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ABSTRACT 

In this thesis, we are interested in exploring some aspects of Machine Earning 
(ML) and its application in the Reliability Analysis systems (RAs). We begin by 
investigating some M L paradigms and their techniques, go on to discuss the possible 
applications of M L in improving RAs perfonnance, and lastly give guidelines of the 
architecture of learning RAs. Our survey of ML covers both levels of Neural Network 
learning and Symbolic learning. In symbolic process learning, five types of learning and 
their applications are discussed : rote learning, learning from instruction, learning from 
analogy, learning from examples, and learning from observation and discovery. 

The Reliability Analysis systems (RAs) presented in this thesis are mainly 
designed for maintaining plant safety supported by two functions : risk analysis function, 
i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault 
location (RTFL). Three approaches have been discussed in creating the RAs. According 
to the result of our survey, we suggest currently the best design of RAs is to embed 
model-based RAs, i.e., MORA (as software) in a neural network based computer system 
(as hardware). However, there are still some improvement which can be made through 
the applications of Machine Learning. 

By implanting the 'learning element', the MORA will become learning MORA 
(La MORA) system, a learning Reliability Analysis system with the power of automatic 
knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we 
propose an architecture of La MORA. 
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C H A P T E R 1 

INTRODUCTION 

1 

1.1 Ar t i f ic ia l Intelligence 

In the past, the design and maintain of an industrial system has mainly relied on 
human resources - the experts1 - for performing the tasks in design verification and real 
time diagnosis of factory faults. Such skills have called upon the expert's knowledge and 
his/her abilities to plan complex actions, detect errors, and learn about the environment. 
Nevertheless, based on human intelligence, we have always enjoyed creating tools that 
take the muscle and repetition out of our working environment [Wright & Bourne 
1988]. In this thesis, we intend to apply some Artificial Intelligence (AI) techniques in 
creating and in improving the performance of Reliability Analysis systems (RAs) used in 
an industrial aspect. In addition, we concentrate upon describing the current position of 
Machine Learning (ML) and we make a suggestion as to how this may be incorporated 
into existing RAs. 

Reliability Analysis systems (RAs) are systems designed as a tool to assist 
engineers in verifying system design (i.e. failure mode effect analysis function) and in 
diagnosing of factory faults (i.e. real-time fault location function) : 

1. The failure mode effect analysis function (FMEA) helps design engineers 
detect or simulate possible dangers caused by inappropriate plant design, 
therefore increasing plant safety. 

2. The real-time fault location function (RTFL) aims at reducing the cognitive 
load of an on-line operator usually by helping to diagnose the cause of alarms and 
possibly by suggesting corrective action. 

Based on the conventional approach, the expertise, i.e., knowledge and the 
problem solving techniques, used by human experts has to be elicited from humans and 
transferred into a computer-based system, e.g., RAs. Therefore, the RAs should, at best, 

1 The "experts" is a general term for representing many aspects of people required in industrial system, 
e.g., design engineer, on-line operator, diagnosis expert, etc. 



possess equivalent knowledge as the experts mentioned above. In that sense, the 
establishing of RAs can prevent loss of expertise through their death, retirement, or their 
job transfer of human experts. Furthermore, RAs can be used by the experts themselves 
as an auxiliary tool, also the systems can be used for training in order to pass the 
expertise along to novices. 

In Artificial Intelligence (AI), both symbolic processing (i.e. the conventional 
approach) and neural network approaches have been adopted to create the RAs. Though 
there are many successful applications, still there are several improvements that can be 
made by introducing Machine Learning (ML) techniques into these systems. 

Our interest is focused on exploring some aspects of Machine Learning (ML) in 
Reliability Analysis systems (RAs). We begin by investigating some M L paradigms and 
their techniques, go on to discuss the applications and lastiy give guidelines of the 
architecture of learning RAs. 

1.2 Historical Remarks - An AI View 

The following is a brief introduction to Machine Learning (ML) development 
through the history of Artificial Intelligence (AI). It has been divided into four periods, 
each centered around a different paradigm [Forsyth & Naylor 1986] : 

1. 1950s - Neural networks. In 1943, Warren McCulloch and Walter Pitts 
proposed a model of the neuron in the human and animal brain [Forsyth & Naylor 
1986]. These abstract nerve cells provided the basis for a formal calculus of brain 
activity. Other workers, notably Norbert Wiener, elaborated these and similar ideas into 
the field that became known as Cybernetics; and it was from Cybernetics that A I 
emerged as a scientific discipline in the 1950s. The term "Artificial Intelligence" was first 
introduced by John McCarthy, in the Dartmouth Summer Conference (1956). Although 
both disciplines share the equal opportunities in creating intelligent systems, to 
distinguish them, we quote from Alain Bonnet [Bonnet 1985] : 

The study of Cybernetics is concerned with the mathematical properties of 
feed-back systems and treats the human being as an automation, whereas AI is 
concerned with the cognitive processes brought into play by the human being in 
order to perform what we regard as intelligent tasks. 

During this period, the research interest was in building general purpose learning 

systems that start with little or no initial structure or task-oriented knowledge. The major 
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thrust of research based on this tabula rasa approach involved constructing a variety of 
neural model-based machines, with random or partially random initial structure. These 
systems were generally referred to as neural nets or self-organizing systems. Learning in 
such systems consisted of incremental change in the probabilities that neuron-like 
elements (typically threshold logic units) would transmit a signal. Due to the primitive 
nature of computer technology at that time, most of the research under this paradigm 
was either theoretical or involved the construction of special purpose experimental 
hardware systems, such as Perceptrons, Pandemonium, and Adelaine. [Michalski, 
Carbonell & Mitchell 1984] Related research involved the simulation of evolutionary 
processes, that through random mutation and "natural" selection might create a system 
capable of some intelligent behaviour. Learning algorithms inspired by the evolution 
process are called genetic algorithms. 

Rosenblatt's Perceptron [Michalski, Carbonell & Mitchell 1984] was an 
elementary visual system which could be taught to recognize a limited class of patterns. 
It consists of a finite grid of light-sensitive cells. This constitutes a miniature retina. In 
addition there are a number of feature-detecting elements - picturesquely called 'demons' 
- which monitor the state of groups of cells in the grid. They respond when characteristic 
subpatterns are presented by sending a signal to a higher-level decision-maker. The 
decision-maker multiplies each signal from a local demon by a positive or negative 
weighting factor and the resulting numbers are added. I f the total exceeds a set threshold 
the Perceptron says 'Yes'; otherwise it says 'No'. Thus one perceptron can discriminate 
two classes of images. To recognize more patterns requires more Perceptrons - 26, say, 
for the letters of the alphabet. By adjusting the weightings attached to each demon, the 
Perceptron can be made to learn (in a sense). 

Experience in the above areas spawned the new discipline of pattern recognition 
and led to the development of a decision-theory approach to machine learning. In this 
approach, learning is equated with the acquisition of linear, polynomial, or related forms 
of discriminate functions from a given set of training examples. One of the best known 
successful learning systems utilizing such techniques was Samuel's checkers program. 
[Michalski, Carbonell & Mitchell 1984] This program was able to acquire through 
learning a master level of performance. Somewhat different, but closely related, 
techniques utilized methods of statistical decision theory for learning pattern recognition 
rules. 

In parallel to research on neural modeling and decision theoretic techniques, 
researchers in control theory developed adaptive control systems able to adjust 
automatically their parameters in order to maintain stable performance in the presence of 
various disturbances. 
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Practical results sought by the neural modeling and decision theoretic approaches 
met with limited success. High expectations articulated in various early works were not 
realized, and research under this paradigm began to decline. Theoretical studies have 
revealed strong limitations of the "knowledge-free" perceptron type learning systems 
(ibid.). 

2. 1960s - Heuristic search. A I workers abandoned the attempt to build artificial 
brains from the ground up. Instead they looked on human thinking as a complex 
coordination of essentially simple symbol-manipulating tasks, research mainly stemming 
from the work of psychologists and early A I researchers on models of human learning. 
The paradigm utilized logic or graph structure representations rather than numerical or 
statistical methods. Systems learned symbolic descriptions representing higher level 
knowledge and made strong structural assumptions about the concepts to be acquired. 
[Michalski, Carbonell & Mitchell 1984] 

Examples of work in this paradigm include research on human concept 
acquisition, and various applied pattern recognition systems. Some researchers 
constructed task-oriented specialized systems that would acquire knowledge in the 
context of a practical problem. For instance, the META-DENDRAL program which 
generates rules explaining mass spectrometry data for use in the DENDRAL system. 
[Michalski, Carbonell & Mitchell 1984] 

An influential development in this paradigm was Winston's structural learning 
system. In parallel with Winston's work, different approaches to learning structural 
concepts from examples emerged, including a family of logic-based inductive learning 
program (AQVAL), and related work by Hayes-Roth & McDermott. [Michalski, 
Carbonell & Mitchell 1984] 

Here they were on firmer ground since computers can do things like searching, 
comparing symbols and so on, which they identified as the foundations of intelligent 
problem solving. The hard part was putting these simple activities together. The most 
influential workers at this time were Allen Newell and Herbert Simon of Carnegie-
Mellon University, who worked on theorem-proving and computer chess, among other 
things. Their masterwork was a program called GPS, the General Problem Solver. GPS 
was general in so far as the user defined a 'task environment' in terms of the objects. 
However, its generality was restricted to puzzles with a relatively small set of states and 
well-defined rules. It could work on the Towers of Hanoi, cryptarithmetic and other 
problems of a similar nature. It functioned in fonnalized micro-worlds. What it could not 
do was solve what people would regard as real-life problems - e.g. Has this patient got 



cancer? Should I sell my shares now? Real problems are characterized by a lack of 
precise rules; but GPS and contemporary systems could only work in a very clearly 
defined environment. Another criticism of GPS was its reliance on what is now known as 
depth first search, which involves splitting larger problems into progressively smaller 
subproblems until one trivial enough to be solved directly is reached. It is an elegant idea, 
but it is not an optimal search strategy, since it can involve an unnecessarily thorough 
examination of unsuccessful pathways, requiring a lot of backtracking. The central idea 
behind GPS was that problem solving was a search through a space of potential 
solutions. To make the search efficient, it had to be guided by heuristic rules that 
directed it towards the desired destination. Thus, an automaton wandering around a 
maze would have to use an exhaustive search technique if it knew nothing about the 
structure of that maze; but if it had some way of telling when it was getting 'warm' it 
could normally reach its goal state sooner. (Not always, since heuristics are not 
guaranteed to work, and occasionally may lead it down a blind alley.) During this period, 
A I workers devised several heuristically guided search strategies, such as the A* 
algorithm, which are still valid. In addition, concepts such as list-processing were 
introduced into general computer practice. List-processing was once a specialist A I 
topic, motivated by the desire of A I programmers to handle diverse and flexible data 
structures, i.e., 'represent knowledge'. Now it is standard computing practice. This 
tendency for A I to 'export its successes' is remarkable, and continues to the present day. 
A I has always been a fertile breeding ground for new ideas, and if they are good ideas 
they soon cease to be regarded as belonging to A I . One of the best ideas that has spread 
outwards in this way is the notion of the expert system. 

3. 1970s - Knowledge-base systems. Researchers have broadened their interest 
beyond learning isolated concepts from examples, and have begun investigating a wide 
spectrum of learning methods, most based upon knowledge-rich systems. Specifically, 
this paradigm can be characterized by several new trends, including [Michalski, 
CarboneU & Mitchell 1984] : 

(1) Knowledge-intensive approach : Researchers are strongly emphasizing the 
use of task-oriented knowledge and the constraints it provides in guiding the 
learning process. One lesson from the failures of earlier tabula rasa and 
knowledge-poor learning systems is that to acquire new knowledge a system 
must already possess a great deal of initial knowledge. 

(2) Exploration of alternative methods of learning : In addition to the earlier 

research emphasis on learning from examples, researchers are now investigating a 

wider variety of learning methods such as learning from instruction, leairiing by 

analogy, and discovery of concepts and classifications. 
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(3) Incorporating abilities to generate and select learning tasks : In contrast to 
previous efforts, a number of current systems incorporate heuristics to control 
their focus of attention by generating learning tasks, proposing experiments to 
gather training data, and choosing concepts to acquire. 

GPS, as we said, was not much good at real-life problems. In the 1970s a team 
led by Edward Feigenbaum at Stanford University began to remedy that defect. Rather 
than trying to computerize general intelligence, they focused on very narrow areas of 
expertise. Thus was the expert system born. The first expert system was DENDRAL, a 
mass-spectrogram interpreter built as early as 1967; the most influential has proved to be 
MYCIN which dates from 1974 (and was strongly influenced by DENDRAL). The 
problem addressed by DENDRAL is to take data about the fragmentation of an organic 
molecule provided by the mass-spectrogram and use it to infer the structure of that 
molecule. The knowledge used to guide the interpretation is of two kinds - knowledge 
about the chemical composition of the molecule, and knowledge about the way the 
chemical bonds break up within the instrument. Without the second kind of knowledge 
there could be literally millions of ways that the molecule might have been put together. 
MYCIN diagnoses bacterial infections of the blood, and prescribes drug therapy. It has 
spawned a whole family of medical diagnostic 'clones', some of which are in routine 
clinical use. For instance, PUFF, a lung-function diagnostic tool based on the MYCIN 
plan, is routinely employed at the Pacific Medical Center near San Francisco. MYCIN'S 
importance lay in the introduction of various new features which have become the 
hallmarks of the expert system. Firstly, its 'knowledge' consists of hundreds of rules. 
Secondly, these rules are probabilistic. Shortliffe, the inventor of MYCIN who was also a 
doctor, devised a scheme based on certainty evidence. The significant point, however, is 
that MYCIN and systems like it can arrive at correct conclusions even with incomplete 
and partly incorrect information. They have some method of approximate reasoning -
whether based on probabilities, Fuzzy Logic, certainty factors or some other likelihood 
calculus - for deriving a good estimate of the truth even from imperfect data. Thirdly, 
MYCIN can explain its own reasoning process. The physician using it can interrogate it 
in various ways, either to ask how it reached a particular conclusion or why it is 
requesting a certain item of infonnation. The system answers by retracing and describing 
the deductive process that led to the current state. This degree of user-friendliness was 
essentially a by-product of the rule-based style of programming. Today hardly anyone 
doubts that the more important the task a computer system performs, the more necessary 
that it can explain and justify its own behaviour to the users. The fourth, and crucially, 
MYCIN works. It does what requires a human years of training. In fact, MYCIN is more 
used in teaching than diagnosis but the point is that large corporations, governments and 
the media are all becoming interested. One of MYCIN'S successors, the PROSPECTOR 



geological exploration system, has been widely quoted as helping to discover a vast 
unknown molybdenum deposit in Washington state. It is early days yet but corporate 
America has scented the sweet smell of profits. A I has lost its innocence. 

4. 1980s - now, Machine learning. Expert systems are in fashion, and their 
magic ingredient is knowledge. For it is the scope and quality of its knowledge base that 
determines the success of an expert system. But knowledge is not something you can 
squeeze into a computer program like toothpaste from a tube. In fact it is often harder to 
quarry out of the unyielding rockface of ignorance than that famous molybdenum 
deposit! Codifying a human expert's skill can be a long and labour-intensive process. So 
while the world is marveling over expert systems, A I has moved on to concentrate on the 
problem of machine learning - which is one way of synthesizing knowledge 
automatically. A I always has been a moving target, and at the centre of that target right 
now is a program called EURISKO. EURISKO is a discovery program which extends 
and improves its own body of heuristic rules automatically, by induction. Apart from 
winning the 'Trillion Credit Squadron' naval wargame three years in succession (despite 
rule changes intended to stop it) EURISKO has also been applied to practical problems. 
One result was the invention of a novel three-dimensional AND/OR gate in the field of 
integrated-circuit design. Indeed, EURISKO is thought to be the first computer program 
holding a patent, though most of the credit rightly belongs to its author, Doug Lenat. 
There can be little doubt that systems like EURISKO represent the leading edge of A I 
research. And since A I itself can be viewed as a leading branch of computer science, this 
is the place to look for a peek at one future of computing. Ironically enough, by 
concentrating once again on learning AI has returned to its roots, because learning was 
seen as the key problem in the early cybernetic days. A lot of silicon has flowed under the 
bridge since then, however, and the present attempts to build systems that can improve 
their problem-solving abilities have a higher chance of success. 

