
the feature being investigated close to the transition temperature was so narrow
(the field induced phase of FeGe figure 6.6), field steps of 200e were used as oppose
to 500e for other measurements. This results in the error associated with the
magnetisation being more significant in the difference between adjacent values, hence
there is a greater spread of values calculated in the inverse magnetic susceptibility.

The routine to smooth the data was taken from the book ‘Numerical Recipes
Fortran’, section 13.9- Smoothing Data and is listed. The programme removes any
linear trend and then uses a fast fourier transform to low pass filter the data. The
linear trend is reinserted at the end. The one user specified constant is the ‘amount
of smoothing’, specified as the number of points over which the ‘data smoothing
window’ should exist. In all cases, the value used for this was three, chosen because
of the field width of the investigated phase.
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6 B
DIMENSION Y(1024),B(1024),EB(1024),5Y(1624)
REAL PTS

NUMBER OF DATA POINTS
N=100

SIZE OF SAMPLING WINDOW
PTS=3
Do 1 I=1,N

READ IN THE DATA
READ (1, *) B(I), ¥ (I)

1 CONTINUE

CALL THE SMOOTHING ROUTINE
CALL SMOOFT (Y, N, PTS)

WRITE OUT THE SMOOTHED FILE
DO 3 I=1,N

3 WRITE(2,*)B(I),¥Y(I)

10 FORMAT (1H ,2E14.96)
STOP
END

SUBROUTINE SMCOFT(Y,N, PTS)
PARAMETER (MMAX=1024)
DIMENSION Y (MMAX)
M=2
NMIN=N+2.*PTS
1 IF (M.LT.NMIN)THEN
M=2*M
GO TO 1
ENDIF
IF(M.GT.MMAX) PAUSE ’'MMAX too small’
CONST=(PTS/M) **2

T1=Y (1)
IN=Y (W)
EN1=1_./(N-1.}
Zo 11 J=!,N
T(J) =YY =ENL*H (Yl N3y ~YNT (-1

IF(N+1.LE.M)THEN
0O 12 J=N+l, M
Y (Jy=0.
12 CONT INUE
ENDIF
MC2=M/2

CTALL REALET (7,MCOZ, 1)
Y(1)=Y(1)/MD:
FAC=1.
DO 13 J=1,M02-1
K=2*J+1
IF (FAC.NE.Q.) THEN
FAC=AMAX1 (0., (1.-CONST*J**2) /MG2Z)
Y (K) =FAC*Y (K)
Y (K+1)=FAC*Y (K+1)
ELSE
Y (K)=0.
Y (K+1)=0.
ENDIF
13 CONTINUE
FAC=AMAX1 (0., (1.-0.25*PTS**2) /MO2)



Y2y =TACTI L)

CALL REALFT (Y,MC2, -

DO 14 J=1
Y(J)=RN1*(YI*(N-J)+YN*(J-l))+Y(J)

CONTINUE

RETURN

END

SUBROQUTINE REALFT (DATA,N, ISIGN)
REAL*8 WR,WI,WPR,WPI,WTEMP, THETA
DOUBLE PRECISION WR,WI,WPR,WPI, WTEMP, THETA
DIMENSION DATA(*)
THETA=6.28318530717959D0/2.0D0/DBLE (N)
C1=0.5
IF (ISIGN.EC.1) THEN

C2=-0.5

CALL FOUR1 (DATA,N, +1)
ELSE

C2=0.5

THETA=-THETA
ENDIF
WPR=-2.0D0*DSIN(0.S5DO*THETA) **2
WPI=DSIN(THETA)
WR=1.0DO+WPR
WI=WPI
N2P3=2*N+3
DO 11 I=2,N/2+1

I1=2*I-1

Iz=11+1

I3=N2P3-12

I4=13+1

WRS=SNGL (WR)

WIS=SNGL(WI)

H1R=Cl*(DATA(I.) -IATA(IZ))
H1I=Cl~ (DATA(IZ)-CATA(I4))
H2P=-C2% (DATA(IZ) «ZATA(I4))
H2I=C2* (DATA(IL)-CATA(IZ))

