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The Nature of Emission-Line Galaxies

in Hierarchical Cosmologies

Alvaro Orsi

Abstract

We use a galaxy formation model to study the nature and evolution of emission line galax-

ies. In particular, we focus on the properties of Lyα and Hα emitters, due to their many

cosmological applications being considered for current and future observational studies.

By combining a semianalytical model with a large N-body simulation we predict the clus-

tering of Lyα emitters. With increasing redshift, Lyα emitters are found to trace progressively

rarer, higher density regions of the Universe. We measure the clustering of Lyα emitters

by constructing mock catalogues of surveys finding a good agreement between the model

and the observational measurements. Furthermore, we use the mock catalogues to study the

sample variance of current and forthcoming Lyα surveys. Current surveys should be extended

significantly in solid angle to allow a robust measurement of the clustering of Lyα emitters,

particularly at z > 8.

On the other hand, future space-based galaxy surveys will map the galaxy distribution

using Hα emitters or H-band selected galaxies at 0.5 < z < 2 to constrain the nature of the

dark energy by measuring the large-scale structure of the Universe. Therefore, we investigate

the abundance and clustering of galaxies found using these two selections. Hα emitters are

found to avoid massive dark matter haloes, whereas H-band selected galaxies are found in

the highest mass haloes. By using mock catalogues, we predict the effectiveness of measuring

the large scale structure of the Universe for a range of survey configurations using both galaxy

selections.

Finally, we study the escape of Lyα photons from galaxies using a Monte Carlo radiative

transfer code. We simulate galactic outflows in a semianalytical model to study the physical

properties of Lyα emitters in a cosmological context. We find that the escape fraction of Lyα

emitters can vary greatly depending on the properties of the galaxies, although our results

depend on the outflow model used. Our results suggest the need to consider additional

physical effects to understand the observed properties of Lyα emitters.
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Chapter 1
Introduction

Over the past few years our understanding of the cosmic history of the Universe has im-

proved at a rapid pace. The COsmic Background Explorer (COBE) satellite measured for

the first time the anisotropies in the cosmic microwave background (CMB) radiation (Smoot

et al., 1992; Gorski et al., 1994; Bennett et al., 1996). These temperature fluctuations corre-

spond to primordial ripples in the density of the Universe, and are regarded as the seeds of

the matter density fluctuations in the Universe as observed today. Furthermore, the discov-

ery of the accelerating cosmic expansion of the Universe in 1998 by two independent teams

(Riess et al. 1998 and Perlmutter et al. 1999) using Type Ia supernovae as standard can-

dles was a major breaktrough for cosmology, since it introduced a new, unknown and little

understood, major component in the energy budget of the Universe, the so-called dark energy.

A conclusion along the same lines had already been suggested nearly 10 years before as a

result of the analysis of the spatial distribution of galaxies in the APM (Efstathiou et al., 1990)

and QDOT (Saunders et al., 1991) surveys. In the following years, galaxy surveys were de-

veloped to become robust probes of both cosmology and galaxy formation. The present-day

Universe has been mapped with unprecedented detail by two very large surveys completed

over the last decade, the Sloan Digital Sky Survey (SDSS) (York et al., 2000) and the 2-degree

Field Galaxy Redshift Survey (2dFGRS) (Colless et al., 2003). These two surveys have pro-

vided a huge amount of data, allowing the study of galaxy properties with a level of detail

and robustness never achieved before. As a result, theories of galaxy formation have been

greatly developed, both in complexity and in the scope of their predictions in order to account

for this huge wave of observational data.

Furthermore, galaxies have also been tracked back in time to epochs when the Universe

was in its infancy, just a few hundreds of million years after the Big Bang. New telescopes are

being exploited to their maximum potential to try to reveal the cosmic dawn, the epoch when

1
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the first stars and galaxies formed.

To undertake such high redshift galaxy surveys, observational techniques have been de-

veloped to search for particular features in the spectral energy distributions of galaxies. In

a way, this makes the task of interpreting the observations more complex, since different

spectral signatures are generated from different physical processes inside galaxies, and so

different survey designs could probe galaxy populations with specific characteristics. For ex-

ample, emission-line galaxies are found by detecting a spectral line in emission against the

stellar continuum. In general, this spectral signature is produced by the recombination of

ionised gas in the interstellar medium of galaxies. The physics governing the production and

the escape of these photons could be very complex, as we will study later in this thesis.

It is clear that a full picture of galaxy formation and evolution requires an understand-

ing of the multi-wavelength properties of galaxies in order to link the properties of primeval

galaxies in models, to what is observed in the present day Universe.

A fundamental clue to understanding the intrinsic link between galaxy evolution and the

cosmic history of the Universe is the spatial distribution of galaxies. Half of this thesis is

devoted to the modelling using numerical techniques of the large scale structure of galaxies

and its evolution. Apart from its significance from a galaxy formation perspective, the clus-

tering properties of the galaxy distribution can be used to infer and constrain some of the

fundamental cosmological parameters.

By combining data from several cosmological probes such as supernovae distances, CMB

anisotropies and the large scale structure of galaxies, a flat Λ cold dark matter (ΛCDM) cos-

mology is favoured over alternative cosmologies (e.g. Efstathiou et al., 2002). The energy

budget most consistent with observational data consists of a balance of matter (baryonic plus

dark) of Ωm ∼ 0.25, and dark energy with ΩΛ ∼ 0.75, where Ωm and ΩΛ denote the ratio

of the energy density of dark matter and dark energy to the critical density of the Universe,

respectively (see, for example, Tegmark et al., 2004; Percival et al., 2007; Sánchez et al.,

2009, for a full description of the cosmological parameters that fit the data best).

In the standard ΛCDM Universe, the dark matter dominates the large scale gravitational

forces. It is defined as cold, because these particles have non relativistic velocities when their
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interaction rate drops below the expansion rate; dissipationless, since they cannot cool radia-

tively, as they do not have electromagnetic interactions and so cannot produce photons; and

collisionless, since these particles only interact gravitationally.

To date it is still not clear what is the nature of the dark matter. Light neutrinos were the

first proposed candidates for dark matter (e.g. Gershtein and Zel’Dovich, 1966; Zel’dovich

and Khlopov, 1981; Harari, 1989), however the requirement that the dark matter must be

cold ruled them out (see, for example, White et al., 1984). Nowadays, Weakly Interacting

Massive Particles (WIMPs) and axions are the two most promising candidates for dark matter,

both of which are potentially detectable (for a review on dark matter candiates, see Krauss,

2007).

In a standard ΛCDM model the dark energy equation of state parameter wDE = P/ρ

is equal to −1 at all redshifts, which means that dark energy behaves like a cosmological

constant. To date, no departure from wDE = −1 has been measured. A discovery of evo-

lution in wDE would be an indication of a departure from the standard ΛCDM model, and

thus remains one of the most active topics of interest in modern cosmology (Peacock et al.,

2006). A detailed review of alternative cosmological theories can be found in Caldwell and

Kamionkowski (2009).

1.1 The large scale structure of the Universe

Before the theory of inflation was postulated (Guth, 1981), the origin of the observed struc-

ture in the Universe was not properly understood. Galaxies trace the underlying dark matter

distribution, which is expected to evolve mainly due to gravity. Nevertheless, the classical

model of cosmology does not account for the initial seeds from which a density field could

evolve into something resembling what is observed in the Universe today. The proposal of an

inflationary period in the early Universe solved this and several other unresolved questions

in cosmology at that time.

During the period of inflation, starting shortly after the Big Bang, the Universe is supposed

to experience a period of exponential growth, driven by a slowly rolling scalar field. The
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original idea was proposed to explain other issues of the classical model of cosmology, of

which two important ones were known as the flatness and horizon problems.

The first one arises because observations already suggested that the geometry of the Uni-

verse was nearly flat, however such a geometry is an unstable solution to the cosmological

evolution equations and requires a very constrained set of initial conditions. The second

problem refers to the apparent causal connection between distant regions of the sky having

essentially the same CMB temperature (the anisotropies are very small), since such regions,

according to the particle horizon at the time of matter-radiation decoupling, should not have

been causally connected, and hence should not have had time to reach thermal equilibrium.

In addition to the success of inflation in solving the above problems, a side product is a

primordial perturbed density field with a nearly scale invariant power spectrum. The subse-

quent gravitational growth of those density perturbations to the present day resembles the

observed large scale structure of galaxies, supporting also the idea that galaxies form inside

dark matter structures, and their evolution is intrinsically linked to the hierarchical growth

of the underlying density peaks of the dark matter distribution (White and Rees, 1978).

Observationally, the distribution of galaxies on the sky is, in principle, easy to measure

and characterise, since it only requires us to count and measure distances between objects.

The distribution of galaxies on the sky was already known to be irregular from observations

dating back almost 80 years ago (see, for example, Hubble, 1934), even considering the

limitations due to the quality of photographic plates at that time. Galaxies seemed also to be

grouped into clusters, as shown years later by Abell (1958) in his early catalogue of ∼ 4000

galaxy clusters from the National Geographic Society Palomar Obervatory Sky Survey. This

suggested already that the environment where galaxies live could be an important piece in

the puzzle to understand their nature.

The task of measuring the spatial distribution of galaxies is, however, more complicated

considering that an image from a telescope is only the projection on a plane of a 3 dimen-

sional space. In principle, the statistical properties of the spatial distribution of galaxies can

be inferred from the measured angular distribution after deprojecting if the redshift distribu-

tion of sources is known (Limber 1953; but see also Simon 2007).
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In a long series of papers, Peebles and collaborators developed extensive quantitative

analysis of the clustering of galaxies from surveys. In order to measure the large scale struc-

ture in the galaxy distribution they estimated n-point correlation functions. For example, the

two-point correlation function ξ(r), and its analogous on a plane, w(θ), are defined as the

excess probability of finding galaxy pairs at a given separation to what is expected from a

random distribution of galaxies. This and higher order correlation function estimators were

applied to the Zwicky and Lick galaxy catalogues in order to characterise the large scale

distribution of galaxies (see Peebles and Hauser, 1974; Peebles and Groth, 1975; Fry and

Peebles, 1978; Seldner and Peebles, 1978; Fry and Peebles, 1980, and references therein).

Nevertheless, a more accurate measurement of the spatial clustering of galaxies can be

achieved when the redshift of every source is known. The CfA Redshift Survey (Davis et al.,

1982) mapped the 3D distribution of galaxies for the first time, detecting ∼ 2400 galaxies

grouped in a filamentary structure featuring clusters and superclusters. This survey con-

firmed that the distribution of galaxies was anything but random. In addition to the famous

human-shaped supercluster named the Stick Man, the CfA survey also detected a great super-

structure, the Great Wall, made out of clusters, filaments and other amorphous structures.

Despite the success of redshift surveys at mapping the spatial distribution of structure, in

reality the redshift of galaxies is not enough to get a real 3D picture of their distribution, since

peculiar velocities of galaxies along the radial direction will Doppler shift the measured red-

shift, thus distorting the apparent distance to the galaxy. The peculiar velocities of galaxies

arise from the gravity of the clustered structure of the matter distribution itself, which causes

the redshift distortions to have a characteristic clustering pattern: In simple terms, galaxies in-

side clusters belong to virialized structures, making their peculiar motions random, whereas

on larger scales galaxies have coherent peculiar velocity motions which point towards nearby

massive structures. The clustering pattern resulting from these redshift distortions is studied

in more detail in Chapter 4 of this thesis.

The large scale structure extracted from galaxy surveys is known to depend on the prop-

erties of the galaxy population used. The clustering strength depends on the luminosity,
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colour, morphology, star formation rate and other properties of galaxies, but also depends on

the scale lengths and redshift considered (see, for example, The SDSS Collaboration et al.,

2010). Furthermore, the large scale structure of a galaxy population depends intrinsically

on the masses of the haloes which host the galaxies. Since galaxies reside in the peaks of

the matter density distribution, they are biased tracers of the dark matter distribution. This

bias can be simply quantified as the ratio of the clustering strength of galaxies to that of dark

matter. The bias function is known to vary with halo mass, in the sense that more massive

structures appear more clustered with respect to the underlying matter. Also, for a given halo

mass, the bias is expected to increase with redshift, since massive haloes are less abundant

and correspond to higher peaks in the density field, which is more homogeneous at higher

redshifts.

The clustering signal provided by large scale structure measurements is imprinted with

features from the early Universe, when matter and radiation were mixed in a hot, dense and

ionized plasma. This original plasma was homogeneous except for small mass density fluctu-

ations, which create pressure gradients in the medium. The resulting sound waves in baryons

are known as Baryonic Acoustic Oscillations (BAO).

At the time of decoupling between matter and radiation, the Universe had expanded so

that its density and temperature decreased sufficiently to make possible the recombination

of ionized atoms. This allows photons to escape from the primordial plasma. The oscillation

of the baryonic gas is stalled since there is no more radiation pressure from the medium.

The density field of baryons is thus imprinted with a characteristic peak, at a scale of approxi-

mately the sound horizon at that epoch, s ∼ 150Mpc (Eisenstein and Hu, 1998). The acoustic

peak is also imprinted as a feature of the CMB temperature anisotropy map, since it shows

radiation density anisotropies at the time of the decoupling (Peebles and Yu, 1970; Bond and

Efstathiou, 1984). The baryonic feature is imprinted on the power spectrum of the matter

distribution. Both features correspond to the same comoving length scale, but the BAO peak

can be measured from the galaxy distribution at different epochs, where the expansion of the

Universe shifts the peak position in physical scale length. This is why BAOs are regarded as a

cosmic ruler, since, when measured, the peak corresponds to the same scale length measure

in the CMB map, which has been accurately measured by the WMAP satellite (Dunkley et al.,
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2009).

The cosmic expansion can be followed by measuring the length of this cosmic ruler at dif-

ferent epochs with potentially high accuracy, making the detection of BAOs one of the most

important probes of the cosmological paradigm. The acoustic peak of the CMB can determine

the angular diameter scale at z = 1089 (the redshift of decoupling) very accurately. If a flat

cosmology is assumed, then this measurement depends only on Ωm or ΩΛ. If the Universe

is allowed to have non-zero curvature, or wDE is allowed to vary, then the CMB data alone

show parameter degeneracies in the best-fit of the angular diameter scale of the acoustic

peak. Therefore, by adding the measurement of the BAO peak from the galaxy distribution,

it is possible to break these degeneracies.

Using the spectroscopic sample of Luminous Red Galaxies from the SDSS, Eisenstein et al.

(2005) detected the BAO peak in the correlation function of galaxies. The detection was

rather noisy though, since the scale that must be probed is very large. Nevetheless, it was

shown that the Universe is flat to within 1% accuracy, assuming wDE = −1.

This motivated current efforts to construct very large redshift surveys of galaxies at dif-

ferent redshifts with the aim of measuring the BAO signal with accuracies better than < 1%

in order to constrain the nature of the energy components of the Universe, and in particular

of the dark energy.

Nowadays, understanding the nature of dark energy is regarded as one of the most im-

portant challenges in science. Several redshift surveys have been planned to measure the

BAO peak with different techniques spanning a large range of redshifts. Some of the current

and forthcoming redshift surveys attempting to measure the BAO peak are: WiggleZ (Blake

et al., 2009), HETDEX (Hill et al., 2008), Euclid and WFIRST (Cimatti et al., 2009), BOSS

(Ross et al., 2010), Big-BOSS (Mostek et al., 2010), PanSTARRS (Kaiser, 2006) and WFMOS

(Nichol, 2006) . The analysis of these surveys in the forthcoming years is expected to rev-

olutionize the current paradigm of cosmology by either validating it or ruling it out at an

unprecedented level of accuracy.
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From the above list of surveys, WiggleZ, WFMOS, Euclid, HETDEX and WFIRST are de-

signed to trace the dark matter distribution using emission-line galaxies. In order to fully

understand and be able to interpret the forthcoming data from these surveys, it is imperative

to have a detailed understanding of the properties of emission-line galaxies from a theoreti-

cal perspective. Surprisingly, there has been little effort to model, predict and interpret the

properties of this particular population of galaxies. Therefore, one of the goals of this thesis

to shed light on some of the properties of emission line galaxies.

1.2 Emission-line galaxies

As mentioned earlier, emission lines produced in galaxies are the result of recombinations of

hydrogen in the interstellar medium (ISM) caused by ionizing Lyman continuum (LC) pho-

tons. These photons are mostly generated by young, massive stars, which makes observed

emission-lines tracers of the star formation rate in a galaxy. It is important to notice that

observed emission lines from galaxies can also be produced by sources other than stars, like

AGNs (e.g. Kaspi et al., 2000), Supernova remnants (e.g. Milisavljevic et al., 2010), or

cold accretion streams generating collisionally excited line radiation (e.g. Dijkstra and Loeb,

2009). The study of these alternative mechanisms of emission line production is beyond the

scope of this thesis. Therefore, we will focus on hydrogen emission lines produced by stellar

photoionising radiation in actively star formation galaxies.

Hydrogen recombination lines have been historically used as a probe of the star forma-

tion activity in galaxies. The most common lines used for this purpose are Hα, Hβ , Lyα,

Pα, Pβ , Brα and Brβ . Forbidden lines like [OII] and [OIII] are also common star formation

indicators, although these are formed by collisionally excited radiation and thus are not di-

rectly coupled to ionizing radiation (see Kennicutt, 1998b, for a review of the different star

formation indicators).

Several physical processes play important roles in shaping the emission line that is ob-

served from a galaxy. Although these hydrogen emission lines are originated from the same

source, their observed strength correlates with the rate of production of LC photons (and,
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thus, with the star formation rate) in a different way for every line. For example, the pres-

ence of dust will attenuate the intrinsic strength of the lines. Moreover, dust attenuation is a

function of wavelength, with UV photons being more prone to being absorbed by dust than

photons in optical or infrared bands.

In this thesis, we will focus our attention on two recombination lines: The Hα and Lyα

emission lines. Both have been extensively used in the past for estimating star formation

rates and also to search for primeval galaxies at high redshifts (see Schaerer, 2007, for a

review). Also, forthcoming redshift surveys will use these two lines as tracers of galaxies to

probe the nature of dark energy, as described above. In the following we will briefly describe

the properties of each of these lines.

The Hα line, at a restframe of λ = 6562Å, is perhaps the most commonly used estimator

of the star formation activity in galaxies. Surveys of Hα emitters have been used to infer the

global star formation history over the range 0< z < 2 (e.g. Gallego et al., 1995; Fujita et al.,

2003; Pascual et al., 2001; Hopkins et al., 2000; Hayes et al., 2010b; Geach et al., 2008,

among others).

The advantages of the Hα emission as a tracer of the star formation rate lies on a com-

bination of its high signal, since it is the strongest of the Balmer transitions, and its rela-

tively low attenuation by dust. The extinction of the Hα line can be estimated by compar-

ing the observed Hα fluxes to other lines such as Hβ , and comparing this to the expected

value from recombination theory. The mean extinction found in this way is usually around

A(Hα) = 0.8− 1.1 mag for nearby galaxies (Kennicutt, 1983; Niklas et al., 1997; Kennicutt,

1998b). However, more recent studies have shown a large spread in this measurement, and

the data also suggests a correlation between the extinction and the morphological type of

galaxies (James et al., 2005).

Another important emission line is Lyα, at a restframe wavelength of λ = 1216Å. This

emission arises from the transition between the states n = 2 to n = 1 in the hydrogen atom,

and is the strongest hydrogen recombination line in absence of attenuation, which is why it

was suggested by Partridge and Peebles (1967) that the Lyα line could be used as a tracer of
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young, distant galaxies.

However, it took over 30 years to establish Lyα detections as a robust technique to search

for high redshift objects. The attenuation and properties of Lyα emitters are more difficult to

model than for Hα photons, since Lyα is a resonant line. This means that photons created

from the initial recombination of ionized gas by LC photons into Lyα will be continuously

scattered by hydrogen atoms, thus increasing the path length photons travel compared to a

non-resonant photon, such as Hα. The complicated paths photons travel before escaping al-

ter the measured line profile, and since the photon path length is larger than with continuum

photons, this increases the probability for the photons to be absorbed by dust grains. Never-

theless, using the measured spectrophotometric properties of Lyα emitters, there is general

agreement that these galaxies are mostly young, actively forming stars, low in mass and dust

(Cowie and Hu, 1998; Kudritzki et al., 2000; Gawiser et al., 2007; Nilsson and Meisenheimer,

2009).

The Lyα technique has been particularly successful for making surveys of galaxies in the

redshift range 2 < z < 7 (e.g. Cowie and Hu, 1998; Hu et al., 2002; Gronwall et al., 2007;

Ouchi et al., 2008; Nilsson et al., 2009; Shimasaku et al., 2006; Kashikawa et al., 2006; Hu

et al., 2010), and recently also at z ∼ 0.2 thanks to data from the GALEX satellite (Deharveng

et al., 2008; Cowie et al., 2010). Candidates with Lyα emission are most commonly found

through photometry with a narrow band filter centred at a redshifted Lyα wavelength. In

general, candidates are subsequently confirmed with spectroscopy. Other techniques for de-

tecting Lyα emission of galaxies include spectroscopy of lensed galaxies (Stark et al., 2007)

and integral-field-unit (IFU) spectroscopy (Blanc et al., 2007; Hill et al., 2008).

One of the pending tasks for Lyα searches is to extend the method to very high redshifts

(z ≥ 7) to get a statistical sample of galaxies at epochs when the reionization of the Universe

was not complete (Kashikawa et al., 2006; Iye et al., 2006; Stark et al., 2007; Hibon et al.,

2010). A number of surveys are planned to aim at these redshifts, like the DAZLE survey,

which aims to detect Lyα emitters at z ∼ 7.5 (Horton et al., 2004; Venemans et al., 2009)

and the ELVIS survey of Lyα emitters at z ∼ 8.8 (Nilsson et al., 2007a). At the moment, only

an upper limit has been set to the luminosity function of z ∼ 7.7 Lyα emitters (Hibon et al.,
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2010; Tilvi et al., 2010).

Nevertheless, current surveys of Lyα emitters have been able to measure the clustering

properties of this galaxy population at redshifts z ∼ 6. It is important, from a galaxy forma-

tion perspective, to be able to characterise the clustering properties of galaxies at these high

redshifts, since the clustering strength is directly related to the dark matter halo population

hosting these galaxies. Furthermore, it is also important to understand the reliability of such

measurements. In Chapter 3 we study this problem in detail making use of models of galaxy

formation.

1.3 Numerical models of galaxy formation

We aim to study emission line galaxies in a cosmological context using theoretical models

of galaxy formation. Despite the great progress in galaxy formation theory, the underlying

physics describing the cosmological framework is fundamentally nonlinear, which motivates

the need for a numerical approach to study galaxy formation.

Several techniques have been developed to tackle different aspects of galaxy and struc-

ture formation. The most direct method is to model the evolution of the dark matter content

of the Universe with the N-body technique. This follows the gravitational interactions of a set

of particles, using an efficient algorithm, to trace the evolution of a large number of particles

from an early epoch down to the present time.

N-body simulations of dark matter are widely used nowadays (see, e.g. Trenti and Hut,

2008, for a review of the method and current applications). The strategy is based on setting

the initial conditions to define a set of particles distributed according to a Gaussian random

density field with a given primordial power spectrum (consistent with the CMB), and then let

that set of particles interact gravitationally through time until the present day.

Of particular relevance to this thesis is the Millennium simulation (Springel et al., 2005),

which follows the gravitational interaction of a set of 10 billion particles on a perdiodic box
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of 500[Mpc/h] a side, from z = 127 to the present day, z = 0. This N-body simulation,

the state of the art at its time, is able to resolve dark matter haloes with masses down to

1.7× 1010[M⊙/h], which proves to be ideal for our purposes, as we will discuss in the next

chapters of this thesis. We also make use of the BASICC simulation (Angulo et al., 2008a),

which resolves dark matter haloes down to a factor 32 times more massive than the Millen-

nium minimum halo mass, but on a box size of 1340[Mpc/h] a side, a scale suitable for BAO

and redshift distortions studies.

Clearly, to study galaxy formation we also need a model for the baryonic component of

the Universe. In a particle-based method known as Smoothed Particle Hydrodinamics (SPH)

(e.g. Monaghan, 1992; Springel and Hernquist, 2003), three sets of particles are followed,

one representing dark matter, another representing gas and the other stars. Dark matter

particles are collisionless and only respond to gravitational forces, whereas gas particles can

also feel pressure and dissipate energy through cooling. Despite the sophistication of the

technique, many of the physical processes regulating galaxy formation occur on a scale well

below the resolution of these simulations, named subgrid physics in this context, and thus

they are treated in a phenomenological way. Another drawback of the SPH technique is the

size of the simulations, which in general is not large enough to study large scale structure

on the cosmological scales we are interested in at the same time as resolving the internal

structure of galaxies.

An alternative to the SPH technique are the so-called semi-analytical models. This tech-

nique, which will be explained in detail in the next chapter, treats various physical processes

associated with galaxy formation using approximate, analytical expressions. The degree of

approximation varies considerably with the complexity of the physical problem being mod-

elled.

The primary advantage of the semi-analytical technique is that is considerably less ex-

pensive in computational resources, allowing one to construct galaxy samples with a mass

resolution usually orders of magnitude better than what is possible with SPH simulations of

comparable cosmological volumes. Furthermore, it has been proved that the semi-analytical

technique can achieve a very good agreement with SPH simulations in a number of properties
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(Benson et al., 2001; Berlind et al., 2003; Helly et al., 2003). The semianalytical technique

can also be coupled to N-body simulations of the dark matter in order to probe the large scale

structure of galaxies on cosmological scales. Their most important drawback is, obviously, the

large degree of approximation, which is sometimes difficult to assess.

1.4 Motivation

Throughout this thesis we study several aspects of the nature and evolution of emission line

galaxies (in particular Lyα and Hα). The numerical method of choice is the semianalytical

technique, due to its ability to probe the large scale structure of galaxies on cosmological

scales, and also for its flexibility, making the task of comparing the output of models with dif-

ferent physical recipes to observations easier. Two main ideas motivate our study of emission

line galaxies on a cosmological context. These are reviewed next.