Apart from the resurgence of interest in Machine Learning through the influence 
of its application in knowledge acquisition of expert systems, other interesting researches 
evolving from this time are the development of second generation of expert systems and 
the rapid growth of neural network application. 

Different from MYCIN-like systems, the second generation of expert system was 
first introduced by Luc Steels in 1985. Where as first generation systems rely purely on 
heuristic knowledge in the fonn of rules (shallow knowledge), second generation systems 
have an additional component in the fonn of a deeper model which gives them an 
understanding of the complete search space over a deeper model (deep knowledge). The 
introduction of a deeper model solves a number of fundamental problems of shallow 
knowledge-based expert systems [Steels & Velde 1989] : 
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1. Shallow systems can only solve a very narrow range of predefined problems 
because they possess no general knowledge concerning the domain, limiting their 
reasoning ability greatly. Second generation systems fall back on search (which is 
not knowledge-driven) and therefore potentially very inefficient. However, 
because these traditional search techniques can theoretically solve a wider class 
of problems , there is a graceful degradation of performance instead of an abrupt 
failure. 

2. First generation systems base their explanations purely on a backtrack of the 
heuristic rules that were needed to find a solution. It is well known however that 
the path followed to find a solution usually differs from a convincing rational 
argument why the solution is valuable, particularly if a lot of heuristic knowledge 
entered into the reasoning process. Because second generation systems have 
access to a deeper understanding of the search space, they can formulate a deeper 
and more convincing explanation which goes beyond the mere recall of which 
rules fired. 

3. The most important advantage lies however in knowledge acquisition. Finding 
heuristic rales has turned out to be extremely difficult. Experts typically take a 
long time to come up with solid rules, the rule-set never seems complete, is 
continuously changing, and shows inconsistencies across experts (and even within 
the same expert). These inconsistencies are apparently due to different 
experiences which are the source of heuristic rules discovery. Second generation 
expert systems constitute a major jump forward in current technology because 
they exhibit learning behaviour in the sense that they are capable of acquiring new 
heuristic rules. 

1.3 Thesis Outline 

The current chapter is an introduction to the development of intelligent systems. 

The second chapter is an introduction to machine learning. It is subdivided into 
three sections : an overview of machine learning; the learning model; existing machine 
learning techniques and their applications. 

The third chapter is a general introduction to Reliability Analysis systems (RAs) 

covering both symbolic and neural network approaches. 
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In chapter four, we discuss the applications of machine learning in the RAs in a 
more general fashion. 

The fifth, and final, chapter is a conclusion of our survey and further works. 

Apart from the first four main chapters and the conclusion, a references is 
appended at the end of the thesis. 
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2.1 Introduction 

Learning is an essential component of all intelligent systems. As we know, no 
matter how smart the system is, if it cannot learn (adapt to the changing environment) 
then it will rapidly become out of date. This applies particularly to computer systems. 
Basically, there are two main reasons to carry out machine learning research defined by 
Herbert A. Simon [Michalski, Carbonell & Mitchell 1984] : 

1. Directly getting computers to be smart and learn things by themselves so that 
human beings do not have to reprogram them. 

2. By using computer systems to simulate human learning, we might be able to 
find out how humans work and perhaps this can help us to improve our learning 
techniques. Furthermore, we might even find out better learning strategies than 
present human learning techniques. 

In chapter one, we have briefly encountered some Machine Learning (ML) 
systems through the introduction of ML history (summarized in Fig. 2.1-1). One could 
find that M L can be viewed as many phase phenomena. Some people defined learning as 
: "learning is constructing or modifying representations of what is being experience," 
(Ryszard S. Michalski) while others say (Herbert A. Simon) [Rich & Knight 1991] : 

Learning denotes changes in the system that are adaptive in the sense that 
they enable the system to do the same task or tasks drawn from the same population 
more efficiently and more effectively the next time." As thus defined, learning 
denotes two forms : skill refinement, and knowledge acquisition. 

1. Knowledge acquisition (symbolic level) is defined as learning new symbolic 
information coupled with the ability to apply that infonnation in an effective 
manner. For example, acquisition of new declarative knowledge, organization of 
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new knowledge into general, effective representations, and the discovery of new 
facts and theories through observation and experimentation. 

2. Skill refinement (neural net level) is the gradual improvement of motor and 
cognitive skills through practice. For example, learning to ride a bicycle. 

Differing in many ways from knowledge acquisition, skill refinement occurs at a 
subconscious level by virtue of repeated practice whereas the essence of knowledge 
acquisition may be a conscious process whose result is the creation of new symbolic 
knowledge structures and mental models. Most human learning appears to be a mixture 
of both activities. For example, learning to drive a car from a book or from an instructor 
is within "knowledge acquisition" domain whereas learning by practicing driving a car on 
the road is under the domain of "skill refinement", however, while we were practicing on 
the road, during the same time, we apply our knowledge to adjust our driving skill. 

1950 

neural modeling 

& 

decision-theoretic techniques 
Samuel's checkers program (1959) 

Rosenblatt's Perceptron (1958) 

1960 

GPS 
heuristic search 

1970 

knowledge-base system 

Winston's ARCH (1975) 

Michalski's AQ11 (1978) 

Quinlan ID3 (1979) 

1980 

machine learning i Michalski's INDUCE(1981) 

Lenat's EURISKO (1982) 

1994 

Fig. 2.1-1 Diagram of Machine Learning history 

2.2 Learning Models 

In the following, we are going to present two levels of learning model, i.e., model 

for conscious level and neural network model. 
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2.2.1 Learning Mode! of Conscious Level 

There are six major elements composing the conscious learning model (see Fig. 
2.2.1-1) : the environment, the learning element, the knowledge base, the effectors, the 
receptors, and the problem solver. 

1. The environment : The input to the learning system is from the environment in 
which the learner currently finds himself. In machine learning this will be the problem 
domain. 

2. The learning element: The learning element acts as a pattern recognizer. It is 
an interface between the problem solver and the knowledge base. The way that learning 
element consults the knowledge base is known as the learning skills. Many techniques 
adapted in Artificial Intelligence society are to simulate those learning skills, e.g., rote 
learning, learning by advice taking, etc.. This will be discussed later. Above all, there are 
a number of inference techniques applied by human beings, i.e. induction, deduction, 
abduction and creation. 

(1) Deduction : The process of reasoning in which a conclusion follows 
necessarily from the stated premises; inference by reasoning from the general to 
die specific. 

(2) Induction : A principle of reasoning to a conclusion about all members of a 
class from examination of only a few members of the class; broadly, reasoning 
from the particular to the general. 

(3) Abduction : This is a form of deductive logic which provides only a 'plausible 
inference'. Using statistics and probability theory, abduction may yield the most 
probable inference among many possible inference. 

3. The knowledge base : Here is where all knowledge has been kept, it captures 
the expertise of problem solving. There are several different ways of representing 
knowledge, we listed some out here : parameters in algebraic expressions, decision trees, 
formal grammars, production rules, formal logic-based expressions and related 
formalisms, graphs and networks, frames and schemes, computer programs and other 
procedural encodings, taxonomies, and multiple representations. [Michalski, Carbonell & 
Mitchell 1984] 
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4. The effectors : According to the solution generated from problem solver, the 
effectors produce system output. The interaction between system response and the 
environment wil l generate new stimula. So, the learning cycle will be initiated again. 

5. The receptors : The receptors will decode received stimula and transmit the 
signal to the problem solver. 

6. The problem solver. The problem solver collecting all the signals send from the 
sensors and integrates them into a pattern — problem fonned. This pattern then passed 
on to learning element for matching the solution from the knowledge base. I f the solution 
is found, then it will be returned to the problem solver to generate the output pattern -
solution found. The solution is then sent to effectors for producing system response. 
Otherwise, the learner will infonn problem solver to request more information (e.g., 
input more knowledge) or suspend the problem and do something else. 

Three of the components : the learning element, the problem solver, and the 
knowledge base are actually constructing within the CNS where the CNS stands for the 
central nervous system, details will be discuss in the next section. 

The reason that the model is classified as conscious level is because the problem 
solving procedure usually involves the application of symbolic knowledge. For example, 
imagine that we are attending a mathematics examine. All the questions are written in a 
paper. Firstly, We perceive the question with our eyes (stimulus received by the 
receptors and coded into system signals, and the signals will be sent to the problem 
solver) then we will try to search our memory for the solutions (the problem solver sends 
the request to learning element - please find the solution for the question). I f the learning 
element succeed in finding the answer, it will inform the problem solver to write it down 
on the paper. Finally, the problem solver will ask our hand to write down the answer on 
the answering paper, at the same time, it will also order our eyes to read. The answer 
that has been written down will then become a new stimulus for the system to check 
whether the writing is correct or not, and so on. However, if the learning element fails to 
find the solution for the question, the learning element might request the problem solver 
to go on trying the next question (depends on a particular situation), otherwise, the 
learning element could ask for more input, i.e., read the question again, or try hard to 
think of other way of answering the question, e.g., this could mean to modify the input 
patterns. 
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Fig. 2.2.1-1 Learning model of conscious level 

2.2.2 Neural Network Model 

As current Artificial Neural Networks (ANNs) are patterned after real neural 
networks, firstly we will briefly view the biological Neural Network model and then go 
on to describe ANNs. 

2.2.2.1 Biologic Neural Network Model 

Millions of receptors in our bodies continually monitor changes in our external 
and internal environment. Hundreds of thousands of cells called motoneurons (effectors) 
control the movement of our muscles and the secretion of our glands. In between, an 
intricate network of billions of cells called neurons (see Fig. 2.2.2.1-2) continually 
combine the signals from the receptors with signals encoding past experience to barrage 
the motoneurons with signals which will yield adaptive interactions with the 
environment. This network is called the Central Nervous System (CNS, see Fig. 2.2.2.1-
1) [Arbib 1972] whereas the adaptivity is defined as learning. 

Based on the theory of Token Physicalism1, the conscious learning is actually an 
event of neural network activities. It can be proved by comparing the figures between 
Fig. 2.2.1-1 and 2.2.2.1-1. However, the neural network model are more comprehensible 
since it also deal with non-symbolic knowledge. 

1 Token physicalism is the thesis that mental events are physical events. In huamn beings, they are 
presumably neurological event. 
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Fig. 2.2.2.1-1 Biological Neural Network model 

There are billions neurons classified into thousands of different types. One basic 
scheme of biological neurons is shown in Fig. 2.2.2.1-2 which is composed of four major 
elements : 

1. Synaptic buttons or synapses which serve as output devices. 

2. The cell body which sums the membrane potentials provided by the synapses 
and fires at a rate which is a non-linear function of the total voltage. 

3. The axon which carries the electrical signal from the cell body to subsequent 
synapses. 

4. Dendrites, branch-like structures which provide sensory input to the cell body. 

Tf r 
axon 

cell body 
" X ^ ^ s c c ^ y c e l l body) cell body 

dendrites 
O synaptic buttons 

information flow 

Fig. 2.2.2.1-2 Biological Neuron Model 
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We can best imagine the flow of information as shown by the arrows in the 
diagram, for although "conduction" can go either direction on the axon, most synapses 
tend to "communicate" activity to the dendrites or body of the cell they synapse upon, 
whence activity passes down the axon to the synaptic buttons. To understand more about 
this "communication," we must consider the cell as a living creature enclosed by a 
membrane across which there is a difference in electrical charge. Two forms of the 
information flow presented as followed [Arbib 1972] : 

1. Passive flow - inhibitory : I f we change this potential difference between the 
inside and outside, the change can propagate in much the same passive way that heat in 
conducted down a rod of metal. The change in temperature can propagate to other part 
of the rode, but as it moves further and further away from the point at which heat is 
applied, so does the temperature change decrease. In the same way, a nonnal change in 
potential difference across the cell membrane can propagate in a passive way so that the 
change occurs later, and is smaller, the further away we move from the site of the 
original change. 

2. Activity flow - excitatory : I f the change in potential difference is large 
enough (we say it exceeds a threshold), then in a cylindrical configuration such as the 
axon, a pulse can be generated which will actively propagate at full amplitude instead of 
fading passively. To understand this, think of a metal rod coated with gunpowder. I f we 
heat the rod fairly gentle, the gunpowder will not ignite, and the propagation of the 
temperature difference will be passive and fading. However, if we exceed the ignition 
temperature of coating in hearing one end of our rod, that segment of coating will bum 
spontaneously and will be hot enough to ignite the neighboring segment of gunpowder 
coating, and so on, all the way down the bar. This is the case that we supply serves to 
trigger a "regenerative" process, a chain reaction which supplies its own energy so that 
once we have triggered the reaction at one place, it serves to unlock the energy stored in 
the next place, which then trigger the following place, and so on and so forth. So it is 
with cylinders of membrane. 

Thus if the various potential differences on the dendrites and the body of neuron 
cell yield, usually by passive propagation, a potential difference across the membrane at 
the axon which exceeds a certain threshold, then a regenerative process is started - the 
electrical change at one place is then enough to trigger this process at the next place, to 
yield and undiminishing pulse of potential difference propagating down the axon. 

Consider our last example, it is better to compare our axon with a recoatable 
metal bar - we are to imagine that after an impulse has propagated along the length of the 
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axon, chemical processes take place which are the equivalent of recoating the fuse. This 
functional equivalence does not mean that the change in the membrane actually takes the 
form of a recoating. There is thus a short refractory period, a period during which a new 
impulse cannot be propagated along the axon, while the chemical restoration takes place. 

I f we were to start an impulse at any one place on the axon, it would propagate in 
both directions. However, if we start the pulse at one end of the axon, it can only travel 
away from that end, since once a section has been triggered it becomes refractory until 
well after the impulse has passed out of range. An impulse traveling along the axon 
triggers off new impulses in each of its branches, which in turn trigger off impulses in 
their even finer branches. When an impulse arrives at one of the bottoms, after a slight 
delay it yields a change in potential difference across the membrane of the cell upon 
which it impinges. The membrane on the buttons is called the presynaptic membrane, and 
the membrane of the surface upon which the bottoms impinges is called the postsynaptic 
membrane. 

Surprisingly, at most synapses the direct cause of the change in potential of the 
postsynaptic membrane is not electrical but chemical. However, the normal process is 
that the electrical pulse reaching the bottoms causes the release of a few little vesicles of 
a chemical called the transmitter substance, which then diffuses across the very small 
synaptic cleft (the gaps between presynaptic membrane and postsynaptic membrane) to 
the other side. It is the transmitter reaching the postsynaptic membrane that causes the 
change in polarization of these membrane. The transmitter substance may be of two basic 
kinds : either excitatory, that is, tending to move the potential difference across the 
postsynaptic membrane in the direction of the threshold, or conversely, inhibitory, that is, 
tending to move the polarity away from threshold. 

We may think of the neuron's threshold as being normally constant, but after we 
have fired an impulse down the axon, the threshold increases enormously and then takes 
quite a while to return to normal. We thus introduce "absolutely" refractory period, when 
it is too improbable that the changes could exceed the raised threshold, and the 
"relatively" refractory period when an exceptionally strong level of input can trigger an 
axonal impulse. Clearly, though, there is no sharp border between the absolute and 
relative refractory periods. 

2.2.2.2 Artificial Neural Network Model 

In biological science, biological neural networks are composed of simple, tightly 
interconnected processing elements called neurons. The interconnections are made by 
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outgoing branches, the axon, which form variable connections, synapses, with other 

neurons or with other tissues such as muscles or glands. Attempts to develop models of 

biological neural networks, called Artificial Neural Networks (ANNs) fall into two main 

categories : 

1. In biological modeling the structure and function of real brains are studied in 
order to explain biological data on aspects such as behavior. 

2. Li technological modeling, the aim is to extract concepts from the biological 
networks with which the new computational methodologies can be developed. 

To achieve the second goal, i.e., greater computational power, it is admissible to 
incorporate features in models belonging to the second approach, even if they are not 
neurobiologically established. 

As formulated by Kohonen, ANNs are massively parallel interconnected 
networks of simple, usually adaptive elements and their hierarchical organizations which 
are intended to interact with the objects of the real world in the same way as biological 
nervous systems do. There are several names for ANNs, e.g., connectionist models, 
parallel distributed processing and neuromorphic systems. 