DATA(T1)=H!IFP+WFS*HZR-WIS*HI
DATA(IZ)=H:I+wps-qZ FWIS*H2R

DATA(IZ) =HIR~-WRS*HZR+WI3~HZ !
DATA (I4)=-H1I+WRS*H2I+WIS*H2R
WTEMP =WR

WR=WRA*WPR-WI*WP I+WR
WI=WI*WPR+WTEMP*WP [ ~WI
CONTINUE
IF (ISIGN.EQ.I) THEN
HiR=DATA (1)
DATA (1) =H1R-DATA(2)
DATA (2)=H1R-DATA (2)
ELSE
H1R=DATA (1)
DATA (1) =Cl~ (H1IR+DATA (2))
DATA (2)=Cl* (H1R-DATA (2))
CALL FOURI (DATA,N,-1)
ENDIF
RETURN
END
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UTINE FLURI(IATA, WL, ISIEW
REAL*3 WR,WI,WPXR,WNPL,WNTciMP, THETA
DOUBLE PRECISION WR,WI,WPR,WPI,WTEMF, THETA
DIMENSION DATA(*)
N=2*NN
J=1
po 11 I=1,N,2
IF(J.GT.I)THEN
TEMPR=DATA (J)
TEMPI=DATA (J+1)
DATA (J) =CATA(I)
DATA (J+1)=DATA(I+1)
DATA (I)=TEMPR
DATA(I+1)=TEMPI
ENDIF
M=N/2
IF ((M.GE.2) .AND. (J.GT.M)) THEN
J=J-M
M=M/2
GO TOo 1
ENDIF
J=J+M
CONTINUE
MMAX=2
IF (N.GT.MMAX) THEN
ISTEP=2 *MMAYX
THETA=6.28318530717959%00/ (ISIGN*MMAX)
WPR=-2.DC*CSIN(0.SDO*THETA) »+2
WPI=DSIN (THETA)
WR=1.00
WI=0.DO
DG 13 M=1,MMAX, 2
DO 12 1I=M,N, IZTEP
J=I+MMAX
TEMPR=UNGL twr) "CATA () -SNGLIWI) "ZATA(J-1L)
TEMPI=ZNGL (AZ) *CATA(J+1) +SNCLI(AND) "TATA ()
DATA(J)=0DATA (L) ~-TEMEFR
DATA(J-1)=CATA(I+1)-TEMP!
DATA(I)=DATA(L) +TEMPR
DATA(I+1)=lATA(I+1)+~TEMPIL
CONTINUE
WTEMP=WR
WR=WR*WPF-WI*WPI+WR
WI=WI*WPE+WTEMD*WPI+WT
CONTINUE
MMAX=ISTEP
GO TC 2
ENDIF
RETURN
END

w

SUBR

AR O]



Appendix C
SANS Simulation Program

This appendix consists of the SANS simulation program written by Dr. N.R. Bern-
hoeft and the Author.
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DICY9.FOR SAS FOR MNSI 001 VERTICAL
DIC9.FOR 1/05/92 SAS FROM DIC2.FOR 7/11/91
RESOLUTION DETERMINED BY THE SAMPLE SIZE

C
C
C
C
C
C

OO0

W ANGLE 0.02143=1.228DEG IS FOR KI=1, TH=54.74DEG,Q=.035
OBTAINED BY SETTING 0,0;0,0 FOR BEAM AND CING OUT TH FILTER

B2

DIMENSION A(-2:2,-2:2),B(-2:2,-2:2),C(-20:20,-20:20),T12A(625)
OPEN(1,FILE='RESS5.DAT’)
N=0

ZPI=3.1415927

IS SPREAD.B1 IS ROUGHLY INCIDENT KI. B10 IS INCIDENT KI
B1=1.0
B2=.15
PRINT*, ’ INCIDENT KI !
READ (5, *)B10

R1Z=6000.
R3z2=6000.

PRINT*, ' SOURCE SAMPLE
READ (5, *)R12Z

PRINT*, ' SAMPLE DETECT
READ (5, *)R32

PRINT*,’ SPIRAL UPPER Q !
READ (5, *) SUQ

PRINT*, ' SPIRAL LOWER Q !
READ (5, *) SLQ

WO=
WO0=(SUQ+SLQ) /(2. *2*B10*SIN(.9553))

DRB3=SAMPLE THICKNESS MM, DRB4=DETECTOR CELL THICKNESS
DRB1=SAMPLE WIDTH DRB2=SAMPLE HEIGHT
DRA=INCIDENT BEAM GRID DRC=DETECTOR ARRAY SPACING

DRA=3.
DRB1=1/5.
DRB2=1./5,
DRB3=1.
DRB4=10.
DRC=10.

XAXIS FROM N1 TO N2;Y AXIS FROM N3 TO N4

N1=15

N2=19

N3= 10

N4= 14

PRINT*,’X MIN(INTEGER) !
READ (5, *) N1

PRINT*, "X MAX (INTEGER) !
READ (5, *) N2

PRINT*,’Y MIN(INTEGER) !
READ (5, *)N3

PRINT*,’Y MAX(INTEGER) !
READ (5, *) N4

C I=1,7 GIVES SOME MEASURE OF INCIDENT WAVELENGTH SPREAD

DO 1 I=1,7 )

B1=B10+(I-4) *B2/3

WB1=EXP (- (B1-B10) * (B1-B10) / (2% .18*B2*B2))
DO 2 J=-2,2

DO 3 K=-2,2

R1X=J*DRA

R1Y=K*DRA

SR1=R1X*R1X+R1Y*R1Y

IF (SR1.GT.64.)GOTO 3



DO 4 L=-2,2
DO 5 M=-2,2
R2X=L*DRB1
R2Y=M*DRB2
SR2=R2X*R2X+R2Y*R2Y
IF (SR2.GT.16.)GOTO 5
D1X=R2X-R1X
D1Y=R2Y-R1lY
R1L=1.+(D1X*D1X+D1Y*D1lY)/ (R1Z*R12Z)

C NEXT 4 LINES K-SPACE,VECTOR KI.