First, the current and forthcoming exploration of the high redshift Universe with Lyα

emitters is expanding the understanding of galaxy formation and evolution. Furthermore,

the properties of very high redshift galaxies (perhaps the first galaxies in the Universe) are

still yet to be revealed observationally. Galaxy formation models are only now beginning to

predict the properties of Lyα emitters and other high-z galaxy populations. Therefore, these

are exciting times to aim for a robust understanding of the nature of Lyα emitters.

Throughout this thesis, two fundamental aspects of this galaxy population are studied in

detail:

• Their clustering properties, which depend on the dark matter halo masses which host

these galaxies and also affect the statistical robustness of current and forthcoming ob-

servations (cosmic variance).

• The modelling of the Lyα escape fraction through the coupling of a radiative trans-

fer model of Lyα emission to the predicted galaxy properties obtained with a semi-

analytical model, to interpret and link the observed Lyα luminosities with physical

properties of galaxies.
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Our second motivation comes from the next era of large redshift surveys, which will possi-

bly revolutionize our current cosmological paradigm profoundly, by characterizing the nature

and evolution of dark energy. A number of surveys, both ground-based and space missions,

are being planned to search for emission line galaxies (particularly Hα, Lyα, [OII] and [OIII])

to trace the underlying matter distribution of the Universe at different redshifts.

Hence, we undertake the task of assessing the outcome of such surveys. In particular,

we compare the performance of a slitless spectroscopic Hα- based survey to an alternative,

photometrically selected, multi-slit H-band survey. This assessment, making use of semi-

analytical models and state of the art N-body simulations, is a crucial input in the planning

of dark energy missions such as the Eu
lid survey.

1.5 Outline

The outline of this thesis is as follows:

Chapter 2 reviews the basic physical processes in galaxy formation theory and describes

the way these are implemented in the semi-analytical model GALFORM. This model is then

used throughout the following chapters, so it represents the backbone of this thesis.

Chapter 3 describes the clustering properties of Lyα emitters as a result of combiningGALFORM with the Millennium N-body simulation. Mock catalogues of Lyα surveys at differ-

ent redshifts are constructed to test our model predictions against observations, and also to

quantify the effect of cosmic variance on the clustering measurements of current and forth-

coming surveys.

Chapter 4 studies the nature and evolution of Hα emitters and compares the performance

of a future space-based near-IR redshift survey using either slitless spectroscopy of Hα emit-

ters of multi-slit spectroscopy of H-band magnitude selected galaxies in measuring the BAO

peak and the redshift distortions due to the peculiar velocities of galaxies.
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Chapter 5 returns the focus to Lyα emitters and describes in detail the physics of Lyα

radiative transfer. In addition, a Monte Carlo code is developed, and its accuracy and perfor-

mance is tested against known solutions.

Chapter 6 combines the radiative transfer code with GALFORM using two different outflow

models which allows us to study the relation between the Lyα luminosity and the predicted

physical properties of these galaxies.

Finally, Chapter 7 summarizes the main results of this thesis and describe possible future

directions of research.
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Chapter 2 GALFORM: A synthesis of

galaxy formation theory

2.1 Introduction

In this thesis we use the semianalytical model of galaxy formation GALFORM to study the

properties of emission line galaxies in a cosmological setting. Given the large variety of

physical processes incorporated in the model, here we briefly review the main aspects of

galaxy formation theory and the way in which these are modelled in GALFORM.

The basic philosophy of the semianalytical technique is to use simplified calculations, or

recipes, to account for all of the important processes which regulate the formation and evo-

lution of galaxies. This allows the model to incorporate a large variety of phenomena from

different areas of astrophysics, and also ensures the flexibility to develop and incorporate ad-

ditional physical ingredients of varying complexity. In this way, semianalytical models can be

regarded as a synthesis of many different techniques. Despite the simplifications made, semi-

analytical models are based on a well understood hierarchical clustering cosmology, in which

dark matter haloes (gravitationally bound dark matter structures) host galaxies (White and

Rees, 1978), and thus the formation and evolution of these structures determines the cosmic

history of galaxies.

In short, the main physical ingredients that shape the formation and evolution of galaxies

(and their observed properties) are: (i) The formation, evolution, merging histories and in-

ternal structure of dark matter haloes; (ii) The shock heating, radiative cooling and collapse

of gas inside haloes leading to the formation of galactic disks; (iii) The formation of stars in

the cold gas; (iv) The regulation of the star formation processes through different feedback

mechanisms (e.g. supernovae, AGN); (v) The chemical enrichment of the ISM and the hot

17
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gas; (vi) The merging history of galaxies; (vii) The formation of galactic spheroids and possi-

ble associated bursts of star formation; (viii) The spectrophotometric evolution of the stellar

populations of galaxies; and (ix) The attenuation of the starlight due to the dust content of

galaxies.

In the following we will describe the implementation of the above aspects of the galaxy

formation process in GALFORM, with special focus on those that are of particular interest and

relevance for this thesis.

2.2 Dark matter haloes

The formation and merging history of dark matter haloes is crucial in the process of galaxy

formation. Of particular importance is the abundance of haloes and their growth history.

Press and Schechter (1974) developed a theory for predicting the abundance of dark

matter haloes assuming these correspond to the overdense regions of a Gaussian random

density field. Their famous expression for the number density of haloes in the mass range M

to M + δM is

dn

dM
=

�

2

π

�1/2 ρ0

M2

δc(t)

σ(M)

�

�

�

�

d lnσ

d ln M

�

�

�

�

exp

�

−
δ2

c (t)

2σ2(M)

�

, (2.1)

where ρ0 is the mean density of the Universe, δc(t) is the critical overdensity for a spherical

top-hat fluctiation to collapse at time t, and the linear perturbation theory mass variance

σ(M) is determined from the power spectrum of density fluctuations,

σ2(M) =
1

2π2

∫ ∞

0

P(k)Ŵ 2
M (k)k

2dk, (2.2)

where P(k) is the power spectrum, and ŴM (k) is the Fourier transform of the real-space top-

hat window function.

A statistical description of the merging of haloes was developed almost 20 years later

(Bond et al., 1991; Bower, 1991; Lacey and Cole, 1993), extending the original Press-Schechter

formulation. Lacey and Cole (1993) showed that the distribution of masses M1 of the pro-

genitors at redshift z1 for a halo of mass M2 at a redshift z2 is given by
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dN

dM1
=

�

2

π

�1/2 d lnσ

d ln M1
M2
σ2

1

M2
1

δc1 − δc2

(σ2
1 −σ2

2)
3/2
× exp

�

−
(δc1− δc2)

2

(σ2
1 −σ2

2)

�

, (2.3)

where σ1 = σ(M1),σ2 = σ(M2),δc1 = δc(z1),δc2 = δ(z2).

In semianalytical models, there are two main approaches to incorporate the statistical

properties of dark matter haloes. In the first, rather direct approach, haloes and their merg-

ing histories can be extracted from an N-body simulation (e.g. Kauffmann et al., 1999; Hat-

ton et al., 2003; Bower et al., 2006). N-body simulations follow the non-linear gravitational

growth of structures to an accuracy limited principally by the mass resolution of the dark

matter particles used. This could turn into a serious complication depending on the galaxy

population of interest (or, more exactly, the typical mass of the haloes hosting those galaxies).

An alternative approach, developed prior to the incorporation of N-body merger trees

into semianalytical models, consists of generating merger trees using a Monte Carlo algo-

rithm, based on the distribution of progenitor halo masses given by Eq.(2.3). This generates

a set of merger trees for haloes of a given mass at a given redshift, which can then be used

to estimate the number density of galaxies being hosted by such haloes. The Monte Carlo

approach has the main advantage of following the merger history with an arbitrary mass

resolution, because the whole of the computer memory can be devoted to the history of one

halo rather than to a population, as it could be the case with an N-body simulation. The

mass resolution achieved is in general higher than the one used in N-body simulations. A

comparison between the two methods shows that Monte Carlo merger trees reproduce the

N-body results reasonably well (see, for example, Helly et al., 2003; Orsi et al., 2008).GALFORM has the flexibility of using either method to incorporate the statistical properties

of haloes.

2.2.1 Halo structure

The inner properties of dark matter haloes regulate quantities like the radiative cooling rate,

the angular momentum of the gas that cools to form disks, and the sizes and rotation speeds

of galaxies.
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The angular momentum of a dark matter halo is usually quantified by the dimensionless

spin parameter

λH =
JH |EH |1/2

GM
5/2
H

, (2.4)

where MH , JH and EH are the total mass, angular momentum and energy of the halo, respec-

tively. In GALFORM, each newly formed dark matter halo is randomly assigned a value of λH

from a log-normal probability distribution, found to provide a good fit to the simulations of

Cole and Lacey (1996). Haloes retain this property until they become part of a larger halo

with mass fform times its original mass, where its properties are computed afresh. The forma-

tion time of a halo is consistently computed to be the moment when a merger produces a halo

with mass fform times the formation mass of the largest progenitor involved in the merger.

fform = 2 is usually assumed in GALFORM.

The mass distribution inside dark matter haloes has been found to follow a nearly univer-

sal form in CDM cosmologies. The standard choice in GALFORM is the so-called NFW profile

(Navarro et al., 1997),

ρ(r) =
∆virρcr i t

f (aN FW )

1

r/rvir(r/rvir + aN FW )
2 , (2.5)

where

f (aN FW ) = ln
�

1+
1

aN FW

�

−
1

(1+ aN FW )
, (2.6)

rvir =

�

3M

4πρcrit∆vir

�1/3

, (2.7)

where ρcrit is the critical density of the Universe. The profile is truncated at the virial radius

rvir. The overdensity of a collapsed halo∆vir in the spherical top-hat model has a value≈ 200

for Ω = 1, and depends on the cosmological parameters assumed (Lacey and Cole, 1993).

The free parameter aN FW (sometimes defined as the inverse of the concentration parameter)

is a function of the halo mass and redshift, and its value is obtained by fitting equation (2.5)

to N-body simulations (Navarro et al., 1996, 1997).
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2.3 The cooling of gas inside haloes

From the evolution of the dark matter from small perturbations until it forms virialized struc-

tures, the baryonic gas follows a similar density distribution to the dark matter, since the gas

is diffuse and cold so it cannot to undergo any radiative process. When structures become

virialized, the gas inside the haloes will be shock heated to a temperature close to the virial

temperature of the halo. This hot, ionized gas will begin to cool subsequently. As the gas

loses energy through radiative processes, it will cool down and the removal of pressure sup-

port causes the gas to sink in the gravitational potential of the halo.

In GALFORM, the gas is assumed to be heated to the virial temperature of the halo, given by

Tvir =
1

2

µmH

k
V 2

H , (2.8)

where mH is the mass of the hydrogen atom, µ is the mean molecular mass, VH is the circular

velocity of the halo, and k is the Boltzmann constant.

If we assume the gas inside the halo is isothermal and in hydrostatic equilibrium we can

express the density profile of the gas as

ρ(r) ∝ exp

�

−
Φ

c2
T

�

, (2.9)

c2
T ≡

kT

µmH

, (2.10)

where Φ(r) is the gravitational potential. The above solution is, although simple, unphysical,

since the density diverges at r = 0. When imposing boundary conditions at the centre the

density profile obtained is found to be well approximated by a King profile,

ρ(r)∝
1

[1+ (r/r0)
2]3/2

, (2.11)

where

r0 =
3cT

p

4πGρ0

. (2.12)

If both gas and dark matter are in static equilibrium within the same potential, and both the

velocity dispersion of dark matter particles σ and the temperature of the gas T are indepen-

dent of r, then it can be shown that

ρgas(r)∝ [ρdm(r)]
β , (2.13)
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where

β ≡
µmHσ

2

kT
. (2.14)

Hence, unlike dark matter haloes, the gas is assumed to be distributed in a spherical

distribution following a β -model density profile

ρgas(r)∝
1

(r2 + r2
core)

3β/2
, (2.15)

where β = 2/3 and rcore = rN FW/3. This density profile has been found to fit well the den-

sity profile of gas in hydrodynamical simulations of clusters (Navarro et al., 1995; Eke et al.,

1998).

Once the halo has formed the hot gas inside will begin to cool radiatively. The cooling

process is characterized by a cooling time defined as

τcool =
E

Ė
, (2.16)

=
3kTgas

2µmHρgasΛ(Tgas, Zgas)
, (2.17)

where E is the energy per unit mass of the gas, Ė is the rate at which the gas is radiating

energy, Zgas is the metallicity of the gas and Λ(Tgas, Zgas) is the radiative cooling function

tabulated by Sutherland and Dopita (1993). The amount of gas that has cooled in a time t

after the halo has formed is given by defining a cooling radius rcool(t) where τcool = t. This

gas is assumed to be accreted on to a disk at the centre of the halo. The time it takes the cold

gas to fall into the disk corresponds to the free-fall time tff:

tff =

∫ r

0





∫ r′′

r

−
2GM(r ′)

r
′2

dr ′





−1/2

dr
′′
. (2.18)

In the same way a free-fall radius rff is defined as the radius where, after a time t, the cold gas

has time to fall to r = 0. Thus, only the cool gas within a radius given by rmin =min[rcool, r f f ]

will be added to the disk in a given time interval.

Recent work with hydrodynamical simulations has shown that a significant fraction of the

gas in low mass haloes may never be shock-heated to the virial temperature of the halo (see,

e.g. Fardal et al., 2001; Kereš et al., 2005). This results in the generation of filaments of cold

gas flowing towards the centre of the halo where the gas could, eventually, be shock-heated.
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Despite the apparent crude assumption made in semianalytical models that gas in all haloes

is shock-heated to the virial temperature, it has been shown (Croton et al., 2006; Benson and

Bower, 2010) that the details of this rapid mode of accretion in low mass haloes has little

effect on the star formation properties of galaxies (even less when accounting for feedback

mechanisms) since in this case the cooling is dominated by the free fall time rather than the

cooling time assumed, making the detailed physics of the cooling of gas secondary in this case.

The kinematics of the hot halo gas is characterized by its effective rotational velocity Vrot,

defined as

Vrot = A(aN FW )λH VH , (2.19)

where

VH =

�

GM

rvir

�1/2

(2.20)

is the circular velocity of the halo at the virial radius, and A(aN FW ) is a dimensionless con-

stant weakly dependent on aN FW , with values of A ≈ 3.9 for aN FW = 0.01 to A ≈ 4.5 for

aN FW = 0.3. In GALFORM, as the hot gas cools and collapses to a disk, it conserves its angular

momentum. Since Vrot is constant, the specific angular momentum increases linearly with

the radius of the halo.

2.4 Star formation and feedback processes

The cold gas that settles in a disk forms stars at a rate given by

ψ =
Mcold

τ∗
, (2.21)

where the star formation time-scale is τ∗. GALFORM adopts a generic form for τ∗, broadly

compatible with the data from Kennicutt (1998a),

τ∗ =
1

ε∗

�

Vd

200kms−1

�α∗

τd , (2.22)

where Vd is the disk circular velocity and τd the dynamical timescale of the disk (τd =

πrdisk/Vd ). Thus, the efficiency ε∗ determines the fraction of gas turned into stars per dy-

namical time of a Milky Way like galaxy (i.e. one with Vd ≈ 200kms−1). The two free

parameters ε∗ and α∗ are constrained to reproduce a set of observational data. Alternatively,
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the Baugh et al. (2005) model uses a slightly different form for the star formation time-scale,

given by

τ∗ = τ∗0

�

Vc

200kms−1

�α∗
, (2.23)

where τ∗0 = 8 Gyr and α∗ = −3. As discussed in Baugh et al. (2005), there is no strong theo-

retical argument to prefer one prescription over the other. Furthermore, both can reproduce

the observed gas fraction-luminosity relation at z = 0 with the right choice of free parameters.

A longstanding issue in theories of galaxy formation is the so-called overcooling problem.

In massive dark matter haloes, for example, gas can cool so efficiently that it would end up

producing galaxies far more massive and luminous than any observed. In addition, the faint

end of the observed luminosity function exhibits a shallower slope compared to the steeper

halo mass function, suggesting a physical mechanism regulating the formation of dwarf galax-

ies. This motivates the idea of implementing mechanisms to heat the gas, preventing it from

cooling so efficiently (see, for example, Benson et al., 2003).

In reality, the star formation process not only converts gas into stars but also affects the

physical state of the surrounding gas. Supernovae, for example, inject energy into the in-

terstellar medium, which reheats and ejects the cold gas slowing down the star formation

process, hence acting as a feedback mechanism. The enrichment process will also affect the

hot halo gas, decreasing the cooling times too by increasing the metallicity of the hot gas.

Other feedback mechanisms are also found to be important to regulate the star formation

rate, such as the photo-ionization of the IGM and the energy release from Active Galactic

Nuclei (AGN), which are powered by the accretion of mass onto a supermassive black hole.

These are described below.

2.4.1 Photo-ionization heating

During the reionization epoch, photons produced by stars and AGNs will be emitted in a

range of energies, some of which can to ionize abundant elements such as hydrogen and

helium. Once reionization is mostly complete, this photoionizing radiation will reach the gas

inside dark matter haloes and change the ionization balance, heating the gas and thus alter-

ing the rate at which gas can cool to be turned into stars.
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In GALFORM, the cooling suppresion from photoionization is treated in a very simple way:

Reionization is assumed to happen instantly at a given redshift zreio. The standard value is

zreio = 6, although more recent papers of GALFORM assume zreio = 10 to match the results

from the WMAP satellite (Kogut et al., 2003; Dunkley et al., 2009). After this redshift, the

photoionization of the IGM completely suppresses the cooling and collapse of gas in haloes

with circular velocities lower than Vcut. In GALFORM this value is set to Vcut = 60kms−1, to

match closely the results of a detailed treatment of the effect of the IGM in the cooling of

the gas in haloes by Benson et al. (2002). Other versions of GALFORM use Vcut = 30kms−1 to

match the result of more recent calculations (Hoeft et al., 2006; Okamoto et al., 2008).

2.4.2 Feedback from supernovae

The photoionization mode of feedback will affect mostly the abundance and properties of

galaxies in low mass haloes. The heating of gas by supernovae affects a wider range of

galaxies. The energy released by Type II supernovae ĖSN generates an outflow of material at

a rate Ṁej given by (e.g. Dekel and Silk, 1986)

1

2
ṀejV

2
esc = ε

∫ t

0

ψ(t′)ĖSN (t − t′)d t′, (2.24)

≈ ψESN , (2.25)

where we assume a fraction ε of this energy is released as kinetic energy in the form of an

outflow to the ISM at the escape velocity. In the second step we have assumed that the su-

pernova released the energy instantaneously (the energy release from Type II supernova is

usually of the order of 1051ergs−1).

In GALFORM, the mass ejection rate from galaxies due to supernovae is parametrised with

two components:

Ṁej = β(Vc)ψ (2.26)

=
�

βreh(Vc) + βSW (Vc)
�

ψ, (2.27)
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where

βreh =

�

Vc

Vhot

�−αhot

, (2.28)

βSW = fSW min

�

1,
�

Vc

VSW

�−2
�

. (2.29)

The factor βreh is known as the reheating term, which quantifies how much gas is reheated

and ejected into the galaxy halo, where is available to eventually cool down again and fall

back into the disk. This term has a greater effect in low-mass galaxies, where Vc < Vhot (Ben-

son et al., 2003).

The factor βSW describes the superwind term, in which the gas is ejected out of the halo

and it is not allowed to come back again (Baugh et al., 2005; Nagashima et al., 2005a). This

mode of feedback affects high mass galaxies, where the ejection of gas increases the cooling

time due to the decrease in gas density.

The parameters αhot , Vhot, fSW and VSW are chosen to match the observed present day

galaxy luminosity function in the optical and near-IR, as well as the metallicity-luminosity

relation. In general, different versions of GALFORM have employed different values for these

parameters. In particular, the version of GALFORM presented in Bower et al. (2006) does not

include the superwind mode of feedback and instead invokes the feedback from AGNs, which

is described next.

2.4.3 Feedback from AGN

The properties and evolution of the supermassive black hole (SMBH) hosted in the centres

of galaxies are known from observations to be correlated with the host galaxy. For example,

a fundamental link is suggested by the observed correlation between the mass of the galactic

bulge and the SMBH in the centre of galaxies (Magorrian et al., 1998). Moreover, the energy

release associated with the build up of SMBHs at the centres of galaxies can have a significant

impact on the formation of the host galaxy. The mechanism by which the AGN, formed by the

accretion of material onto the central supermassive black hole of a galaxy, heats the hot halo

gas and thus contributes to the galaxy formation process like other feedback mechanisms is

still not well understood. For low accretion rates, AGNs are believed to form a thick accretion
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disk surrounding the black hole which can lead to the formation of powerful jets, if the super-

massive black hole is rapidly spinning. These jets could, in turn, heat the cool gas in the halo,

thus reducing the cooling rates. In addition, radiatively driven winds might also contribute

as a mode of mechanical feedback on the galaxy. A combination of these mechanisms could

be crucial during the whole galaxy formation process.

The growth of supermassive black holes in GALFORM is the result of gas accretion driven

by galaxy mergers, disk instabilities and mergers with other black holes (Malbon et al., 2007;

Fanidakis et al., 2009). AGN feedback is assumed to be effective only in haloes undergoing

quasi-hydrostatic cooling, where the cooling time at the cooling radius is greater (or compa-

rable) to the free-fall time at the same radius. In other words, if

tcool(rcool)> α
−1
cool tff(rcool), (2.30)

(where αcool is typically of order unity), then the central AGN can quench the cooling flow

into the galaxy. This will happens if the AGN power is greater than the cooling luminosity

of the flow. The AGN power is assumed to be a fraction εSMBH of the Eddington luminosity

of the black hole (the luminosity at which the inward gravitational pull equals the outward

radiation force due to Thompson scattering). Then, if

Lcool < εSMBH LEdd (2.31)

the hot halo is prevented from cooling.

2.5 Additional star formation mechanisms: Bulge formation

The star formation recipe described above converts the cold gas in a galactic disk into stars

with a star formation rate regulated by several feedback mechanisms. An additional mecha-

nism to generate stars in a galaxy is switched on when a galaxy merger occurs.

A natural consequence of a hierarchical structure formation model is the merger of dark mat-

ter haloes. When such an event occurs, the galaxies hosted by the individual haloes will

become members of the new remnant halo and may eventually merge through the decay of

their orbits throughout dynamical friction. This process is thought to be the responsible for

the formation of elliptical galaxies when a major merger occurs (i.e. when two galaxies of
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similar mass collide). During a minor merger (i.e. when one of the galaxies is significantly

less massive than the other) the merger is expected to leave the disk of the larger galaxy in

place (although somewhat thickened), while adding material to the bulge of the galaxy.

Mergers are important since they can trigger bursts of star formation (e.g. Mihos and

Hernquist, 1994). GALFORM assumes that all major mergers will create such a starburst, by

turning all the cold gas from both galaxies into stars in the bulge of the newly formed galaxy.

The condition that defines a major merger in GALFORM is the ratio of the masses of the two

galaxies. If the ratio of smaller to larger exceeds the critical value fellip (which is a model

parameter), then the merger is considered to be major, and is minor otherwise.

When a minor merger occurs, the disk component of the larger galaxy is left unchanged,

and the stellar disk of the small galaxy is added to the stellar spheroid of the primary. Some

minor mergers can still produce a starburst, depending on whether the galaxy mass ratio

exceeds the parameter fburst (where, obviously fburst < fellip), and the gas fraction in the large

galaxy exceeds fgas,crit, since a large gas fraction makes the disk dynamically unstable.

Galaxy mergers are not the only way to form a spheroid. Internal processes driven by

disk instabilities also lead to the formation of a spheroid. The basic idea is that when the

disk becomes sufficiently massive that its self-gravity is dominant, it will become unstable to

small perturbations by minor satellites or dark matter substructures, leading to the formation

of bars. These can redistribute the mass and angular momentum of the disk and become,

after a few dynamical times, dense central mass concentrations, thus forming a spheroid.

Efstathiou et al. (1982) found a criterion to judge when a disk becomes unstable, using

numerical simulations of exponential stellar disks. If

εm ≡ vmax

�

GMdisk

Rdisk

�−1/2

< 1.1, (2.32)

then the disk becomes unstable. GALFORM computes the quantity εm, and if the criterion is

met, then the disk is considered to be unstable. The mass of the disk is transfered to the

bulge, and any gas present undergoes a starburst. Also, in the version of GALFORM presented

in Bower et al. (2006), a fraction Fbh of the cold gas goes into feeding the black hole.
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2.6 Galaxy sizesGALFORM determines the size of a galactic disk by assuming conservation of angular momen-

tum and centrifugal equilibrium. The bulge size, on the other hand, is computed by assuming

virial equilibrium and energy conservation of the merging galaxies and the remnant. The cal-

culation is complicated due to the gravitational interaction between the galaxy disk, spheroid

and the surrounding dark matter halo. To overcome this, adiabatically invariant quantities

are used to estimate the response of the halo to the forming galaxy, a formalism developed

by Blumenthal et al. (1986).

In GALFORM, the specific angular momentum, rVc(r), is assumed to be invariant. A better

invariant is obtained by taking into account the eccentricity of the orbit of dark matter parti-

cles in haloes. Gnedin et al. (2004) showed that a more accurate invariant in eccentric orbits

is obtained by the combination M(r̄)r, where r̄ is the orbit-averaged radius and M(r̄) is the

mass enclosed at this radius.

To compute the contraction of the halo due to the baryons condensing in the galaxy, the

mass distribution is treated as spherical. The circular velocity of the system is, then

V 2
c (r) = G

MH(r) +MD(r)+MB(r)

r
, (2.33)

where MH(r), MD(r) and MB(r) are the final mass halo profie, disk and bulge mass profiles

interior to radius r respectively, and G is the gravitational constant. In addition, the final halo

mass inside radius r is related to the original mass by

MH(r) = fH MH0(r0), (2.34)

where MH0(r0) is the mass of a shell at radius r0 before the contraction process, r is the

radius of the same shell after the contraction of the halo. fH is the fraction of original hot

gas mass that remained in the hot halo instead of forming part of the condensed gas in the

centre. Combining Eqs. 2.33 and 2.34 we find

r0MH0(r0) = r[ fH MH0(r0) +MD(r)+MB(r)]. (2.35)
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To compute the final halo mass profile GALFORM assumes that disks are described by

an exponential surface density profile, whereas bulges are described by a projected de Vau-

couleurs r1/4 law.