Neural net models are specified by net topology, node characteristics and training 
or learning rules. The function and performance of neural networks are determined 
primarily by their pattern of connectivity. In this sense there are feed forward neural 
networks and networks also incorporating feedback loops. According to another 
classification, fully connected and sparsely connected neural networks can be 
distinguished. (In the fonner case processing elements or nodes are connected to all 
other elements of the network, in the later case they are linked only to a few others). A 
special case of sparsely connected networks is the networks where the nodes are locally 
connected, e.g., to their neighbors. Computational elements or nodes used in neural net 
models are usually characterized by an internal threshold or offset and by their transfer 
function type, which can be binary, linear or continuous-nonlinear. [Monostori & 
Barschdorff 1992] 

Fig. 2.2.2.2-1 is an example of most common used feed forward network with 
connected nodes. Recall from section 2.2.2.1, we have make the comparison between 
neural network model and model of conscious level. We defined conscious level of 
learning is actually an event of neural network activities. Furthermore, i f we compare 
three figures together : Fig. 2.2.1-1, Fig. 2.2.2.1-1 and Fig. 2.2.2.2-1, we will have a 
clear picture of how neural network conducting symbolic learning. The Internal Units in 
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Fig. 2.2.2.2-1 is equal to the learning element and the knowledge base in conscious 
model. Now we should have a clear picture of the relationship between model of 
conscious level and neural network model. 

Output Pattern 

Internal Units 
(Hidden Layers © Q O O 

® 

O Input Pattern < 0 n e u r o n 

Fig. 2.2.2.2-1 Example of Artificial Neural Network structure. 

ANNs have the following main characteristics : 

1. Processing speed through massive parallelism. 

2. Learning and adaptive ability by means of efficient knowledge acquisition and 
embedding. 

3. Robustness with respect to fabrication defects and different failures. 

4. Compact processors for space- and power-constrained applications. 

One of the first abstract models of neurons was introduced by McCulloch and 
Pitts in 1943. Their model describes a neuron whose activity is the sum of inputs arriving 
via weighted pathways. The output signal is typically a nonlinear function of the neuron's 
activity. Many successors derived various neural network model based on their work. 
The following is a brief introduction of the history of ANNs [Monostori & Barschdorff 
1992] : 

1. The perception model of Rosenblatt which refers rather to a larger class of 
neural models. Rosenblatt expands the McCulloch and Pitts neuron with a learning 
process called back-coupled error correction, where the weights are adapted so that the 
actual output matches the target output imposed on the system. 
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2. Adaline (adaptive linear neuron) and madaline (many adaline) two level 
perceptrons of Widrow and Hoff with one and multiple outputs respectively, with the 
least mean squared or LMS error correction learning rule. 

3. Multilevel perceptrons first described by Rosenblatt in 1962, who also 
introduced a probabilistic learning law, which anticipated the currently most frequently 
used back propagation learning algorithm for multilayered neural networks. 

4. The "exclusive OR" problem described by Minsky and Papert, which proved 
that elementary perceptrons cannot distinguish between simple patterns, and to 
implement the exclusive OR function. Consequently a single McCulloch and Pitts neuron 
cannot act as a computationally universal element in the Turing sense. 

5. The Hopfield net or crossbar associative network, which can be successfully 
used for optimization problems and as associative memory, gave a new impulse for the 
neural network research. This one layer, fully connected, binary net is adequate for 
supervised learning, which learning converges, when the initial weights are symmetric. 

6. Back propagation learning algorithm for a class of multilayered neural 
networks, which through its simplicity made the neural network approach very popular 
and resolved doubts regarding the viability of the neural network approach completely. 
The algorithm is an extension of the LMS error correction learning rule for networks 
having hidden layers. It became welcome after the publication of Rumelhart et al. but 
was firstly developed by Werbos, and independently discovered by Parker. 

7. Self organizing feature maps of Kohonen in which the input nodes are directly 
connected to the output nodes arranged in a two-dimensional grid and extensively 
interconnected with many local connections. After unsupervised, competitive learning the 
weights are organized such that topological close nodes are sensitive to inputs that are 
physically similar. 

8. Adaptive resonance theory (ART) and the ANN models ART1 for binary input 
patterns and ART2 for binary and analog input sequences as well from Carpenter and 
Grossberg. These powerful networks were designed, in particular, to resolve the stability 
- plasticity problem, i.e., they are stable enough to preserve significant past learning, but 
remain adaptable enough to incorporate new information whenever it might appear. The 
minimal ART module incorporates a bottom-up competitive learning system resulting in 
quick recognition of learned patterns and preservation of adaptivity. 
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23 Learning Techniques and Their Applications 

Our classification of learning is based on the underlying learning strategy, six 
types of learning are explored in this section with their applications [O'Shea, Self & 
Thomas 1987] : rote learning, learning by being told, learning from analogy, learning 
from examples (induction), learning from observation and discovery (unsupervised 
learning), and neural network learning. The first five learning techniques belongs to 
symbolic learning whereas the final one connectionist learning belongs to neural network 
learning. Following are the detail descriptions for the above learning techniques. 

1. Rote learning and direct implanting of new knowledge : No inference or 
other transformation of the knowledge is required on the part of the learner. Variants of 
this knowledge acquisition method include : learning by been programmed, and learning 
by memorization of given facts and data, i.e., data caching. This technique has been 
applied in Samuel's checker program. Two characteristics involved in rote learning : 

(1) Organized storage of information - in order for it to be faster to use a stored 
value that it would be to recompute it, there must be a way to access the 
appropriate stored value quickly. 

(2) Generalisation - to keep the number of stored object down to a manageable 
level. 

2. Learning from instruction (or, learning by being told) : Acquiring 
knowledge from a teacher or other organized source, such as a textbook, requiring that 
the learner transform the knowledge from the input language to an internally-usable 
representation, and that the new information be integrated with prior knowledge for 
effective use. Mostow describes a program called FOO, which accepts advice for 
playing a card game. 

3. Learning from analogy : Acquiring new facts or skills by transforming and 
augmenting existing knowledge that bears strong similarity to the desired new concept or 
skill into a form effectively useful in the new situation. 

4. Learning from examples (a special case of inductive learning) : Given a set 
of examples and counterexamples of a concept, the learner induces a general concept 
description that describes all of the positive examples and none of the counterexamples. 
Learning from examples can be subcategorized according to following sources of the 
examples : teacher, learner itself, and external environment. One can also classify 
learning from examples by the type of examples available to the learner : only positive 



22 

examples available, positive and negative examples available. According to the way 
examples have been presented to the learner, learning could further been subdivided into 
: one-trial or incremental. In the fomnal case, all examples are presented at once whereas 
in the later case, the system must form one or more hypotheses of the concept (or range 
of concepts) consistent with the available data, and subsequently refine the hypotheses 
after considering additional examples. Two methods of analogical problem solving that 
have been studied in A I are transformational and derivational analogy. 

Carbonell describes one method for transfonning old solutions into new 
solutions. Whole solutions are viewed as states in a problem space called T-space. T-
operators prescribe the methods of transfonning solutions (states) into other solutions. 
Reasoning by analogy become search in T-space; starting with an old solution, we use 
mean-ends analysis or some other method to find a solution to the current problem. 
Notice that transformational analogy does not look at 'how' the old problem was solved: 
it only looks at the final solution. The detailed history of a problem-solving episode is 
called derivational analogy. Carbonell claims that derivation analogy is a necessary 
component in the transfer of skills in complex domains. One way to model this behaviour 
is to have a problem-solver "replay" the previous derivation and modify it when 
necessary. I f the original reasons and assumption for a step's existence still hold in the 
new problem, the step is copies over. I f some assumption is no longer valid, another 
assumption must be found. I f one cannot be found, then we can try to find justification 
for some alternative stored in the derivation of the original problem. Or perhaps we can 
try some step marked as leading to search failure in the original derivation, i f the reasons 
for failure conditions are not valid in the current derivation. 

Winston's ARCH describes an early structural concept learning program. This 
program operated in a simple block world domain. Its goal was to construct 
representations of the definitions of concepts in the domain from provided examples. The 
examples were given in a near miss fashion. A 'near miss' is an object that is not an 
instance of the concept in question but that is very similar to such instance. 

Michell describes another approach to concept learning called version space. 
Version spaces work by maintaining a set of possible descriptions and evolving that set 
as new examples and near misses are presented. 

Quinlan's ID3 is a third approach to concept learning by the induction of decision 
trees. ID3 uses a tree representation for concepts. To classify a particular input, we start 
at the top of the tree and answer questions until we reach a leaf, where the classification 
is stored. 



5. Learning from observation and discovery (also called unsupervised 
learning) : This is a very general fonn of inductive learning that includes discovery 
systems, theory-formation tasks, the creation of classification criteria to form taxonomic 
hierarchies, and similar tasks without benefit of an external teacher. One may subclassify 
learning from observation according to the degree of interaction with an external 
environment : Passive observation - where the learner classifies and taxonomies 
observations of multiple aspects of the environment, active experimentation - where the 
learner perturbs the environment to observe the results of its perturbation. Experiment 
may be random, dynamically focused according to the general criteria of interestingness, 
or strongly guided by theoretical constraints. 

Lenat's A M exploited a variety of general purpose A I techniques : Firstly, it used 
a frame system to represent mathematical concept. One of the major activities of A M is 
to create new concepts and fil l in their slots. Second, A M also uses heuristic search, 
guide by a set of 250 heuristic rules representing hints about activities that are likely to 
lead to "interesting" discoveries. Third, generate-and-test is used to form hypotheses on 
the basis of a small number of examples and then to test the hypotheses on a larger set to 
see if they still appear to hold. Finally, an agenda controls the entire discovery process. 
When the heuristics suggest a task, it is placed on a central agenda, along with the reason 
that it was suggest and the strength with which it was suggested. A M operates in cycles, 
each time choosing the most promising task from the agenda and perfonning it. 

Langley's et al. present a model of data-driven scientific discovery that has been 
implemented as a program called BACON, named after Sir Francis Bacon, an early 
philosopher of science. BACON has been used to discover a wide variety of scientific 
laws, it begins with a set of variables for a problem, and go on to try out all the 
possibility of their mathematics or physical relationship, i.e., an equal for indicating 
variables' relationship, go on adding more variables until there is no more then it stop. 

Cheeseman's et al. AUTOCLASS is one program that accepts a number of 
training cases and hypothesizes a set of classes. For any given case, the program provides 
a set of probabilities that predict into which class(es) the case is likely to fall. This types 
of discovery is called clustering. Clustering is very similar to induction except no class 
labeling are provided, the program must discover for itself the natural classes that exist 
for the objects, in addition to a method for classifying instances. 

6. Neural Network learning : The most general neural network models assume 
a complete interconnection between all neurons and resolve the cases of non-connected 
neurons (/,;') by setting the connection strength T/ ,• = 0. There are, however, a number 



of system design parameters which must be specified for any neural network model. 

These include : 

(1) The structure of the system, i.e., the number of "layers". 

(2) The synchrony of the system. 

(3) The symmetry of the interconnections. 

(4) The feedback stracture employed. 

(5) The transfer of activation function relating input to output. 

(6) The formulation of the learning strategy. 

The fonnulation of learning strategies for neural networks continues to be one of 

the most active and productive areas of research in the field. Several strategies were 

proposed and one of the first strategies was the perceptron learning rale for adjusting the 

weight, Wj j , between input unit j and output unit i when presented with the "true 

value", t; , for unit i. This learning rule may be stated in terms of the learning rate, T| , 
and activation a; and ay as : AWij• = X\{n-ai)a\ . This rule is equivalent to the set of 

rules : 

(1) Change weights only on those connections to neurons with activation ay = 1. 

(2) I f the present value, ay , of neuron 7 is the true value, ty , make no change in 

the weight connecting it to neuron j . 

(3) I f unit i has an activation a(; = 0 when the true value t/ = 1, then increase the 
weights on all active connections by amount T] . 

(4) I f unit i has an activation a;; = 1 when the true value t; = 0, then decrease the 
weights on all active connections by amount Tj . 

These simple learning strategies produce excellent results in simple systems. But 

as system complexity grows, the effectiveness of many learning strategies decreases. 

Stephen Grossberg has written extensively on the theory of learning in neural networks, 

i.e., Adaptive Neural Network model, ANN, and his theory of cooperative/competitive 

learning appears to offer great promise. Research in learning in neural networks offers 

many of the same challenges as research in learning in symbolic learning. 



The above classification of learning strategies helps one to compare various 
learning systems in terms of their underlying mechanisms, in terms of the available 
external source of information, and in terms of the degree to which they rely on pre-
organized knowledge. Furthermore, two class of learning strategies ranging out from the 
above classification are : learning in problem solving and explanation-based learning. 

1. Learning in problem solving subclassify into : learning by parameter 
adjustment, learning with macro-operators, and learning by chunking. 

(1) Learning by parameter adjustment : the learning programs rely on an 
evaluation procedure that combines information from several sources into a single 
summary statistic. For example, Samuel's checker player. 

(2) Learning with macro-operators : Macro-operators were used in the early 
problem-solving system STRIPS. After each problem-solving episode, the learning 
component takes the computed plan and stores in a way as a macro-operators. 

(3) Learning by chunking : Chunking is a process similar in flavor to macro-
operators. The idea of chunking comes from the psychological literature on memory and 
problem solving. Its computational basis is in production systems. SOAR exploits 
chunking so that its performance can increase with experience. In fact, the designers of 
SOAR hypotheses that chunking is a universal learning method, i.e., it can account for all 
types of learning in intelligent system. PRODIGY is an automatically knowledge 
acquisition system, employs several learning mechanisms. PRODIGY can examine a 
trace of its own problem-solving behaviour and try to explain why certain paths failed. 
The program uses those explanations to fonnulate control rales that help the problem 
solver avoid those paths in the future. So, while SOAR learns primarily from examples of 
successful problem solving, PRODIGY also leams from its failure. 

2. Explanation-based learning (EBL) : An EBL system attempts to learn from a 
single example x by explaining why x is an example of the target concept . The 
explanation is then generalized, and the system's performance is improved through the 
availability of this knowledge. Mitchell et al. and DeJong and Mooney both describe 
general frame works for EBL programs and give general learning algorithms. We can 
think of EBL programs as accepting the following as input : a training example, a goal 
concept (a high level description of what the program is supposed to learn), an 
operationality criterion (a description of which concepts are usable), and a domain theory 
(a set of rules that describe relationships between objects and actions in a domain). From 
this, EBL computes a generalization of the generalization of the training example that is 



sufficient to describe the goal concept, and also satisfies the operationality criterion. 
Explanation-based generalization (EBG) has two steps : explain and generalize. During 
the first step, the domain theory is used to prune away all the unimportant aspects of the 
training example with respect to the goal concept. What is left is an explanation of why 
the training example is an instance of the goal concept. The explanation is expressed in 
tenns that satisfy the operationality criterion. The next step is to generalize the 
explanation as far as possible while still describing the goal concept. Next, the 
explanation is generalized. 

Some examples of machine learning and its applications [O'Shea, Self & Thomas 
1987] are presented below : 

1. ARCH, by Pat Winston at MIT, 1970s. He was interested in how one might 
learn concepts, and in particular how one might acquire structural descriptions of 
concepts. This work is very important in artificial intelligence because it is the first clear 
example of a symbolic representation approach to learning. Winston represented all his 
learning symbolically; he organizing systems. His approach depends on three things : a 
training sequence; a set of exemplars of the concept being learned; and the idea of 'near 
misses'. His system learn to distinguish arch from positive and negative examples. 

2. LEX, by Tom Mitchell at Rutgers. LEX learns to do integration and it learns 
to solve the problem by heuristic search. It learns essentially by reflecting on its own way 
of doing integration, and so, in some senses, it is an extremely novel system. LEX has 
four main components : problem solver, critic, problem generator, and generalizer. 

The system starts off with an impoverished set of heuristics, with the result that it 
will eventually solve integrals but not necessarily by the shortest or most economic route. 
These heuristics about what the system should have done are used by a generzlizer to 
create a 'version space'. This has examples of the most general things that have been used 
successfully, and examples of the most specific things that have been used successfully. 
Critic which compares the system's actual solution, which may have lots of blind alleys 
(such as applying an inappropriate trigonometric transfomiation), with an ideal solution 
which it is able to extract from the actual solution. It uses that comparison as a basis for 
saying there is an example of something the system should not have done because it took 
the system away from the ideal solution. Once we have worked with the generalizer we 
go back to the problem generator to produce a problem that lies in the space of things 
that we are not sure that we can solve. We do not want problems that we are guaranteed 
to solve or not to solved : we want integrals that we will solve, but not in the ideal way. 
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3. ED3, by Ross Quinlan. ID3 which is derived from a piece of psychology work, 

that of Hunt on concept learning. Quinlan regards learning as constructing classification 

rules. He says that learning is essentially discrimination : you need to discriminate 

between one diing and another. He represents classification as a decision tree. The 

decision tree branches on attributes in the domain, e.g., colours, shapes, etc. 