Al1=B1/ (R1Z*SQRT (R1L))
B1X=A1*D1X

BlY=Al*D1lY

B12=A1*R12Z

DO 6 JA= N1,N2

DO 7 KA= N3,N4

IF (JA.EQ.0.AND.KA.EQ.Q0)GOTC 7
R3X=JA*DRC

R3Y=KA*DRC

D2X=R3X-R2X

D2Y=R3Y-R2Y
R3L=1.+(D2X*D2X+D2Y*D2Y) / (R3Z2*R3Z)

C 1IF FIX KF=Bl THEN FIXES IT AS ELASTIC;NEXT 4 LINES K-SPACE

oNONONONe!

A2=B1/ (R3Z*SQRT (R3L))
B2X=A2*D2X
B2Y=A2*D2Y
B2Z=A2*R32Z
R12=1.+(D1X*D2X+D1Y*D2Y) / (R1Z*R3Z)
T12=SQRT (-2* (R12) + (R1L) + (R3L))
N=N+1
T12A(N)=T12%*57.296

NEXT 4 LINES K-SPACE

Q1X=B2X-B1X
QlY=B2Y-BlY
Q1Z=B2Z-Bl2Z
QM=SQORT (Q1X*Q1X+Q1Y*Q1Y+Q1Z*Q17Z)

C ERROR IN Q1X= DQ1X;,;DQ1lY=DQ1lX

D1IM=R1L*R1Z*R1Z
D2M=R3L*R3Z*R32

D1YZ=D1Y*D1Y+R1Z*R12Z

DiXY=D1X*D1lY

D2YZ=D2Y*D2Y+R3Z*R32

D2XY=D2X*D2Y

D1XZ=D1X*D1X+R1Z*R12

D2XZ=D2X*D2X+R3Z*R32

R1ZX=R12*D1X

R1ZY=R12*D1lY

R3ZX=R3Z*D2X

R3ZY=R3Z*D2Y

D2D2=D2X*D2X+D2Y*D2Y

DQ1X=SQRT ( (A1*Al1*D1YZ*D1YZ* (DRA*DRA+DRB1*DRB1) / (4*D1M*D1M)) +
(A1*A1*D1XY*D1XY* (DRA*DRA+DRB2*DRB2) / (4*D1M*D1M)) +
(A2*A2*D2YZ*D2Y2* (DRC*DRC+DRB1*DRB1) / (4*D2M*D2M) ) +
(A2*A2*D2XY*D2XY* (DRC*DRC+DRB2*DRB2) / (4*D2M*D2M) ) +
(A2*A2*R3ZX*R3ZX* (DRB3*DRB3+DRB4*DRB4) / (4*D2M*D2M) ) +
Q1IX*Q1lX*B2*B2/ (6*B1*6*Bl))

DQ1Y=SQRT ( (A1*A1*D1XZ*D1XZ* (DRA*DRA+DRB2*DRB2) / (4*D1IM*D1M) ) +
(A1*A1*D1XY*D1XY* (DRA*DRA+DRB1*DRB1)/ (4*D1M*D1iM)) +
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(A2*A2*D2XZ*D2XZ* (DRC*DRC+DRB2*DRB2) / (4*D2M*D2M) ) +
(A2*A2*D2XY*D2XY* (DRC*DRC+DRB1*DRB1) / (4*D2M*D2M) ) +
(A2*A2*R3ZY*R3Z2Y* (DRB3*DRB3+DRB4*DRB4) / (4*D2M*D2M) ) +
Q1lY*Q1lY*B2*B2/ (6*B1*6*Bl))

DQO1Z=SQRT ( (A1*A1*R1ZX*R1ZX* (DRA*DRA+DRB1*DRB1) / (4*D1IM*D1M) ) +
! (A1*A1*R1ZY*R1Z2Y* (DRA*DRA+DRB2*DRB2) / (4*D1M*D1M) ) +
! (A2*A2*R3ZX*R3ZX* (DRC*DRC+DRB1*DRB1) / (4*D2M*D2M) ) +
! (A2*A2*R3ZY*R3ZY* (DRC*DRC+DRB2*DRB2) / (4*D2M*D2M) ) +
! (A2*A2*D2D2*D2D2* (DRB3*DRB3+DRB4*DRB4) / (4*D2M*D2M) ) +
! QlX*Q1X*B2*B2/ (6*B1*6*Bl))
DQM=SQRT ( (Q1X*Q1X*DQ1X*DQ1X/ (QM*QM) ) +
! (Q1Y*Q1Y*DQ1Y*DQ1Y/ (QM*QM) ) +
! (Q1Z*Q1Z*DQ1Z*DQ1Z/ (QM*QM) ) )