If the specific angular momentum of the disk is given by

jD = kDrd VcD(rD), (2.36)

(where kD = 1.19 for an exponential disk), then the radius of the disk is related to the angular

momentum by

j2D = k2
Dr2

DV 2
cD(rD) (2.37)

= k2
DGrD

�

fH MH0(rD0) +
1

2
khMD +MB(rD)

�

, (2.38)

where kh = 1.25 is a factor which arises from the disk geometry (in the spherical approxi-

mation to compute the halo contraction kh = 1). Finally, the disk half-mass radius must also

satisfy Eq.(2.35), i.e.

rD0MH0(rD0) = rD

�

fH MH0(rD0) +
1

2
MD +MB(rD)

�

. (2.39)

The last two coupled equations can be solved to find rD. A similar procedure for the bulge,

using the de Vaucouleurs profile, leads to another pair of coupled equations which are solved

to find rB.

When galaxies undergo a merger, the size of the newly formed bulge is computed in a

different way. GALFORM assumes that the two merging components spiral together experienc-

ing dynamical friction until their separation equals the sum of their half-mass radii. Applying

energy conservation and the virial theorem leads to

(M1 +M2)
2

rnew
=

M2
1

r1
+

M2
2

r2
+

forbit

c

M1M2

r1 + r2
, (2.40)

where forbit and c are constants related to the mutual orbital and self-binding energy re-

spectively, forbit = 1.0 and c = 0.5. When the bulge is formed via disk instabilities, then the

resulting spheroid size is computed using the same virial equilibrium and energy conservation

arguments as before, leading to

cB(Mdisk +Mbulge)
2

rnew
=

cB M2
bulge

rbulge
+

cDM2
disk

rdisk
+ fint

MbulgeMdisk

rbulge + rdisk
, (2.41)
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where cD = 0.49, cB = 0.45 are the form factors approppiate for an exponential disk and

r1/4-law spheroid respectively, and fint = 2.0.

2.7 Chemical evolution

The first stars in the Universe (the so-called Population III) were formed from primordial gas,

which is supposed to be practically metal free. Stellar evolution and the subsequent transfer

of material from the interstellar medium to the intergalactic medium has a significant impact

on the later generation of galaxies. Heavy elements will affect the cooling function, increas-

ing the cooling rate, and will also lead to the formation of dust, which attenuates radiation,

mostly in the UV but also in the optical part of the spectrum, re-emitting a fraction of it at

IR wavelengths. It is clear then that an understanding of the chemical evolution is essen-

tial, both for the galaxy formation process and also to understand the observed properties of

galaxies.

The fraction of material returned to the ISM by a stellar population as a function of time

is given by

R(t) =

∫ Mu

M(t,Z)

[M −Mr(M , Z)]φ(M)
dM

M
, (2.42)

where φ(M) is the initial mass function (IMF), which quantifies the number of stars gener-

ated with a given mass per unit stellar mass, and Mr(M) is the remnant mass of a star of

initial mass M . Similarly, the yield of an element i is

pi(t) =

∫ Mu

M(t,Z)

Mi(M0, Z)φ(M0)
dM0

M0
, (2.43)

where Mi(M0, Z) is the mass of metals produced by stars of initial mass M0.GALFORM simplifies the above equations adopting the instantaneous recycling approxima-

tion, in which mass and metals are returned to the interstellar medium instantaneously after

the stars are produced, thus assuming that stellar evolution happens instantaneously. This

makes R(t) ≡ R and p(t) ≡ p. The approximation is reasonable when the ages of typical

stellar populations in galaxies is of a few Gyrs. The values for R and p will depend on the

choice of the IMF made (see Nagashima et al., 2005a,b, for further details).
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The stellar initial mass function is commonly modelled as a power law with index x , i.e.

dN

d ln m
≡ φ(M) ∝ m−x , (2.44)

Two choices for the IMF are commonly used in GALFORM, depending on the model variant. A

common choice for quiescent star formation is the Kennicutt (1983) IMF, where the index x

is

x =







0.4, for 0.15< m/M⊙ < 1

1.5, for 1< m/M⊙ < 125
(2.45)

Another option of GALFORM is to use a top-heavy IMF, in which x = 0 over the whole mass

range. The top-heavy IMF is only used in the Baugh et al. (2005) model when a starburst

occurs, and the Kennicutt (1983) IMF is used otherwise.

The instantaneous recycling approximation makes the calculation of the process of trans-

fer of material between the hot gas, cold gas and stars in galaxies much simpler, since all of

these are modelled simultaneously in GALFORM. This rather complex transfer of material is

computed by solving the following set of differential equations:

Ṁ∗ = (1− R)ψ (2.46)

Ṁhot = −Ṁcold + βψ (2.47)

Ṁcold = Ṁcool − (1− R+ β)ψ (2.48)

Ṁ Z
∗ = (1− R)Zcoldψ (2.49)

Ṁ Z
hot = −ṀcoolZhot+ (pe+ βZcold)ψ (2.50)

Ṁ Z
cold = ṀcoolZhot + [p(1− e)− (1+β − R)Zcold]ψ, (2.51)

where Ṁ∗ is the net formation rate of stars, Ṁhot is the production rate of hot gas, Ṁcold is

the production rate of cold gas, Ṁ Z
∗ is the production rate of mass in metals in stars, Ṁ Z

hot is

the production rate of mass in metals in the hot gas, Ṁ Z
cold is the production rate of mass in

metals in the cold gas, Zcold = M Z
cold/Mcold is the metallicity of the cold gas, Zhot = M Z

hot/Mhot

is the metallicity of the hot gas, and e is the fraction of newly produced metals ejected directly

from the stellar disk to the hot gas phase.
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The solutions to the above set of coupled differential equations can be found in Cole

et al. (2000). GALFORM computes the chemical evolution (and the resulting abundances of

material in each mass phase, hot, cold and stellar) over each time step, assuming that the

cooling rate Ṁcool and the metallicity of the hot gas Zhot can be taken to be constant.

2.8 The observed luminosities from galaxies

The calculation of the radiation emitted from galaxies (or the lack of it) is crucial to infer

their physical properties. A theoretical model must also be able to reproduce a set of obser-

vational data in order to predict other, potentially observable properties. The calculation of

the observed radiation can be thought of as a two step process. First, the intrinsic luminosity

must be calculated. Then, one must compute how much of this radiation, after interacting

with gas and dust from the ISM and IGM, will reach the observer. Both ideas are briefly

explained next.

2.8.1 Stellar population synthesis

The spectral energy distribution (SED) of a galaxy is the luminosity emitted as a function

of frequency (or wavelength). In the absence of attenuation, it can be thought of as a sum

over the individual SEDs of all the stars in the galaxy. The luminosity L
galaxy
ν of a galaxy at

frequency ν can then be written as the following convolution

Lgalaxy
ν =

∫ t

0

∫ ∞

0

Ṁ∗(t
′, Z ′)LSSP

ν (t − t′, Z ′,φ)dt′dZ ′ (2.52)

Since we already know Ṁ∗(t, Z), the problem is to determine LSSP
ν , the SED of each stellar

population in the galaxy. This depends on each individual star, and it can be written as

LSSP
ν (t, Z ,φ) =

∫ Mmax

Mmin

φ(M ′)Lstar
ν (t, Z)dM ′, (2.53)

where Mmin and Mmax are the minimum and maximum mass of stars, respectively, and Lstar
ν

is the SED of a single star. Several authors have computed Eq. (2.53) generating libraries

for different stellar ages, metallicities and initial mass functions (e.g. Bruzual and Charlot,

2003; Maraston, 2005; Dotter et al., 2007; Lee et al., 2009). These are based on theoretical

models for stellar evolution, observations of stars with known ages and metallicity, and theo-

retical models of stellar atmospheres.
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coupled to the star formation history of a galaxy predicted by GALFORM, the output is the

SED of each simulated galaxy. This can be convolved with a filter transmission curve to

obtain the amount of light passing through any desired band, thus obtaining magnitudes and

colours for a sample of galaxies.

2.8.2 The role of dust

Simply put, the presence of dust in a galaxy attenuates its stellar luminosity. Dust grains

absorb radiation, typically at short wavelengths, and as a result get heated by the absorbed

energy, thus re-emiting energy at long wavelengths, mostly at infrared and submillimetre

wavelengths. Models of galaxy formation should ideally model the effect of dust on the ob-

served luminosity of a galaxy.

In the original version of GALFORM (Cole et al., 2000), the modelling of dust is made

assuming that the mass of dust is proportional to the metallicity and mass of the ISM. Then,

after giving to each galaxy a random inclination an extinction as a function of wavelength is

computed using the results from a Monte Carlo radiative transfer calculation carried out by

Ferrara et al. (1999).

A considerable improvement was made when combining GALFORMwith the spectrophoto-

metric code GRASIL (Silva et al., 1998), which is designed to compute the radiative transfer

of star light through an idealised galactic geometry consisting of a disk and bulge, each of

which may contain both diffuse and clumpy gas and dust. The code computes the absorption

and the emission of the warm dust at long wavelengths, so it is ideal to study the properties

of galaxies in the submillimetre and infrared part of the spectrum. The only drawback of the

coupling of the two codes is the time performance, since GRASIL can take up to a few min-

utes to compute the dust properties of each galaxy, making computationally infeasible to run

it over the whole population of galaxies predicted by GALFORM. Thus, a sub-sample of galax-

ies is made covering the whole range of properties of interest (Granato et al., 2000; Baugh

et al., 2005; Lacey et al., 2008). In regions where the SED is smooth enough, a shortcut was

designed to fit the output of GRASIL for the dust emission so to avoid running the code to get

luminosities at those wavelengths. Unless specified, throughout this thesis we use the Cole
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et al. (2000) approach to compute dust attenuation.

2.8.3 Emission-line modelling

Essential to this thesis is the modelling of emission lines. GALFORM computes the emission

lines produced as the result of the recombination of ionized gas in the ISM, where young,

massive stars, are the sources of ionizing photons. Thus, the intensity of the emission lines

will be strongly dependent on the star formation rate of the galaxy. Other sources of ionizing

radiation, such as AGNs, are not modelled.

After computing the SED of each galaxy, the production rate of Lyman continuum photons

(those photons able to ionize a hydrogen atom) can be calculated by integrating the UV part

of the spectrum,

ṅL yc =

∫ ∞

ν0

L
galaxy
ν

hν
dν , (2.54)

where ν0 = 2.73× 1021Hz is the so-called Lyman limit frequency, i.e. the energy needed to

ionize an hydrogen atom.GALFORM assumes that all these photons are absorbed somewhere in the ISM of the galax-

ies by hydrogen atoms. Once the atoms absorb these photons, they will be ionized, but then

rapidly recombined, experiencing a cascade of downward radiative transitions, each of which

will emit photons as the atom returns to the ground state. The outcome of the process can be

computed by solving the equation of statistical equilibrium inside an HI cloud,

npneαnL(T ) +

∞
∑

n′>n

∑

L′
nn′L′An′L′,nL = nnL

n−1
∑

n′′=1

∑

L′′
AnL,n′′L′′, (2.55)

where np and ne are the number densities of protons and electrons respectively, αnL(T ) is the

recombination coefficient for the energy level nL at temperature T , nnL is the number density

of atoms in the energy level nL and An′L′,nL is the radiative transition probability between the

energy levels n′L′ to nL. Furthermore, if bnL accounts for the deviation from thermodynamic

equilibrium, we can make use of the Saha and Boltzmann equations to write an expression

for nnL:

nnL = bnL(2L+ 1)

�

h2

2πmkT

�3/2

exp(Xn/kT )npne, (2.56)
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where k is the Boltzmann constant, and Xn is the ionization potential of the level n. This

equation can be substituted into Eq. (2.55) to find the values of each nnL and bnL in a

downward iterative process, as detailed in Osterbrock (1989). Once these values are known,

we can write the emission coefficient for each line as

jnn′ =
hνnn′

4π

n−1
∑

L=0

∑

L′=L±1

nnLAnL,n′L′. (2.57)

In general, the above situation is called Case A recombination, which is valid when the

medium is optically thin for all HI resonance lines. However, for most of the observed astro-

physical media this is not the case. When the medium is optically thick the transitions to the

ground level are omitted, since whenever this happens, the resulting photon will be inmedi-

ately absorbed by an adjacent atom, and thus does not contributes to the energy balance.

This is known as Case B recombination (Osterbrock, 1989).

Instead of going through the above formalism, GALFORM uses the values tabulated in

Stasińska (1990) to get the number of photons of different emission lines per LC photon

generated assuming case B recombination. This can then be used to calculate the intrinsic

luminosity. Whenever it is relevant, the attenuation of the emission line by dust can be esti-

mated as the attenuation of the continuum at the wavelength of the emission line. However,

as we will discuss in the next chapter, resonance line radiation (such as Lyα emission) inter-

acts with the gas in a much more complicated way due to the many scattering events these

photons undergo, so the attenuation of Lyα inferred by the standard approach is not reliable.

Other non-resonant lines, such as Hα, do not suffer from this problem, so their extinction can

be calculated as the extinction suffered by the continuum at the wavelength of Hα.

2.9 Two versions of GALFORM
Throughout most of this thesis, the version of GALFORM we choose to use is the one described

in Baugh et al. (2005), (see also Lacey et al., 2008), mainly because we will focus our pre-

dictions in the high redshift Universe, where this model has been shown to account correctly

for the abundances and luminosity functions of submillimetre and Lyman break galaxies.

However, in Chapter 4 we focus our predictions on redshifts z < 2, so in this case we

compare the model predictions of the Baugh et al. (2005) and Bower et al. (2006) models.
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This motivates the need to summarise the main features and differences between both models

(see a list of parameter values used in both models in table 2.1). These versions of GALFORM
are based on the code developed by Cole et al. (2000), and then subsequently in Benson et al.

(2003).

2.9.1 Key features of the Baugh et al. (2005) model

As explained before, the Baugh et al. (2005) model was motivated by the study of the high

redshift galaxy population. Earlier versions of the code (Cole et al., 2000; Granato et al.,

2000; Benson et al., 2003) could not account for the number counts and luminosity func-

tion of submillimetre and Lyman break galaxies, even when the dust attenuation (and re-

emission) is computed using the radiative transfer code GRASIL (Silva et al., 1998).

The main feature of the model is the introduction of a top-heavy IMF for stars generated

during a burst. This change has a large impact on the predicted number counts of submil-

limetre sources, since the production of UV photons is increased a factor 6 compared to the

result of using a standard Kennicutt (1983) IMF. In addition, the boost in the generation of

massive stars results in an increase of the yield of metals from Type II supernovae, which

means that more dust is produced, thus increasing the infrared/submillimetre radiation as

well.

Another important feature of the model is the modelling of bursts by minor galaxy merg-

ers. Hernquist and Mihos (1995) showed that mergers between gas-rich disks and small

satellites could trigger a burst of star formation. Thus, in the Baugh et al. (2005) model, for

mergers where the ratio between the mass of the galaxies is smaller than fellip = 0.3, but

greater than fburst = 0.05, and the gas fraction of the bigger galaxy exceeds fgas,crit = 0.75 a

minor merger occurs leading to the formation of a burst.

This model implements both supernova reheating and superwind modes of feedback, as

opposed to the Bower et al. (2006) model (see below). Dark matter halo growth is taken

from Monte Carlo merger trees to follow the merger histories, upon which galaxies are then

formed. The cosmological parameters adopted correspond to the concordance cosmology, i.e.
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Parameter Baugh et al. (2005) Bower et al. (2006)

Ωm 0.30 0.25

ΩΛ 0.70 0.75

Ωb 0.040 0.045

h 0.70 0.73

σ8 0.93 0.90

Vcut[km s−1] 60 50

zreio 6 6

τ∗0[Gyr] 8 -

ε∗[Gyr−1] - 0.028

α∗ -3.0 -1.5

αhot 2.0 3.2

Vhot,disk[km s−1] 300 485

Vhot,burst[km s−1] 300 485

fSW,disk 2 0

fSW,burst 2 0

VSW,disk[km s−1] 200 0

VSW,burst[km s−1] 200 0

εSMBH 0 0.039

αcool 0 0.58

fellip 0.3 0.3

fburst 0.05 0.10

fgas,burst 0.75 0.10

R 0.40 0.40

p 0.02 0.02

Rburst 0.91 0.40

pburst 0.15 0.02

Table 2.1: Summary of the main parameter values used in the Baugh et al.

(2005) and Bower et al. (2006) models.
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Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.04, σ8 = 0.93 and h= 0.7.

2.9.2 Key features of the Bower et al. (2006) model

The subsequent published version of GALFORM, the Bower et al. (2006) model, introduced

feedback due to AGNs to obtain the correct abundance of bright galaxies seen in the present

day luminosity function.

The Bower et al. (2006) model thus incorporates a model for the formation and growth

of black holes, as described in detail in Malbon et al. (2007) (see also Fanidakis et al., 2009).

The black holes then power an AGN which can stop the cooling flow thus quenching the star

formation following the process described in the previous sections.

Another feature of this model is the incorporation of disk instabilities (which are not in-

cluded in the Baugh et al. 2005 model). Also, the superwind mode of feedback is not included

in this model, since AGN feedback is already altering the cooling inside massive haloes. In

addition, compared to the Baugh et al. (2005) model, only the IMF from Kennicutt (1983) is

used for both quiescent and starburts. The implementation of an improved cooling algorithm

results in a faster return of re-heated gas to the cold phase, as compared to the Baugh et al.

(2005) model.

The merger trees used in the Bower et al. (2006) model were constructed from the Mil-

lennium simulation (Springel et al., 2005), using a technique similar to the one described

in Helly et al. (2003) (see also Harker et al., 2007). For this reason, the cosmological pa-

rameters in this model correspond to those used in the Millennium simulation, which are

slightly different from those used in the Baugh et al. (2005) model: Ωm = 0.25, ΩΛ = 0.75,

Ωb = 0.045, σ8 = 0.9 and h= 0.73.
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Chapter 3
The Clustering of Lyα

emitters

3.1 Introduction

The study of galaxies at high redshifts opens an important window on the process of galaxy

formation and conditions in the early universe. The detection of populations of galaxies at

high redshifts is one of the great challenges in observational cosmology. Currently three main

observational techniques are used to discover high redshift, star-forming galaxies: (i) The

Lyman-break drop-out technique, in which a galaxy is imaged in a combination of three or

more optical or near-IR bands. The longer wavelength filters detect emission in the rest-frame

ultraviolet from ongoing star formation, whereas the shorter wavelength filters sample the

Lyman-break feature. Hence, a Lyman-break galaxy appears blue in one colour and red in

the other (Steidel et al., 1996, 1999). By shifting the whole filter set to longer wavelengths,

the Lyman-break feature can be isolated at higher redshifts; (ii) Sub-millimetre emission, due

to dust being heated when it absorbs starlight (Smail et al., 1997; Hughes et al., 1998). The

bulk of the energy absorbed by the dust comes from the rest-frame ultra-violet and so the dust

emission is sensitive to the instantaneous star formation rate; (iii) Ly-α line emission from

star forming galaxies, typically identified using either narrowband imaging (Hu et al., 1998;

Kudritzki et al., 2000; Gawiser et al., 2007; Ouchi et al., 2008) or long-slit spectroscopy of

gravitationally lensed regions (Ellis et al., 2001; Santos et al., 2004; Stark et al., 2007). The

Ly-α emission is driven by the production of Lyman-continuum photons and so is dependent

on the current star formation rate.

The Lyman-break drop-out and sub-millimetre detection methods are more established

than Lyα emission as a means of identifying substantial populations of high redshift galaxies.

Nevertheless, in the last few years there have been a number of Lyα surveys which have

41
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successfully found high redshift galaxies e.g. (Hu et al., 1998; Kudritzki et al., 2000). The

observational samples have grown in size such that statistical studies of the properties of

Lyα emitters have now become possible: for example, the SXDS Survey (Ouchi et al., 2005,

2008) has allowed estimates of the luminosity function (LFs) and clustering of Lyα emitters

in the redshift range 3< z < 6, and the MUSYC survey (Gronwall et al., 2007; Gawiser et al.,

2007) has also produced clustering measurements at z ∼ 3. Furthermore, the highest redshift

galaxy (z = 6.96) robustly detected to date was found using the Lyα technique (Iye et al.,

2006). Taking advantage of the magnification of faint sources by gravitational lensing, Stark

et al. (2007) reported 6 candidates for Lyα emitters in the redshift range 8.7< z < 10.2, but

these have yet to be confirmed. The DAzLE Project (Horton et al., 2004) is designed to find

Lyα emitters at z = 7.73 and z = 8.78. However, the small field of view of the instrument

(6.83‘× 6.83‘) makes it difficult to use to study large scale structure (LSS) at such redshifts.

On the other hand, the ELVIS Survey (Nilsson et al., 2007b,a) would appear to offer a more

promising route to study the LSS of very high redshift galaxies (z = 8.8).

Despite these observational breakthroughs, predictions of the properties of star-forming

Lyα emitting galaxies are still in the relatively early stages of development. Often these

calculations employ crude assumptions about the galaxy formation process to derive a star

formation rate and hence a Lyα luminosity, or use hydrodynamical simulations, which, due to

the high computational overhead, study relatively small cosmological volumes. Haiman and

Spaans (1999) made predictions for the escape fraction of Lyα emission and the abundance

of Lyα emitters using the Press-Schechter formalism and a prescription for the dust distri-

bution in galaxies. Radiative transfer calculations of the escape fraction have been made by

Zheng and Miralda-Escudé (2002), Ahn (2004) and Verhamme et al. (2006) for idealized

geometries, while Tasitsiomi (2006) and Laursen and Sommer-Larsen (2007) applied these

calculations to galaxies taken from cosmological hydrodynamical simulations. Barton et al.

(2004) and Furlanetto et al. (2005) calculated the number density of Ly-α emitters using

hydrodynamical simulations of galaxy formation. Nagamine et al. (2006, 2008) used hydro-

dynamical simulations to predict the abundance and clustering of Lyα emitters. The typical

computational boxes used in these calculations are very small (∼ 10 − 30h−1Mpc), which

makes it impossible to evolve the simulation accurately to z = 0. Hence, it is difficult to

test if the galaxy formation model adopted produces a reasonable description of present day

galaxies. Furthermore, the small box size means that reliable clustering predictions can only
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be obtained on scales smaller than the typical correlation length of the galaxy sample. As we

will show in this chapter, small volumes are subject to significant fluctuations in clustering

amplitude.

The semi-analytical approach to modelling galaxy formation allows us to make substantial

improvements over previous calculations of the properties of Lyα emitters. The speed of this

technique means that large populations of galaxies can be followed. The range of predictions

which can be made using semi-analytical models is, in general, broader than that produced

from most hydrodynamical simulations, so that the model predictions can be compared more

directly with observational results. A key advantage is that the models can be readily evolved

to the present-day, giving us more faith in the ingredients used; i.e. we can be reassured that

the physics underpinning the predictions presented for a high-redshift population of galaxies

would not result in too many bright/massive galaxies at the present day.

The first semi-analytical calculation of the properties of Lyα emitters based on a hierar-

chical model of galaxy formation was carried out by Le Delliou et al. (2005). This is the

model used throughout this work, which has been shown to be successful in predicting the

properties of Lyα emitters over a wide range of redshifts. The semi-analytical model allows

us to connect Lyα emission to other galaxy properties. Le Delliou et al. (2006) showed that

this model succesfully predicts the observed Lyα LFs and equivalent widths (EWs), along with

some fundamental physical properties, such as star formation rates (SFRs), gas metallicities,

and stellar and halo masses. In Nilsson et al. (2007b), we used the model to make further

predictions for the LF of very high redshift Lyα emitters and to study the feasibility of current

and forthcoming surveys which aim to detect such high redshift galaxies. Kobayashi et al.

(2007) developed an independent semi-analytical model to derive the luminosity functions

of Lyα emitters.

The focus of this chapter is to use the model introduced by Le Delliou et al. (2005) to

study the clustering of high-redshift Lyα emitting galaxies and to extend the comparison of

model predictions with current observational data. Le Delliou et al. (2006) already gave an

indirect prediction of the clustering of Lyα emitters by studying galaxy bias as a function of

Lyα luminosity. However, these results depend on an analytical model for the halo bias (Sheth

et al., 2001), and furthermore the linear bias assumption breaks down on small scales. Here

we will present an explicit calculation of the clustering of galaxies by implementing the semi-

analytical model on top of a large N-body simulation of the hierarchical clustering of the dark
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matter distribution. This allows us to predict the spatial distribution of Lyα emitting galaxies,

and to create realistic maps of Lyα emitters at different redshifts. These maps can be analysed

with simple statistical tools to quantify the spatial distribution and clustering of galaxies at

high redshifts. The N-body simulation used in this work is the Millennium Simulation, carried

out by the Virgo Consortium (Springel et al., 2005). The simulation of the spatial distribution

of Lyα emitters is tested by creating mock catalogues for different surveys of Lyα emitting

galaxies in the range 3 < z < 9. The clustering of Lyα emitters in our model is analysed

with correlation functions and halo occupation distributions. Taking advantage of the large

volume of the Millennium simulation, we also compute the errors expected on correlation

function measurements from various surveys due to cosmic variance.

The outline of this chapter is as follows: Section 3.2 gives a brief description of the

semi-analytical galaxy formation model and describes how it is combined with the N-body

simulation. In Section 3.3 we establish the range of validity of our simulated galaxy samples

by studying the completeness fractions in the model Lyα luminosity functions. Section 3.4

gives our predictions for the clustering of Lyα emitters in the range 0 < z < 9. In Section

3.5 we compare our simulation with recent observational data and we also make predictions

for future measurements (clustering and number counts) expected from the ELVIS Survey.

Finally, Section 3.6 gives our conclusions.

3.2 The Model

We use the semi-analytical model of galaxy formation, GALFORM, to predict the properties of

the Lyα emission of galaxies and their abundance as a function of redshift. The GALFORM
model is fully described in Cole et al. (2000) (see also the review by Baugh, 2006) and the

variant used here was introduced by Baugh et al. (2005) (see also Lacey et al., 2008, for

a more detailed description). The model computes star formation histories for the whole

galaxy population, following the hierarchical evolution of the host dark matter haloes.