Where Quinlan's work is superior to all the past work in this area is that he has 

found a way of constructing a minimum tree. For a given set of attributes, his system 

looks and says, ' I want to classify things in the most economical way : what is the 

smallest tree I can build?' 

4. A N A L O G Y , Pat Winston at M I T , 1980s. He used an artificial intelligence 

representation called frames, which are large structures with slots that allow you to look 

at expectancies. Winston's system attempts to generalize these slots in the context of a 

system that is trying to understand the plots of plays or stories. His frames structure 

gives you, as it were, a causal structure of how the plot works, and the system tries to 

generalize some of the slots and transfer any constraints they have. One of the alarming 

things about a representation like this is that there are probably many other ways of using 

the same arrows and the same notations to express the plot of content. 

5. POKER, by Don Waterman, 1960s. The system used ordered production 

rules, and what it learns to do is very appealing : it learns to improve its bet decision at 

poker. Poker is an inherently more interesting game then chess or checkers because it is a 

game of imperfect information. Watennan's system had a set of production rules that 

represented a poker-playing strategy. The system would play poker and it would then, as 

a good player would after playing a game, analyze how it played it and ask f rom the 

point of view of its theory what it should have done otherwise. 

6. A M , EURISKO, by Doug Lenat. Lenat was interested in the process of 

mathematical discovery, and he started out with a clear commitment to the notion that if 

your system is to learn anything serious then it is going to need to start with background 

knowledge. Lenat said that the best way to learn knowledge is to have quite a lot of 

knowledge already. So he created a system ( A M ) with a lot of heuristic rules and a 

whole pile of concepts. In his case he started with 115 mathematical concepts 

represented much like frames with about 24 slots. His system has a control mechanism 

based on an agenda of tasks, and it prefers to do tasks that are heuristically designated as 

being the most interesting. The system conjectures that this or that might be an 

interesting thing to do. It has a notion of 'focus of attention', which is roughly that if 

something has been done recently keep doing it. And he has, in some sense, some 



innovative heuristics. Lenat's four heuristics are : parsimony, regularities, extremes, 

inverses. 

Parsimony is that i f you can find a simple way of combining concepts or a way of 

reducing your descriptions then do it. Parsimony can be thought of as a form of 

generalization, one of our learning mechanisms. Regularities is simply means that to look 

for regularities. Extremes is to look at extreme cases, which is a heuristic that is well 

known in mathematical problem solving and is the type of heuristic described by Polya. 

Another Polya's heuristics that Lenat uses is that of 'inverses'; that is, i f you have a 

mathematical function or transfomiation that is interesting to look at its inverse. 

A M started of f with a description of some fundamental mathematical concepts 

and then started building up other notions. It built the idea of 'plus', 'partition', 'Cartesian 

product', 'times', 'exponentiation', and 'divisors', etc. Lenat's system uses a very familiar 

artificial intelligence method, going by the name known from the General Problem 

Solver, namely 'generate and test'. It generates a new concept by combining old 

concepts, or a concept and its inverse, and then tests it. 

7. Alan Bundy. The architecture which Alan Bundy and his colleagues proposes 

for learning is basically very simple. He tries to consider everything pretty much as an 

example of rules learning. There are just two components : a 'critic', which looks at the 

body of rules and says which is the faulty rules; and a 'modifier' which corrects the faulty 

rule. There are two standard ways to correct i t : one way is to add a new condition, the 

other way to change the consequence. 

The representation that Bundy uses is called a 'description space', and is actually a 

generalization of Winston's work. 

8. A R T 1 and ART2, by Carpenter and Stephen Grossberg. The ART1 and 

ART2 networks based on adaptive resonance theory (ART) are the result of about 20 

years of research. ART family is an unsupervised neural network architecture which can 

self-organize stable recognition categories in real-time in response to arbitrary sequences 

of input patters, This network implements a clustering algorithm which is very similar to 

the simple sequential leader clustering algorithm. It starts by selecting the first input 

pattern as the exemplar for the first category. The next pattern is then compared to the 

selected exemplar. I f the distance to the selected exemplar is less than a threshold, it wi l l 

be considered as in the same category. Otherwise, it wi l l be seen as a new category. The 

differences between ART1 and ART2 is that ART1 is capable of processing arbitrary 

sequences of binary input patterns whereas ART2 is capable of handling either binary of 

analogy input patterns. 
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2.4 Summary 

To summarise the learning techniques, we compare some existing learning 

techniques and their application as followed : 

Supervised concept learning, ID3, AQ. This is the most mature machine-

learning paradigm. A type of inductive learning, supervised concept learning constructs a 

concept description in some predefined description language based on a collection or 

training set of examples. Elements of the training set are marked as positive or negative 

examples. The resulting concept description can then be used to predict concept 

membership or future examples. Such algorithms differ in several ways. The first is the 

language for expressing the target concept. A second important difference is the 

inductive bias applied in constructing a concept description. A third difference is 

whether the algorithm operates incrementally or in batch mode. Supervised concept 

learning has inspired most of the formal work on the theoretical foundations of learning 

(that is, the "probably approximately correct" learning theory). Most surprisingly, it is 

also the area that has produced the most application to date. Nevertheless, many 

important problems remain : dealing effectively with noise in the input examples, 

worrying about concept drift (when the target concept changes over time), selecting the 

appropriate inductive bias, handling non-discrete-valued features, and so on. 

Conceptual clustering. Conceptual clustering systems differ f rom supervised 

clustering systems in that the training examples are not marked as positive or negative by 

an outside agent or teacher. These systems must recognize the similarities between 

examples and group them according to some preestablished notion of similarity. 

Application for these systems are readily drawn from the same problems usually 

addressed by traditional statistical clustering systems, with one important difference : 

Unlike statistical clustering algorithms where the number of outcome clusters is 

predetennined, conceptual clustering algorithms determining the most appropriate 

number of clusters and then allocate examples to those clusters. In general, concept 

clustering shares many open problems with supervised concept learning (this is hardly 

surprising given the close relation between them). Like supervised concept learning, 

conceptual clustering is a relatively mature paradigms. An officiate success story for such 

methods is the discovery of a new categorization of stellar spectra that differed f rom the 

generally accepted clustering. The new classification was discovered f rom spectral data 

by the Autoclass Bayesian clustering system. 

Analytic learning. Analytic learning is more recent. A chief example of the 

paradigm is explanation-based learning algorithms, which are intended to improve the 
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efficiency of a problem-solving system. While they generally do not change the problems 
that are in principle solvable by the problem solver (that is, the problem solvers deductive 
closure), they do bias the problem solver's search space. For this reason, E B L has 
sometimes been described as speed-up learning. Naturally, given unlimited resources, a 
problem solver would eventually find a solution to any problem within its deductive 
closure; thus, E B L only makes sense when used to alter the future performance of a 
resource-limited problem solver. For some EBL systems, this bias takes the form of 
acquired problem-space macro-operators, which alter the search space by compressing 
generalizations of previously useful solutions into more efficiently applicable idioms. 
Essentially, EBL integrates redundant problem-space operators with existing operators 
to bias the exploration of the search space. Acquired macro-operators can lead to quick 
solutions, but in other circumstances they can delay the discover of a goal. Other EBL 
systems represent acquired bias as explicit search-control heuristics for existing problem-
space operators. These heuristics typically alter the ordering of alternative choices by 
promoting heuristically more promising operators so that they are tried first. Some 
heuristic reject certain operators outright, while others select a particular operator as 
especially suitable to the current situation (to the detriment of all other operators). As in 
the macro operator systems, while heuristics should contribute to a quicker solution, the 
time spent evaluating these heuristics can slow down the search. Several problems within 
this paradigm remain to be addressed. Speeding up real applications requires controlling 
performance degradation. No doubt, this problem can be alleviated or avoided altogether 
through clever indexing techniques coupled with heuristics for managing learned 
information in some semiprincipled fashion. Perhaps the biggest remaining problem is 
that, unlike inductive learning systems, EBL systems are domain-knowledge intensive. 
Thus most EBL systems require complete and correct problem-space descriptions (or 
domain theories). Recently, the analytic-learning community has begun to address the 
problem of revising inaccurate or incomplete domain theories on the basis of classified 
examples. This involves repairing inaccuracies in the domain knowledge that are exposed 
when examples are handled incorrectly by the original domain theory. Thus domain 
theory revision is a hybrid problem that shares elements with incremental, supervised, 
inductive learning problems. Starting from an initial theory (a concept description) that 
might contain some errors, we patch the theory to account for training examples that 
were misclassified by the current theory. Given the relative youth of the paradigm, it is 
not surprising that most analytic learning systems are either proof-of-concept systems or 
research vehicles to study the performance characteristics of different learning 
algorithms. Direct applications of this technology to real problems are just oeginning to 
emerge. 

Genetic algorithms. These adaptive search systems are inspired by the 

Darwinian notion of natural selection. First introduced by Holland, these algorithms are 
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ideally suited to solving combinatorial optimization problems, since they efficiently 

search solution spaces for quasi-optimal solutions. Genetic algorithms can be 

incorporated in a perfoimance system in a variety of ways. The development of genetic 

algorithms has followed a path largely independent of the mainstream machine-learning 

community, spawning a specialized conference, the International Conference on Genetic 

Algorithms. Unlike some of the other learning paradigms, work in this area has been 

largely application driven. 

Connectionist learning. The ground-breaking work on Perceptrons in the late 

1950s represents some of the earliest work on learning systems. After a hiatus of some 

25 years, neurally inspired, fine-grained, massively parallel systems are once more 

attracting attention. Learning is an integral part of any neurally inspired system; indeed, 

the development of the backpropagation learning algorithm has largely spurred the recent 

activity in this area. Unlike the early perceptron work, this algorithm supports the 

training of networks with internal layers of units separating input and output units. Such 

networks avoid many of the pitfalls of earlier systems. As with genetic algorithms, much 

of the connectionist work is performed within a specialized community. Nevertheless, the 

basic problem is exactly the same as that addressed by supervised concept learning . Thus 

some researchers have evaluated the strengths and weaknesses of connectionist learning 

schemes and compared them with supervised concept-learning systems. 



CHAPTER 3 

RELIBALITY ANALYSIS SYSTEMS 

3.1 Introduction 

Machine monitoring and diagnostics has been considered to be an integral part of 

the manufacturing process in recent years. It has played an important role in increasing 

productivity and reducing costs. 

In this chapter, we consider three ways of constructing an intelligent system for 

industrial fault detection and reliability analysis. For neural network and production 

approaches we indicate how a system might be constructed using examples f rom the 

literature. For the model based techniques we suggest an approach adapted from models 

of electronic components. This approach has not been applied to large scale industrial 

system and our study is a step in that direction. 

3.2 Diagnosis and Risk Analysis in RAs 

Diagnosis systems infer malfunctions or faults from observable information. Most 

diagnosis systems have knowledge of possible fault conditions with means to infer 

whether the fault exists from infonnation on the system observable behaviour. For 

example, locating malfunctions in a production line (i.e., real-time fault location, RTFL). 

Conventionally, production expert system has been applied heavily in this area. Recently, 

neural network and model-based system also have been applied in this area. 

When we diagnose a process problem, we try to determine what fault or 

disturbance caused the observed deviation. In other words, we try to explain the 

difference between observed and expected behaviors. When observation and 

expectations differ in a plant, incorrect assumptions have been made about the plants 

physical structure or parameter values. [Vinson, Grantham & Ungar 1992] Similarly, in 

system design stage, i f we simulate the plant operation and apply the same technique then 

this procedure become risk analysis. Risk analysis is a technique apply is system design 
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variation, it allows design engineers simulate of failure caused by inappropriate design 

(failure mode effect analysis, FMEA). 

There are many reasons for causing process malfunction : equipment degradation 

or failure, external disturbances, operator error, and inappropriate process-control 

settings [McDowell, Kramer & Davis 1991]. Since operating a process safely and 

economically requires considering of these situations, risk analysis and real-time 

diagnosis became a key segment of successfully process operations. Diagnosis for 

process engineering is complex and consists of many steps : monitoring, detecting faults, 

diagnosing malfunctions, and planning corrective actions. 

1. Monitoring activities track process variables intelligently and provide 

knowledge-based explanations of normal process behavior, but their task is complicated 

by the overwhelming number of possible alarms and by the problem escalation. Fixed-

threshold alarms might not be sensitive to process trends that can lead to an alarm state. 

2. Fault detection, which is closely related to monitoring, involves differentiating 

between normal and abnormal conditions. Managing this kind of problem solving 

requires reasoning about physical relationships in a way that explains the current process 

state and predicts trajectories that the process is likely to follow. Current efforts use 

causal models to explain alarm states and apply connectionist architecture's to classify 

current process states f rom on-line data. 

3. Malfunction diagnosis isolates and identifies process malfunctions. This can be 

especially difficult in process systems, given dynamic behaviors caused by control 

systems and by mass and energy feedback. To isolate malfunctions under dynamic 

conditions, we must represent and reason about feedback and its effects on symptomatic 

information that is used to evaluate hypotheses. Diagnosis is also made difficult by large 

malfunction hypothesis spaces. Chemical process plants often have hundreds or 

thousands of pieces of equipment and process settings. Navigating these hypothesis 

spaces requires that we structure diagnostic knowledge in forms that are efficient for 

problem solving. The problem-solving architecture should also let us easily integrate 

traditional numerical techniques that can contribute to diagnostic problem solving. 

4. Corrective-action planning takes a diagnostic conclusion and provides a plan 

of action to deal with the problem safely and economically. Choosing the proper 

corrective action can involve mapping malfunction states to specific plans. I f a plan is not 

preenumerated, it must be constructed at runtime. Once a plan has been executed, its 

effectiveness must be monitored. Additional corrective actions might be required i f the 

plan fails to return the process to a safe and economical state. 
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Our RAs is focus in perfonning item 3. However, diagnosis process is made 

difficult by its the large amount of knowledge and experience it requires [Rauch-Hindin 

1988]: 

1. It requires knowledge of the equipment and how it operates normally. 

2. It requires gathering some infonnation about the failed equipment and its fault 

symptoms. 

3. It requires knowledge of what type of equipment infonnation it is necessary to 

gather that is relevant to the fault. 

4. It requires the ability to fonn a hypothesis and perform some tests to get back 

more infonnation that either corrfirms or denies the hypothesis. Knowledge 

systems offer a way to preserve and protect a troubleshooter's expertise and to 

make that expert troubleshooter a consultant to many people. 

Not surprisingly, RAs have become an important area of application for diagnosis 

systems. ESCORT ( an expert system for complex operations in real time) and R E A L M 

(a reactor emergency action level monitor) [Dvorak & Kuipers 1991] are two of many 

expert systems developed for process industries. These systems aim to reduce the 

cognitive load on operators, usually by helping to diagnose the cause of alarms and 

possibly by suggesting corrective actions. Most of these conventional rule-based expert 

systems get their knowledge of symptoms, faults and corrective actions through the usual 

process of codifying human expertise in rules or decision trees. The problem as Denning 

observes (ibid.) : 

The trial-and-error process by which knowledge is elicited, programmed, 
and tested is likely to produce inconsistent and incomplete databases; hence, an 
expert system may exhibit important gaps in knowledge at unexpected times. 

An alternate approach is to use a model of the process to predict system's 

behaviour or to check consistency among observed variables. Actually, we can regard 

models as a specific type of knowledge representation, i.e., a way of representing deep 

knowledge. When observations disagree with the model's predictions, some diagnostic 

technique is initiated to identify the fault candidates. Alternatively, unsupervised learning 

neural network system provided a very promising future for constructing RAs as well. 



The potential applicability of RAs suits many industries applciations, such as 

power and process industry. The advantages of RAs to industrial sectors mentioned 

above are : 

1. Acceleration in the procedures of risk assessment and reliability analysis 

allowing much faster feedback during the system design phase. Design changes or 

alternatives usually require only minor modifications of the component and of reliability 

and safety measures. Obviously, this wi l l benefit the final system reliability/safety. 