FILTER ON DQM ie ERROR ON QM BUT SPIRAL PERFECT
QOML=QM-DQOM
OMU=QOM+DQM

IF (QML.GT.0.035.0R.QMU.LT.0.035)GOTO 7

FILTER ON DOM ie ERROR ON QM AND ON SPIRAL

IF (QML.GT.SUQ.OR.QMU.LT.SLQ)GOTO 7

FOR TWO SPIRALS ;NEXT AT 70.53DEG+54.74DEG/USE ABS(QlY) DODGE
AQ1Y=ABS (Q1Y)
IF(AQlY.LT.1.E-3)GOTO 40
TH=ATAN ( (SQRT (Q1X*Q1X+Q1Z2*Q1Z)) /AQ1Y)
QTH1=Q1X*Q1X*DQ1X*DQ1lX/ ( (Q1X*Q1X+Q1Z2*Q1Z) *Q1lY*Q1Y)
QTH3=Q1lZ*Q1lZ*DQ1Z*DQlZ/ ((Q1X*Q1X+Q1Z*Q1Z) *Q1Y*Q1lY)
QTH2=(DQ1Y*DQ1Y/ (QlY*Q1lY*QlY*QlY) ) * (Q1X*Q1X+Q1Z*Q1Z)
DTH=COS (TH) *COS (TH) *SQRT (QTH1+QTH2+QTH3)
GOTO 41
40 TH=ZPI/2.
DTH=0.
41 THL=TH-DTH
THU=TH+DTH
WRITE(1,10)TH,DTH,Q1X,QlY,Q1Z,B12
FILTER ON DTH ie ERROR ON TH ;ANGLE DOWN FRCM 001
(.9553rad=54.74deq)
.0017rad=0.1ldeg
IF(THL.GT.0.9553.0R.THU.LT.0.9553)GOTO 7
FILTER ON DTH ie ERROR ON TH AND MOSAIC ON ANGLE DOWN FROM 001
IF (THL.GT.0.9570.0R.THU.LT.0.9536) GOTO 7
PRINT*,'TEST '
W=ATAN (-Q1Z2/Q1X)
BB1X=Q1X*Q1lX
DW=CQS (W) *COS (W) *SQRT ( (DQ1Z*DQ1Z/BB1X) +
! (Q1Z2*Q1Z*DQ1X*DQ1X/ (BB1X*BB1X)))
WL=W-DW
WU=W+DW
WRITE(6,11)W,DW

FILTER ON OMEGA ie ANGLE AROUND FROM STRAIGHT THROUGH
INCLUDES BOTH DW AND MOSAIC
W=90+.819 deg=PI/2+.01429rad+-.0017rad THIS LINE CRAP?
WOL=W0-.0017
WO0U=WO0+.0017
IF SET FOR POSITIVE X SIDE THEN C OUT LINES 30 & 31 AND LEAVE LINES
32 & 33
IF WANT NEGATIVE X SIDE C OUT 32,33 AND LEAVE IN 30,31
THIS CORRESPONDS TO A ROTATION OF THE SAMPLE ABOUT THE VERTICAL AXIS
THE ANGLE CAN BE ALTERRED BY HAND TO CORRESPOND WITH SAMPLE



(@]

ROTATION BY CHANGING WO AT TOP OF THE PROGRAM
30 WOLN=2PI-WOL
31 WOUN=ZPI-WOU
32 WOLN=ZPI+WOL
33 WOUN=ZPI+WQOU
IF (Q1X.GT.0.)GOTO 20
IF (Q1X.LT.0.)GOTO 23
20 IF(WL.GT.WOU.OR.WU.LT.WOL)GOTO 7
PRINT*, ' TEST1 '
GOTO 24
23 W=ZPI+W
WU=W+DW
WL=W-DW
IF (WL.GT.WOUN.OR.WU.LT.WQOLN) GOTO 7
PRINT*, ' TEST2
GOTO 24
24 ZDF=ZDF+1
C(JA,KA)=C(JA,KA) +1
C(JA,KA)=C (JA,KA) +WBl
24 WRITE(1,11)QM, TH,W,R3X,R3Y,R32
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
WRITE (1, 11) Z2DF, ZDF
DO 8 JA=N1,N2
DO 9 KA=N3,N4
WRITE(1,12)JA*1.,KA*1.,C(JA,KA)
9 CONTINUE
8 CONTINUE
10 FORMAT(1H ,6E11.3)
11 FORMAT (1H ,2E14.6)
12 FORMAT (1H ,3E14.6)
13 FORMAT (1H ,3E14.6)
STOP
END

N WS 0oy



Appendix D

Design and Development of a
High Pressure Cell and Uniaxial
Stress Device for Magnetic
Measurements

D.1 Introduction

High pressure techniques are a powerful and underused tool for studying phase tran-
sitions and physical properties of solids in terms of interatomic distances. Within
magnetic measurements, generally the two variables used are magnetic field and
temperature with temperature range of 4.2 - 1400K and fields of 0 - 120kOe easily
accessible. Thus if magnetic measurements under pressure or uniaxial stress could
be developed, the scope for work is endless.