As reviewed in Chapter 2, a critical assumption of the Baugh et al. model is that stars

formed in starbursts have a top-heavy initial mass function (IMF), where the IMF is given by

dN/d ln(m) ∝ m−x and x = 0. Stars formed quiescently in discs have a solar neighbourhood

IMF, with the form proposed by Kennicutt (1983): x = 0.4 for m < 1M⊙ and x = 1.5 for

m > 1M⊙. Both IMFs cover the mass range 0.15M⊙ < m < 125M⊙. Within the framework of
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Figure 3.1: The spatial distribution of Lyα emitting galaxies (coloured cir-

cles) in a slice from the Millennium simulation, with the dark matter distri-

bution in green. The four panels are for redshifts in the range 0 < z < 8.5,

as indicated in each panel. The colour of the circles changes with the Lyα

luminosity of the galaxies, as shown in the key in the upper-right corner of

the first panel. Only galaxies brighter than log(LLyα[erg s−1 h−2]) = 42.2

are plotted. Each image covers a square region 100× 100h−1Mpc2 across

and having a depth of 10h−1Mpc, which is less than one thousandth the

volume of the full simulation box.
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ΛCDM, Baugh et al. argued that the top-heavy IMF is essential to match the counts and red-

shift distribution of galaxies detected through their sub-millimetre emission, whilst retaining

the match to galaxy properties in the local Universe, such as the optical and far-IR luminosity

functions and galaxy gas fractions and metallicities. Nagashima et al. (2005a,b) showed that

such a top-heavy IMF also results in predictions for the metal abundances in the intra-cluster

medium and in elliptical galaxies in much better agreement with observations. Lacey et al.

(2008) showed that the same model predicts galaxy evolution in the IR in good agreement

with observations from Spitzer, and also discussed independent observational evidence for a

top-heavy IMF.

The model used to predict the luminosities and equivalent widths of the Lyα galaxies is

identical to that described in Le Delliou et al. (2005, 2006). The Lyα emission is computed by

the following procedure: (i) The integrated stellar spectrum of the galaxy is calculated, based

on its star formation history, including the effects of the distribution of stellar metallicities,

and taking into account the IMFs adopted for different modes of star formation. (ii) The rate

of production of Lyman continuum (Lyc) photons is computed by integrating over the stellar

spectrum, and assuming that all of these ionizing photons are absorbed by neutral hydrogen

within the galaxy. We calculate the fraction of Lyα photons produced by these Lyc photons,

assuming Case B recombination (Osterbrock, 1989).

(iii) The observed Lyα flux depends on the fraction of Lyα photons which escape from the

galaxy ( fesc), which is assumed to be constant and independent of galaxy properties.

Calculating the Lyα escape fraction from first principles by following the radiative trans-

fer of the Lyα photons is very demanding computationally. A more complete calculation of

the escape fraction would have into account the structure and kinematic properties of the

intestellar medium (ISM) (Zheng and Miralda-Escudé, 2002; Ahn, 2004; Verhamme et al.,

2006). In this model, we adopt the simplest possible approach, which is to fix the escape

fraction, fesc, to be the same for each galaxy, without taking into account its dust properties.

This results in a surprisingly good agreement between the predicted number counts and lu-

minosity functions of emitters and the available observations at 3 ® z ® 7 (Le Delliou et al.,

2005, 2006). Le Delliou et al. (2005) chose fesc = 0.02 to match the number counts at z ≈ 3

at a flux f ≈ 2× 10−17ergcm−2s−1. The same value is used in this work. This value for the

Lyα escape fraction seems very small, but is consistent with direct observational estimates for

low redshift galaxies: Atek et al. (2008) derive escape fractions for a sample of nearby star-
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forming galaxies by combining measurements of Lyα, Hα and Hβ , and find that most have

escape fractions of 3% or less. Le Delliou et al. (2006) also showed that if a standard solar

neighbourhhod IMF is adopted for all modes of star formation, then a substantially larger

escape fraction would be required to match the observed counts of Lyα emitters, and even

then the overall match would not be as quite good as it is when the top-heavy IMF is used in

bursts.

Once we obtain the galaxy properties from the semi-analytical model, we plant these

galaxies into a N-body simulation, in order to add information about their positions and

velocities. The simulation used here is the Millennium Simulation (Springel et al., 2005). This

simulation adopts concordance values for the parameters of a flat ΛCDM model, Ωm = 0.25

and Ωb = 0.045 for the densities of matter and baryons at z = 0, h = 0.73 for the present-day

value of the dimensionless Hubble constant, σ8 = 0.9 for the rms linear mass fluctuations in

a sphere of radius 8h−1Mpc at z = 0 and n = 1 for the slope of the primordial fluctuation

spectrum. The simulation follows 21603 dark matter particles from z = 127 to z = 0 within a

cubic region of comoving length 500h−1Mpc. The individual particle mass is 8.6×108h−1M⊙,

so the smallest dark halo which can be resolved has a mass of 2× 1010h−1M⊙.

Dark matter haloes are identified using a Friends-Of-Friends (FOF) algorithm. To populate

the simulation with galaxies from the semi-analytical model, we use the same approach as

in Benson et al. (2000). First, the position and velocity of the centre of mass of each halo is

recorded, along with the positions and velocities of a set of randomly selected dark matter

particles from each halo. Second, the list of halo masses is fed into the semi-analytical model

in order to produce a population of galaxies associated with each halo. Each galaxy is as-

signed a position and velocity within the halo. Since the semi-analytical model distinguishes

between central and satellite galaxies, the central galaxy is placed at the centre of mass of the

halo, and any satellite galaxy is placed on one of the randomly selected halo particles. Once

galaxies have been generated, and positions and velocities have been assigned, it is a simple

process to produce catalogues of galaxies with spatial information and any desired selection

criteria.

The combination of the semi-analytical model with the N-body simulation is essential to

study the detailed clustering of a desired galaxy population, although the clustering ampli-

tude on large scales can also be estimated analytically (Le Delliou et al., 2006). An example

of the output of the simulation is shown in the four images of Fig. 3.1 which show redshifts
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z = 0, z = 3.3, z = 5.7 and z = 8.5. The dark matter distribution (shown in green) be-

comes smoother as we go to higher redshifts, due to the gravitational growth of structures.

As shown in Fig. 3.1, for this particular luminosity cut, the number density of Lyα emitters

varies at different redshifts. As we will show in the next section, these catalogues at high red-

shift are not complete at faint luminosities, so we have to restrict our predictions to brighter

luminosities as we go to higher redshifts.

3.3 Luminosity Functions

The model presented by Le Delliou et al. (2005, 2006) differs in two main ways from the

one presented in this work: (i) there is a slight difference in the values of the cosmologi-

cal parameters used, and (ii) the earlier work used a grid of halo masses together with an

analytical halo mass function, rather than the set of haloes from an N-body simulation. In

§3.3.1, we investigate the impact of the different choice of cosmological parameters on the

luminosity function of Lyα emitters, to see if the very good agreement with observational

data obtained by Le Delliou et al. (2005, 2006) is retained on adopting the Millennium cos-

mology. In §3.3.2, we assess the completeness of our samples of Lyα emitters due to the finite

mass resolution of the Millennium simulation.

3.3.1 Comparison of model predictions with observed luminosity functions

In this section, we investigate the impact on the model predictions of the choice of cosmolog-

ical parameters by re-running the model of Le Delliou et al. (2005, 2006), keeping the galaxy

formation parameters the same but changing the cosmological parameters to match those

used in the Millennium simulation. To recap, the original Le Delliou et al. (2006) model used

Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.04 , σ8 = 0.93 and h= 0.7. In Fig. 3.2, we compare the cumula-

tive luminosity functions obtained with GALFORM for the two sets of cosmological parameters

with current observational data in the redshift range 3 < z < 7. The observational data are

taken from: Kudritzki et al. (2000) (crosses), Cowie and Hu (1998) (asterisks), Gawiser et al.

(2007) (diamonds), Ouchi et al. (2008) (triangles and squares) in the z = 3.3 panel; Ajiki

et al. (2003) (pluses), Maier et al. (2003) (asterisks), Hu et al. (2004) (diamonds), Rhoads

et al. (2003) (triangles), Shimasaku et al. (2006) (squares) and Ouchi et al. (2008) (crosses)

in the z = 5.7 panel; and Taniguchi et al. (2005) (crosses) and Kashikawa et al. (2006) (as-
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Figure 3.2: The cumulative luminosity functions of Lyα emitters at red-

shifts z = 3.3 (Top), z = 5.7 (Center) and z = 6.7 (Bottom). The blue

points correspond to observational data (as indicated by the key with full

references in the text). The black and red curves correspond, respectively,

to the GALFORM predictions using the cosmological parameters of the Mil-

lennium Simulation and those adopted in Le Delliou et al.
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terisks and diamonds) in the z = 6.7 panel. At z = 3.3, the two model curves agree very

well, and are consistent with the observational data shown. At z = 5.72, the two models

do not match as well as in the previous case, but both are still consistent with the observa-

tional data. Finally, at z = 6.7 the differences are small and both curves are consistent with

observational data. The conclusion from Fig. 3.2 is that there is not a significant change in

the model predictions on using these slightly different values of the cosmological parameters.

Furthermore, the observational data are not yet sufficiently accurate to distinguish between

the two models or to motivate the introduction of further modifications to improve the level

of agreement, such as using a different Lyα escape fraction.

3.3.2 The completeness of the Millennium galaxy catalogues

The Millennium simulation has a halo mass resolution limit of 1.72× 1010h−1M⊙. In a stan-

dard GALFORM run, a grid of haloes which extends to lower mass haloes than the Millen-

nium resolution is typically used, with Mres = 5 × 109h−1M⊙ at z = 0. A fixed dynamic

range in halo mass is adopted in these runs, but with the mass resolution shifting to smaller

masses with increasing redshift: for our standard setup, we have Mres = 7.8×107h−1M⊙ and

1.4× 107h−1M⊙ at z = 3 and 6 respectively. Therefore, when putting GALFORM galaxies into

the Millennium, our sample does not contain galaxies which formed in haloes with masses

below the resolution limit of the Millennium. This introduces an incompleteness into our

catalogues when compared to the original GALFORM prediction. The incompleteness of the

galaxy catalogues is more severe for low luminosity galaxies because they tend to be hosted

by low mass haloes, as will be shown in the next section. Hereafter, we will use N-body sample

to refer to the GALFORM galaxies planted in the Millennium haloes, to distinguish them from

the pure GALFORM catalogues generated using a grid of halos masses.

In order to quantify the incompleteness of the N-body sample as a function of luminosity,

we define the completeness fraction as the ratio of the cumulative luminosity function for the

N-body sample to that obtained for a pure GALFORM calculation, and look for the luminosity

at which the completeness fraction deviates from unity. The panels of Fig. 3.3 give different

views of the completeness of the N-body samples. The top panel shows the luminosity above

which a catalogue can be considered as complete: we define the completeness limit as the

luminosity at which the completeness fraction first drops to 0.85. The figure clearly shows

how the luminosity corresponding to this completeness limit becomes progressively brighter
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Figure 3.3: Completeness of the Millennium galaxy catalogues with re-

spect to Lyα luminosity or flux. (Top): The minimum luminosity down

to which the catalogues are 85% complete. (Bottom): The complete-

ness fraction as a function of redshift for a range of fluxes −19 <

log(FLyα[erg s−1 cm−2])< −17, as indicated by the key.

as we move to higher redshifts. For z > 9 the N-body sample is incomplete at all luminosities

plotted.

The bottom panel of Fig. 3.3 shows how the sample becomes more incomplete at any red-

shift as we consider fainter fluxes. A sample with galaxies brighter than log(FLyα[erg s−1 cm−2]) =

−19) is less than 70% complete at all redshifts z > 5, while a sample with galaxies brighter

than log(FLyα[erg s−1 cm−2]) = −17 is always over 90% complete for z < 9. The complete-

ness fraction monotonically decreases with increasing redshift until z ∼ 6 for very faint fluxes.

For z > 6 the completeness rises again: the shape of the bright end of the luminosity function

at this redshift is sensitive to the choice of the redshift of reionization. Here we use zreio = 10.

In summary, the requirement that our samples be at least 80% complete restricts the
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range of validity of the predictions from the Millennium simulation to redshifts below 9, and

fluxes brighter than log(FLyα[erg s−1 cm−2])> −17.5.

3.4 Clustering Predictions

In this section we present clustering predictions using Lyα emitters in the full Millennium

volume. To study the clustering of galaxies we calculate the two-point correlation function,

ξ(r), of the galaxy distribution. In order to quantify the evolution of the clustering of galaxies,

we measure the correlation function over the redshift interval 0< z < 9.

To calculate ξ(r) in the simulaation, we use the standard estimator (e.g. Peebles 1980):

1+ ξ(r) =
〈DD〉

1
2
Ngaln∆V (r)

, (3.1)

where 〈DD〉 stands for the number of distinct data pairs with separations in the range r to

r +∆r, n is the mean number density of galaxies, Ngal is the total number of galaxies in the

simulation volume and∆V (r) is the volume of a spherical shell of radius r and thickness ∆r.

This estimator is applicable in the case of periodic boundary conditions. In the correlation

function analysis, we consider two parameters which help us to understand the clustering

behaviour of Lyα galaxies: the correlation length, r0, and the galaxy bias, b, both of which

are discussed below.

3.4.1 Correlation Length evolution

A common way to characterize the clustering of galaxies is to fit a power-law to the correla-

tion function:

ξ(r) =

�

r

r0

�−γ
, (3.2)

where r0 is the correlation length and γ = 1.8 gives a good fit to the slope of the observed

correlation function over a restricted range of pair separations around r0 at z = 0 (e.g. Davis

and Peebles (1983)). The correlation length can also be defined as the scale where ξ = 1,

and quantifies the amplitude of the correlation function when the slope γ is fixed.

Fig. 3.4 shows the correlation function of Lyα emitting galaxies, ξgal (solid black curves)

of the full catalogues down to the completeness limits at each redshift, calculated using

Eq. (3.1). The red curve shows ξdm, the correlation function of the dark matter. At z = 0,
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Figure 3.4: The correlation function predicted for Lyα emitters (black solid

curve) for a range of redshifts, as indicated in each panel. Lyα emitters are

included down to the completeness limit at each redshift shown in Fig 3.3.

The solid red curve shows the correlation function of the dark matter at the

same epochs. The blue dashed line shows the power law fit of Eq. (3.2),

evaluated in the range 1 < r[Mpc/h] < 10, as delineated by the vertical

dashed lines.
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ξdm is larger than ξgal, but for z > 0 ξdm is increasingly below ξgal. We will study in detail

the comparison of the dark matter and Lyα galaxy correlation functions in §4.2.

Another notable feature of Fig. 3.4 is that ξgal(r) differs considerably from a power law,

particularly on scales greater than 10 h−1Mpc. When fitting Eq. (3.2) to the correlation

functions plotted in Fig. 3.4, we use only the measurements in the range [1,10] h−1Mpc,

where ξgal(r) behaves most like a power law. We fix the slope γ= 1.8 for all ξgal(r) to allow

a comparison between different redshifts, although we note that for z < 5, the slope of ξgal(r)

is closer to γ = 1.6. By using the power law fit we can compare the clustering amplitudes of

different galaxy samples. To determine the clustering evolution of Lyα emitters, we split the

catalogues of Lyα emitters into luminosity bins. For each of these sub-samples, we calculate

the correlation function and then we obtain r0 by fitting Eq. (3.2) as described. Fig. 3.5 (top)

shows the dependence of r0 on luminosity for different redshifts in the range 0 < z < 9.

The errors are shown by the area enclosed by the thin solid lines for each set of points, and

are calculated as the 90% confidence interval of the χ2 fit of the correlation functions to

Eq. (3.2) (ignoring any covariance between pair separation bins). The range of luminosities

plotted is set by the completeness limit of the simulation described in the previous section.

We also discard galaxy samples with fewer than 500 galaxies, as in such cases, the errors

are extremely large and the correlation functions are poorly defined. The clustering in high

redshift surveys of Lyα emitters is sensitive to the flux limit that they are able to reach, as

shown by Fig. 3.5.

The model predictions show modest evolution of r0 with redshift for most of the luminos-

ity range studied. Over this redshift interval, on the other hand, the correlation length of the

dark matter changes dramatically, as shown by Fig. 3.4. Typically, at a given redshift, we find

that r0 shows little dependence on luminosity until a luminosity of LLyα∼ 1042[erg s−1 h−2]

is reached, brightwards of which there is a strong increase in clustering strength with lu-

minosity. This trend is even more pronounced at higher redshifts. Galaxies at z = 0 are

less clustered than galaxies in the range 3 < z < 7, except at luminosities close to LLyα∼

1040[erg s−1 h−2]. At z = 8.5, r0 increases from r0 ∼ 5 h−1Mpc at LLyα∼ 1042[erg s−1 h−2]

to r0 ∼ 12 h−1Mpc at LLyα> 1042.5[erg s−1 h−2].

The growth of r0 with limiting luminosity is related to the masses of the haloes which

host Lyα galaxies. As shown in the bottom panel of Fig. 3.5, there is not a simple relation

between the median mass of the host halo and the luminosity of Lyα emitters. For a given
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luminosity, Lyα galaxies tend to be hosted by haloes of smaller masses as we go to higher

redshifts. In addition, for all redshifts but z = 0, there is a trend of more luminous Lyα

emitters being found in more massive haloes. The key to explaining the trends in clustering

strength is to compare how the effective mass of the haloes which host Lyα emitting galaxies

is evolving compared to the typical or characteristic mass in the halo distribution (M∗) (Mo

and White, 1996); if Lyα emitters tend to be found in haloes more massive than M∗, then they

will be more strongly clustered than the dark matter. This difference between the clustering

amplitude of galaxies and mass is explored more in the next section. In a hierarchical model

for the growth of structures, haloes more massive than M∗ are more clustered, and thus we

expect a strong connection between the evolution of r0 and the masses of the halos. Fig. 3.5

shows that the dependence of r0 (and host halo mass) on luminosity becomes stronger at

higher redshifts.

3.4.2 The bias factor of Lyα emitters

The galaxy bias, b, quantifies the strength of the clustering of galaxies compared to the

clustering of the dark matter. One way to calculate the bias is by taking the ratio of ξgal

and ξdm, ξgal = b2ξdm. Both correlation functions are estimated using Eq. (3.1). Since the

simulation contains ten billion dark matter particles, a direct pair-count calculation of ξdm

would demand a prohibitively large amount of computer time, so we extract dilute samples

of the dark matter particles, selecting randomly ∼ 107 particles. In this way we only enlarge

the pair-count errors on ξdm (which nevertheless are still much smaller than for ξgal) but

obtain the correct amplitude of the correlation function itself.

To obtain the bias parameter of Lyα emitters as a function of luminosity, we split the full

catalogue of galaxies at each redshift into luminosity bins. For each of these bins we calculate

ξgal and divide by ξdm to get the square of the bias. Due to non-linearities, the ratio of ξgal

and ξdm is not constant on all scales. As a reasonable estimation of the bias we chose the

mean value over the range 6 h−1Mpc < r < 30 h−1Mpc. Over these scales the bias does

seem to be constant and independent of scale. This range is quite similar to the one used

by Gao et al. (2005) to measure the bias parameter of dark matter haloes in the Millennium

Simulation.

The bias parameter can also be calculated approximately using various analytical for-

malisms (Mo and White, 1996; Sheth et al., 2001; Mandelbaum et al., 2005). These proce-
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Figure 3.5: (Top): The evolution of the correlation length r0 as a function

of Lyα luminosity for several redshifts in the range 0 < z < 9, as indicated

by the key. The thin solid coloured lines shows the errors on the correlation

length. (Bottom): The evolution of the median mass of halos which host

Lyα emitting galaxies as a function of Lyα luminosity, for the same range

of redshifts as above.
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Figure 3.6: The galaxy bias as a function of Lyα luminosity at different

redshifts, as indicated by the key. The solid lines show the results from the

simulation and the dashed lines show the analytical expression of SMT. The

area enclosed by the thin solid lines shows the error on the bias estimation

for each redshift.
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dures relate the halo bias to σ(m, z), the rms linear mass fluctuation within a sphere which on

average contains mass m. The bias factor for galaxies of a given luminosity is then obtained

by averaging the halo bias over the halos hosting these galaxies. Le Delliou et al. (2006) used

the analytical expression of Sheth et al. (2001) (hereafter SMT) to calculate the bias param-

eter for the semi-analytical galaxies. This gives a reasonable approximation to the large-scale

halo bias measured in N-body simulations (e.g Angulo et al. (2008a)).

Fig. 3.6 shows the bias parameter as a function of luminosity for redshifts in the range

0< z < 9, and compares the direct calculation using the N-body simulation (solid lines) with

the analytical estimation (dashed lines). In order to calculate the uncertainty in our value of

the bias, we assume an error on ξgal(r) of the form ∆ξgal = 2
p

(1+ ξgal)/DD (Baugh et al.,

1996), and assuming a negligible error in ξdm we get

∆b =
1

bξdm

r

1+ b2ξdm

DD
, (3.3)

for the error in the bias estimation. This error is shown in Fig. 3.6 as the range defined by

the thin solid lines surrounding the bias measurement shown by the points.

The first noticeable feature of Fig. 3.6 is the strong evolution of bias with increasing

redshift: From z = 0 to z = 8.5 the bias factor increases from b(z = 0)∼ 0.8 to b(z = 8.5)∼

12, which means that the clustering amplitude of Lyα emitters at z = 8.5 is over 140 times

the clustering amplitude of the dark matter at this redshift. Another interesting prediction is

the dependence of bias on Lyα luminosity. For z > 3 there seems to be a strong increase of

the bias with luminosity for bins where LLyα > 1042[erg s−1 h−2]. The agreement between

the analytic calculation of the bias and the simulation result is reasonable over the range

0 < z < 5, but becomes less impressive as higher biases are reached. A similar discrepancy

was also noticed by Gao et al. (2005), where they compared the halo bias extracted from the

simulation with different analytic formulae (see also Angulo et al. (2008a)).

Another way to describe galaxy clustering is through the halo occupation distribution

(HOD; Benson et al. (2000), Berlind et al. (2003), Cooray and Sheth (2002)). The HOD gives

the mean number of galaxies which meet a particular observational selection as a function

of halo mass. For flux-limited samples, the HOD can be broken down into the contribution

from central galaxies and satellite galaxies. In a simple picture, the mean number of central

galaxies is zero below some threshold halo mass, Mmin, and unity for higher halo masses.

With increasing halo mass, a second threshold is reached, Mcr i t , above which a halo can
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Figure 3.7: The HOD of Lyα emitters at z = 3.3 (top) and z = 4.9 (bottom).

Each set of points represents a model sample with a different luminosity

limit, as given by the key in the upper panel. The dashed line in each panel

correspond to a “best” fit using the Berlind et al. (2003) parametrization.

also host a satellite galaxy. The number of satellites is usually described by a power-law of

slope β . In the simplest case, three parameters are needed to describe the HOD (Berlind and

Weinberg, 2002; Hamana et al., 2004); more detailed models have been proposed to describe

the transition from 0 to 1 galaxy (Berlind et al., 2003).

We can compute the HOD directly from our model. The results are shown in Fig. 3.7,

where we plot the HOD at two different redshifts for different luminosity limits. For compari-

son, we plot the HOD parametrization of Berlind et al. (2003) against our model predictions.

In general, this HOD does a reasonable job of describing the model output, and is certainly

preferred over a simple three parameter model. However, for the z = 3.3 case (top panel of

Fig. 3.7), the shape of the model HOD for log(M/M⊙)> 13 is still more complicated than can

be accommodated by the Berlind et al. parametrization, showing a flattening in the number

of satellites as a function of increasing halo mass. There is less disagreement in the z = 4.9
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case (bottom panel), but our model HOD becomes very noisy for large halo masses.
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Table 3.1: Summary of survey properties and simulation results.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Survey zsurvey zsimulation ∆z Area [arcmin]2 EWobs[Å] FLyα[erg s−1 cm−2] Nobs Nmedian
mock 10-90% Cv

MUSYC 3.1 3.06 0.04 961 80 1.5× 10−17 162 142 89-207 0.41

SXDS 3.1 3.06 0.06 3538 328 1.1× 10−17 356 316 256-379 0.19

3.7 3.58 0.06 3474 282 2.7× 10−17 101 80 60-110 0.31

5.7 5.72 0.10 3722 335 7.4× 10−18 401 329 255-407 0.23

ELVIS 8.8 8.54 0.10 ∼ 3160 100 3.7× 10−18 – 20 14-29 0.37

Column (1) gives the name of the survey; (2) and (3) show the redshift of the observations and nearest output from the simulations,

respectively; (4) shows the redshift width of the survey, based on the FWHM filter width; (5) shows the area covered by each survey; (6) and

(7) show the equivalent width and Lyα flux limits of the samples, respectively; (8) shows the number of galaxies detected in each survey; (9)

and (10) show the median of the number of galaxies and the 10-90 percentile range found in the mock catalogues for each survey. Finally,

column (11) gives the fractional variation of the number of galaxies, defined in Eq. (3.13).
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3.5 Mock Catalogues

In this section we make mock catalogues of Lyα emitters for a selection of surveys. In the

previous section, we used the full simulation box to make clustering predictions, exploiting

the periodic boundary conditions of the computational volume. The simulation is so large

that it can accommodate many volumes equivalent to those sampled by current Lyα surveys,

allowing us to examine the fluctuations in the number of emitters and their clustering. The

characteristics of the surveys we replicate are listed in Table 3.1.

The procedure to build the mock catalogues is the following:

1. We extract a catalogue of galaxies from an output of the Millennium Simulation that

matches (as closely as possible) the redshift of a given survey. The simulation output

contains 64 snapshots spaced roughly logarithmically in the redshift range [127,0].

2. We choose one of the axes (say, the z-axis) as the line-of-sight, and we convert it to

redshift space, to match what is observed in real surveys. To do this we replace rz (the

comoving space coordinate) with

sz = rz +
vz

aH(z)
[h−1Mpc], (3.4)

where vz is the peculiar velocity along the z-axis, a = 1/(1+ z) and H(z) is the Hubble

parameter at redshift z.