2. The highly structured system and component modeling procedures reduce the 

possibility of overlooking vital events. This wi l l improve the quality of reliability 

analyses. 

3. Providing more efficient and faster (corrective) operator actions through 

RTFL. When deviation in process parameters is reported, the RTFL software is able to 

generate a sorted list of faults and fault combinations which are most probably 

responsible for system malfunction. This enables operators to react more quickly and 

thus to shorten down times and to minimize damage to equipment, people or 

environment. It also allows operators to gain more insight into the state of the system, 

thus leading to more adequate control actions. 

4. The expert-interface and structured procedures incorporated in this software 

allow reliability/risk analyses and RTFL to be performed by engineers other than 

reliability experts. 

Risk analysis : system designers either have to choose the best option on paper, 

or build and test a small-scale version of the most promising design, or depend upon the 

expertise of system vendors. [Jain & Mosier 1992] 

Simulation methods have a long history as an aid to design efforts. The advantage 

of simulation modeling is the operational evaluation of candidate designs without the 

high risk of 'hard' experimentation, (ibid.) 

However, simulation is essentially a 'trial-and-error' methodology, guided by the 

expertise of the designer who most often relies on a variety of guidelines and rules of 

thumb. Optimality is not guaranteed, and in fact, not likely. Also depending on the 

complexity of the problem being investigated, simulation analysis can be incredibly time-

consuming and expensive, requiring a high level of statistical and computer expertise on 

the part of the analyst, and requiring a surprising amount of time to investigate the 

possibly numerous configuration options, (ibid.) 
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Since the process of developing candidate systems and system options is 

experience based, the use of expert systems technologies can significantly reduce the 

time and expense associated with simulation modeling, (ibid.) 

A n expert system for designing industrial system which uses the output from a 

simulation model has been developed by Mellichamp and Wahab. 'Frames' are used to 

represent facts about a specific FMEA design to be evaluated, perform the actual design 

assessment, to represent heuristic used in the analysis, to supervise input of data f rom the 

simulation analysis, and to supervise the design process. In their system, four types of 

rules are stored in frames in the knowledge base ( ibid.) : 

1. Top rules : dealing with the design objectives. 

2. Analysis mles : making utilization and queue length assessments based on 

specific targets. 

3. Local rules : making operational diagnoses based on utilization and queue 

length assessments and type of loading. 

4. Global rules : making global diagnoses and recommendations based on 

operational diagnoses and relational facts. 

The inference engine is used to direct the analyst to the various alternatives in the 

analysis - diagnosis - recommendation process, (ibid.) 

3.3 Neural Network Approaches 

In recent years artificial neural networks (ANNs) or connectionist systems have 

come into the limelight and to some extent divided A I community. In this section, we 

aim to introduce ANNs and to survey its applciations in the RAs. Following is an 

example of applying ANNs in manufacturing systems. 

Hsin-Hao Huang and Hsu-Pin Wang [Huang & Wang 1993] proposed a neural 

network approach for machine faults diagnostics. They employed a back propagation 

neural network (ART2) architecture to analyze the FFT (fast Fourier transfonn) 

spectrum in order to detennine the fault classification. 
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There are three widely used techniques for machine monitoring and diagnostics : 
vibration analysis, oil analysis, and plant perfonnance analysis. Generally, two classes of 
approach have been used for estimating the vibration spectrum : Fast Fourier Transform 
(FFT) - based methods and parametric methods. FFT-based method, such as spectrum 
analysis, is the most widely used technique because of its high computational speed. 
Furthermore, AR (autoregressive) or A R M A (autoregressive and moving average) 
method is used in an attempt to alleviate the inherent limitations of the FFT approach. 

X, = ( j ) i X - 1 -t-(JhX- 2+...+^pX, - P + E, 

Where X, = time series, 

(j), = the AR parameters, 

p - the order of AR model, 

E, = residuals with N1D (0,G2

E) 

A R T has been developed by Carpenter and Grossberg. It is an unsupervised 

neural network architecture which can self-organize stable recognition categories in real­

time in response to arbitrary sequences of input patterns. This network implements a 

clustering algorithm. It starts by selecting the first input pattern as the exemplar for the 

first category. The next pattern is then compared to the selected exemplar. I f the distance 

to the selected exemplar is less than a threshold, it wi l l be considered as in the same 

category. 

Since the parameters of the vibration signal are analog, an ART2 network is used 

in Huang's and Wang's research. Fig. 3.3.1 shows the framework of the ART2 approach 

for automatic identification of machine faults. This framework consists of three modules 

: a parametric model, a normalisation process and an ART2 neural network. 

Once a proper parametric model is determined, the model can be used to fi t 

machine vibration signal. After fitting the model to the vibration signal, a set of 

parameters can be obtained. At this point, the parameters cannot be fed into the ART2 

network without preprocessing because they contain meaningful negative values which 

the ART2 network is not able to recognize. Therefore, a nonnalisation process has to be 

applied in order to make sure that the ART2 network can perform correctly by getting 

proper inputs. 

Normalisation is a two step process. First, it needs to divide each parameter into 

two parts : positive and negative. I f a parameter has a positive value, the negative part 



wil l be assigned to zero, and vice versa. Secondly, it needs to scale the parameters by 

dividing each parameter by the maximum parameter value. Except for residuals variance, 

it wi l l only contain the positive part because its value is always positive. However, it still 

has to be divided by the maximum residuals variance. As such, an A R M A or AR model 

with n parameters wi l l required 2/1+1 input nodes in the ART2. 

During training of the network, ART2 is presented with a set of input patterns, 

i.e., the normalized parameters. As a result, the network self-organizes fault 

classifications, according to the procedure describe previously, until it runs out of the 

input patterns. A t last, the final top-down and bottom-up weightings wi l l be saved for 

later diagnostic use. During diagnosis of a fault, each input pattern represents a 

particular fault classification. 

According to the experimental result, ART2 network has demonstrated its 

accuracy and robustness in identifying the fault classification. Therefore, the proposed 

approach can be used as a decision-support tool for machine monitoring and diagnostics. 

Vibration Signal 

J/ 
Parametric Model 

Parameters 

Normalisation 

Normalised Parameters 

ART2 

Neural Network 

Fault Classification 

Fig. 3.3.1 Automatic machine 
fault identification framework 

3.4 Symbolic Approaches 

Symbolic approaches, or "knowledge-based" expert system, are the same thing. 

Fig. 3.4.1 shows the general architecture of a knowledge-based expert system, 

comprising of three major components : 
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1. The user interface component provides the communication channel between 

end user and the expert system. 

2. Knowledge-base : this is the place where expertise has been capture in the 

system. Many forms of knowledge can be stored here, e.g., procedural knowledge, 

declarative knowledge, meta-knowledge, heuristic knowledge and structural knowledge. 

[Durkin 1994] 

(1) Procedural knowledge : describes how a problem is solved. This type of 

knowledge provides direction on how to do something. Rules, strategies, agendas 

and procedures, are the typical type of procedural knowledge used in expert 

systems. 

(2) Declarative knowledge : describes what is known about a problem. This 

includes simple statements that are asserted to be either true or false. This also 

includes a list of statements that more ful ly describes some object or concept. 

(3) Meta-knowledge : describes knowledge about knowledge. This types of 

knowledge is used to pick other knowledge that is best suited for solving a 

problem. Experts use this type of knowledge to enhance the efficiency of problem 

solving by directing their reasoning into the most promising areas. 

(4) Heuristic knowledge : describes a rule-of thumb that guides the reasoning 

process. Heuristic knowledge is often called shallow knowledge. It is empirical 

and represents the knowledge compiled by an expert through the experience of 

solving past problems. Experts will often take fundamental knowledge about the 

problem (called deep knowledge), such as fundamental lows, functional 

relationships, etc. and compile it into simple heuristics to aid their problem 

solving. 

(5) Structural knowledge : describes knowledge structures. This type of 

knowledge describes an expert's overall mental model of the problem. The 

expert's mental model of concepts, subconcepts, and objects is typical of this type 

of knowledge. 

Furthermore, several techniques for representing the above knowledge are : 

object-attribute-value triplets, rules, semantic networks, frames, and logic. 
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3. Inference engine : this mechanism simulates human being's reasoning 
function. There are several reasoning techniques possessed by humans : deductive 
reasoning, inductive reasoning, abductive reasoning, analogical reasoning, common-
sense reasoning, and non-monotonic reasoning. In order to make computer simulate 
these reasoning techniques, usually we adapt several searching techniques, e.g., forward 
chaining, backward chaining, top-down, bottom-up, deep-first, bread-first, best-first, 
heuristic search, etc. 

knowledge 

base 

inference 

engine 

user 

interfacing 

Fig. 3.4.1 Knowledge-based system 

The earliest application of knowledge-based system in diagnosis process is 

system called CATS-1 (a aile-based Computer-aided Trouble Shooting system) [Rauch-

Hindin 1988] designed by General Electrics (GE). The system originally is designed as a 

general tool for troubleshooting electronic equipment. Since then, rule-base systems have 

had always acted as a major role in diagnosis system. However, a more recent trend in 

the field relies on a model-based reasoning approach, which models the system's nonnal 

behavior, and detects and diagnoses faults from deviations in expectations. 

3.4.1 Production System 

The best known diagnosis system probably is M Y C I N [Watennan 1986] which 

is designed for assisting physicians in the selection of appropriate antimicrobial therapy 

for hospital patients with bacteremia, meningitis, and cystitis infections. However, 

considering our discussion is based on industrial application, we are going to introduce 

CATS-1 as our example here. 

In late 1981, GE started the project of constructing a rules-based troubleshooting 

system. Through many testing and trail stages, finally , by September 1984, the system 

was accepted by the general public. During a troubleshooting session, CAT-1 starts by 

collecting background information and problem symptoms. Upon startup, the system 

asks a number of questions about the locomotive model number, model year, and 
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reported symptoms. CATS-1 tables provide additional infonnation, such as the 
locomotive's standard features, history of failures, and that model's propensity for 
failures. 

The loading of the reported symptoms and background information into the 

knowledge system triggers its diagnostic procedures, which culminate not only in a 

diagnosis but also in recommended corrective actions. The diagnostic procedure involve 

both backward chaining and forward chaining techniques for reasoning. To perfonn its 

deductions and diagnosis, CATS-1 uses information input by users or sensors, in addition 

to its own knowledge in the form of IF-RULES; IFF (if-and-only-if) Rules; W H E N 

Rules, which activate new procedures associated with newly inferred facts; and Meta 

Rules, which control, recognize, and reorder the reasoning processes. 

The diagnostic process begins with backward chaining. Based on the initial 

symptoms input by the user and the possible causes that the expert has suggested, the 

backward chaining proposes a likely hypothesis for the particular problem area in 

question. Then it attempts to find rules which substantiate that hypothesis. 

A typical CATS-1 question to the user, to detennine the symptoms and 

hypothesis that start the backward-chaining process, might be :"Is the governor steady?" 

I f the answer is no, CATS-1 knows five possible causes. The order in which these causes 

are proposed as hypotheses for evaluation are in order in which these causes are 

proposed as hypotheses for evaluation are in order of increasing cost of the test to prove 

or disprove the hypothesis. In the case of factors that could make an unsteady governor, 

the impulse thing to check first is whether there is enough oil; second is a test to 

determine whether or not the oil is clean. I f neither of these solves the problem, CATS-1 

tries out the next, more complex, least expensive hypothesis. 

Detenniiiing a specific faulty component may involve interaction with several 

rules and with the forward chainer. For example, while the backward chainer is active, 

CATS-1 rules 760 might hypothesize that a locomotive has a fuel system fault. Loosely 

translated, rule 760 says :"IF the engine is set at idle A N D the fuel pressure is below 

normal A N D the readings were taken from the locomotive gauge A N D we are sure that 

the gauge is accurate T H E N we can conclude that the duel system is faulty (1.00) ." The 

number 1.00 associated with the action part of the rule is a certainty factor. Defined by 

the experts, it can range between -1 and 1 and indicates the strength of the implication or 

conclusion of the rule. 

In contrast to the backward chainer, which is goal directed (tries to prove a goal), 

the forward chainer simply reacts to changes. Whenever the forward chainer spots new 
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facts that have been added to the knowledge ones, it scans the CATS-1 rules to see i f its 
known information is now sufficient to execute the T H E N parts of any rules that contain 
the new facts as their conditions. The execution of these rules allows CATS-1 to infer 
still more facts, which the forward chainer uses to try to execute other rules. Some of the 
information inferred, and subsequent rules executed, causes the forward chainer to 
submit a new hypothesis to the backward chainer. 

W H E N rules may be used to submit new hypotheses. Used only by the forward 

chainer, they take the fo im, "WHEN this is true T H E N do that" or "WHEN this is true 

T H E N that is also true." 

When the forward chainer cannot find any more rules to react to and execute, it 

returns control to the backward chainer. The backward chainer continues its deductive 

process until it has proved a hypothesis or has exhaustively evaluated and either proved 

or disproved all its hypotheses. 

CATS-1 does not assume that only one component is at fault, because the GE 

engineers do not consider that realistic. Instead, every time CATS-1 finds a fault at any 

level of the locomotive system, it expects it to be fixed immediately. It then reevaluates 

the locomotive symptoms to see if the fix resets the system to nonnality or i f there are 

more faulty components. 

Upon request from the user, a CATS-1 Help system provides additional 

information, such as location and identification of repair procedures. Since typical users 

are skilled blue collar workers, the Help system is organized so as not to intimidate the 

user in tenns of spelling or excessive choices. 

The GE diagnostic system wil l play a role in repair and maintenance training as 

well as in the troubleshooting process. It will also allow its on-the-job technicians to 

incorporate in the system their own knowledge and experience. In its original fonn, 

CATS-1 confines its troubleshooters to the ideas and disciplines of the expert whose 

knowledge was professionally embedded in the system. This is considered by GE to be a 

"quasi-optimal" rather than an "optimal" situation. 

3.4.2 Model-base System 

Rule-based diagnosis systems have proven to be effective tools in increasing the 

productivity of complex industrial manufacturing processes. However, the development 
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of such a diagnostic system is strongly hampered by the generally acknowledged 
bottleneck of knowledge acquisition. Most researchers in the field expect a solution to 
this problem to arise from the development of application specific expert system shells, 
which already contain the conceptual framework of the domain to be covered by the 
system. Therefore, knowledge engineers only need to carry out a shallow level of 
knowledge acquisition, and can take reasonable short cuts. Knowledge acquisition thus 
becomes a relatively easy affair consisting of a few interviews with the expert, focusing 
on how to recognise problems and what the associated solutions are. 

This results in the construction of a set of heuristic which reflects the behaviour 
of the expert, and is usually implemented directly in rules. In fact, most of the effort in 
implementation phase. This fast track method of building expert systems works well for 
small scale systems, and there is therefore no reason to stop using it. However, it is not 
applicable to the process of building the large and complicate system like industrial 
applciations. 

In order to meet these extra requirements expert systems need to be able to draw 
upon much larger and richer pools of knowledge than is bound in shallow system. The 
new generation of expert systems are called model-based because they store the extra 
knowledge in tenns of models of different aspects of the domain [Steels & Velde 1989]. 
There are three domains which can be modeled : 

1. Model of information concerning the task structure, which reflects the scope of 
the behaviour of the expert system. 

2. Model of the phenomena which the objects in the domain show, concerning 
such things as their properties, structural and functional relationships. 

3. Model of strategies which the expert uses to solve problems in the domain. 

The Fig. 3.4.2-1 shows a suggested structure for a Model-based Reliability 
Analysis system (MORA) which is developed as a tool for fast and reliable of reliability 
and risk analysis of, and real-time fault location in, complex systems as they are 
encountered in industry. RAs allows both reliability engineer and end-user to create (and 
edit) compact component and system models in a convenient and faster manner which is 
able to perform Fault Mode Effect Analysis (FMEA) and Real-Time Failure Location 
(RTFL) virtually automatically. 
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Fig. 3.4.2-1 Architecture of Model-based RAs system 

There are two different approaches for constructing model-based expert system 
[Dvorak & Kuipers 1991] : 

1. Engineering approach (quantitative models) : fault detection and isolation 
techniques generally rely on a precise mathematical model of the process and on 
preenumerated symptom-fault patterns know as fault signatures. Examples, parameter 
estimation method, use plant data to detennine the values of process parameter. Faults 
are detected when one or more parameters of outside a given range or change 
significantly from their normal values. These methods detect deviations but cannot 
diagnose the root causes of faults. Another example, model selection methods, it fits 
several models (including fault models) to incoming data; the model that best fits is taken 
to be the diagnosis. However, quantitative methods don't always work, since failures 
often cause unexpected behaviors that the models do not cover or for which quantitative 
are unavailable. 