Another and more specific motive for development of magnetic measurements
under pressure were the elastic neutron scattering results on MnSi at high pressure
(S. Brown (1990)) which suggest strange behaviour and possible lowering of the
transition temperature for pressure in the regime 10kbar.

The first considerations in any pressure cell design are (i) the type of measure-
ments to be made, (ii) the size of the cell and (iii) the pressure required.

As experience in magnetic measurements and operation of a VSM had been ob-
tained it was decided to perform magnetic measurements under pressure, developing
the Durham VSM to do this. One of the advantages of the 180° double throw vibra-
tion mechanism apart from low noise, is the high inertial loading, in affect allowing
vibration of a pressure cell.

To enable measurements to be made down to 4.2K, the cell had to be designed
to fit into the Oxford CF1200 cryostat.

F irially, the pursuit of magnetic measurements under pressure was regarded as

a long term development so initial pressure requirements were set in the order of
kilobars.
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D.2 Types of Pressure Cell

There are many types of pressure cell, each with numerous variations but only
clamp type and diamond anvil cells were considerred due to their simplicity and
portability. With a clamp type cell, the system is pressurised and this pressure
clamped or locked in. A bore into which a piston is driven allows application of
a uniaxial stress or hydrostatic pressure (by compression of a liquid medium) to a
sample with the tightening of a locking nut maintaining the applied force on removal
of the piston. This type is typically used for pressures upto 20kbar.

Diamond-anvil cells involve very small sample spaces and much higher pressures
(in fact below 40kbars pressures are not usually known or uniform). The sample
is pressurised between two diamond pieces hence the name. Due to the pressure
range required, its simplicity and the desire for large sample space, a clamp cell was
designed and built.

The major problems with magnetic measurements under pressure using a VSM
are associated with the cell itself. Since the mass of the cell is upto 1000 times that
of the sample, the size and reproducibility of the signal from the cell limit sensitivity.
However, the system does have the one advantage that the sample space is entirely
enclosed.

D.3 Cell Geometry and Analysis

The most common geometry used for pressure apparatus is that of the cylinder and
in analysis can be considerred to be a simple, elastic, thick walled cylinder (Sherman
and Stadtmuller(1987)). As the pressure increases inside the cell, the stress in the
walls has radial and tangential components that give rise to a single shear stress

which is a function of radial position (figure A4.1) and largest at the bore of the
cell.

As the internal pressure is increased, all the stresses increase linearly until the
resulting strain exceeds the elastic limit at some point. For thick wall cylinders,
the commencement of permanent distortion at the bore comes from the shear stress
reaching the allowable limit 7* which is never greater than % where o is the yield
stress of material used. The highest pressure which a simple cell can support elas-
tically is

K2
= TTR
where K is the ratio of the inner to the outer radii :—; This limit is not related to
the bursting pressure. This condition that the boundary between idealized (7 =
7*) overstrained material and elastic material has been pushed out to the outer
circumference of the cylinder

(D.1)

P’ = 1°InK? (D.2)

The ultimate bursting pressure can be expected to exceed this value although it will
cause a relatively large distortion of the cylinder.
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Figure A4.1 The stress distributions within an internally pressurised thick-wall
cylinder as a function of radial position. (After Sherman and Stadtmuller (1987)).



D.4 Choice of Material for the Cell

The maximum internal pressure a cylinder can withstand is dependent on both
the value K and more importantly oma.. (In principle it will always be possible
to reach a particular pressure by using sufficiently small K however there is little
advantage in using a value K < } since the increase in mass far outweighs the
additional strength, important considerations when the cell is to be cooled and
vibrated.) Obviously a strong material is necessary, but other factors include ease
of machining, small magnetisation so as not to swamp the signal from the sample
and a relatively high resistance at low temperatures to restrict the production of
eddy currents.

The cell was made from Beryllium Copper (BeCu) supplied by Brushwellman
Ltd., Reading, infact Brush Alloy 25. BeCu contains less than 2% Be but this has a
large affect on some properties of the Cu, particularly its strength. It is supplied in
a half-hard condition enabling ease of machining and then is heat treated (2 hours
at 315°C) which dramatically increases its strength. It also has a high thermal
conductivity, reducing the possibility of temperature gradients across the cell and a
low specific heat which is advantageous for cooling purposes.

Unfortunately BeCu has magnetic binders Fe, Co and Ni within the lattice how-
ever this is only 0.6% by weight and tests showed the signal from these were not
significant and also reproducible. Other ways around the problem are include using
BeCu without magnetic binders (Foner (1974)) or alteration of coil geometry and
use of a ‘dummy cell’ if residuals were too large.