3. We then apply the flux limit of the particular survey, to mimic the selection of galaxies.

Table 3.1 shows the flux limits of the surveys considered.

4. Then we extract many mock catalogues using the same geometry as the real survey. We

extract slices of a particular depth ∆z (different for each survey), and within each slice

we extract as many mock catalogues as possible using the same angular geometry as

the real sample. ∆z is determined using the transmission curves of the narrow-band

filters used in each survey. To derive the angular sizes we use:

Dt(θ , z) = dc(z)∆θ , (3.5)

dc(z) =
c

H0

∫ z

0

dz′
p

Ωm(1+ z′)3+ΩΛ
, (3.6)

where Dt is the transverse comoving size in h−1Mpc, dc is the comoving radial distance,

c and H0 are the speed of light and the Hubble constant respectively, Ωm and ΩΛ are



3. The Clustering of Lyα emitters 63

the density parameters of matter and the cosmological constant respectively. Eq. (3.5)

is valid for ∆θ ≪ 1[radians], which is the case for the surveys we analyse in this work.

We assume a flat cosmology.

5. From the line-of-sight axis we invert Eq. (3.6) to obtain the redshift distribution of

Lyα galaxies within each mock catalogue, converting the galaxy position (say, the z-

coordinate) to redshift. This is then converted into an observed Lyα wavelength to

take into account the shape of the filter transmission curve for each survey, which

controls the minimum flux and equivalent width as a function of redshift. The value

given in Table 3.1 corresponds to the minimum flux and EWobs at the peak of the filter

transmission curve. For redshifts at which the transmission is smaller (the tails of the

curve) the minimum flux and EWobs required for a Lyα emitter to be included are

proportionally bigger.

6. Finally, we allow for incompleteness in the detection of Lyα emitters at a given flux due

to noise in the observed images (where this information is available). To do this, we

randomly select a fraction of galaxies in a given Lyα flux bin to match the completeness

fraction reported for the survey at that flux.

Real surveys of Lyα emitters usually lack detailed information about the position of galax-

ies along the line-of-sight. Hence, instead of measuring the spatial correlation function de-

fined in Eq. (3.1), it is only possible to estimate the angular correlation function, w(θ), which

is the projection on the sky of ξ(r).

We estimate w(θ) from mock catalogues using the following procedure, which closely

matches that used in real surveys. To compute the angular correlation function we use the

estimator (Landy and Szalay, 1993):

wLS(θ) =
〈DD(θ)〉 − 2〈DR(θ)〉+ 〈RR(θ)〉

〈RR(θ)〉 , (3.7)

where 〈DR〉 stands for data-random pairs, 〈RR〉 indicates the number of random-random

pairs and all of the pair counts have been appropriately normalized. In the case of a finite

volume survey, this estimator is more robust than the one defined in Eq. (3.1) because it is

less sensitive to errors in the mean density of galaxies, such as could arise from boundary

effects. In practice, the measured angular correlation function can be approximated by a
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power law:

w(θ) = Aw

�

θ

1◦

�−δ
, (3.8)

where Aw is the dimensionless amplitude of the correlation function, and δ is related to slope

of the spatial correlation function, γ, from Eq. (3.2) by δ = γ− 1. A relation between r0 and

Aw can be obtained using a generalization of Limber’s equation (Simon, 2007).

Surveys of Lyα emitters typically cover relatively small areas of sky and can display signif-

icant clustering even on the scale of the survey. As a result, the mean galaxy number density

within the survey area will typically differ from the cosmic mean value. If the number of

galaxies within the survey is used to estimate the mean density, used in Eq. (3.7), rather than

the unknown true underlying density, this leads to a bias in the estimated correlation func-

tion. This effect is known as the integral constraint (IC) bias. Landy and Szalay (1993) show

that when their estimator is used, the expected value of the estimated correlation function

wLS(θ) is related to the true correlation function w(θ) by

〈wLS(θ)〉 =
w(θ)−wΩ

1+wΩ
, (3.9)

where the integral constraint term wΩ is defined as

wΩ ≡
1

Ω2

∫

dΩ1dΩ2w(θ12), (3.10)

integrating over the survey area, and is equal to the fractional variance in number density

over that area.

When the clustering is weak Eq. (3.9) simplifies to 〈wLS(θ)〉 ≃ w(θ)−wΩ. This motivates

the additive IC correction which is customarily used in practice:

wcorr(θ) = wLS(θ) +wΩ. (3.11)

We use this to correct the angular correlation functions from our mock catalogues. In order

to estimate the term wΩ, we approximate the true correlation function as a power law, as in

Eq. (3.8), and use

wΩ ≃ Aw

∑

i〈RRi〉θ−δi
∑

〈RRi〉
, (3.12)

(Daddi et al., 2000), where 〈RR〉 are the same random pairs as used in the estimate of wLS(θ).

To quantify the sample variance expected for a particular survey, we use the mock cata-

logues to calculate a coefficient of variance (Cv), which is a measure of the fractional variation
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in the number of galaxies found in the mocks

Cv =
N90 − N10

2Nmed
, (3.13)

where N10 and N90 are the 10 and 90 percentiles of the distribution of the number of galaxies

in the mocks, respectively, and Nmed is the median. The value of Cv allows us to compare the

sampling variance between different surveys in a quantitative way.

To analyse the clustering in the mock catalogues, we measured the angular correlation

function of each mock catalogue using the procedure explained above. Then we fit Eq. (3.8)

to each of the mock w(θ) and we choose the median value of Aw as the representative power

law fit. We fix the slope of w(θ) to δ = 0.8 for all surveys, except for ELVIS, where we found

that a steeper slope, δ = 1.2, agreed much better with the simulated data. To express the

variation in the correlation function amplitude found in the mocks, we calculate the 10 and

90 percentiles of the distribution of Aw for each set of mock surveys. We also calculate w(θ)

using the full transverse extent of the simulation, with the same selection of galaxies as for

the real survey. This estimate of w(θ), which we call the Model w(θ), represents an ideal

measurement of the correlation function without boundary effects (so there is no need for

the integral constraint correction).

The surveys we mimic are the following: the MUSYC Survey (Gronwall et al., 2007;

Gawiser et al., 2007), which is a large sample of Lyα emitting galaxies at z = 3.1; the SXDS

Survey (Ouchi et al., 2005, 2008), which covers three redshifts: z = 3.1, z = 3.7 and z = 5.7,

and finally, we make predictions for the forthcoming ELVIS survey (Nilsson et al., 2007b,a),

which is designed to find Lyα emitting galaxies at z = 8.8. We now describe the properties of

the mock catalogues for each of these surveys in turn.

3.5.1 The MUSYC Survey

The Multi-wavelength Survey by Yale-Chile (MUSYC) (Quadri et al., 2007; Gawiser et al.,

2006, 2007; Gronwall et al., 2007) is composed of four fields covering a total solid angle of

one square degree, each one imaged from the ground in the optical and near-infrared. Here

we use data from a single MUSYC field consisting of narrow-band observations of Lyα emit-

ters made with the CTIO 4-m telescope in the Extended Chandra Deep Field South (ECDFS)

(Gronwall et al., 2007). The MUSYC field, centred on redshift z = 3.1, contains 162 Lyα

emitters in a redshift range of ∆z ∼ 0.04 over a rectangular area of 31‘× 31‘ with flux and
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Figure 3.8: The observed EWobs distribution of the MUSYC survey at z =

3.1 (solid black line) and the simulation (solid green line).

EWobs limits described in Table 3.1.

To test how well the model reproduces the Lyα emitters seen in the MUSYC survey, we

first compare the predicted (green) and measured (black) distributions of Lyα equivalent

widths in Fig. 3.8. Here the predicted distribution comes from the full simulation volume.

Overall, the simulation shows remarkably good agreement with the real data, with a slight

underestimation in the range 200 < EWobs[Å] < 400. For EWobs[Å] > 400 both distribu-

tions seem to agree well, although the number of detected Lyα emitters in the tail of the

distribution is small.

For the MUSYC survey we built 252 mock catalogues from the Millennium simulation

volume using the procedure outlined above. Fig. 3.9 shows an example of one of these mock

catalogues. Many of the Lyα emitters are found in high dark matter density regions, and thus

they are biased tracers of the dark matter. Fig. 3.10 shows the distribution of the number

of galaxies in the ensemble of mocks. The green line shows the number detected in the real

survey (162), which falls within the 10-90 percentile range of the mock distribution and is

close to the median (142). The 10-90 percentile range spans an interval of 89 < Ngal < 207,
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Figure 3.9: An image of a mock catalogue of the MUSYC Survey of Lyα

emitters at z = 3.1. The colour format and legend are the same as used in

Fig. 3.1. The angular size of the image is 31‘× 31‘.

indicating a large cosmic variance for this survey configuration, with Cv = 0.41.

The next step is to compare the clustering in the simulations with the real data. Fig. 3.11

plots the correlation functions from the mock catalogues alongside that measured in the real

survey (Gawiser et al., 2007). There is reasonable agreement between the mock catalogue

results and the observed data. The median w(θ) from the mocks is slightly higher than the

observed values, but the observed w(θ) is within the range containing 95% of the mock w(θ)

values (i.e. between the 2.5% and 97.5% percentiles, shown by the light grey shaded region).

We quantified this difference by fitting the power law of Eq. (3.8) to both real and mock data.

The power-law fits were made over the angular range 1-10 arcmins. We find the value of Aw

(Eq. 3.8) for each of the mock catalogue correlation functions by χ2-fitting (using the same

expression as in §3.4.2 for the error on each model datapoint) and then we plot the power

law corresponding to the median value of Aw. We find Aw = 0.53+1.01
−0.33 for the mocks, where

the central value is the median, and the range between the error bars contains 95% of the

values from the mocks. For the real data, we find the best-fit Aw and the 95% confidence
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Figure 3.10: Histogram of the number of Lyα emitters found in the mock

MUSYC catalogues. The red line shows the median, the dashed blue lines

show the 10-90 percentile range, and the green line shows the number of

galaxies detected in the real survey.

interval around it by χ2-fitting, using the error bars on the individual datapoints reported by

Gawiser et al.. This gives Aw = 0.29± 0.17 for the real data. We again see that the observed

value is within the 95% range of the mocks, and is thus statistically consistent with the model

prediction. We also see that the 95% confidence error bar on the observed Aw is much smaller

than the error bar we find from our mocks. This latter discrepancy arises from the small errors

quoted on w(θ) by Gawiser et al. (2007), which are based on modified Poisson pair count

errors, but neglect variations between different sample volumes (i.e. cosmic variance). On

the contrary, using our mocks, we are able to take cosmic variance fully into account. This

underlines the importance of including the cosmic variance in the error bars on observational

data, to avoid rejecting models by mistake.

The red open circles in Fig. 3.11 show the correlation function obtained using the full

angular size attainable with the Millennium simulation but keeping the same flux, EW and

redshift limits as in the MUSYC survey (averaging 7 different slices), and so this measurement

has a smaller sample variance. The area used here is ∼ 120 times bigger than the MUSYC



3. The Clustering of Lyα emitters 69

Figure 3.11: Angular clustering for the MUSYC Survey. Green circles show

w(θ) calculated from the observed catalogue (Gawiser et al., 2007). The

blue circles show the median w(θ) from all mock catalogues, corrected

for the integral constraint effect. The dark and light grey shaded regions

respectively show the 68% and 95% ranges of the distribution of w(θ)

measured in the mock catalogues. The red open circles show the Model

correlation function, obtained using the width of the entire simulation box

(and the same EW, flux and redshift limits). The dashed lines show the

power-law fit to the observed w(θ) (green) and the median fit to w(θ)

from the mock catalogues (blue). The amplitudes Aw of these fits are also

given in the figure.

area, so IC effects are negligible on the scales studied here. We refer to this as the Model

prediction for w(θ).

The median of the mock correlation functions (including the IC correction, blue circles)

is seen to agree reasonably well with the Model correlation function (red open circles) for

θ < 20[arcmin]. This shows that for this survey it is possible to obtain an observational

estimate of the correlation function which is unbiased over a range of scales, by applying the

integral constraint correction. However, on large scales the median w(θ) of the mocks (with

IC correction included) lies above the Model w(θ), which shows that the IC correction is not
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perfect, even on average. Presumably this failure is due (at least in part) to the fact that the

IC correction procedure assumes that w(θ)is a power law, while the true w(θ) departs from

a power law on large scales. It is also important to note that these statements only apply

to the median w(θ) derived from the mock samples - the individual mocks show a large

scatter around the true w(θ) (as shown by the grey shading), and the IC correction does not

remove this. This scatter rapidly increases at both small and large angular scales, so the best

constraints on w(θ) from this survey are for intermediate scales, 1® θ ® 5[arcmin].

3.5.2 The SXDS Surveys

The Subaru/XMM-Newton Deep Survey (SXDS) (Ouchi et al., 2005, 2008; Kashikawa et al.,

2006) is a multi-wavelength survey covering ∼ 1.3 square degrees of the sky. The survey is

a combination of deep, wide area imaging in the X-ray with XMM-Newton and in the optical

with the Subaru Suprime-Cam. Here we are interested in the narrow-band observations at

three different redshifts: 3.1,3.6 and 5.7 (Ouchi et al., 2008).

We build mock SXDS catalogues following the same procedure as outlined above. Fig. 3.12

shows examples of our mock catalogues for each redshift. As in the previous case, we see that

Lyα emitters on average trace the higher density regions of the dark matter distribution. The

real surveys have a well defined angular size. However, the area sampled is slightly different

at each redshift. In order to keep the cross-like shape in our mock catalogues and be consis-

tent with the exact area surveyed, we scaled the cross-like shape to cover the same angular

area as the real survey at each redshift.

Fig. 3.13 shows the distribution of the number of galaxies in the mock catalogues for the

three redshifts surveyed. The median number of galaxies in the mocks at z = 3.1 is 316,

which is remarkably similar to the observed number, 356. The 10-90 percentile range of the

mocks covers 256–379 galaxies. The coefficient of variation is Cv = 0.19, less than half the

value found for the MUSYC mock catalogues, Cv = 0.41. This reduction is due mainly to the

larger area sampled by the SXDS survey. In the second slice (z = 3.6), the redshift is only

slightly higher than in the previous case, but the number of galaxies is much lower. Looking

at the top panel of Fig. 3.2 we see that the observed LFs are basically the same for these

two redshifts. The difference between the two samples is explained mostly by the different

Lyα flux limits (1.2 × 10−17[erg s−1 cm−2] for z = 3.1 and 2.6 × 10−17[erg s−1 cm−2] for

z = 3.6). For the z = 3.6 mocks, we find a median number of 80 and 10-90% range 60–110,
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Figure 3.12: Mock catalogues of the SXDS survey for redshifts 3.1 (top),

3.6 (centre) and 5.7 (bottom). The colour scheme and legend are the same

as used previously. The angular size of the image is 1.4◦× 1.4◦.
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Figure 3.13: The distribution of the number of galaxies in mock SXDS cat-

alogues, for z = 3.1 (left), z = 3.6 (centre) and z = 5.7 (right). The red line

shows the median of the number of galaxies inside the mock catalogues,

the blue lines show the 10-90 percentiles of the distribution, and the green

line shows the number observed in the SXDS.

in reasonable agreement with the observed number of galaxies, 101. The fractional variation

in the number of galaxies, quantified by Cv = 0.31, is larger than in the previous case, due

to the smaller number of galaxies. The z = 5.7 case is similar to the lower redshifts. The

median number in the mocks is 329, with 10-90% range 255–407, again consistent with

the observed number, 401. The coefficient of variation for this survey is Cv = 0.23, so the

sampling variance is intermediate between that for the z = 3.1 and z = 3.6 surveys.

The angular correlation functions of the mock catalogues are compared with the real

data in Fig. 3.14. The observational data shown are preliminary angular correlation function

measurements in the three SXDS fields, with errorbars based on bootstrap resampling (M.

Ouchi, private communication). As in our comparison with the MUSYC survey, we plot the

median correlation function measured from the mocks, after applying the IC correction, as

a representative w(θ) . As before, we also perform a χ2 fit of a power law to the w(θ)

measured in each mock, and to the observed values, to determine the amplitude Aw. The fit

is performed over the range 1< θ < 10[arcmin] as before.

The left panel of Fig. 3.14 shows the correlation functions at z = 3.1. According to

both the error bars on the observational data, and the scatter in w(θ) in the mocks (shown

by the grey shading), this survey provides useful constraints on the clustering for 1 ® θ ®

10[arcmin], but not for smaller or larger angles, where the scatter becomes very large. The

fitted amplitude Aw for the observed correlation function is Aw = (0.32± 0.22) (95% con-
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Figure 3.14: Angular correlation functions for the mock SXDS catalogues

at z = 3.1 (Left), z = 3.6 (Center) and z = 5.7 (Right). The blue circles

show the median w(θ) from the mock catalogues (after applying the IC

correction). The dark and light grey shaded regions respectively show the

68% and 95% ranges of the distribution of w(θ) measured in the mock

catalogues. The red open circles are the Model w(θ) calculated using the

full simulation width, averaged over many slices. The green circles shows

the observational data from Ouch et al. The dashed lines show the power-

law fit to the observed w(θ) (green) and the median fit to w(θ) from the

mock catalogues (blue). The amplitudes Aw of these fits are also given in

the figure.

fidence, using the error bars reported by Ouchi et al.), somewhat below the median value

found in the mocks, Aw = 0.60, but within the 95% range for the mocks (Aw = 0.23− 1.35).

Based on the mocks, the model correlation function is consistent with the SXDS data at this

redshift.

Comparing these results with those we found for the MUSYC survey (which has a very

similar redshift and flux limit to SXDS at z = 3.1), we see that the results seem very consistent.

The MUSYC survey has a larger sample variance than SXDS, but the measured clustering

amplitude is very similar in the two surveys.

The middle panel of Fig. 3.14 shows the correlation function for the z = 3.6 survey. In this

case, the error bars on the observational data and the scatter in the mocks are both larger,

due to the lower surface density of galaxies in this sample. For the observed correlation

amplitude, we obtain Aw = 0.75± 0.72, while for the mocks we find a median Aw = 0.99,

with 95% range 0.06–2.01, entirely consistent with the observational data.
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Figure 3.15: An example of a mock catalogue for the ELVIS Survey. The

image shows the observed field of view (four strips). The legend and colour

format are the same as in Figs.3.9 and 3.12.

The right panel of Fig. 3.14 shows the correlation function predictions for z = 5.7. Ac-

cording to the spread of mock catalogue results, the w(θ) measured here is the most accurate

of the three surveys, due to the large number of galaxies. For the mocks, we find a median

correlation amplitude Aw = 0.82, with 95% range 0.42–1.49. For the observations, we find

Aw = 1.56± 0.27, if we assume a slope δ = 0.8. The average correlation function in the

mocks agrees well with this slope over the range fitted, but the observational data for w(θ)

at this redshift prefer a flatter slope. The model is however still marginally consistent with

the observational data at 95% confidence. Similarly flat shapes were also found in some

previous surveys (Shimasaku et al., 2004; Hayashino et al., 2004) in the same field, but at

redshifts 3.1 and 4.9 respectively. However, these surveys are much smaller in terms of area

surveyed and number of galaxies (this is particularly so in Shimasaku et al. (2004)). This be-

haviour in w(θ) might be produced by the high density regions associated with protoclusters

in the SXDS fields (M. Ouchi, private communication), but still this behaviour of w(θ) must

be confirmed to prove that it is a real feature of the correlation function.
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Figure 3.16: Histogram of the number of galaxies in mock catalogues ex-

pected for the ELVIS Survey. The red line shows the median of the distribu-

tion, and the blue dashed lines the 10-90 percentiles of the distribution.

3.5.3 ELVIS Survey

One of the main goals of the public surveys planned for the Visible and Infrared Survey

Telescope for Astronomy (VISTA) is to find a significant sample of very high redshift (z ∼ 8.8)

Lyα emitters. This program is called the Emission-Line galaxies with VISTA survey (ELVIS)

(Nilsson et al., 2007b,a). The plan for ELVIS is to image four strips of 11.6‘×68.27‘, covering

a total area of 0.878deg2, as shown in Fig. 3.15. This configuration is dictated by the layout

of the VISTA IR camera array. The only current detections of Lyα emitters at z > 8 are

those of Stark et al. (2007), which have not yet been independently confirmed. Lyα emitting

galaxies at such redshifts will provide us with valuable insights into the reionization epoch of

the Universe, as well as galaxy formation and evolution.

For our mock ELVIS catalogues, we select galaxies with a minimum flux of FLyα = 3.7×

10−18[erg s−1 cm−2] and EWobs > 100 Å, as listed in Table 3.1. (The EWobs limit is just a

rough estimate, although our predictions should not be sensitive to the exact value chosen.)

Fig. 3.15 shows the expected spatial distribution of z = 8.5 galaxies in one of the ELVIS mock
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Figure 3.17: Angular Correlation Functions in the mock catalogues of the

ELVIS Survey. The blue circles shows the median w(θ) from the mock

catalogues, while the orange circles shows the mean. The dark and light

grey shaded regions respectively show the 68% and 95% ranges of the

distribution of w(θ) in the mocks. The red open circles show the Model

w(θ) obtained using the full width of the simulation box. The amplitude

and slope of the median power-law fit to the mocks are also given.

catalogues. Each mock catalogue has four strips, matching the configuration planned for the

real survey. The median number of galaxies within the mock catalogues is 20, with a 10-90

percentile spread of 14 to 29 galaxies, as shown in Fig. 3.16. The fractional variation in

number between different mocks is Cv = 0.37, which is quite large, but no worse than for the

MUSYC survey at z = 3.1, even though that survey has 10 times as many galaxies.

The angular correlation functions of the mock ELVIS catalogues were calculated in the

same way as before (including the integral constraint correction). Fig. 3.17 shows the median

of the w(θ) values measured from each mock catalogue (blue circles), and also the mean

(orange circles). In this case, the distribution of w(θ) values within each angle bin is very

skewed, due to the small number of galaxies in the mock catalogues, and so the mean and

median can differ significantly. The dark and light grey shaded regions show the ranges

containing 68% and 95% of the w(θ) values from the mocks, from which it can be seen that

the cosmic variance for this survey is very large. We also show the Model w(θ) (red circles),

which provides our best estimate of the true correlation function based on the Millennium
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simulation, and was calculated by averaging over 10 slices of the simulation, using the full

width of the simulation box. Even here, the error bars on w(θ) are quite large, due to the

very low number density of galaxies predicted. We see that the mean and median w(θ) in

the mocks lie close to the Model values for 2[arcmin]< θ < 20[arcmin], so in this sense they

provide an unbiased estimate.

The most noticeable feature of Fig. 3.17 is the large area covered by both the 68% and

95% ranges of the distribution of w(θ) in the mocks, which extend down to w(θ) = 0. This

indicates that the ELVIS survey will only be able to put a weak upper limit on the clustering

amplitude of z ∼ 8.8 Lyα emitters, if our model is correct. As before, we can quantify this by

fitting a power law to w(θ) in our mocks. We notice that the Model w(θ) for this sample has

a significantly steeper slope, δ = 1.2, than the canonical value δ = 0.8, and so we do our fits

to the mocks using δ = 1.2. We find a median amplitude in the mocks Aw = 3.57+12.0
−33.5, where

the error bars give the 95% range.

3.6 Summary and conclusions

We have combined a semi-analytical model of galaxy formation with a high resolution, large

volume N-body simulation to make predictions for the spatial distribution of Lyα emitters in

a ΛCDM universe.

Our model for Lyα emitters is appealingly simple. Using the star formation history pre-

dicted for each galaxy from the semi-analytical model to compute the production of Lyman

continuum photons, we find that on adopting a constant escape fraction of Lyα photons the

observed number of Lyα emitters can be reproduced amazingly well over a range of redshifts

(Le Delliou et al., 2006). Our modelling of Lyα emission may appear overly simplistic on

first comparison to other calculations in the literature. For example, Nagamine et al. (2008)

predicted the clustering of Lyα emitters in a gas-dynamic simulation, modelling the Lyα emis-

sion through a Lyα escape fraction or a duty cycle scenario. However, the fraction of active

emitters in the duty cycle scenario needs to be tuned at each redshift, for which there is no

physical justification. Since our predictions for Lyα emission are derived from a full model

of galaxy formation, it is straightforward to extract other properties of the emitters, such as

their stellar mass or the mass of their host dark matter halo (Le Delliou et al., 2006). In this

work we have extended this work to include explicit predictions for the spatial and angular
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clustering of Lyα emitters.

We have studied how the clustering strength of Lyα emitters depends upon their luminos-

ity as a function of redshift. Generally, we find that Lyα emitters show a weak dependence

of clustering strength on luminosity, until the brightest luminosities we consider are reached.

At the present day, Lyα emitters display weaker clustering than the dark matter. This changes

dramatically at higher redshifts (z > 3), with currently observable Lyα emitters predicted

to be much more strongly clustered than the dark matter, with the size of the bias increas-

ing with redshift. We compared the simulation results with analytical estimates of the bias.

Whilst the analytical results show the same trends as the simulation results, they do not match

well in detail, and this supports the use of an N-body simulation to study the clustering.

A key advantage of using semi-analytical modelling is that the evolution of the galaxy

population can be readily traced to the present day. This gives us some confidence in the

star formation histories predicted by the model. The semi-analytical model passes tests on

the predicted distribution of star formation rates at high redshift (the number counts and

redshifts of galaxies detected by their sub-millimetre emission and the luminosity function of

Lyman-break galaxies), whilst also giving a reasonable match to the present day galaxy lumi-

nosity function (Baugh et al. 2005), and also matching the observed evolution of galaxies in

the infrared (Lacey et al., 2008). Gas dynamic simulations as a whole struggle to reproduce

the present-day galaxy population, due to a combination of a limited simulation volume (set

by the need to attain a particular mass resolution) and a tendency to overproduce massive

galaxies. The small box size typically employed in gas dynamic simulations means that fluc-

tuations on the scale of the box become nonlinear at low redshifts, and their evolution can no

longer be accurately modelled. A further consequence of the small box size is that predictions

for clustering are limited to small pair separations (e.g. Nagamine et al. (2008)) use a box

of side 33 h−1Mpc, limiting their clustering predictions to scales r ® 3h−1Mpc). By using a

simulation with a much larger volume than that of any existing Lyα survey, we can subdivide

the simulation box to make many mock catalogues to assess the impact of sampling fluctu-

ations (including cosmic variance) on current and future measurements of the clustering of

Lyα emitters.