2. Computer Science / Artificial Intelligence approach (qualitative models) : 
model-based diagnosis relies on models of structure and behaviour. For example, given 
symptoms of misbehaviour (as detected by the behaviour model), fault candidates are 
identified using the structural model by following a dependency chain back from a 
violated prediction to each component and parameter that contributed to that prediction. 
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Examples, dynamic qualitative models, extended signed directed graphs, semiquantitative 

model, fuzzy qualitative models, and causal models and confluence equations. 

MORA has evolved within the A I community and we adapt causal model in 
constructing our model-base system. A causal model consists of a set of properties of 
components which are causally related in the sense that the value of one property is 
determined by the values of one or more other properties. Some of these properties are 
observable, most of them are not, or only with difficulty. Causal relations can easily be 
represented in a network ( use semantic network, or frames ) whether the nodes 
represent the properties of the components. [Kodratoff & Hutchinson 1989] 

The key cognitive skill for process operators is the fonnation of a mental model 
that not only accounts for current observations but also lets the operators predict near-
term behaviour as well as the effect of possible control actions. This observation 
underlies our framework for process monitoring, RTFL (details is given in next section). 
The basic idea is mimic the physical system with a predictive model, and when the system 
changes behaviour due to a fault or repair, change the model accordingly so that it 
continues to give accurate predictions of expected behaviour. RTFL takes the role of 
tracking and it advances the model's state in step with observations from the physical 
system. When observations disagree with predictions, RTFL use model-based diagnosis 
to determine the possible faults. After identifying a fault, the diagnosis task injects it into 
the current model so that the'predictions will continue to agree with actual observations. 
To be precise, RTFL maintains a set of candidate models since a given behavior might be 
caused by one of several faults. Each candidate model represents a possible condition of 
the system, including its state and faults. The key benefit of this approach is that we can 
use the model as our window into the physical system. Specifically, the model can : 

1. Detect early deviations from expected behaviour more quickly than with fixed 
threshold alarms, uses known analytical relationships among sets of signals to check for 
mutual consistency. 

2. Predict the values of unobserved variables (signal reconstruction) to pennit 
alarms or other inferences on unseen variables, and to help the operator understand 
process conditions. 

3. Predict near-tenn undesirable or hazardous conditions, thus providing early 

warnings. 

4. Predict the effect of proposed control actions to test if they will have the 
desired effect - a valuable capability in complex system. 
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The end purpose of monitoring and diagnosis is advice to the operator about 
what's happening and what to do about it. The advising task applies expert knowledge of 
safety conditions, recommended operating procedures, and perfonnance objectives to 
produce advice in the form of alarms, warnings, and recommended actions. 

3.4.2.1 The Modeling Procedure 

The scope of modeling carried out by a reliability engineer will include : 

1. The bi-directional relationship between the different physical variables in the 
component (fault propagation). 

2. The effect of component failures on the component variables. 

3. The bi-directional interaction between the component and its environment. 

4. The impact or (extreme) deviations in component or environmental variables 
on the component state (secondary failures). 

5. The library contains specific description of individual component. 

This modeling procedure is very much like the 'knowledge acquisition' in a 
knowledge-based system. The component model, the system model was abstract into 
systems library for later usage in RTFL and FMEA. However, those models are not 
fixed, they can be accessed and updated by the end-user (e.g., system designer and real 
time operators) through MB component. 

The model developed here should show all fault initiation within the system and 
fault propagation through the system. Each component will be modeled as a black box 
with in- and outputs reflecting the physical connections to other system components and 
environment. Each connection might be associated with multiple physical variables, e.g., 
one connection through which a fluid is passed to another component might be 
associated not only with flow and pressure but with flow temperature as well. System 
models describe the interconnection of the components. When defined these models 
allow virtually automatic FMEA and RTFL. 
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Fig. 3.4.2.1 -1 Examples of Component models 

Basically these signals will be classified into two groups : 

1. Twin variables which exhibit the special relation between the transport variable 
(flow, current, etc.) and the potential variable (pressure, voltage, etc.) of continuous 
mass and energy flows. These relations are special in that they depend on the direction of 
fault propagation with respect to the direction of transport, i.e., the relations are different 
for upstream and downstream fault propagation. For mass transport a further subdivision 
will be made according to the different states of aggregation of the substances. 

2. Single variables which describe single-valued signals such as : temperature, 
information signals, concentration (e.g., ppm) and position and orientation of discrete 
products. 

Although the number of deviation levels to be distinguished will differ from 
variable to variable, the frame of possible deviations in the MORA system will at least 
comprise the following deviations : very high, high, normal (desired value), low, very 
low, absent (no signal at all) and reversed (e.g., backflow). hi the model definition phase 
of the project, this frame will be extended as required. 

Fault initiation by component failures and fault propagation through the 

component will be described by relations. The relations must be able to describe : 

1. Deviation propagation (static and dynamic) from one variable to another 
within the same component (fault propagation). This might involve cross-dependencies 
between different physical properties within one connection as well. An example of this 
is the dependence of gas pressure on gas temperature in a fixed volume. 

2. Variable deviations introduced by component failures (fault initiation). 
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3. Component state transitions caused by extreme variable deviations, the so 
called induced failures. 

CAUSES E F F E C T 

COMPONENT STATE" 
VARIABLE (RANGE) 

OR 

VARIABLE1 (DEVIATION RANGE X) 
COMPONENT STATE 

VARIABLE2(DEVIATION RANGE Y) 

Fig. 3.4.2.1 -2 Fault Tree Model 

All physical systems have three essential elements in common : a set of 
component, and environment and a configuration. As a consequence, the system model 
to be developed should contain : a list of components, a list of system input/output 
variables describing the interaction with the environment, and a component 
interconnection scheme describing the system configuration. 

These modeling procedures will be implemented into the MORA system 
(computer program) that enables designers and engineers to model their systems even 
when they are not reliability experts. Computer programs will be developed for 
automatic FMEA and RTFL. 

3.4.2.2 Design of MB, RTFL and FMEA 

The Model-based RAs system (MORA) could be developed comprising the 
following program modules : 

1. MB (Model-builder) - a menu-based computer program that allows end-user 
fast creation or updating of model-base and libraries contained in MORA (i.e., add, 
delete, edit, copy, etc.). The questions asked to the user will be straight forward and 
simply require only a minimal expertise from the user. The user only needs to have 
enough knowledge about the physical behaviour of the component in order to be able to 
predict the fault propagation within the component. While only a very shallow system 
knowledge is required to decide which variables are important for neighbour components 
and which are not. The user will be asked to define : 
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(1) the number of input/output connections of the component including undesired 
connections with other components clue to environment coupling. 

(2) the number and type of all important physical variables associated with each 
connection. 

(3) the fault propagation relation describing the way in which the physical 
variables affect each other and, in case of induced component failure, the 
component state. 

(4) the fault initiation relations that describe the effect of component failures 

upon variables, and relations between variables. 

Above all, the MB component should be possible to display the model or the 
system in more than one type of representation. 

2. FMEA (Failure Mode Effect Analysis) - a procedure that automatically 
develops cause-consequence paths for all component failures or other basic events. 
Starting at the initial event, all propagation paths of the cause-consequence diagram will 
be developed simply by connecting the relations from component and system models in 
the right manner and for appropriate parameter values. Subsequently the cause-
consequence diagram will be adapted for compensating actions of control loops that 
might prevent some faults from further propagation. When the program is fed with the 
essential deviations in system parameters and their respective criticalities, it will perform 
a Criticality analysis as well. As an output the user will get infonnation on critical 
component failures, which have to be prevented by appropriate design measures. 
Furthermore, the FMEA program will allow the user to manipulate the presentation and 
ordering of the effect and criticality data according to individual demands. 

3. RTFL (Real-Time Fault Location) - a procedure that is able to extract all faults 
and fault combinations which are most consistent with the set of measured variables even 
when some sensor circuits provide faulty infonnation. When deviations in one or more 
system variables are reported, causal trees (multi-level fault trees) in which all 
consistencies and inconsistencies with these measured variables have been considered can 
be generated automatically. Subsequently, the RTFL algorithm will modify the causal 
trees into diagnostic diagrams, which determine the order in which diagnostically 
relevant data, i.e. results of measurements or human inspection are collected and 
evaluated. Minimal cut sets can be extracted from theses trees. However, the more 
inconsistencies that are involved with a cut set, the less likely it is that the cut set is 
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responsible for system malfunction, thus allowing a substantial reduction in minimal cuts. 

The RTFL procedure combines these reduced cut sets and sorts the results according to 

the number of inconsistencies involved. In this way the procedure is able to produce all 

faults and fault combinations that are most consistent with the set of measured variables, 

even when some sensor circuits provide fault information. 

The procedure of FMEA and RTFL should be able to deal with feed back and 
feed forward control loops since theses loops might compensate (or overcompensate) for 
the effects of certain failures. Previous studies have shown this possible. The RTFL 
software will be able to extract all faults and fault combinations that are most consistent 
with the set of measured variables, even when some sensor circuits provide faulty 
information. In this case system operators will be able to gain more insight into the state 
of the system thus allowing a more adequate control action. 

3.5 RAs in the Future 

As different approaches of constructing Reliability Analysis systems (RAs) 
provide different advantages and disadvantages, the following is the summary : 

1. Neural network approach : Through the experiment of Huang and Wang, it 
shows that Artificial Neural Networks (ANNs) have a powerful and general technique 
for unsupervized learning. This could be one of the best approach for building learning 
RAs. However, ANNs have several well-known shortcomings; perhaps the most 
significant of which is that a trained ANN is essentially a "black box". That is, 
detenriining exactly why an ANN makes a particular- decision is on a shaky ground. This 
is a significant shortcoming, for without the ability to produce understandable decisions, 
it is hard to be confident in the reliability of networks that address real-world problems. 
Also, the fruits of training neural networks are difficult to transfer to other neural 
networks, and all but impossible to directly transfer to non-neural learning systems. 
Hence, the network can tell you that it has discovered something "wonderful," but then 
does not tell you what it has been discovered. To overcome this, the best way is to 
combine neural network with model based reasoning. [ECAI92 1992] 

With the above combination, the advantages are that the unsupervised learning 
neural networks are capable of extracting regularities form data. Due to the distributed 
subsymbolic representation, neural networks are typically not able to explain inferences. 
However, to avoid this, the system can extracting symbolic rules out of the network. The 
acquired rules can be used like the expert's rules therefore it is possible to diagnose new 



unknown examples. Another ability is to handle a (large) data set for which a 
classification or diagnosis is unknown. For such a data set classification rules are 
proposed to an expert. The integration of a connectionist module realizes "learning from 
examples." Furthermore the system is able to handle noisy and incomplete data. 
Therefore, it is the best design to equip a rule based expert system with the ability to 
learn from experience using a neural network. 

2. Knowledge-based approach : Rule-based diagnosis system had a long lasting 
history. However, its power was limited by knowledge acquisition bottleneck. Although, 
expert shell provide a short cut for the solution, the knowledge contained in this type of 
expert system is narrowed which is not suitable to be applied to a large range or 
complicated area. To extend its application, Steel proposed a new approach of 
constructing expert system, model-based systems. Model-based expert system have an 
additional component in the fomi of a deeper model which gives them an understanding 
of the complete search space over wliich the heuristics operate. This makes two form of 
reasoning (heuristic rules reasoning and deep search space) possible. However, as the 
problem encounter in rules-based system, the knowledge acquisition bottleneck remains 
unsolved. Again, expert shell for model based knowledge acquisition opens a short cut to 
the building of model-based systems, however we believe only by applying Machine 
Learning can achieve automatic model acquisition, and many other benefits from M L can 
also be brought to knowledge-based reliability analysis system. 

To conclude this section, we suggest that the future architecture of Reliability 
Analysis System should be the combination of model-based system (software) embedded 
in a neural network machine (hardware). This is the closest design to human beings. The 
model-based RAs take the responsible of risk analysis and diagnosis whereas the neural 
network provides the function of learning complex, nonlinear functions. However, as the 
model-based RAs constructed by deep knowledge and heuristic rules, there are many 
other learning techniques which can be applied to improve the performance. Details are 
discussed in the following chapter. 



C H A P T E R 4 

APPLICATIONS OF M L IN RAs 

4.1 Introduction 

In the previous chapters, we have already discussed some techniques of machine 
learning (ML) and three different types of Reliability Analysis System (RAs). In addition, 
in chapter 3, we reached to a conclusion that current techniques of building the RAs will 
be based on a hybrid structure of using a combination of Model-based RAs (MORA) and 
neural network system. Following, we are going to focus our discussion on the 
application of M L in the MORAs. 

4.2 Neural Network Learning 

As we deduced from the last chapter, the combination of MORA and neural 

network structure is currently the best approach for building RAs. The advantages are : 

1. The unsupervised learning neural networks are capable of extracting 
regularities form data - automatic knowledge acquisition. 

2. The acquired rules can be used like the expert's rules. Therfore it is possible to 
diagnose new unknown examples. 

3. Another ability is to handle a (large) data set for which a classification or 

diagnosis is unknown. 

Such a data set classification rules are proposed to an expert. The integration of a 
connectionist module realizes "learning from examples." Furthermore the system is able 
to handle noisy and incomplete data. It is the best to equip a model-based expert system 
with the ability to learn from experience using a neural network. 
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One successful implementation is an existing hybrid system, developed by Bechtel 
A I Institute and Neurocomputing, used in manufacturing inspection systems to identify 
defects or to position components. Comment by the manager of the institute, George 
Polzer (adapted from Expert Systems User, April 1990, p.6) : " The combining of neural 
networks and expert systems is beneficial because of the complementary strengths of 
each technique. Neural networks are highly adaptive at learning through examples. 
Expert systems work by following rules which direct the decision-making process." The 
integrated software packages are the Nexpert Object expert system package from 
Neuron Data Inc. and the image recognition software of Nestor, Inc. The resulting 
application runs on a 286-based PC with the necessary imaging equipment attached. 

4.3 Finding the Inconsistency 

By applying a machine learning technique, the major improvement will be in 
maintaining the consistency of input data in any representation fonns in frame-structured 
representations to represent the models, or in rule formalisms to represent the heuristic 
knowledge, or in constraints to drive deep reasoning, etc. The following is an existing 
system which applied in maintaining the consistency of database. 

Carper [Schlimmer 1993] is a learning system applying in maintaining database 
consistency, it has been tested on XCON (Digital Equipment Corporation). Carper relies 
strongly on attribute models that capture how values describe entries, it will let the user 
specify models and supplement them with models it learns by studying database entries. 
The system detects database problems by applying attribute models to database entries 
and generating predictions. I f an entry violates a prediction, Carper raises an alarm. Fig. 
4.3-1 shows Carper's overall organization. 
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3 Models 

D / E x , 

V. irrele ( Violations ) 
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Fig. 4.3-1 Carper's architecture. 



Carper uses an inductive method for learning from examples to construct more 
specific models, where other entries are examples, and the classes to be learned are the 
values of the attribute being checked, hi the absence of information to the contrary, all 
other attributes can be used in prediction as features of the examples. 

The Carper's learning strategies can be applied in the MORA, so MORA can 
learn to identify inconsistency as well. 

4.4 Learning From Past Experience 

A principal shortcoming of existing diagnosis systems is that they learn nothing 
from any given task. Upon from facing the same task a second time, they will incur the 
same computational expenses as were incurred the first time. In this section, we consider 
applying explanation-based learning to speed up the FMEA and RTFL procedure, by 
applying meta-reasoning to consult "past experience", MORA will be able to learn from 
its experience. [Fattah & O'Rorke 1993] 

4.5 Other M L Applications in MORA 

Apart from the above discussion, some other perfoimance of the MORA system 
will be improved by applying some of the ML techniques : 

1. Applying heuristic searching to speed up the process of RTFL and FMEA, i.e., 
searching speed of the cause-consequence tree. 