D.5 Strength of the Cell

Since the pressure cell was required to work at low temperatures. it had to fit
down an Oxford CF1200 cryostat thus limiting the external diameter. The internal
diameter of the cell was fixed at 4mm and the external at 12mm so that after heat
treatment the maximum pressure the cell could support elastically was 6.5kbar.
The design of the pressure cell is shown in figure A4.2. (N.B. Heat treatment of the
half-hard BeCu is accompanied by a slight volume change of about 0.5 volumetric

%.)

D.6 Strengthening the Cell

The maximum pressure which can be applied to a sample and supported elasti-
cally by the cell can be increased by putting the BeCu at the bore in a state of
compression. One technique for achieving this is autofrettage.

Autofrettage is used to increase the elastic operating pressure of a cylinder. The
cell is intentionally over pressurised beyond the elastic breakdown pressure so that
non-uniform plastic flow occurs beginning at the bore extending radially outward
to a radius that depends on the applied pressure. This leaves the unloaded cylinder
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under tangential compression at the bore and permits elastic operation up to the
pressure that was applied during autofrettage. The pressure required to autofrettage
a cylinder is upto twice the elastic range of the same cylinder before this process.
(N.B. The autofrettage process produces changes in the dimension of the cylinder
but were calculated to be negligible in this case.

D.7 Pressure Vessel Closures

In a clamp type device, the locking nut is used to clamp the applied pressure and the
stresses and their distributions on the threads are complicated by numerous factors.
The first thread picks up the load initially and as it deforms elastically, it transfers
the load to the next thread and so on until the entire thread system is loaded. With
conventional Acme thread design machined into the wall of the vessel, the first few
threads carry the majority of the load and under cyclic pressure loading most thread
failures occur in this region as shown in figure A4.3.

To overcome the numerous problems associated with the Acme thread, one of
Buttress form was used. The contacting flank of the thread which takes the thrust
is so nearly perpendicular to the tread axis that the radial component of the trust is
reduced to a minimum. Because of this small radial thrust, the form of the thread
is advantageous when involving exceptionally high stresses along the thread axis in
one direction only. The use of Buttress threads also results in a more uniform stress
distribution along all the threads (figure A4.3).

Finally the nut has an M6 hexagonal head as well as a hole for a tommy bar
offering two seperate methods of tightening to clamp the applied force.

D.8 Temperature Induced Stress

The pressure cell was designed to fit into the CF1200 Oxford cryostat and be used on
the VSM at temperatures as low as 4.2K. However its heating or cooling produces
temperature gradients which in turn set up stress gradients. With the bore at
a higher temperature than the outside, thermal stresses cause a lower resultant
stress and the reverse occurs for the bore at lower temperatures. The magnitude
of stresses induced in BeCu is 3.5bars/K (which compares favourably to that of
steel at 45bars/K) and the high thermal conductivity reduces these to a minimum.
However care was taken when cooling or heating the cell.

The cell behaves as a large thermal mass and therefore a temperature sensor
attaching directly to it. A calibrated AuFe(0.07%)Cr thermocouple was used.

D.9 Homogeneous Pressure Transfer

Hydrostatic pressure is transferred to the sample by compression of a liquid medium
and a sealing arrangement is thus necessary. There are many methods for sealing
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a cell at high pressure and an important consideration in the design is that they
have to work at low pressures while the cell is being pressurised, as well as at high
pressures. The basic principle of most seals is that an elastic material must be
compressed to a higher pressure than the fluid that is being confined.

The most important characteristic of any pressure transmitting fluid is that it
should be hydrostatic to the maximum pressure required in the experiment. To
prevent crystallisation of the fluid on freezing, a mixture of liquids is used, often 1:1
n-pentane:isopentane which is hydrostatic to 70kbar.

The cell was designed to contain a ‘teflon-cup’ seal, first developed by Hamann
and Teplitzky (Hamann and Teplitzky (1956)). This system is descibed in detail
together with 1:1 n-pentane:isopentane as hydrostatic medium by Delaplace (De-
laplace et. al. (1976)). Given that the cap will seal only if the pressure in the teflon
is greater than the liquid, it is necessary to calculate the pressure when designing
the cap. The pressures turn out to be simple functions of the ratios of the lengths,
diameters and compressibilities of the fluid and teflon.

D.10 Uniaxial Stress Device

When measurements were made under uniaxial stress, the BeCu plunger in the
central bore attaches directly to the sample. The ends of the pluger were machined
flat and sample edges were also prepared carefully.

D.11 Pressure Measurement

One of the few advantages of using a VSM for performing magnetic measurements
under pressure is that the sample space is entirely enclosed. In order to maintain
this, the system was designed to measure the pressure contained within the cell in
terms of expansion of the outside surface using a strain gauge. A manganin coil
could be used as a primary sensor to calibrate the strain gauge.