We made mock catalogues of Lyα emitters to compare with the MUSYC (z = 3) and

SXDS (z = 3 − 6) surveys, and to make predictions for the forthcoming ELVIS survey at

z ∼ 9. In the case of MUSYC and SXDS, we found that the observed number of galaxies
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lies within the 10-90 percentile interval of the number of Lyα emitters found in the mocks.

We find that high-redshift clustering surveys underestimate their uncertainties significantly if

they fail to account for cosmic variance in their error budget. Overall, the measured angular

correlation functions are consistent with the model predictions. The clustering results in our

mock catalogues span a wide range of amplitudes due to the small volumes sampled by the

surveys, which results in a large cosmic variance. ELVIS will survey Lyα emitters at very high

redshift (z = 8.8). Our predictions show that a single pointing will be strongly affected by

sample variance, due to the small volume surveyed and the strong intrinsic clustering of the

Lyα emitters which will be detected at this redshift. Many ELVIS pointings will be required to

get a robust clustering measurement.

We have shown that surveys of Lyα emitters can open up a new window on the high

redshift universe, tracing sites of active star formation. With increasing redshift, the envi-

ronments where Lyα emitters are found in current and planned surveys become increasingly

unusual, sampling the galaxy formation process in regions that are likely to be proto-clusters

and the progenitors of the largest dark matter structures today. Our calculations show that

with such strong clustering, surveys of Lyα emitters covering much larger cosmological vol-

umes are needed in order to minimize cosmic variance effects.
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Chapter 4
Probing dark energy with

Hα emitters

4.1 Introduction

A number of approaches have been proposed to uncover the nature of the accelerating ex-

pansion of the Universe which involve measuring the large scale distribution of galaxies (e.g

Albrecht et al., 2006; Peacock et al., 2006). The ability of galaxy surveys to discriminate be-

tween competing models depends on their volume. Once the solid angle of a survey has been

set, the useful volume can be maximised by choosing a tracer of the large-scale structure of

the Universe which can effectively probe the geometrical volume. This depends on how the

abundance of tracers drops with increasing redshift, and how much of this decline is offset

by an increase in the clustering amplitude of the objects.

Several wide-angle surveys have probed the redshift interval between 0 < z < 1 (e.g

Colless et al., 2003; York et al., 2000; Cannon et al., 2006; Blake et al., 2009). The next

major step up in volume will be made when the range from 0.5 < z < 2 is opened up with

large near-infrared cameras and spectrographs which are mounted on telescopes able to map

solid angles running into thousands of square degrees. From the ground, this part of the

electromagnetic spectrum is heavily absorbed by water vapour in the Earth’s atmosphere and

affected by the strong atmospheric OH emission lines. A space mission to construct an all-sky

map of galaxies in the redshift range 0.5 < z < 2 would have a significant advantage over

a ground based survey in that the sky background in the near-infrared (NIR) is around 500

times weaker in space than it is on the ground.

An important issue yet to be resolved for a galaxy survey extending to z ∼ 2 is the con-

struction of the sample and the method by which the redshifts will be measured. One option

is to use slitless spectroscopy and target the Hα emission line. Hα is located at a restframe

81
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wavelength of λ = 6563Å, which, for galaxies at z > 0.5, falls into the near-infrared part of

the electromagnetic spectrum (Thompson et al., 1996; McCarthy et al., 1999; Hopkins et al.,

2000; Shim et al., 2009). Hα emission is powered by UV ionizing photons from massive

young stars. The only source of attenuation is dust, which is less important at the wavelength

of Hα than it is for shorter wavelength lines. This makes Hα a more direct tracer of galaxies

which are actively forming stars than other lines such as Lyα, OII, OIII, Hβ or Hγ, which

suffer from one or more sources of attenuation (i.e. dust, stellar absorption, resonant scat-

tering) and which are more sensitive to the metallicity and ionisation state of the gas. The

second option is to use some form of multi-slit spectrograph to carry out a redshift survey of

a magnitude limited sample. The use of a slit means that unwanted background is reduced,

allowing fainter galaxies to be targetted. Also, it is easier to identify which spectrum belongs

to which galaxy with a slit than it is with slitless spectroscopy. Targets could be selected in

the H-band at an effective wavelength of just over 1 micron, which is around the centre of

the near infrared wavelength part of the spectrum. The slitless option has the advantage of

not needing an initial target selection and relies on a technique that is has already been used

in space and is potentially cheaper than the multi-slit solution.

Space missions designed to carry out redshift surveys like the ones outlined above are

currently being planned and assessed on both sides of the Atlantic. At the time of writing,

the European Space Agency is conducting a Phase A study of a mission proposal called Eu-

clid 1, one component of which is a galaxy redshift survey. Both of the selection techniques

mentioned above are being evaluated as possible spectroscopic solutions. The slit solution for

Euclid is based on a novel application of digital micromirror devices (DMDs) to both image

the galaxies to build a parent catalogue in the H-band and to measure their redshifts (see

Cimatti et al. 2009 for further details about the Euclid redshift survey). A Hα mission is

also being discussed in the USA 2. At this stage, the sensitivity of these missions is uncertain

and subject to change. For this reason we consider a range of Hα flux limits and H-band

magnitudes when assessing the performance of the surveys. The specifications and perfor-

mance currently being discussed for these missions have motivated the range of fluxes that

we consider.

A simple first impression of the relative merits of different selections methods can be

1http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=43226
2http://jdem.gsfc.nasa.gov/
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gained by calculating the effective volume of the resulting survey. This requires knowledge

of the survey geometry and redshift coverage, along with the redshift evolution of the num-

ber density of sources and their clustering strength. In this chapter we use published galaxy

formation models to predict the abundance and clustering of different samples of galaxies in

order to compute the effective volumes of a range of Hα and H-band surveys. Observation-

ally, relatively little is known about the galaxy population selected by Hα emission or H-band

magnitude at 0.5< z < 2. Empirically it is possible to estimate the number density of sources

from the available luminosity function data and, on adopting a suitable model, to use the lim-

ited clustering measurements currently available to infer the evolution of the number density

and bias (Shioya et al., 2008; Morioka et al., 2008; Geach et al., 2008). Geach et al. (2009),

in a complementary study to this one, make an empirical estimate of the number density of

Hα emitters, and combine this with the predictions of the clustering of these galaxies pre-

sented in this work to estimate the efficiency with which Hα emitters can measure the large

scale structure of the Universe. We remind the reader that the effective volume is just one

aspect that needs to be taken into account when choosing between different spectroscopic

solutions and we do not address here issues of cost or survey feasibility.

The outline of this chapter is as follows: in Section 4.2 we give a brief overview of the

models. Some general properties of Hα emitters in the models, such as luminosity functions

(LF), equivalent widths (EW) and clustering bias are presented in Section 4.3. In Section 4.4

we show how our models can be used to build mock survey catalogues. We analyse the

differences in the clustering of Hα emitters and H-band selected galaxies and present an

indication of the efficiency with which different surveys trace large-scale structure (LSS).

Finally, we give our conclusions in Section 4.5.

4.2 The Models

In this work we present predictions for the clustering of galaxy samples selected in the near-

infrared using two published versions of the semi-analytic model GALFORM. An overview

of the semi-analytical approach to modelling galaxy formation has already been given in

Chapter 2.

The two models considered in this work are explained fully in the original papers, Baugh

et al. (2005) (hereafter the Bau05 model) and Bower et al. (2006) (hereafter the Bow06model).
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Figure 4.1: The Hα luminosity function, including attenuation by dust,

at different redshifts. The blue curves show the predictions of the Bau05
model, whereas red curves show the Bow06 model. The observational esti-

mates are represented by the symbols (see text for details). The redshift dis-

played in the bottom-right corner of each panel gives the redshift at which

the GALFORMmodels were run. The vertical black dashed line shows the Hα

luminosity corresponding to the flux log(FHα[erg s−1 cm−2]) = −15.4 for

z > 0, displayed to show the expected luminosity limit of current planned

space missions.
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The calculation of H-band flux and Hα line emission is the same in both models. The

model predicts the star formation history of each galaxy, recording the star formation rate

and the metallicity with which stars are made in each of the galaxy’s progenitors. This allows

a composite stellar population and spectral energy distribution to be built up. The model

predicts the scale size of the galaxy and, through a chemical evolution model, the metal

content of the disk and bulge. The H-band magnitude is computed by convolving the model

galaxy spectral energy distribution with an H-band filter, appropriately shifted in wavelength

if the galaxy is observed at z > 0. The effect of dust extinction is taken into account by

assuming that the dust and disk stars are mixed together (Cole et al. 2000). The spectral

energy distribution also gives the rate of production of Lyman continuum photons. Then, all

of the ionizing photons are assumed to be absorbed by the neutral gas in the galaxy, and, by

adopting case B recombination (Osterbrock 1989), the emissivity of the Hα line (and other

emission lines) is computed. Here we assume that the attenuation of the Hα emission is

the same as that experienced by the continuum at the wavelength of Hα . To predict the

equivalent width (EW) of the Hα emission, we simply divide the luminosity of the line by the

luminosity of the continuum around the Hα line.

4.3 Properties of Hα emitters

We first concentrate on the nature of Hα emitters in the models, which have not been dis-

cussed elsewhere for GALFORM , before examining the clustering of Hα and H-band selected

samples in more detail in the next section. In this section we present the basic predictions

for the abundance, equivalent width distributions and clustering of Hα emitters. Note that

all the results presented here include the attenuation of the Hα emission by dust in the ISM

at the same level experienced by the continuum at the wavelength of Hα .

4.3.1 The Hα luminosity function

A basic prediction of the models is the evolution of the Hα luminosity function (LF). Fig. 4.1

shows the Hα LFs predicted by the two versions of GALFORM compared with observational

data, over the redshift interval 0.2 < z < 2. At each redshift plotted, the Bau05 model pre-

dicts a higher number density of Hα emitters than the Bow06 model for luminosities brighter

than log(LHα[erg s−1 cm−2]) ≃ 42. This reflects two processes: the relative efficiency of the
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feedback mechanisms used in the two models to suppress the formation of bright galaxies,

and the top-heavy IMF adopted in starbursts in the Bau05 model, which, for a galaxy with

a given star formation rate, boosts the Hα flux emitted. The bright end of the Hα LF is

dominated by bursting galaxies.

At faint luminosities, Fig. 4.1 shows that the predicted model LFs are more similar. At

these luminosities, the star formation in both models predominantly takes place in galactic

disks and produces stars with a standard IMF. For luminosities fainter than log(LHα[erg s−1 cm−2])≃

40, the Bow06 model suffers from the limited mass resolution of Millennium Simulation halo

merger trees (Springel et al. 2005) compared with that of the Monte Carlo trees used in theBau05 model (Helly et al., 2003).

The observational data shown in Fig. 4.1 comes from Fujita et al. (2003),Hippelein et al.

(2003) ,Jones and Bland-Hawthorn (2001), Morioka et al. (2008),Pascual et al. (2001),Sh-

ioya et al. (2008) for z ∼ 0.2; Tresse et al. (2002), Villar et al. (2008),Sobral et al. (2009),Shim

et al. (2009),Hopkins et al. (2000) for z ∼ 0.9, Shim et al. (2009), Yan et al. (1999) for

z = 1.3 and Geach et al. (2008),Shim et al. (2009), Hayes et al. (2010b) for z = 1.9. Most of

this observational data have not been corrected by the authors for dust extinction, and hence

it can be directly compared to the GALFORM predictions, which include dust attenuation.

However, in some cases the data were originally presented after correction for an assumed

constant attenuation. In such cases we have undone this “correction”. Hence, our compari-

son concerns the actual observed number of Hα emitters, which is the relevant quantity for

assessing the performance of a redshift survey.

In general both models overpredict the number of low luminosity Hα emitters at z ≤

0.3, as shown by Fig. 4.1. At z = 0, (upper-left panel in Fig. 4.1), the amplitude of the

LF in both models is larger, by almost an order of magnitude, than the Jones and Bland-

Hawthorn (2001) data. A similar conclusion is reached at z = 0.2 (upper-right panel in

Fig. 4.1), on comparing the models to most of the observational data. However, there is a

significant scatter in observations of the faint end of the LF. At redshifts z ¦ 1 (bottom panels

in Fig. 4.1), the models bracket the observational estimates, with the Bow06 model tending

to underpredict the observational LF, whereas the Bau05 model over predicts it. Despite the

imperfect agreement, these model LFs “bracket” the observed LFs for the redshifts relevant

to space mission surveys propsed, so we proceed to use them for the purposes of this work.
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Figure 4.2: The distribution of Hα equivalent width in the observer frame

as a function of Hα flux, over the redshift interval 0.7 < z < 1.9. The

top panel shows the predictions of the Bau05 model and the bottom panel

shows the Bow06 model, calculated as described in the text. The black line

shows the median EW at each flux. The shaded regions enclose 68% (dark

grey) and 95% (light grey) respectively of the GALFORM predictions around

the median (black circles). The blue circles show observational data from

Hopkins et al. (2000), green asterisks show data from Shim et al. (2009)

and red diamonds show data from McCarthy et al. (1999), as indicated by

the key. The magenta dashed lines show the GALFORM predictions for the

median equivalent width after applying the empirically derived continuum

flux and line luminosity rescalings described in Section 4.4.
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4.3.2 Hα equivalent width (EW) distribution

Broadly speaking the EW of the Hα line depends on the current SFR in a galaxy (which

determines the Hα emission), and its stellar mass (to which the continuum luminosity is

more closely related). We compare the model predictions for the EW of Hα versus Hα flux

with observational results in Fig. 4.2. The observational data cover a wide redshift interval,

0.7 < z < 1.9 (McCarthy et al., 1999; Hopkins et al., 2000; Shim et al., 2009). In order

to mimic the observational selection when generating model predictions, we go through the

following two steps. First, we run the models for a set of redshifts covering the above redshift

range. Second, we weight the EWobs distribution at a given flux by dN/dz, the redshift

distribution of Hα emitters over the redshift range, to take into account the change in the

volume element between different redshifts (see Section 4.4 for details of the calculation of

dN/dz).

Fig. 4.2 shows the EWobs distribution predicted by the Bau05 model (top panel) and

the Bow06 model (bottom panel). The models predict different trends of EWobs with Hα

flux. In the Bau05 model, the typical EW increases with Hα flux, with a median value

close to EWobs ∼ 100Å at log(FHα[erg s−1 cm−2]) = −18, reaching EWobs ∼ 2000Å at

log(FHα[erg s−1 cm−2]) = −14. In contrast, the Bow06 model predicts a slight decline of

EWobs with Hα flux until very bright fluxes are reached, with median EWobs ∼ 100Å in the

range log(FHα[erg s−1 cm−2]) = [−18,−15]. For log(FHα[erg s−1 cm−2])> −15, the Bow06
model predicts a sharp increase of the median EWobs to ∼ 3000Å. The 95% interval of the

EWobs found in GALFORM galaxies (the light grey region in Fig. 4.2) covers almost 2 orders

of magnitude in both models, except in the plateau found in the brightest bin of the Bow06
model, where the distribution covers 3 orders of magnitude. The Bau05 model matches the

observed distribution of equivalent widths the best, particularly after the rescaling of contin-

uum and line luminosities discussed in the next section (after which the median EW versus

Hα distribution shifts from the solid black to the dashed magenta line). It is interesting

to note that the “shifted” relations (see §4) give a better match to the observations for both

models (although the Bau05 model remains a better fit), particularly as the shift was derived

with reference to the H-band galaxy number counts (for the continuum) and to the z ∼ 1 Hα

LF, rather than to the EW data.
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Figure 4.3: The effective bias parameter as a function of Hα luminosity

for redshifts spanning the range 0 < z < 2. The Bau05 model results

are shown using circles connected with solid lines and the Bow06 model

results are shown with asterisks connected by dashed lines. Each colour

corresponds to a different redshift, as indicated by the key.

4.3.3 Clustering of Hα emitters: effective bias

The clustering bias, b, is defined as the square root of the ratio of the galaxy correlation

function to the correlation function of the dark matter (Kaiser, 1984). As we shall see in

Section 4.3, the clustering bias is a direct input into the calculation of the effective volume of

a galaxy survey, which quantifies how well the survey can measure the large scale structure

of the Universe. Simulations show that the correlation functions of galaxies and dark matter

reach an approximately constant ratio on large scales (see for example Angulo et al. 2008a;

note, however, that small departures from a constant ratio are apparent even on scales in

excess of 100h−1Mpc).

In this section we compute the effective bias of samples of Hα emitting galaxies. There

are theoretical prescriptions for calculating the bias factor of dark matter haloes as a function

of mass and redshift (Cole and Kaiser, 1989; Mo and White, 1996; Sheth et al., 2001). These

have been extensively tested against the clustering of haloes measured in N-body simulations

and have been found to be reasonably accurate (Gao et al., 2005; Wechsler et al., 2006;
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Model CHα Ccont

Bau05 0.35 0.73

Bow06 1.73 0.42

Table 4.1: Luminosity rescaling factors for the Hα line and the stellar con-

tinuum. Column 2 shows CHα, the factor used to adjust the predicted Hα

flux as described in the text. This factor is only applied to the Hα line.

Column 3 shows Ccont , the correction factor applied to the stellar contin-

uum, as derived by forcing the model to match the observed H-band counts

at HAB = 22. This factor is applied to the entire stellar continuum of the

model galaxies.

Angulo et al., 2008b). Here we use Sheth et al. (2001). The effective bias is computed by

integrating over the halo mass the bias factor corresponding to the dark matter halo which

hosts a galaxy multiplied by the abundance of the galaxies of the chosen luminosity, as shown

in Chapter 3 (see also Baugh et al., 1999; Le Delliou et al., 2006; Orsi et al., 2008).

Fig. 4.3 shows the predicted galaxy bias, beff, as a function of Hα luminosity over the

redshift interval 0 < z < 2. There is a clear increase in the value of the effective bias with

redshift; at log(LHα[erg s−1 cm−2]) = 40, beff ≈ 0.8 at z = 0, compared with beff ≈ 1.5 at

z = 2. Although the median mass of haloes which host Hα emitters decreases with increasing

redshift, the characteristic mass of collapsing dark matter haloes, M∗, decreases even faster.

Haloes with mass in excess of M∗ have a bias factor b > 1 and as the ratio Mhalo/M
∗ increases

the bias also increases. Hence, the halos in which Hα emitters are found at higher redshift are

more strongly biased than their low redshift counterparts. Both models show an upturn in the

effective bias with decreasing luminosity faintwards of log(LHα[erg s−1 cm−2]) = 40. There

is little dependence of bias on luminosity brightwards of log(LHα[erg s−1 cm−2]) = 40, up to

z = 2 because there is a wide spread in the mass of the haloes hosting Hα emitters of a given

luminosity, and the median halo mass does not change significantly with luminosity. The

predictions of the two models for the effective bias are quite similar. There are currently few

observational measurements of the clustering of Hα emitters. Geach et al. (2008) inferred

a spatial correlation length of r0 = 4.2+0.4
−0.2h−1Mpc for their sample of 55 Hα emitters at

z = 2.23. This corresponds to a bias of b ≈ 1.7 in the Bau05 model cosmology, which is in

very good agreement with the predictions plotted in Fig. 4.3.
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4.4 The effectiveness of redshift surveys for measuring dark en-

ergy

In this section we assess the relative merits of using Hα or H-band selection to construct

future redshift surveys aimed at measuring the dark energy equation of state. The first step is

to produce a mock catalogue that can reproduce currently available observations. We discuss

how we do this in Section 4.1. We then present predictions for the clustering of Hα emitters

and H-band selected galaxies in Section 4.2. We quantify the performance of the two selection

methods in terms of how well the resulting surveys can measure the large-scale structure of

the Universe in Section 4.3.

4.4.1 Building accurate mock catalogues

Our goal in this section is to build mock catalogues for future redshift surveys which agree

as closely as possible with currently available observational data. We have already seen that

the models are in general agreement with observations of the Hα luminosity function, and

will see in the next subsection how well the models match the H-band number counts. In our

normal mode of operation, we set the model parameters with reference to a subset of local

observations and see how well the model then agrees with other observables. This allows

us to test the physics of the model; if the model cannot reproduce a dataset adequately, per-

haps some ingredient is missing from the model (e.g. for an application of this principle to

galaxy clustering, see Kim et al., 2009). Here our primary aim is not to develop our under-

standing of galaxy formation physics but to produce a synthetic catalogue which resembles

the real Universe as closely as possible. To achieve this end we allow ourselves the freedom

to rescale the model stellar continuum and emission line luminosities, independently. This

preserves the ranking of the model galaxies in luminosity. This approach is more powerful

than an empirical model as we retain all of the additional information predicted by the semi-

analytical model, such as the clustering strength of the galaxies. In any case, an empirical

calculation of the clustering of the galaxy samples of interest in this work is simply not pos-

sible, given the paucity of available clustering measurements. Any empirical estimate would

in reality be heavily model dependent, and would be ad hoc compared to the semi-analytical

approach. Hereafter we will refer to the adjusted Bau05 and Bow06 models as Bau05(r)
and Bow06(r) respectively, to avoid confusion. We also consider a sparsely sampled version
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Figure 4.4: Number counts in the H band. The upper panel shows the

differential counts on a log scale. The lower panel shows the counts after

dividing by a power law Nref ∝ H0.32
AB to expand the dynamic range on the

y-axis. The symbols show the observational data, as shown by the key in

the upper panel. The lines show the model predictions. The dotted lines

show the original GALFORM predictions for the Bau05 model (blue) and theBow06 model (red). The solid curves show the rescaled GALFORM predic-

tions after rescaling the model galaxy luminosities to match the observed

number counts at HAB = 22.
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Figure 4.5: The redshift distribution of galaxies with HAB = 22 (left col-

umn) and HAB < 23 (right column). The top panels show the predictions

after rescaling the model luminosities to better match the number counts

as explained in the text. Red and blue lines show the model predictions

for HAB < 22 and HAB < 23 respectively. Solid lines show the Bau05(r)
model and the dashed lines show the Bow06(r) model. The lower panel

shows the redshift distribution obtained from the Bow06 model by diluting

the galaxies, randomly selecting 0.63 of the sample, the Bow06(d) model

(recall this is a purely illustrative case with no physical basis; see §4.1.1).

In both panels, the histogram shows an estimate of the redshift distribution

derived from spectroscopic observations in the COSMOS and UDF fields

(Cirasuolo et al., 2010, ; Euclid-NIS Science Team, private communica-

tion).
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of the Bow06 model, which we refer to as Bow06(d) (see §4.1.1).

H-band selected mock catalogues

In Fig. 4.4, we first compare the model predictions without any rescaling of the luminosi-

ties against a compilation of observed number counts in the H-band, kindly provided by

Nigel Metcalfe. Observational data are taken from the following sources, shown with differ-

ent symbols: Black plus-signs from Metcalfe et al. (2006); purple asterisks from Frith et al.

(2006); purple diamonds from Metcalfe et al. (2006); blue triangles from Yan et al. (1998);

blue squares from Teplitz et al. (1998); cyan crosses from the second data release of the

2MASS Survey 1; green circles from Thompson et al. (1999); green plus-signs from Martini

(2001); green asterisks from Chen et al. (2002); green diamonds from Moy et al. (2003);

green triangles from the 2MASS extended source catalogue2, orange squares from Frith et al.

(2006), and orange triangles from Retzlaff et al. (2010)

There is a factor of three spread in the observed counts around HAB = 20 − 22. The

unscaled models agree quite well with the observations at HAB = 20 but overpredict the

counts at HAB = 22, the likely depth of a slit-based redshift survey from space. There are two

ways in which the model predictions can be brought into better agreement with the observed

counts at HAB = 22; first, by rescaling the luminosities of the model galaxies to make them

fainter in the H-band or second, by artificially reducing, at each magnitude, the number

density of galaxies. The first correction could be explained as applying extra dust extinction

to the model galaxies; as we will see later on, the typical redshift of the galaxies is z ∼ 0.5–1,

shifting the observer frame H into the rest frame R to V-band.

The second correction has no physical basis and is equivalent to taking a sparse sampling

of the catalogue at random, i.e. making a dilution of the catalogue. Galaxies are removed at

random without regard to their size or redshift. (Note that the dissolution of galaxies invoked

by Kim et al. 2009 only applies to satellite galaxies within haloes, and is mass dependent,

and hence is very different from the random dilution applied here.) The motivation behind

this second approach is that the shape of the original redshift distribution of the model is

preserved. We found that on diluting at random the number of galaxies in the Bow06 model

1http://www.ipac.caltech.edu/2mass/releases/second/#skycover
2http://www.ipac.caltech.edu/2mass/releases/allsky/doc/sec2_3d3.html
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Figure 4.6: The Hα LF at z = 0.9. The symbols show observational data,

with the sources indicated in the key. The dotted curves show the origi-

nal predictions for the Hα luminosity function, as plotted in Fig. 4.1. The

solid curves show the model predictions after rescaling the Hα luminosity

to better match the observed LF at log(LHα[erg s−1 cm−2]) = 42, which

corresponds to a flux limit of log(FHα[erg s−1 cm−2]) = −15.3 at this red-

shift.

by a factor of 0.63, we can reproduce much better the shape and amplitude of the observed

dN/dz distribution for H < 22 galaxies. As we shall see, the first approach, rescaling the

model galaxy luminosities, produces a significant change in the shape of the predicted redshift

distribution.

The agreement with the observed counts is improved at HAB = 22 by shifting the Bow06
galaxy magnitudes faintwards by +0.92 magnitudes; the Bau05 model requires a more mod-

est dimming of +0.33 magnitudes (see Table 4.1).