2. The explanation-base learning assists MORA to cope with uncertain informa­

tion and also to help speeding up diagnosis and risk analysis. 

3. The genetic algorithm will act as a major role of learning from observation. 

4. Learning by being told keeping the inconsistency away from our model-base. 

Discussion concerned with above techniques in the MORA system were stressed 
in Chapter 2. 



4.6 Learning M O R A System 

By introduing the 'learning element' (see Fig. 4.6-1), the MORA should be able to 
perfonn learning function based on our discussion above. The learning element contained 
different types of learning strategies, similar to PRODIGY (Minton et ai, 1989) utilizes 
all different types of learning techniques. 

In theory, the final learning MORA system (La MORA) will be able to learn like 
human beings by implanting La MORA (software) on neural-based machine (hardware). 
Apart from that, La MORA should contains many heuristic knowledge - for explanation-
based learning, and meta knowledge - rules for learning other rules, and control 
knowledge - for control the utilizing of different learning strategies. The architecture of 
Learning MORA (La MORA) system is showed in Fig. 4.6-1. Actually there is not much 
different from the MORA system, except the insertion of 'learning element'. So, it should 
not be very difficult to achieve that. However, application of learning will slow down the 
process of RAs, also, learning element will take up a lot more memory and slow down 
the process. In future, we should find a way of improving this. 
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Fig. 4.6-1 La MORA System 
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C H A P T E R S 
CONCLUSIONS AND F U T U R E W O R K S 

5.1 Machine Learning and Its Applications 

Our research goal in machine learning (ML) is to explore all types of learning 
techniques and its applciations, the result of our survey has been discussed in Chapter 2. 
Two levels of learning model (conscious and neural net level) and six types of learning 
technique were explored : rote learning, learning from experience (inductive learning), 
explanation-base learning (deductive learning), learning by being told (learning from 
instruction), learning from observation (application of genetic algorithm) and neural 
network learning. Furthermore, by comparing different learning models, we believe that 
all the learning strategies are actually events of neural network activity, so the future 
research direction of M L will be towards the neural network learning and the knowledge 
representation of this kind of learning. 

5.2 Reliability Analysis Systems 

In chapter 3, we explored three types of reliability analysis systems (RAs) and we 
conclude that a hybrid structure of combining Model-based RAs (MORA) with neural 
network based system is currently the best design of RAs. However, the application of 
Machine Learning will attract the major attention in the future development of MORA. 

5.3 M L in RAs - La M O R A 

Apart from creating an automatic knowledge acquisition system by applying 
neural network learning, machine learning can be applied to improve the performance of 
MORA in many other aspects : 

1. Applying heuristic searching to speed up the process of RAs, i.e., finding the 

shortest path within the cause-consequence nee. 
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2. The explanation-base learning assists MORA to cope with uncertain informa­
tion and also to help speed up diagnosis and risk analysis. 

3. The genetic algorithm will act as a major role of learning from observation. 

4. Learning by being told and learning from induction keeps the inconsistency 

away from our model-base. 

Insertion of learning element' into MORA can give all the advantages mentioned 
above and we proposed a way of constructing the learning MORA (La MORA) in 
chapter 4. However, application of learning function will slow down the operation speed 
of RAs. This will hamper the on-line useage of RAs. In future, we should try to find out 
the way of avoiding this, hi addtion, the insertion of 'learning element' will take up a lot 
of space in the memory resulting from the amount of informatin contained in the learning 
element. To solve this problem, we will have to study the knowelge representation and 
find out the best way of storing them. 



References 

58 

[Abu-Hanna, Benjamins & Jansweijer 1991] Ameen Abu-Hanna, Richard_Benjamins, 
and Wouter Jansweijer 1991 "Device Understanding and Modeling 
for Diagnosis." In IEEE Expert - Intelligent Systems and Their 
Applications, April, 1991, pp.26-32. 

[Alty & Coombs 1984] J. L. Alty, and M. J. Coombs 1984 "Expert Systems 
(Concepts and Examples)." NCC Publishing. 

[Arbib 1964] Michael A. Arbib 1964 "Brains, Machines, and Mathematics." 
McGraw-Hill Book Company. 

[Arbib 1972] Michael A. Arbib 1972 "The Metaphorical Brain : An Introduction 
to Cybernetics as Artificial Intelligence and Brain Theory" Wiley-
Interscience, a Division of John Wiley & Sons Inc. 

[Barr, Cohen & Feigenbaum 1981a] A. Barr, Paul R. Cohen, and Edward A. 
Feigenbaum 1981 "The Handbook of Artificial Intelligence (Vol. 
I) ." Heuris Tech Press, Stanford, California. 

[Barr, Cohen & Feigenbaum 1981b] A. Barr, Paul R. Cohen, and Edward A. 
Feigenbaum 1981 "The Handbook of Artificial Intelligence (Vol. 
II) ." Heuris Tech Press, Stanford, California). 

[Barr, Cohen & Feigenbaum 1981c] A. Ban-, Paul R. Cohen, and 
Edward A. Feigenbaum 1981 "The Handbook of Artificial 
Intelligence (Vol. HI)." Heuris Tech Press, Stanford, California. 

[Bau & Brezillon 1992] Dong-Yih Bau, and Patrick J. Brezillon 1992 "Model-
Based Diagnosis of Power-Station Control Systems." In IEEE 
Expert - Intelligent Systems and Their Applications, February, 
1992, pP36-45. 

[BCS 1987] British Computer Society, Ed. by M. A. Bramer 1987 "(British 
Computer Society Workshop Series) Research and Development in 
Expert Systems I I I - Proceedings of Expert Systems '86, The Sixth 
Annual Technical Conference of the British Computer Society 
Specialist Group on Expert Systems - Brighton, 15-18, December, 
1986." Cambridge University Press, Cambridge London. 

[Biswas, Manganaris & Yu 1993] Gautam Biswas, Stefanos Manganaris, and 
Xudong Yu 1993 "Extending Component Connection Modeling 
for Analyzing Complex Physical Systems." In IEEE Expert -
Intelligent Systems and Their Applications, February, 1993, Vol. 8 
(l),pp.48-57. 



59 

[Bonnet 1985] Alain Bonnet 1985 "Artificial Intelligence : Promise and 
Performance." Prentice-Hall. 

[Buckles & Petry 1992] Bill P. Buckles, and Frederick E. Petry 1992 "(IEEE 
Computer Society Press Technology Series) Genetic Algorithms." 
IEEE Computer Society Press, Los Alamitos, California. 

[Bundy 1980] A Bundy 1980 "Artificial Intelligence (An Introduction Course)." 
Edinburgh University Press. 

[Carbonell 1989] Jaime G. Carbonell 1989 "Introduction: Paradigms for Machine 
Learning." In Artificial Intelligence , 1989, Vol. 40, pp.1-9. 

[Castillo & Alvarez 1991] E. Castillo and E. Alvarez 1991 "Expert Systems : 
Uncertainty and Learning." Computational Mechanics Publications. 

[Charniak & McDermott 1985] Eugene Charniak, and Drew V. McDermott 1985 
"Introduction to Artificial Intelligence." Addison-Wesley. 

[Charniak, Riesbeck, McDermott & Meehan 1987] Eugene Chamiak, Christopher K. 
Riesbeck, Drew V. McDermott, and James R. Meehan 1987 
"Artificial Intelligence programming (2nd ed.)." Lawrence Erlbaum 
Associates, Hillsdale, New Jersey. 

[Chi 1992] Robert T. H. Chi 1992 "Using an Integrated Model Learning 
System to Construct the Model Base of a Decision Support 
Systems." In International Journal of Intelligent Systems, 1992, 
Vol. 7,pp.373-389. 

[Chorafas & Legg 1988] Dimitris N. Chorafas, and Stephen J. Legg 1988 
"(Computer-Aided Engineering Series) The Engineering Database." 
Butterworths. 

[Christaller, di Primio, Schnepf & Voss 1992] Thomas Christaller, Franco di 
Primio, Uwe Schnepf, and Angi Voss, Translated by Stephanie 
Kuhnel 1992 "(Knowledge-Based Systems Book Series) The A I 
Workbench BABYLON : An Open and Portable Development 
Environment for Expert systems." Academic Press Limited. 

International Conference on Artificial Intelligence, 2nd Marseilles, 
1986 "(CIAM 86) Advanced in Artificial Intelligence : Proceedings 
of the 2nd International Conference on Artificial Intelligence -
December 1-5, 1986, Marseille." Kogan Page. 

Dominic A. Clark 1990 "Numerical and symbolic approaches to 
uncertainty management in A I . " In Artificial Intelligence Review, 
1990, Vol. 4,pp.l09-146. 

[CIAM86 1987] 

[Clark 1990] 



60 

[Clark, Baldwin, Berenji, Cohen, Dubois, Fox, Lemmer, Prade, Spiegelhalter, Smets & 
Zadeh 1988] Dominic Clark, Jim Baldwin, Hamid Berenji, Paul 
Cohen, Dicker Dubois, John Fox, John Lemmer, Henri Prade, David 
Spiegelhalter, Philippe Smets, and Lotfi Zadeh 1988 "Responses to 
An A I view of the treatment of uncertainty" by Alessandro 
Saffiotti." In The Knowledge Engineering Review, March, 1988, 
Vol. 3 (l),pp.59-86. 

[Durkin 1994] John Durkin 1994 "Expert Systems - Design and Development." 
Macmillan Pub. Comp., New York. 

[Dvorak & Kuipers 1991] Daniel Dvorak, and Benjamin Kuipers 1991 "Process 
Monitoring and Diagnosis : A Model-Based Approach." In IEEE 
Expert - Intelligent Systems and Their Applciations, June, 1991, 
Vol. 6, pp.67-74. 

[ECAI88 1988] European Conference on Artificial Intelligence (9th : Munich), Ed. 
By Bernd Radig, Yves Kodratoff, Birgit Veberreiter, and Klaus 
Peter Wimmer 1988 "(ECAI88) Proceeding of the 8th European 
Conference on Artificial Intelligence - Munich, August 1-5, 1988." 
Pitman, London. 

[ECAI92 1992] European Conference on Artificial Intelligence (10th : Vienna), Ed. 
by Bernd Neumann 1992 "(ECAI92) Proceeding of the 10th 
European Conference on Artificial Intelligence - Vienna, Austria, 
Aug. 3-7, 1992." John Wiley & Sons, Ltd. 

[Escobedo, Smith & Caudell 1993] Richard Escobedo, Scott D. G. Smith, and Thomas 
P. Caudell 1993 "A Neural Information Retrieval System." In The 
International Journal of Advanced Manufacturing Technology, 
1993, Vol. 8, No. 4, pp.269-274 

[EWSL88 1988] European Working Session on Learning (3rd: 1988: Turing Institute 
University of Strathclyde), Ed. by Derek Sleeman, and James 
Richmond 1988 "(EWSL88) Proceedings of the Third European 
Working Session on Learning - Turing Institute, Glasgow, 3-5 
October 1998." EWSL. 

[EWSL89 1990] European Working Session on Learning (4th: 1989: Montpellier), 
Ed. by Katharina Morik, Jean Sallantin, and Joel Quinqueton 1990 
"(EWSL89) Proceedings of the Fourth European Working Session 
on Learning, Montpellier, 4-6 December 1989." Pitman, London. 

[Fattah & O'Rorke 1993] Yousri el Fattah, Paul O'Rorke 1993 "Explanation-Based 
Learning for Diagnosis." In Machine Learning, 1993, Vol. 13 (1), 
pp.35-70. 

[Forsyth & Naylor 1986] Richard Forsyth, and Chris Naylor 1986 "(IBM PC 
BASIC Version) The Hitch-Hiker's Guide to Artificial Intelligence." 
Chapman and Hall, London. 



61 

[Forsyth & Rada 1986] Richard Forsyth, and R. Rada 1986 "Machine Learning : 
Applications in Expert Systems and Information Retrieval." Ellis 
Horwood Limited. 

[Forsyth 1984] Ed. by Richard S. Forsyth 1984 "Expert Systems (Principles and 
Case Studies)." Chapman and Hall Computing. 

[Gale 1986] William A. Gale (AT & T Bell Laboratories) 1986 "Artificial 
Intelligence & Statistics." Addison-Wesley Pub. Company. 

[Gammack & Rowe 1991] John Gammack, and Gene Rowe 1991 "Expert systems: 
the future is assured." In The Computer Bulletin - For Infonnation 
systems Professionals, September / October, 1991, Vol. 3 (7), 
pp.20-21. 

[Gardner 1987] Anne von der Lieth Gardner 1987 "An Artificial Intelligence 
Approach to Legal Reasoning." The MIT Press. 

[Glorioso & Osorio 1980] Robert M. Glorioso, and Fernando C. Colon Osorio 1980 
"Engineering Intelligent Systems (Concepts, Theory, and 
Applications)." Digital Press. 

[Grefenstette 1993] John J. Grefenstette 1993 "Genetic Algorithms." In IEEE Expert -
Intelligent Systems and Their Applications, October, 1993, Vol. 8 
(4), pp.5-8. 

[Gruber 1992] Thomas Gruber 1992 "Learning Why by Being Told What." In 
IEEE Expert - Intelligent Systems and Their Applications, August, 
1992, pp.65-75. 

[Hayes-Roth, Waterman & Lenat 1983] Frederick Hayes-Roth, Donald A. 
Waterman, and Douglas B. Lenat (ed.) 1983 "(Teknowledge 
Series in Knowledge Engineering) Building Expert Systems (Vol. 
I) ." Addison-Wesley Pub. Comp., Inc., Reading. 

[Hillis 1985] W. Daniel Hillis 1985 "(An ACM Distinguished Dissertation, 
1985) The Connection Machine." The MIT Press, Cambridge, 
Massachusetts, London, England. 

[Huang & Wang 1993] Hsin-Hao (Tom) Huang, and Hsu-Pin (Ben) Wang 1993 
"Machine Fault Classification Using an ART 2 Neural Network." In 
The International Journal of Advanced Manufacturing Technology, 
1993, Vol. 8, No. 4, pp. 194-199. 

[Irani, Cheng, Fayyad & Qian 1993] Keki B. Irani, Jie Cheng, Usama M . Fayyad, and 
Zhaogang Qian 1993 "Applying Machine Learning to 
Semiconductor Manufacturing." In IEEE Expert - Intelligent 
Systems and Their Applications, February, 1993, Vol. 8 (1), pp.41-
47. 



62 

[Jackson 1992] Mary Jackson 1992 "Understanding Expert Systems : Using 
Crystal." John-Wiley & Sons. 

[Jain&Mosier 1992]Piyush K. Jain, and Charles T. Mosier 1992 "Artificial 
Intelligence in Flexible Manufacturing." In The International 
Journal of Computer Integrated Manufacturing, Nov. - Dec, 1992, 
Vol. 5, No. 6,pp.378-384. 

[Kanal & Lemmer 1986] L. N. Kanal, and J. F. Lemmer 1986 "(Machine 
Intelligence and Pattern Recognition 4) Uncertainty in Artificial 
Intelligence." North Holland. 

[Kanal & Lemmer, 1988] L. N . Kanal, and J. F. Lemmer 1988 "(Machine 
Intelligence and Partem Recognition 5) Uncertainty in Artificial 
Intelligence." North Holland. 

fKhanna 1990] Tarun Khanna 1990 "Foundations of Neural Networks." Addison-
Wesley Pub. Company. 

[Kodratoff 1988] Yves Kodratoff 1988 "Introduction to Machine Learning." 
Pitman. 

[Kramer 1991] Mark A. Kramer 1991 "Fust International Workshop on Principles 
of Diagnosis." In IEEE Expert - Intelligent Systems and Their 
Applciations, June, 1991, Vol. 6, pp.86-87. 

[Lackinger & Nejdl 1993] Franz Lackinger, and Wolfgang Nejdl 1993 "Diamon: A 
Model-Based Troubleshooter Based on Qualitative Reasoning." In 
IEEE Expert - Intelligent Systems and Their Application, February, 
1993, Vol. 8 (l),pp.33-40. 

[Leonard & Kramer 1993] James A. Leonard, and Mark A. Kramer 1993 
"Diagnosing Dynamic Faults Using Modular Neural Nets." In IEEE 
Expert - Intelligent Systems and Their Applications, April, 1993, 
Vol. 8 (2),pp.44-53. 