D.12 Pressure Transfer Device

A steel vice was designed to be incorporated into a ten tonne press. The cell is
centrally held whilst a pluger applies pressure to the sample space. The locking
nut is then tightened to clamp the force. The most critical time for a cell when
considering failure is the pressurising and in order to provide protection for the
user, the cell is entirely enclosed by steel surrounds.
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D.13 Magnetic Measurements made using the
BeCu Pressure Cell

D.13.1 Unpressurised measurements at room temperature

Figure A4.4 shows the magnetisation of the BeCu pressure cell at room temper-
ature. In order that magnetic measurements could be performed under pressure,
this signal has to be reproducible. The voltage and hence magnetisation appears to
be initially diamagnetic and then saturates however the reason for this is that the
lockin amplifier was ‘phased’ on the induced voltage from a 0.0737g piece of nickel
put in the pressure cell. When a residual measurement was recorded without the
nickel, there was and ‘out of phase’ signal on the lockin suggesting that this did not
correspond to the ‘magnetic centre’ of the cell. Hysteresis exists and is evidence of
the magnetic binders in the BeCu. Comparison of the signal from the cell residual
and cell containing the nickel are shown in figure A4.5 at room temperature.

D.13.2 Unpressurised measurements made at lower tem-
peratures

Similar residual measurements were made at lower temperatures and are shown in
figure A4.6. From this it is evident that not only the gradient of the residual but also
the amount of hysterisis in low fields are both sensitive to changes in temperature.
Figure A4.7 shows the magnetisation of nickel recorded in the pressure cell as a
function of field at 80K.

D.13.3 Low temperature magnetic measurements made un-
der pressure

In order to investigate the magnetic response of the pressure cell as a function of
pressure and temperature, a sample of Y Ba;Cu307_5 (made by Mr. C.M. Friend
(92% dense, T, = 92K)) was ground into a powder and 0.121g put into the sam-
ple space of the pressure cell. Klotz et al. (1991) have made a.c. susceptibility
measurements on a single crystal of Y Ba;Cu307_5 under hydrostatic pressure upto
13GPa. The hydrostatic pressure was applied to the sample using a diamond-anvil
cell loaded with liquid helium. The superconducting transition temperature of the
crystal initially increases at a rate of 0.65 + 0.15K Gpa™! before passing through a
maximum at 4GPa. This pressure regime is far greater than that exerted by the
BeCu cell (1GPa=10kbar) and since magnetisation is a bulk volume measurement,
then no variation in the magnetisation of Y Ba,;Cu307_s was predicted using the
BeCu cell. This enabled the magnetisation of the BeCu cell to be studied as a func-
tion of applied pressure and temperature. A powder was used so that the pressure
within the sample would be approximately homogeneous without requiring a pres-
sure transfer medium or seal. The force was applied to the sample via the steel vice
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using a ten tonne press, the pressure exerted being displayed on a dial and recorded
at room temperature, the locking nut then being tightened.

Figure A4.8 shows the results obtained at 80K with the locking nut only hand
tight on the pressure cell. The cell was cooled in a field of less than three gauss
to prevent flux penetrating the sample. The results obtained are typical of a ‘high
T.’ polycrystalline sample and can be interpreted in terms of flux penetration and
trapping in the sample via Bean’s model (1964). Below the lower critical field B,
magnetic flux only penetrates into a surface layer. The bulk of the superconductor
excludes all the applied field and behaves as a perfect diamagnet until the field at
the surface reaches B.; . Above the lower critical field the magnetic field penetrates
the specimen in the form of quantised flux lines (fluxons), each containing a mag-
netic flux quantum 5"; The superconductor loses its diamagnetic behaviour and its
magnetisation decreases. As the field is reversed, hysterisis is observed and can be
explained in terms of Bean (1964) through his ‘Critical State Model’.

Figures A4.9 and A4.10 show the same measurements, but performed after pres-
surising the cell to 1 and 2kbar at room temperature. Fig-a consists of the raw data
together with BeCu cell residual at 80K while fig-b is the data with the residual
subtracted. The shape of the hysterisis curve is identical to that recorded at am-
bient pressure in the cell as expected. However, as the pressure is increased (see
for example figure A4.11: pressure set at room temperature 4kbar) although the
low field properties (less than 1kQOe) of the magnetisation remain similar, the high
field susceptibility increases with pressure, i.e. there is an increasing paramagnetic
component. Figure A4.12 shows the magnetisation data recorded at 95K (i.e. above
the transition temperature of the superconductor) for various pressures applied at
room temperature and clamped with the ‘locking nut’. From this it is evident that
the increase in paramagnetic component with pressure is dramatic and probably a
characteristic of the BeCu used and not the superconductor. It is also apparent that
the low field properties of the BeCu cell vary with pressure as the low field ‘kink’
observed about zero field at ambient pressure reduces and disappears at a pressure
of 3kbar (applied at room temp.). '

In order to overcome this problem, the magnetisation recorded at 95K and at
a particular pressure was used as a residual measurement for the remaining data
recorded at lower temperatures but the same initial pressure. Figures A4.13 - A4.16
show the results of this obtained for ambient, 1, 2 and 4kbar respectively at 85K.
From these it is evident that using this technique the results are again typical of
a polycrystalline ‘high T’ superconductor, very similar to those obtained by sub-
tracting the ambient pressure cell residual. However, the results obtained at lower
presssures, particularly ambient and 1kbar have too large paramagnetic components,
particularly noticable at high fields.