The redshift distribution of H-band selected galaxy samples provides a further test of the

models. In Fig. 4.5, the model predictions are compared against an estimate of the redshift

distribution compiled using observations from the COSMOS survey and the Hubble Ultra-

Deep Field for HAB < 22 and HAB < 23 (Cirasuolo et al. 2010; Cirasuolo, Le Fevre and

McCracken, private communication). If we focus on the lower panels first, which shows

dN/dz in the randomly diluted Bow06 model, denoted as Bow06(d), it is apparent that the

original Bow06 model predicted the correct shape for the redshift distribution of sources, but
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Figure 4.7: The redshift distribution of Hα selected galaxies for 3 different

flux limits: log(FHα[erg s−1 cm−2])> -15.3, -15.7 and -16.0 shown in red,

blue and green respectively. The solid lines show the Bau05(r) prediction

and the dashed lines show the Bow06(r) predictions. In the top panel,

galaxies contributing to the redshift distribution have no cut imposed on

the equivalent width of Hα . In the bottom panel, the model galaxies have

to satisfy the Hα flux limit and a cut on the observed equivalent width of

Hα of EWobs > 100Å.
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with simply too many galaxies at each redshift. In the upper panel of Fig. 4.5, we see that

the models with the shifted H-band luminosities give shallower redshift distributions than the

observed one. The difference between the predicted dN/dz after dimming the luminosities or

diluting the number of objects has important implications for the number density of galaxies

as a function of redshift, which in turn is important for the performance of a sample in

measuring the large-scale structure of the Universe.

Hα-selected mock catalogues

The original model predictions for the Hα luminosity function were presented in Fig. 4.1. The

models cross one another and match the observed Hα LF at a luminosity of log(LHα[erg s−1 cm−2])∼

41.5. At z = 0.9, this corresponds to a flux of log(FHα[erg s−1 cm−2]) = −15.8. The flux limit

attainable by Euclid is likely to be somewhat brighter than this, although the precise number

is still under discussion. For this reason, we chose to force the models to agree with the

observed Hα LF at log(LHα[erg s−1 cm−2]) = 42 at z = 0.9, which corresponds to a flux limit

of log(FHα[erg s−1 cm−2]) = −15.3 (see Fig. 4.6). Before rescaling, the model LFs differ by

a factor of three at log(LHα[erg s−1 cm−2]) ∼ 42. In the rescaling, the Hα line luminosity

is boosted in the Bow06 model and reduced in the case of the Bau05 model (see Table 4.1

for the correction factors used in both cases). The latter could be explained as additional

dust extinction applied to the emission line, compared with the extinction experienced by the

stellar continuum. The former correction, a boost to the Hα luminosity in the Bow06 model,

is harder to explain. This would require a boost in the production of Lyman-continuum pho-

tons (e.g. as would result on invoking a top-heavy IMF in starbursts or an increase in the star

formation rate). This would require a revision to the basic physical ingredients of the model

and is beyond the scope of the current thesis.

After making this correction to the Hα line flux in the models, we next present the pre-

dictions for the redshift distribution of Hα emitters. Fig. 4.7 shows dN/dz for flux limits of

log(FHα[erg s−1 cm−2]) = [−15.7,−16.0,−16.3]. The redshift distribution of the Bow06(r)
model peaks around z ∼ 0.5 and declines sharply approaching z ∼ 2, whereas the Bau05(r)
dN/dz are much broader. The lower panel of Fig. 4.7 shows the redshift distribution after

applying the flux limits and a cut on the observed equivalent width of EWobs = 100Å. (Note

that the dN/dz is not sensitive to low EW cuts; similar results to the EWobs > 0 Å case are

obtained with 10Å in both models). In the rescaled model, the equivalent width changes be-
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Figure 4.8: The spatial distribution of galaxies and dark matter in theBow06(r) model at z = 1. Dark matter is shown in grey, with the densest

regions shown with the brightest shading. Galaxies selected by their Hα

emission with log(FHα[erg s−1 cm−2]) > −16.00 and and EWobs > 100Å

are shown in red in the left-hand panels. Galaxies brighter than HAB = 22

are shown in green in the right-hand panels. Each row shows the same

region from the Millennium simulation. The first row shows a slice of

200h−1Mpc on a side and 10h−1Mpc deep. The second row shows a zoom

into a region of 50h−1Mpc on a side and 10h−1Mpc deep, which corre-

sponds to the white square drawn in the first row images. Note that all of

the galaxies which pass the selection criteria are shown in these plots.
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cause the Hα line flux has been adjusted and because the continuum has been altered (by the

same shift as applied to the H-band). Adding the selection on equivalent width results in a

modest change to the predicted dN/dz in the Bow06(r)model. In the Bau05(r)model, the

dN/dz shifts to higher redshifts. There is no observational data on the redshift distribution of

Hα emitters to compare against the model predictions. Geach et al. (2010) make an empiri-

cal estimate of the redshift distribution, by fitting a model for the evolution of the luminosity

function to observational data. The luminosity of the characteristic break in the luminosity

function, L∗, is allowed to vary, while the faint end slope and normalisation are held fixed.

The resulting empirical LF looks similar to the original Bau05model at z = 0.9, and the two

have similar redshift distributions. The Hα redshift distributions in the Bow06(r)models are

shallower than the empirical estimate; the Bau05(r) model has a similar shape to the em-

pirical redshift distribution, but with a lower normalisation. It is important to realise that the

approach of Geach et al. is also model dependent, and the choices of model for the evolution

of the luminosity function and of which observational datasets to match are not unique and

will have an impact on the resulting form of the redshift distribution.

4.4.2 The clustering of Hα and H-band selected samples

The semi-analytic galaxy formation model predicts the number of galaxies hosted by dark

matter haloes of different mass. In the cases of Hα emission, which is primarily sensitive

to ongoing star formation, and H-band light, which depends more on the number of long-

lived stars, different physical processes determine the number of galaxies per halo. The

model predicts contrasting spatial distributions for galaxies selected according to their Hα

emission or H-band flux. We compare in Fig. 4.8 the spatial distribution of Hα emitters with

fluxes log(FHα[erg s−1 cm−2])> −16 and EWobs > 100Å (red circles) with that of an H-band

selected sample with HAB < 22 (green circles), in the Bow06(r) model which is set in the

Millennium Simulation. The upper panels of Fig. 4.8 show how the different galaxy samples

trace the underlying cosmic web of dark matter. The lower panels of Fig. 4.8 show a zoom

into a massive supercluster. There is a marked difference in how the galaxies trace the dark

matter on these scales. The Hα emitters avoid the most massive dark matter structures. At

the centre of massive haloes, the gas cooling rate is suppressed in the model due to AGN

heating of the hot halo. This reduces the supply of gas for star formation and in turn cuts the

rate of production of Lyman continuum photons, and hence the Hα emission. The H-band
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selected galaxies, on the other hand, sample the highest mass dark matter structures.

To study the difference in the spatial distribution of galaxies in a quantitative way, we

compare the clustering predictions from the models with observational data. We use the

same method explained in Section 3.3 to calculate the effective bias, i.e. using the Sheth

et al. (2001) analytical bias, and use this to derive the correlation length, r0, a measure of

the clustering amplitude, which we define as the pair separation at which the correlation

function equals unity. The correlation function of galaxies, ξgal, is related to the correlation

function of dark matter, ξdm, by ξgal = b2ξdm. The effective bias is approximately constant

on large scales (e.g. Angulo et al. 2008a). We use the Smith et al. (2003) prescription to

generate a nonlinear matter power spectrum in real space. This in turn is Fourier transformed

to obtain the two-point correlation function of the dark matter, ξdm. We can then derive ξgal

for any survey configuration by multiplying ξdm by the square of the effective bias, and then

we read off the correlation length as the scale at which the correlation function is equal to

unity.

Fig. 4.9 shows the correlation length in comoving units for both Hα and H-band samples

at different redshifts, compared to observational estimates. Differences in the bias predicted

by the two models (as shown in Fig. 4.3) translate into similar differences in r0. The corre-

lation length declines with increasing redshift for Hα emitters in the Bau05(r) model, since

the increase of the effective bias with redshift is not strong enough to balance the decline of

the amplitude of clustering of the dark matter. For the range of flux limits shown in the top

panel of Fig. 4.9 (−16 < log(FHα[erg s−1 cm−2]) < −17), r0 changes from ∼ 5− 7 h−1Mpc

at z = 0.1 to r0 ∼ 3.5 h−1Mpc at z = 2.5. On the other hand, the Bow06(r) model shows

a smooth increase of r0 which depends on flux and redshift. At bright flux limits r0 evolves

rapidly at high redshift, reaching r0 = 4.3h−1Mpc at z = 2.5. At fainter luminosities the

change in correlation length with redshift is weaker.

The currently available observational estimates of the clustering of near infrared selected

galaxy samples mainly come from angular clustering. A number of assumptions are required

in order to derive a spatial correlation length from the angular correlation function. First,

a form must be adopted for the distribution of sources in redshift. Second, some papers

quote results in terms of proper separation whereas others report in comoving units. Lastly,

an evolutionary form is sometimes assumed for the correlation function (Groth and Peebles,

1977). In this case, the results obtained for the correlation length depend upon the choice of
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Figure 4.9: The correlation length, r0, as a function of redshift for se-

lected Hα and H-band samples. Solid and dashed lines show the predic-

tions of the Bau05 and Bow06 models respectively. The top panel shows

the predictions for different Hα limiting fluxes, log(FHα[erg s−1 cm−2]) >

[−16.0,−16.5,−17.0] in green, orange and blue respectively. Observa-

tional data is shown with symbols. The bottom panel shows the model

predictions for HAB < [20.,20.5] in orange and blue respectively. In this

case there are two sets of observational estimates, based on different as-

sumptions for the evolution of clustering with redshift.
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evolutionary model. Hence, estimates of the spatial correlation length derived from angular

clustering data are model dependent. Moreover, in the majority of cases, the errors on the

inferred correlation length include neither the impact of different model choices nor the

contribution of sample variance due to the small volumes typically available.

Estimates of the correlation length of Hα emitters are available at a small number of red-

shifts from narrow band surveys, as shown in Fig. 4.9 (Morioka et al., 2008; Shioya et al.,

2008; Nakajima et al., 2008; Geach et al., 2008). As remarked upon in the previous para-

graph, these surveys are small and sampling variance is not always included in the error bar

quoted on the correlation length (see Orsi et al. 2008 for an illustration of how sampling

variance can affect measurements of the correlation function made from small fields). The

models are in reasonable agreement with the estimate by Geach et al. (2008) at z = 2.2,

but overpredict the low redshift measurements. The z = 0.24 measurements are particularly

challenging to reproduce in any viable hierarchical clustering model. The correlation length

of the dark matter in the ΛCDM model is around 5h−1Mpc at this redshift, so the z = 0.24 re-

sult implies an effective bias of b < 0.5. Gao & White (2007) show that even the lowest mass

dark matter haloes at the resolution limit of the Millennium Simulation, M ∼ 1010h−1M⊙,

do not reach this level of bias, unless the 20% of the youngest haloes of this mass are se-

lected. In the Bow06(r) model, the Hα emitters populate a range of halo masses, with a

spread in formation times, and so the effective bias is closer to unity. Another possible expla-

nation for the discrepancy is that the observational sample could be contaminated by objects

which are not Hα emitters and which dilute the clustering signal. (For reference we note that

the correlation length of the dark matter in the cosmology of the Millennium Simulation is

r0 = 2.8h−1Mpc at z = 1 and r0 = 1.6h−1Mpc at z = 2.)

The bottom panel of Fig. 4.9 shows the correlation length evolution for different H-band

selections, compared to observational estimates from Firth et al. (2002). Note that the sam-

ples analysed by Firth et al. are significantly brighter than the typical samples considered

in this work (HAB = 20 versus HAB = 22). Firth et al. use photometric redshifts to isolate

galaxies in redshift bins before measuring the angular clustering. Two sets of observational

estimates are shown for each magnitude limit, corresponding to two choices for the assumed

evolution of clustering. Again the models display somewhat stronger clustering than the ob-

servations would suggest at low redshift. The Bau05(r) model predicts a clustering length

which increases with redshift. The Bow06(r) model, on the other hand, predicts a peak in
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the correlation length around z ∼ 0.7, with a decline to higher redshifts. This reflects the form

of the luminosity - halo mass relation for galaxy formation models with AGN feedback (Kim

et al., 2009). The slope of the luminosity - mass relation changes at the mass for which AGN

heating becomes important. Coupled with the appreciable scatter in the predicted relation,

this can result in the brightest galaxies residing in haloes of intermediate mass.

Whilst the comparisons between models and clustering measurements presented in this

section admittedly seem less than impressive, we continue to use the model clustering pre-

dictions in the remainder of this work. As we have already remarked, the currently available

correlation length data is extracted from angular clustering and hence is itself model depen-

dent. The errors quoted on the correlation lengths do not generally take this into account,

nor do they include the impact of sample variance, which we have previously demonstrated

can be significant for samples of the size under consideration, as shown in Chapter 3 (see

also Orsi et al., 2008). There is no empirical way using currently available data to estimate

the clustering strength of the samples of interest in this work. Any such attempt would re-

quire substantial extrapolation from the uncertain existing data and would therefore become

model dependent. In our opinion, the semi-analytical approach with its physical basis offers

a more reliable route to take to make clustering predictions for future space missions.

4.4.3 Redshift-space distortions

The amplitude of gravitationally induced bulk flows is sensitive to the rate at which pertur-

bations grow, which depends on the expansion history of the universe and the nature of the

dark energy (Wang, 2008; Guzzo et al., 2008). Bulk flows can be measured by their impact

on the correlation function of galaxies when plotted as a function of pair separation perpen-

dicular and parallel to the line of sight, ξ(rσ, rπ) (Hawkins et al., 2003; Ross et al., 2007).

We now restrict our attention to the Bow06(r) model, since this is set in the Millennium

Simulation and we can measure the clustering of the model galaxies directly. As the Millen-

nium simulation has periodic boundary conditions, we can estimate the correlation function

as follows:

ξ(rσ, rπ) =
DDσ,π

N n̄∆Vσ,π
− 1, (4.1)

∆Vσ,π = 2πrσ∆rσ∆rπ, (4.2)
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Figure 4.10: The two point correlation function, measured in redshift space, plotted in

bins of pair separation parallel (rπ) and perpendicular (rσ) to the line of sight, ξ(rσ, rπ),

for Hα emitters (left-hand panels) and H-band selected (right-hand panels) galaxies in the

Millennium simulation. The samples used are those plotted in Fig. 4.8. The pair counts

are replicated over the four quadrants to enhance the visual impression of deviations from

circular symmetry. The Hα catalogue has a limiting flux of log(FHα[erg s−1 cm−2]) > −16

and an equivalent width cut of EWobs > 100Å; the H-band magnitude limit is HAB = 22.

The contours show where log(ξ(rσ, rπ)) = [0.5, 0.0,−0.5,−1.0,−1.5], from small to large

pair separations. The upper panels show the correlation function measured in fully sampled

catalogues without redshift errors. The middle panels show how redshift errors change the

clustering pattern. Representative errors for the two redshift measurements are used: σz =

10−3 for the slitless case (Hα emitters), and σz = 5× 10−4 for the slit based measurement

(H-band selected). In the upper and middle panels, all the galaxies are used to compute

the correlation function. In the bottom panels, only 33% of the galaxies are used in each

case, which is indicative of the likely redshift success rate for a survey from space.
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where DDσ,π is the number of distinct galaxy pairs in a bin of pair separation centred on

(rσ, rπ), ∆rσ and ∆rπ are the widths of the bins in the rσ and rπ directions, respectively, N

and n̄ are the total number of galaxies and the number density of galaxies in the sample, and

∆Vrσ ,rπ corresponds to the volume enclosed in an annulus centred on (rσ, rπ). Note that to

avoid any confusion, here we refer to the line of sight separation as rπ and use π to denote

the mathematical constant.

In redshift surveys, the radial distance to a galaxy is inferred from its redshift. The mea-

sured redshift contains a contribution from the expansion of the Universe, along with a pecu-

liar velocity which is induced by inhomogeneties in the density field around the galaxy. Thus

the position inferred from the redshift is not necessarily the true position. The distortion of

the clustering pattern resulting from peculiar velocities is referred to as the redshift space dis-

tortion. On large scales, coherent motions of galaxies from voids towards overdense regions

lead to a boost in the clustering amplitude (Kaiser, 1987):

ξ(s)

ξ(r)
= 1+

2

3
β +

1

5
β2, (4.3)

where ξ(s) is the spherically averaged, redshift space correlation function, and ξ(r) is its

equivalent in real space (i.e. without the contribution of peculiar velocities). Eq. (4.3) holds

in linear perturbation theory in the distant observer approximation when gradients in the

bulk flow and the effect of the velocity dispersion are small (Cole et al., 1994; Scoccimarro,

2004). Strictly speaking, these approximations apply better on large scales. The parameter

β is related to the linear growth rate, D, through

βlin =
1

b

d ln D

d ln a
, (4.4)

≈
Ωm(z)

γ

b
, (4.5)

where a is the expansion factor. The approximation in Eq. (4.5) is valid for an open cos-

mology, in which γ is traditionally approximated to 0.6 (Peebles, 1980). Lahav et al. (1991)

showed that this approximation should be modified in the case of a CDM model with a cos-

mological constant, to display a weak dependence on Λ. Lue et al. (2004) pointed out that

the value of γ allows one to differentiate between modified gravity and dark energy, since

β(z)≃ Ωm(a)
2/3/b for DGP gravity models, while β(z)≃ Ωm(a)

5/9/b for a flat Universe with

a cosmological constant.

On small scales, the randomised motions of galaxies inside virialised structures lead to
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a damping of the redshift space correlation function and a drop in the ratio ξ(s)/ξ(r)(Cole

et al., 1994).

We include redshift space distortions in the model by applying the distant observer ap-

proximation and taking one of the cartesian axes of the simulation cube as the line of sight.

The peculiar velocity of a galaxy along the chosen axis is added to its comoving position

along the same axis, after applying the appropriate scaling to change from velocity units.

The impact of peculiar velocities on the clustering of galaxies is clearly seen in ξ(rσ, rπ).

The top panels of Fig. 4.10 show the correlation function of Hα emitters selected to have

log(FHα[erg s−1 cm−2]) > −16 and EWobs > 100Å (left) and H-band selected galaxies with

HAB < 22 (right). In the top and middle rows of Fig. 4.10, all galaxies are used down to

the respective flux limits. To obtain clustering in redshift space, we use the distant observer

approximation and give the galaxies a displacement along one of the cartesian axes, as de-

termined by the component of the peculiar velocity along the same axis. Without peculiar

velocities, contours of constant clustering amplitude in ξ(rσ, rπ)would be circular. In redshift

space, the clustering of H-band selected galaxies exhibits a clear signature on small scales of a

contribution from high velocity dispersion systems – the so called “fingers of God”. This effect

is less evident in the clustering of the Hα sample, as these galaxies avoid massive haloes, as

shown in Fig. 4.8. On large scales, the contours of equal clustering are flattened due to coher-

ent flows. Similar distortions have been measured in surveys such as the 2dFGRS (Hawkins

et al. 2003) and the VLT-VIMOS deep survey (Guzzo et al. 2008).

In practice, the measured correlation functions will look somewhat different to the ide-

alised results presented in the top row of Fig. 4.10. The redshift measurements will have

errors, and the errors for slitless spectroscopy are expected to be bigger than those for slit-

based spectroscopy (Euclid-NIS team, private communication). We model this by adding a

Gaussian distributed velocity, vr , to the peculiar velocities following δz = (1+ z)vr/c. The

dispersion of the Gaussian is parametrized by σz ≡ 〈δz2〉1/2/(1+ z). We show the impact

on the predicted clustering of adding illustrative redshift uncertainties to the position mea-

surements in the middle and bottom panels of Fig. 4.10. For Hα-emitters, we chose a fiducial

error of σz = 10−3, based on simulations by the Eu
lid NIS team. The errors on the slit-

based redshifts are expected to be at least a factor of 2 times smaller than the slitless errors,

so we set σz = 5×10−4 for the HAB selected sample. The impact of the redshift errors is most

prominent in the case of the Hα sample, where the contours of constant clustering become
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more elongated along the line-of-sight direction.

A measure of how well bulk flows can be constrained can be gained from the accuracy

with which β can be measured (Eq. (4.4)). We estimate β by applying Eq. (4.3) to the

ratio of the redshift space to real space correlation function on pair separations between

15− 30h−1Mpc, which is close to the maximum pair separation out to which we can reliably

measure clustering in the Millennium simulation volume. The introduction of redshift errors

forces us to apply Eq. (4.3) to the measurements from the Millennium simulation on larger

scales than in the absence of errors. We note that the ratio is noisy even for a box of the

volume of the Millennium, and we therefore average the ratio by treating each of the cartesian

axes in turn as the line of sight direction. The real space correlation function is difficult to

estimate on large scales, so a less direct approach would be applied to actual survey data (see

e.g. Guzzo et al., 2008). (For a comprehensive discussion of how to estimate β see Branchini

et al., in preparation.) Hence, our results will be on the optimistic side of what is likely to be

attainable with future surveys. Ideally, we would like to apply Eq. (4.5) on as large a scale as

possible. Kaiser’s derivation assumes that the perturbations are in the linear regime.

We solve the integral for the growth rate D in Eq. (4.4) (see Lahav et al., 1991) and use

this exact result with the value of the bias b measured for each galaxy sample to get the theo-

retical value βlin. Table 4.2 shows the comparison between βm, the measured value of β in the

simulation, and target theoretical value βlin. Two different selection cuts are chosen for both

Hα and H-band samples to cover a range of survey configurations: log(FHα[erg s−1 cm−2])>

[−15.4,−16.0] for Hα samples and HAB < [22,23] for the magnitude limited samples. All

the mock catalogues studied return a value for βm which is systematically below the expected

value, βlin.

When redshift errors are omitted and a 100% redshift success rate is used, both selection

methods seem to reproduce the expected value of βlin to within better than ∼ 10%. When

redshift errors are included, the spatial distribution along the line of sight appears more

elongated than it would be if the true galaxy positions could be used. This leads to an increase

in the small scale damping of the clustering. However, at the same time contours of constant

clustering amplitude are pushed out to larger pair separations in the radial direction. This

results in an increase in the ratio of redshift space to real space clustering and an increase in

the recovered value of β . When including the likely redshift errors, the values of βm found

are slightly higher than those without redshift errors. This small boost in the value of βm is
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Table 4.2: Values of β estimated from the ratio of the redshift space to real space correlation func-

tion for the fiducial samples at z = 1. We consider Hα emitters with fluxes log(FHα[erg s−1 cm−2]) >

[−15.4,−16] and H-band selected galaxies with HAB < [22, 23]. The table is divided into two parts.

The first half assumes a redshift success rate of 100% and the second a 33% redshift success rate. Each

segment is divided into two, showing the impact on β of including the expected redshift uncertainties:

σz = 10−3 for Hα emitters and σz = 5× 10−4 for H-band selected samples. Column (1) shows βlin ,

the exact theoretical value of β obtained when using Eq. (4.4). Column (2) shows βm, the value of

β measured in the simulation including the 1 σ error. Column (3) shows the fractional error on βm

using the Millennium volume. Column (4) shows the fractional error on βm obtained when using mock

catalogues from the BASICC simulation.

(1) (2) (3) (4)

βl in βm (δβm/βl in) (δβm/βl in)

Millennium BASICC

Sampling rate = 100%

log(F(Hα)) > −15.4, σz = 0 0.761 0.684± 0.153 0.201 0.125

log(F(Hα)) > −16.0, σz = 0 0.821 0.766± 0.027 0.034 0.021

H(AB)< 22, σz = 0 0.521 0.491± 0.026 0.051 0.019

H(AB)< 23, σz = 0 0.565 0.536± 0.013 0.023 0.013

log(F(Hα)) > −15.4, σz = 10−3 0.761 0.768± 0.170 0.224 0.122

log(F(Hα)) > −16.0, σz = 10−3 0.821 0.825± 0.058 0.071 0.081

H(AB)< 22, σz = 5× 10−4 0.521 0.527± 0.029 0.057 0.012

H(AB)< 23, σz = 5× 10−4 0.565 0.569± 0.012 0.022 0.008

Sampling rate = 33%

log(F(Hα)) > −15.4, σz = 0 0.634 0.123± 0.447 0.704 0.449

log(F(Hα)) > −16.0, σz = 0 0.807 0.680± 0.104 0.129 0.033

H(AB)< 22, σz = 0 0.516 0.482± 0.049 0.095 0.036

H(AB)< 23, σz = 0 0.568 0.569± 0.029 0.051 0.018

log(F(Hα)) > −15.4, σz = 10−3 0.634 0.300± 0.216 0.341 0.341

log(F(Hα)) > −16.0, σz = 10−3 0.807 0.749± 0.118 0.146 0.078

H(AB)< 22, σz = 5× 10−4 0.516 0.494± 0.061 0.118 0.023

H(AB)< 23, σz = 5× 10−4 0.568 0.603± 0.028 0.050 0.012
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Figure 4.11: The effective bias (top panel), number density of galaxies

(middle panel) and the product n̄P (bottom panel) as functions of redshift,

where P is measured at wavenumber k = 0.2 Mpc/h. The solid lines show

the predictions for the Bau05(r)model and the Bow06(r)model is shown

using dashed lines. The two columns show different Hα and H-band selec-

tions: In the first column the Hα sample is defined by a limiting flux of

log(FHα[erg s−1 cm−2]) > −16 and EWobs > 100Å (red curves). The mag-

nitude limited sample has HAB < 22 (blue curves). In the second column

the Hα sample has log(FHα[erg s−1 cm−2]) > −15.4 and EWobs > 100Å,

and the H-band sample has H(AB) < 23. In all panels the redshift success

rate considered is 100%.
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greatest in the Hα sample, because of the larger redshift errors than in the H-band sample.

We have also tested the impact of applying different redshift success rates on the determi-

nation of βm. The lower part of Table 4.2 shows the impact of a 33% redshift success rate. For

log(FHα[erg s−1 cm−2]) > −15.4, our results for βm shows that it is unlikely to get a robust

estimate of β at this flux limit, because the smaller number density makes the correlation

functions very noisy, thus making βm impossible to be measured correctly. In contrast, the

impact of a 33% of success rate in the log(FHα[erg s−1 cm−2]) > −16 sample is negligible.