[Lerner 1972] A. Ya Lerner 1972 "Fundamentals of Cybernetics." Chapman and 
Hall, London. 

[Leung & Lam 1988] K. S. Leung, and W. Lam 1988 "Fuzzy Concepts in Expert 
Systems." In Computer, September, 1988, pp.43-56. 

[Levi, Perschbacher, Hoffman, Miller, Druhan & Shalin 1992] Keith R. Levi, David 
L. Perschbacher, Mark A. Hoffman, Christopher A. Miller, Barry B. 
Druhan, and Valerie L. Shalin 1992 "An Explanation-Based-
Leaming Approach to Knowledge Compilation : A Pilots 
Associated Application." In IEEE Expert - Intelligent Systems and 
Their Applications, June, 1992, pp.44-51. 



63 

[Liu & Iyer 1993] T. I . Liu, and N. R. Iyer 1993 "Diagnosis of Roller Bearing 
Defects Using Neural Networks." In The International Journal of 
Advanced Manufacturing Technology, 1993, Vol. 8, No. 4, pp.210-
215. 

[Low, Lui, Tan & Teh 1991] B. T. Low, H. C. Lui, A. H. Tan, and H. H. Teh 1991 
"Connectionist Expert System with Adaptive Learning Capability." 
In IEEE Transactions on Knowledge and Data Engineering, June, 
1991, Vol. 3 (2), pp.200-207. 

[Luger & Stubblefield 1989] George F. Luger, and William A. Stubblefield 1989 
"Artificial Intelligence and the Design of Expert Systems." The 
Benjamic / Cummings Publishing Company, Inc. 

[Mark, Robert & Simpson 1991] William S. Mark, Robert, and Robert L. Simpson, 
Jr 1991 "Knowledge-Based Systems : An Overview." In IEEE 
Expert - Intelligent Systems and Their Applciations, June 1991, 
Vol. 6(3),pp.l2-17. 

[McDonald 1989] Carlton McDonald 1989 "Machine learning: a survey of current 
techniques." In Artificial Intelligence Review, 1989, Vol. 3, 
pp.243-280. 

[McDowell, Kramer & Davis, 1991] James K. McDowell, Mark A. Kramer, and James 
F. Davis 1991 "Knowledge-Based Diagnosis in Process 
Engineering." In IEEE Expert - Intelligent Systems and Their 
Applciations, June, 1991, Vol. 6, pp.65-66. 

[Michalski, Carbonell & Mitchell 1984] Ryszard S. Michalski, Jaime G. Carbonell, 
and Tom M. Mitchell 1984 "(Symbolic Computation) Machine 
Learning - An Artificial Intelligence Approach." Springer-Verlag, 
Berlin Heidelberg, New York, Tokyo. 

[Mirzai, 1990] A. R. Mirzai ; Artificial Intelligence : Concepts and Applications in 
Engineering ; Chapman and Hall Computing. 

[Monostori & Barschdoiff 1992] L. Monostori, and D. Barschdorff 1992 "Artificial 
Neural Networks in Intelligent Manufacturing." In Robotics & 
Computer-Integrated Manufacturing (An International Journal), 
December, 1992, Vol. 9, No. 6, pp.421-437. 

Robert Carter Moore 1980 "(Outstanding Dissertations in the 
Computer Science - A Continuing Garland Research Series) 
Reasoning from Incomplete Knowledge in a Procedural Deduction 
System." Garland Pub., Inc. 

Toshinori Munakata 1993 "Practical A I : Where it's been, and 
where it is now." hi IEEE Expert - Intelligent Systems and Their 
Applications, April, 1993, Vol. 8 (2), pp.3-5. 

[Moore 1980] 

[Munakata 1993] 



[NATO 1971] 

[Naylor 1983] 

64 

North Atlantic Treaty Organization, cd. by N. V. Findler, and 
Bernard N. Meltzer 1971 "(Edinburgh) Artificial Intelligence and 
Heuristic Programming." Edinburgh University press. 

Chris Naylor 1983 "(Artificial Intelligence for the Aspiring 
Microcomputer) Build Your Own Expert System." Sigma 
Technical Press. 

[Ng 1991] Hwee Tou Ng 1991 "Model-Based, Multiple-Fault Diagnosis of 
Dynamic, Continuous Physical Devices." In IEEE Expert -
Intelligent Systems and Their Applications, December, 1991, pp.38-
43. 

[Nilsson 1982] 

[Norman 1991] 

[O'keefe 1993] 

[O'Neil 1978] 

Nils J. Nilsson 1982 "(Symbolic Computation) Principles of 
Artificial Intelligence (with 139 figures)." Springer-Verlag Berlin 
Heidelberg, New York. 

Donald A. Norman 1991 "Approaches to the study of 
intelligence." In Artificial Intelligence, 1991, Vol. 47, pp.327-346. 

Robert M. O'keefe 1993 "Expert system verification and 
validation: a survey and tutorial." In Artificial Intelligence Review, 
February, 1993, Vol. 7 (1), pp.3-42. 

Harold F. O'Neil, Jr. 1978 "Learning Strategies." Academic Press. 

[O'Shea, Self & Thomas 1987] Ed. by Tim O'Shea, John Self, and Glan Thomas 
1987 "Intelligent Knowledge-based Systems (An Introduction)." 
Harper & Row, Pub. 

[O'shea & Eisenstadt 1984] Tim O'shea, and Marc Eisenstadt 1984 "Artificial 
Intelligence : Tools, Techniques, and Applications." Harper & 
Row, Publishers, New York. 

[Padalkar, Karsai, Biegl, Sztipanovits, Okuda & Miyasaka 1991] Samir Padalkar, 
Gabor Karsai, Csaba Biegl, Janos Sztipanovits, Koji Okuda, and 
Nobuji Miyasaka 1991 "Real-Time Fault Diagnostics." In IEEE 
Expert - Intelligent Systems and Their Applciations, June, 1991, 
Vol. 6,pp.75-85. 

[Partridge & Paap 1988] D. Partridge, and K. Paap 1988 "An introduction to 
learning." In Artificial Intelligence Review, 1988, Vol. 2, pp.79-
101. 

[Paul 1993] Paul F. M. J. 1993 "Formal Minds and Biological Brains : A I and 
Edelman's Extended Theory of Neuronal Group Selection." In 
IEEE Expert - Intelligent Systems and Their Applications, October, 
1993, Vol. 8 (4), pp.66-75. 

[Paul 1993] Gabriele Paul 1993 "Approaches to abductive reasoning : an 
overview." In Artificial Intelligence Review, 1993, pp. 109-152. 



65 

[Pegah, Sticklen & Bond 1993] Mahmoud Pegah, Son Sticklen, and William Bond 
1993 "Functional Representation and Reasoning About the F/A -
18 Aircraft Fuel System." In IEEE Expert - Intelligent Systems and 
Their Applications, April, 1993, Vol. 8 (2), pp.65-71. 

[Penalva, Coudouneau, Leyval & Montmain 1993] Jean Michel Penalva, Laurent 
Coudouneau, and Lydie Leyval, Jacky Montmain 1993 "A 
Supervision Support System for Industrial Processes." In IEEE 
Expert - Intelligent Systems and Their Applications, October, 1993, 
Vol. 8 (4),pp.57-65. 

[Pfau-Wagenbauer & Nejdl 1993] Monika Pfau-Wagenbauer, and Wolfgang Nejdl 
1993 "Integrating Model-Based and Heuristic Features in a Real-
Time Expert System." In IEEE Expert - Intelligent Systems and 
Their Applications, August, 1993, Vol. 8 (4), pp.12-18. 

[Pollock 1989] John L. Pollock 1989 "How to Build a Person : A Prolegomenon." 
The MIT Press. 

[Porter, Bareiss & Holte 1990] Bruce W. Porter, Ray Bareiss, and Robert C. Holte 
1990 "Concept Learning and Heuristic Classification in Weak-
Theory Domains." In Artificial Intelligence, 1990, Vol. 45, pp.229-
263. 

[Rauch-Hindin 1985a] Wendy B. Rauch-Hindin 1985 "Artificial Intelligence in 
Business, Science, and Industry (Vol. I) : Fundamentals." Prentice-
Hall. 

[Rauch-Hinclin 1985b] Wendy B. Rauch-Hindin 1985 "Artificial Intelligence in 
Business, Science, and Industry (Vol. II) : Applications." Prentice-
Hall. 

[Rauch-Hindin 1988] Wendy B. Rauch-Hindin 1988 "A Guide to Commercial Artificial 
Intelligence : Fundamentals and Real-World Applications." Prentice 
Hall. 

[Rich & Knight 1991] Elaine Rich, and Kevin Knight 1991 "Artificial 
Intelligence (Second Edition)." McGraw-Hill, Inc. 

[Rzevski & Adey 1991] G. Rzevski, and R.A. Adey 1991 "Applications of 
Artificial Intelligence in Engineering, Vol. V I . " Computational 
Mechanics Publications / Elsevier Applied Science. 

[Rzevski 1989] G. Rzevski 1989 "Artificial Intelligence in Manufacturing." 
Computational Mechanics Publications / Springer-Verlag. 

[Saffiotti 1987] Alessandro Saffiotti 1987 "An AI view of the treatment of 
uncertainty." In The Knowledge Engineering Review, June, 1987, 
Vol. 2 (2), pp.75-97. 



66 

[Saffiotti 1988] Alessandro Saffiotti 1988 "The treatment of uncertainty in AI : Is 
there a better vantage point." In The Knowledge Engineering 
Review, March, 1988, Vol. 3 (1), pp.87-91. 

[Schlimmer 1993] Jeffrey C. Schlimmer 1933 "Self-Modeling Databases : learning 
and Applying Partial Integrity Constraints to Detect Database 
Errors." In IEEE Expert - Intelligent Systems and Their 
Applications, April, 1993, Vol. 8 (2), pp.35-43. 

[Schnelle & Mah 1992] Kail D. Schnelle, and Richard S. H. Mah 1992 "A Real-
Time Expert System for Quality Control." In IEEE Expert -
Intelligent Systems and Their Applications, October, 1992, pp.36-
42. 

[Schultz, Grefenstette & De Jong 1993] Alan C. Schultz, John J. Grefenstette, and 
Kenneth A. De Jong 1993 "Test and Evaluation by Genetic 
Algorithms." In IEEE Expert - Intelligent Systems and Their 
Applications, October, 1993, Vol. 8 (4), pp.9-14. 

[Segre 1992] Alberto Maria Segre 1992 "Applications of Machine Learning." In 
IEEE Expert - Intelligent Systems and Their Applications, June, 
1992, pp.30-34. 

[Shapiro 1990] Stuart C. Shapiro 1990 "Encyclopedia of Artificial Intelligence 
(Vol. I)." Wiley-Interscience. 

[Sharma & Conrath 1993] Ravi S. Sharma, and David W. Conrath 1993 "Evaluating 
Expert Systems: a Review of Applicable Approaches." In Artificial 
Intelligence Review, 1993, pp.77-91. 

[Sheridan 1991] F. K. J. Sheridan 1991 "A survey of techniques for inference under 
uncertainty." In Artificial Intelligence Review, 1991, Vol. 5, pp.89-
119. 

[Sikora 1992] Riyaz Sikora 1992 "Learning Control Strategies for Chemical 
Processes." In IEEE Expert - Intelligent Systems and Their 
Applications, June, 1992, pp.35-43. 

[Simpson 1989] Reported by Alan Simpson 1989 "Real Time Control with ES." In 
Expert Systems User - The Professionals' Guide to Knowledge-
Based System, January, 1989, Vol. 5 (1), pp.10-12. 

[Spur & Specht 1992] G. Spur, and D. Specht 1992 "Knowledge Engineering in 
Manufacturing." In Robotics & Computer-Integrated 
Manufacturing (An International Journal), Aug. - Oct., 1992, Vol. 
9, No. 4/5,pp.303-309. 

[Steels & Velde 1989] Luc Steels, and Walter Van De Velde 1989 "Learning in 
Second Generation Expert Systems in Machine and Human 
Learning (Advances in European Research, Ed. by Yves Kodratoff, 
and Alan Hutchinson)." Kogan Page, London. 



67 

[Swift 1987] K. G. Swift 1987 "Knowledge-Based Design for Manufacture." 
Kogan Page. 

[Tesauro & Sejnowski 1989] G. Tesauro, and T. J. Sejnowski 1989 "A Parallel 
Network that Learns to Play Backgammon." In Artificial 
Intelligence, 1989, Vol. 3, pp.357-390. 

[The Open University 1978] The Open University 1978 "(Cognitive Psychology ) 
Learning and Problem Solving [Part 1] : D303 Block 4 Units 22-
23." The Open University. 

[Tim Rajan 1989] Tim Rajan 1989 "Knowledge Acquisition for model based expert 
systems." In Expert Systems User - The Professionals' Guide to 
Knowledge-Based System, May, 1989, Vol. 5 (5), pp. 18-21. 

[Towell & Shavlik 1993] Geoffrey G. Towell, Jude W. Shavlik 1993 "Extracting 
Refined Rules from Knowledge-Based Neural Networks." In 
Machine Learning, 1993, Vol. 13 (1), pp.71-101. 

[Vinson, Grantham & Ungar 1992] Jonathan M. Vinson, Stephen D. Grantham, and 
Lyle H. Ungar 1992 "Automatic Rebuilding of Qualitative Models 
for Diagnosis." In IEEE Expert - Intelligent Systems and Their 
Applications, August, 1992, pp.23-30. 

[Waterman 1986] Donald A. Waterman 1986 "A Guide to Expert Systems." 
Addison-Wesley Pub. Comp. 

[Whiteley & Davis 1993] James R. Whiteley, and James F. Davis 1993 "Qualitative 
Interpretation of Sensor Patterns." In IEEE Expert - Intelligent 
Systems and Their Applications, April, 1993, Vol. 8 (2), pp.54-63. 

[Winograd & Flores 1986] Terry Winograd, and C. Fernando Flores 1986 
"Understanding Computers and Cognition (A New Foundation for 
Design)." Ablex Publishing, Corporation, Norwood, New Jersey. 

[Winston & Brown 1979] Patrick Henry Winston, and Richard Henry Brown 1979 
"Artificial Intelligence (An MIT Perspective, Vol. I ) . " The MIT 
Press, Cambridge, Massachusetts, and London, England. 

[Winston & Brown 1979] Patrick Henry Winston, and Richard Henry Brown 1979 
"Artificial Intelligence (An MIT Perspective Vol. I I ) . " The MIT 
Press, Cambridge, Massachusetts, and London, England. 

[Winston 1984] Patrick Henry Winston 1984 "Artificial Intelligence (2nd ed.)." 
Addison Wesley. 

[WPCSS 1989] Working Party Council for Sciences and Society 1989 "Benefits 
and Risks of Knowledge-Based Systems : Report of a Working 
Party Council for Sciences and Society." Oxford University Press. 



68 

[Wright & Bourne 1988] Paul Kenneth Wright, and David Alan Bourne 1988 
"Manufacturing Intelligence." Addison-Wesley Pub. Comp. Inc. 

[Wright 1990] Jim Wright 1990 "ES technology is set to come to the aid of 
Multimedia interactions." In Expert Systems User - The 
Professionals' Guide to Knowledge-Based System, February, 1990, 
Vol. 6(2),pp,12-14. 

[Wu 1993] Xindong Wu 1993 "Inductive learning: Algorithms and 
Frontiers." In Artificial Intelligence Review, 1993, pp.93-108. 

[Wusteman 1992] Judith Wusteman 1992 "Explanation-Based Learning : A Survey." 
In Artificial Intelligence Review, 1992, Vol. 6 (3), pp.243-263. 

[Ye, Zhao & Salvendy 1993] Nong Ye, Baijun Zhao, and Gavriel Salvendy 1993 
"Neural-Networks-Aided Fault Diagnosis in Supervisory Control of 
Advanced Manufacturing Systems." In The International Journal of 
Advanced Manufacturing Technology, 1993, Vol. 8, No. 4, pp.200-
209. 

[Yerramareddy, Tcheng, Lu & Assanis 1992] Sudhakar Yerramareddy, David K. 
Tcheng, Stephen C-Y. Lu, and Dennis N. Assanis 1992 "Creating 
and Using Models for Engineering Design : A Machine -Learning 
Approach." In IEEE Expert - Intelligent Systems and Their 
Applications, June, 1992, pp.52-59. 