Initially the magnetisation of the cell does not alter with pressure (for pressures
of and below lkbar) and the residual is best represented by the true unpressurised
cell residual, recorded at the same temperature. Using measurements taken at 95K
l.e. above the transition temperature of the superconductor as a residual at low
pressures result in the data having too large a paramagnetic moment, again par-
ticularly evident at high fields (> 1kOe). The reason for this is that the actual
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data is taken at a lower temperature (infact 10K lower) where the paramagnetic
component of the magnetisation from both sample and cell will be greater. As the
pressure within the cell is increased, the paramagnetic component of the magnetisa-
tion of the cell increases. When the unpressurised BeCu cell residual is subtracted,
it gives the impression that the sample has too large a paramagnetic component.
For pressures of 2kbar and above, this affect is greater than that of the increasing
paramagnetic component due to reduction in temperature so the residual is better
represented by the magnetisation of the sample and cell at that particular pressure
but at a temperature of 95K.

Naturally the fact that the magnetisation of BeCu cell varies so dramatically
with temperature and pressure is a great disappointment and sets limitations on
the usefulness of the cell. From figure A4.12 it is evident that the low field ‘kink’ in
the magnetisation of the BeCu cell, observed at low applied pressures disappears as
well as the paramagnetic component increasing as the pressure is increased in the
cell. However, a combination of using the magnetisation of the pressurised cell but at
a higher temperature, coupled with the assumption of Curie-Weiss behaviour of the
BeCu enables the problem to be overcome though this is not entirely satisfactory.
Despite this, the cell was able to withstand applied pressures of upto 6kbar and
close inspection of the cell afterwards showed no sign of damage.

D.14 Further Developments

The next suggested development is application of a strain gauge to the cell, in
order to measure the applied pressure within the cell and study how it varies with
temperature. From figure A4.12, it is evident that for applied pressures of 2kbar and
above, the icrease in the paramagnetic component of magnetisation is approximately
linear with increasing pressure apart from 3kbar. The reason for this may have been
the fact that although the press applied 3kbar at room temperature, the locking nut
may not have been tightened enough on the cell to maintain this pressure on the
sample. In order to enable measurement of the pressure applied to the sample,
application of a strain gauge to the BeCu will enable the resulting deformation of
the cell and hence internal pressure to be measured. Variation of this pressure with
cell temperature could then also be investigated. Following this, development of
sample enviroment and sealing to apply hydrostaic pressure to the sample could
commence. Because of the success of the cell to withstand applied pressures, the
production of a further cell with same design but made of ‘nonmagnetic steel’ is
recommended in an attempt to discover a more suitable material where magnetic
properties are not so pressure dependant.
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Figure A4.13 (a) The signal obtained from 0.121g of ‘YBCO’ in the BeCu cell at
85K (squares), where the cell had been pressurised hand tight at room temperature
before cooling, together with the signal obtained from 0.121g of ‘'YBCO’ under
identical conditions apart from at 95K (triangles). (b) The corrected signal from
the ‘'YBCO’ at 85K with signal obtained at 95K subtracted.
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Figure A4.14 (a) The signal obtained from 0.121g of ‘YBCO’ in the BeCu cell at
85K (squares), where the cell had been pressurised to lkbar at room temperature
before cooling, together with the signal obtained from 0.121g of ‘YBCO'’ under

identical conditions apart from at 95K (triangles). (b) The corrected signal from
the ‘YBCO’ at 85K with signal obtained at 95K subtracted.
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Figure A4.15 (a) The signal obtained from 0.121g of ‘YBCO’ in the BeCu cell at
85K (squares), where the cell had been pressurised to 2kbar at room temperature
before cooling, together with the signal obtained from 0.121g of ‘YBCO’ under
identical conditions apart from at 95K (triangles). (b) The corrected signal from

Llwptie Daeled (T

the ‘YBCO’ at 85K with signal obtained at 95K subtracted.
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Figure A4.16 (a) The signal obtained from 0.121g of ‘YBCO’ in the BeCu cell at
85K (squares), where the cell had been pressurised to 4kbar at room temperature
before cooling, together with the signal obtained from 0.121g of *YBCO’ under

identical conditions apart from at 95K (triangles). (b) The corrected signal from
the 'YBCO’ at 85K with signalobtained at 95K subtracted.
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