The βm values calculated using the H-band catalogues are also mostly unaffected. When red-

shift uncertainties are considered, as before, the βm values are closer to the theoretical βl in.

Hence redshift uncertainties will contribute to the uncertainty on βm, but they still permit an

accurate determination of β , provided they do not exceed σz = 10−3.

The noisy correlation functions for the configurations with log(FHα[erg s−1 cm−2]) >

−15.4 and sampling rate of 33% produce measurements of βm with large errors. The mock

catalogues used so far in this section were created from the Millennium simulation, which

has VMill = 5003[Mpc/h]3. This volume is almost three orders of magnitude smaller than

the volume expected in a large redshift survey from a space mission like Eu
lid(see next

section). In order to test the impact of using this limited volume when measuring βm and its

error, we plant the Bow06(r) model into a larger volume using the BASICC N-body simula-

tion (Angulo et al., 2008a), which has a volume almost 20 times larger than the Millennium

run (VBASICC = 13403[Mpc/h]3). The errors on βm shown in Table 4.2 are expected, to first

order, to scale with the error on the power spectrum (see Eq. (4.6) below). If we compare

two galaxy samples with the same number density but in different volumes, then the error

on βm should scale as δβ ∝ 1/
p

V , where V is the volume of the sample.

The only drawback of using the BASICC simulation is that the mass resolution is worse

than in the Millennium simulation. Haloes with mass greater than 5.5× 1011M⊙/h can be

resolved in the BASICC simulation. The galaxy samples studied here are hosted by haloes

with masses greater than ∼ 8× 1010M⊙/h, so if we only plant galaxies into haloes resolved

in the BASICC run then we would miss a substantial fraction of the galaxies. To avoid this

incompleteness, those galaxies which should be hosted by haloes below the mass resolution

limit are planted on randomly selected ungrouped particles, i.e. dark matter particles which

do not belong to any halo. This scheme is approximate and works best if the unresolved

haloes have a bias close to unity, i.e. where the bias is not a strong function of mass. This
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is almost the case in the application of this method to the BASICC run, so the clustering am-

plitude appears slightly boosted for all the configurations studied here. However, since we

only want to study the variation in the error on βm when using a larger volume, we apply the

same method described above to measure βm in the galaxy samples planted in the BASICC

run.

As shown in the fourth column of Table 4.2, we find that for all the Hα configurations here

studied the error on βm obtained when using the BASICC simulation is a factor 1-6 smaller

than that found with the Millennium samples. The H-band samples, on the other hand, have

errors roughly ∼ 4 times smaller in the BASICC volume compared to the Millennium volume,

which is what we expect if we assume that the error on βm scales with 1/
p

V .

It is worth remarking that the scenario in which we calculate βm should be regarded as

idealised. In reality, the error σz will depend on the source flux in a rather complicated way.

The effect of a redshift success rate below unity might not be equivalent to removing a ran-

dom fraction of galaxies as we have assumed, but instead it could be related to, for example,

line mis-identifications. Our calculations should be considered as a first attempt to get an

idea of the uncertainties and relative merits expected for different survey configurations.

The Eu
lid survey will cover a geometrical volume of ∼ 90[Gpc/h]3 with an effective

volume of around half of this (see next section). We expect that Eu
lid should meausre βm

with an accuracy around 4 times smaller than that estimated for the galaxy samples planted

into the BASICC simulation.

4.4.4 Effective survey volume

Ongoing and future surveys aim to measure the baryonic acoustic oscillation (BAO) signal in

the power spectrum of galaxies. The primary consideration for an accurate power spectrum

measurement is to maximize the survey volume in order to maximize the number of inde-

pendent k-modes. However, because the power spectrum is measured using a finite number

of galaxies there is an associated discreteness noise. The number density of galaxies in a

flux limited sample drops rapidly with increasing redshift, which means that discreteness

noise also increases. When the discreteness noise becomes comparable to the power spec-

trum amplitude, it is difficult to measure the clustering signal. This trend is encapsulated in

the expression for the fractional error on the power spectrum derived by Feldman, Kaiser &
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Peacock (1994):

σ

P
≈

2π
p

V k2∆k

�

1+
1

n̄P

�

, (4.6)

≈
2π

p

Veff(k)k
2∆k

, (4.7)

where σ is the error on the power spectrum P, V is the geometrical survey volume and n̄ is

the number density of galaxies.

Consider expanding the survey by adding shells of redshift width δz, with fixed solid

angle. As we have seen from Fig. 4.11, the number density of galaxies in the samples we

are considering drops steeply with increasing redshift. We therefore need to compare the

discreteness or shot noise of the galaxies in the shell with the clustering signal amplitude.

If the ratio n̄P > 1, then the clustering signal can be measured above the discreteness noise

level, and the volume of the shell contributes usefully to the survey volume. On the other

hand if n̄P < 1, it is hard to measure the clustering of the galaxies in this shell and it con-

tributes nothing to the statistical power of the survey. When the limit of n̄P < 1 is reached,

the effective volume reaches a plateau and adding further redshift shells does not improve

the accuracy with which the power spectrum can be measured. The amplitude of the power

spectrum compared to the discreteness noise of the galaxies used to trace the density field is

therefore a key consideration when assessing the effectiveness of different tracers of the large

scale structure of the Universe.GALFORM gives us all the information required to estimate the effective volume of a survey

with a given selection criteria (which defines the number density of galaxies, n̄(z), and the

effective bias as a function of redshift). For simplicity, we use the linear theory power spec-

trum of dark matter, which is a reasonable approximation on the wavenumber scales studied

here. The galaxy power spectrum is assumed to be given by Pg(k, z) = b(z)2Pdm(k, z), where

b(z) is the effective bias of the galaxy sample. We calculate the fraction of volume utilized in

a given redshift interval following Tegmark (1997),

Veff(k) =

∫ zmax

zmin

�

n̄(z)Pg(k, z)

1+ n̄(z)Pg(k, z)

�2
dV

dz
dz, (4.8)

where all quantities are expressed in comoving coordinates. We calculate Veff/V for a

range of possible survey configurations considering different limits in flux, EWobs, magnitude

limit and redshift success rate (see Table 4.3). The redshift range is chosen to match that
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Figure 4.12: The effective volume of Hα- and H-band selected samples. The left-hand

panels show results for Bau05(r) model and the right-hand panels show the Bow06(r)
model; in the latter case, the effective volume for a randomly diluted sample of galaxies

from the original Bow06 model is also shown. The upper row shows the effective volume

divided by the geometrical volume in redshift shells of width∆z = 0.1; the power spectrum

at k = 0.2hMpc−1 is used to compute the effective volume (see text). The lower panels show

the cumulative effective volume per steradian starting from z = 0.5 and extending up to

the redshift at which the curve is plotted. Red curves show the results for Hα selected

galaxies with log(FHα[erg s−1 cm−2]) > −16 and EWobs > 100Å. The solid red line shows

the result of applying a redshift success of 33%, whereas the red dashed line assumes a

100% success rate. The blue lines show the results for an H-band magnitude selected

survey with HAB < 22. As before, the solid blue line shows the results for a sampling rate of

33%, and the dashed line assumes 100% sampling. The green lines show the results using

the Bow06 model diluted (Bow06(d)) to match the observed number counts; as before

solid and dashed show 33% and 100% success rates, respectively. The black solid curves in

the bottom panels show the total comoving volume covering the redshift range shown.
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expected to be set by the near-infrared instrumentation to be used in future surveys.

Fig. 4.11 shows the predictions from GALFORM which are required to compute the ef-

fective volume, for two illustrative Hα and H-band selected surveys, covering the current

expected flux/magnitude limits of space missions. The bias predicted for H-band galaxies is

at least ∼ 30% higher than that for Hα-emitters in both panels of Fig. 4.11. This reflects

the different spatial distribution of these samples apparent in Fig. 4.8, in which is it clear

that Hα emitters avoid cluster-mass dark matter haloes. The middle panel of Fig. 4.11 shows

the galaxy number density as a function of redshift for these illustrative surveys. For the Hα

selection, the models predict very different number densities at low redshifts, as shown also

in Fig 4.7. For z > 1 the Bow06(r) model predicts progressively more galaxies than theBau05(r) model for the H-band selection. Overall, the number density of galaxies in the

H-band sample at high redshift is much lower than that of Hα emitters. However, we remind

the reader than these scaled models match the H-band counts but have a shallower redshift

distribution than is suggested by the observations. The bottom panel of Fig. 4.11 shows the

power spectrum times the shot noise, n̄P, as a function of redshift. A survey which efficiently

samples the available volume will have n̄P > 1. The slow decline of the number density of Hα

galaxies with redshift in the Bau05(r) model is reflected in n̄P > 1 throughout the redshift

range considered here, whereas in the Bow06(r) model, the Hα sample has a very steeply

falling n̄P curve, with n̄P < 1 for z > 1.5. The predictions of n̄P for the H-band are similar in

both models, dropping below 1 at z ∼ 1.3− 1.5.

The predictions for the bias, number density and power spectrum of galaxies plotted in

Fig. 4.11 are used in Eq. (4.8) to calculate the effective volume, which is shown in Fig. 4.12.

The top panels show the differential Veff/V calculated in shells of ∆z = 0.1 for redshifts

spanning the range z = [0.5,2]. The bottom panels of Fig. 4.12 show the cumulative Veff

contained in the redshift range from z = 0.5 up to z = 2. We follow previous work and

use the amplitude of the power spectrum at k = 0.2hMpc−1, which roughly corresponds

to the centre of the wavenumber range over which the BAO signal is measured. We show

the result for the fiducial survey selections with different redshift success rates, 100% and

33%. In addition, for the H-band selected survey, we also show the results obtained with the

alternative approach discussed in the previous section, in which the galaxies in the Bow06
sample are diluted by a factor of 0.63.
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Table 4.3: The effective volume of Hα- and H-band selected surveys for different selection criteria. We evaluate a given survey

configuration in terms of its effective volume in the redshift range 0 < z < 2 (top) and 0.5 < z < 2 (bottom), which is expressed as

a fraction of the geometrical volume over the same redshift interval. The first column shows the galaxy selection method used, Hα for

an Hα selected survey with a minimum flux limit and EWobs cut or HAB for an H-band magnitude limited survey. The second column

shows the H-band magnitude limit chosen in a given configuration, where applicable. The third column shows the minimum Hα flux

chosen, again where applicable, and the fourth column the minimum EWobscut applied. The fifth column shows the redshift success rate

assumed. Columns 6, 7 and 8 show the fractional effective volume obtained for a given configuration in the Bau05 , Bow06 and the

diluted version of the Bow06 model respectively. Finally, columns 9, 10 and 11 show our estimate of the corresponding percentage error

on the determination of w, the dark energy equation of state parameter, for the Bau05 , Bow06 and diluted Bow06 models, respectively.

Selection HAB log(FHα) EWobs Sampling Veff/V Veff/V Veff/V ∆w(%) ∆w(%) ∆w(%)

(mags) (ergs−1cm−2) (Å) rate Bau05(r) Bow06(r) Bow06(d) Bau05(r) Bow06(r) Bow06(d)
0 < z < 2

Hα - -15.40 100 0.33 0.08 0.09 - 1.2 1.1 -

Hα - -15.40 100 1.00 0.24 0.18 - 0.7 0.8 -

Hα - -15.40 0 1.00 0.24 0.18 - 0.7 0.8 -

Hα - -15.70 100 0.33 0.19 0.20 - 0.8 0.7 -

Hα - -15.70 100 1.00 0.44 0.39 - 0.5 0.5 -

Hα - -15.70 0 1.00 0.45 0.39 - 0.5 0.5 -

Hα - -16.00 100 0.33 0.34 0.41 - 0.6 0.5 -

Hα - -16.00 100 1.00 0.63 0.67 - 0.4 0.4 -

Hα - -16.00 0 1.00 0.64 0.67 - 0.4 0.4 -

H(AB) 21 - - 0.33 0.13 0.13 0.22 1.0 0.9 0.7

H(AB) 21 - - 1.00 0.18 0.21 0.38 0.8 0.7 0.5

H(AB) 22 - - 0.33 0.23 0.30 0.45 0.7 0.6 0.5

H(AB) 22 - - 1.00 0.33 0.47 0.68 0.6 0.5 0.4

H(AB) 23 - - 0.33 0.41 0.57 0.68 0.5 0.4 0.4

H(AB) 23 - - 1.00 0.59 0.78 0.86 0.4 0.3 0.3

0.5 < z < 2

Hα - -15.40 100 0.33 0.06 0.06 - 1.4 1.4 -

Hα - -15.40 100 1.00 0.21 0.15 - 0.8 0.9 -

Hα - -15.40 0 1.00 0.21 0.15 - 0.8 0.9 -

Hα - -15.70 100 0.33 0.18 0.07 - 0.9 1.2 -

Hα - -15.70 100 1.00 0.43 0.17 - 0.5 0.8 -

Hα - -15.70 0 1.00 0.44 0.17 - 0.5 0.8 -

Hα - -16.00 100 0.33 0.33 0.21 - 0.6 0.7 -

Hα - -16.00 100 1.00 0.62 0.41 - 0.4 0.5 -

Hα - -16.00 0 1.00 0.63 0.41 - 0.4 0.5 -

H(AB) 21 - - 0.33 0.09 0.10 0.19 1.2 1.1 0.8

H(AB) 21 - - 1.00 0.14 0.18 0.35 1.0 0.8 0.6

H(AB) 22 - - 0.33 0.19 0.27 0.43 0.8 0.6 0.5

H(AB) 22 - - 1.00 0.30 0.44 0.67 0.6 0.5 0.4

H(AB) 23 - - 0.33 0.38 0.55 0.67 0.6 0.4 0.4

H(AB) 23 - - 1.00 0.57 0.77 0.86 0.5 0.4 0.3
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In general, the effective volume is close to the geometrical volume at low redshifts. This is

because n̄P ≫ 1 at these redshifts. In the top panels of Fig. 4.12, where the differential Veff/V

is plotted in shells of ∆z = 0.1, we see that shells at higher redshifts cover progressively

smaller differential effective volumes. This is due to the overall decrease in the number

density of galaxies beyond the peak in the redshift distribution (see Figs. 4.5, 4.7 and 4.11),

which wins out over the more modest increase in the bias of the galaxies picked up with

increasing redshift. The bottom panels of Fig. 4.12 show the same effect: at higher redshifts,

the gain in effective volume is much smaller than the corresponding gain in the geometrical

volume of the survey. We remind the reader that our calculation for the effective volume in

the H-band using models with rescaled luminosities is likely to be an underestimate, as these

models underpredict the observed high redshift tail of the redshift distribution. A better

estimate is likely to be provided by the Bow06(d) model, in which the number of galaxies is

adjusted by a making a random sampling, rather than by changing their luminosities. This

case is shown by the green curves in Fig. 4.12.

The calculations presented in Fig. 4.12 are extended to a range of survey specifications

in Table 4.3. This table shows calculations for two different redshift ranges: 0 < z < 2

and 0.5 < z < 2, and includes also the effect of applying different selection criteria and

redshift success rates to Hα and H-band surveys. An Hα survey with a limiting flux of

log(FHα[erg s−1 cm−2]) > −15.4, an equivalent width EWobs > 100Å and a sampling rate

of 0.33, similar to the baseline spectroscopic solution for Eu
lid, would have a very small

Veff/V ∼ 0.04 for the redshift interval z = 0.5 − 2. In contrast, an H-band survey with

HAB < 22 and a sampling rate of 0.33, an alternative spectroscopic solution for Eu
lid,

has Veff/V = 0.19− 0.27 or even up to Veff/V = 0.43 in the case of the diluted model. To

reach a comparable effective volume, a Hα survey would need to reach a flux limit of at least

log(FHα[erg s−1 cm−2])> −16 (at the same equivalent width cut and redshift success rate).

The calculation of the effective volume also allows us to make an indicative estimate of

the accuracy with which the dark energy equation of state parameter, w, can be measured for

a given survey configuration. Angulo et al. (2008a) used large volume N-body simulations

combined with the GALFORMmodel to calculate the accuracy with which the equation of state

parameter w can be measured for different galaxy samples. They found a small difference

(∼ 10%) in the accuracy with which w can be measured for a continuum magnitude limited

sample and an emission line sample with the same number density of objects. Their results
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can be summarised by:

∆w(%) =
1.5%
p

Veff

, (4.9)

where Veffis in units of h−3Gpc3 and the constant of proportionality (in this case, 1.5) depends

on which cosmological parameters are held fixed; in the present case models are considered

in which the distance to the epoch of last scattering is fixed as the dark energy equation of

state parameter varies. We obtain an estimate of the accuracy with which w can be measured

by inserting Veffinto Eq. 4.9, which is shown in Table 4.3, for the Bau05 and Bow06 models.

4.5 Discussion and Conclusions

In this chapter we have presented the first predictions for clustering measurements expected

from future space-based surveys to be conducted with instrumentation sensitive in the near-

infrared. We have used published galaxy formation models to predict the abundance and

clustering of galaxies selected by either their Hα line emission or H-band continuum mag-

nitude. The motivation for this exercise is to assess the relative performance of the spectro-

scopic solutions proposed for galaxy surveys in forthcoming space missions which have the

primary aim of constraining the nature of dark energy. Our comparison is idealised in that

we only consider the effective volume sampled by the survey strategies, and do not address

issues of cost or whether or not a particular flux limit and sampling rate is achievable in

practice.

The physical processes behind Hα and H-band emission are quite different. Hα emission

is sensitive to the instantaneous star formation rate in a galaxy, as the line emission is driven

by the number of Lyman continuum photons produced by massive young stars. Emission in

the observer frame H-band typically probes the rest frame R-band for the proposed magnitude

limits and is more sensitive to the stellar mass of the galaxy than to the instantaneous star

formation rate.

The GALFORM code predicts the star formation histories of a wide population of galaxies,

and so naturally predicts their star formation rates and stellar masses at the time of observa-

tion. Variation in galaxy properties is driven by the mass and formation history of the host

dark matter halo. This is because the strength of a range of physical effects depend on halo

properties such as the depth of the gravitational potential well or the gas cooling time. This

point is most striking in our plot of the spatial distribution of Hα and H-band selected galax-
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ies, Fig. 4.8. This figure shows remarkable differences in the way that these galaxies trace the

underlying dark matter distribution. Hα emitters avoid the most massive dark matter haloes

and trace out the filamentary structures surrounding them. The H-band emitters, on the

other hand, are preferentially found in the most massive haloes. This difference in the spatial

distribution of these tracers has important consequences for the redshift space distortion of

clustering.

In this chapter we have studied two published galaxy formation models, those of Baugh

et al. (2005) and Bower et al. (2006). The models were originally tuned to reproduce a

subset of observations of the local galaxy population and also enjoy notable successes at high

redshift. We presented the first comparison of the model predictions for the properties of Hα

emitters, extending the work of Le Delliou et al. (2005, 2006) and Orsi et al. (2008) who

looked at the nature of Lyman-alpha emitters in the models. Observations of Hα emitters are

still in their infancy and the datasets are small. The model predicitions bracket the current

observational estimates of the luminosity function of emitters. In addition, the Bau05 model

is in reasonable agreement with the observed distribution of equivalent widths.

The next step towards making predicitions of the effectiveness of future redshift surveys is

to construct mock catalogues from the galaxy formation models (see Baugh, 2008). Using the

currently available data, we used various approaches to fine tune the models to reproduce the

observations as closely as possible. The main technique was to rescale the line and continuum

luminosities of model galaxies; another approach was to randomly dilute or sample galaxies

from the catalogue. This allowed us to better match the number of observed galaxies. The

resulting mocks gave reasonable matches to the available clustering data around z ∼ 2 for

the Hα samples. Our goal in this chapter was to make faithful mock catalogues. The nature

of Hα emitters in hierarchical models will be pursued in a future work.

The ability of future surveys to measure the large scale structure of the Universe can

be quantified in terms of their effective volumes. The effective volume takes into account

the effect of the discreteness of sources on the measurement of galaxy clustering. If the

discreteness noise is comparable to the clustering signal, it becomes hard to extract any useful

clustering information. Once this point is reached, although the available geometrical volume

is increased by going deeper in redshift, in practice there is little point as no further statistical

power is being added to the clustering measurements. The error on a power spectrum or

correlation function measurement scales as the inverse square root of the effective volume.
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In the case of flux-limited samples, the number density of sources falls rapidly with increasing

redshift beyond the median redshift. Even though the effective bias of these galaxies tends to

increase with redshift, it does not do so at a rate sufficient to offset the decline in the number

density. The GALFORM model naturally predicts the abundance and clustering strength of

galaxies needed to compute the effective volume of a galaxy survey.

The differences in the expected performance of Hα and H-band selected galaxies when

measuring the power spectrum is related to the different nature of the galaxies selected by

these two methods. Hα emitters are active star forming galaxies, which makes them have

smaller bias compared to H-band selected galaxies. Their redshift distribution is also very

sensitive to the details of the physics of star formation: The effect of a top-heavy IMF in

bursts in the Bau05 model boosts the number density of bright emitters, making the redshift

distrubtion of Hα emitters very flat and slowly decreasing towards high redshifts, in contrast

to the predictions of the Bow06 model, where a sharp peak at z ∼ 0.5 and a rapid decrease

for higher redshifts is found. H-band galaxies are less sensitive to this effect, and the redshift

distributions are similar in both models. This is why the balance between the power spectrum

amplitude (given by the effective bias) and the number density is translated in two different

effective volumes for Hα and H-band selected galaxies.

Although there are differences in detail between the model predictions, they give similar

bottom lines for the effective volumes of the survey configurations of each galaxy selection.

Comparing the spectroscopic solutions in Table 4.3, a slit based survey down to HAB = 22

would sample 4-10 times the effective volume which could be reached by a slitless survey

to log(FHα[erg s−1 cm−2]) = −15.4, taking into account the likely redshift success rate. To

match the performance of the H-band survey, an Hα survey would need to go much deeper

in flux, down to log(FHα[erg s−1 cm−2]) = −16.

We have also looked at the accuracy with which Hα emitters and H-band selected galaxies

will be able to measure the bulk motions of galaxies and hence the rate at which fluctuations

are growing, another key test of gravity and the nature of dark energy. All of the samples

we considered showed a small systematic difference between the measured growth rate and

the theoretical expectation, at about the 1σ level. The error on the growth rate from an Hα

survey with log(FHα[erg s−1 cm−2]) > −15.4 was found to be about three times larger than

that for a sample with HAB < 22.
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Chapter 5
Radiative transfer of Lyα

photons

5.1 Introduction

In chapter 3 we described the importance and usefulness of Lyα emitters as tracers of the

dark matter distribution, particularly in the high redshift Universe. This is mostly due to

the prominent spectral feature at 1216Å (in the rest frame), which arises from the downward

transition between the levels n= 2 and n= 1 of hydrogen atoms in the interstellar medium of

galaxies. Several observational techniques have been developed to search for the Lyα line in

galaxies, with narrow band surveys being the most successful and common choice (Hu et al.,

1998; Kudritzki et al., 2000; Gawiser et al., 2007; Nilsson et al., 2007b; Gronwall et al., 2007;

Ouchi et al., 2008). Magnification of Lyα emission by galaxy lensing has also helped to detect

candidates for very high redshift Lyα emitters (e.g. Stark et al., 2007). Integral field units are

also being used to construct large surveys of Lyα emitters (Blanc et al., 2007; Hill et al., 2008)

From a theoretical point of view, perhaps the main uncertainty when modelling Lyα emis-

sion is the assumption about the fraction of Lyα photons which escape from the galaxy, fesc.

Lyα photons are very vulnerable to even small amounts of dust, due to the many scatterings

they undergo before escaping from an HI region. Furthermore, other factors also play an

important role, such as the kinematics, composition, temperature and geometry of the inter-

stellar medium. This makes the modelling of the escape of Lyα photons a very challenging

task.

There has been important progress over the last few years in modelling Lyα emitters in a

cosmological setting. The first consistent hierarchical galaxy formation model which includes

Lyα emission is the one described in Chapter 3 (see also Le Delliou et al., 2005, 2006; Orsi

121
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et al., 2008), which makes use of the GALFORM semianalytical model. In this model, the

simple assumption of a fixed escape fraction fesc = 0.02, regardless of any galaxy property,

allowed us to predict remarkably well the abundances and clustering of Lyα emitters in a

wide range of redshifts and luminosities.

Kobayashi et al. (2007, 2010) attempted to include an empirical model of the escape

of Lyα emitters in a different semianalytical model, predicting the correct abundances, UV

luminosities and EWs of Lyα emitters. Nagamine et al. (2006, 2008) modelled Lyα emit-

ters in cosmological SPH simulations, introducing a tunable escape fraction and duty cycle

or stochasticity parameter CL yα (Lyα emission is assumed to switch off or be completely ob-

scured in a random fraction of galaxies determined by CL yα). Dayal et al. 2010a and Dayal

et al. 2010b combined an SPH simulation with a radiative transfer model of ionizing photons

to link the escape of continuum photons to the escape of Lyα at high redshifts. Their detailed

modelling of the attenuation of the Lyα flux by the IGM allowed them to predict Lyα and

UV luminosity functions in agreement with observations. However, a large degeneracy was

found between the fraction of neutral hydrogen and the ratio of continuum to Lyα escape

fractions assumed.

A more physical approach to modelling the escape of Lyα photons requires a treatment of

the radiative transfer processes that photons undergo when travelling through an HI region.

The scattering and destruction of Lyα photons have been extensively studied in the past, due

to its many applications in astrophysical media. Due to the great complexity of the problem,

numerical methods have been developed since the sixties to study specific problems, such as

the mean number of scatterings a Lyα photon will experience before leaving a medium of a

given optical depth, and the emerging flux from extremely thick media (Osterbrock, 1962;

Avery and House, 1968; Adams, 1972).

Nowadays, numerical methods allow us to study the line profiles and escape fractions of

Lyα photons in a variety of physical configurations. The standard method is to use a Monte

Carlo algorithm, in which the path of a set of photons is followed one at a time through

each scattering event, until the photon either escapes or is absorbed by a dust grain. These

calculations have been succesfully applied to study the properties of Lyα emitters in differ-

ent scenarios: Ahn 2003 (see also Ahn 2004) developed an outflow model to predict and
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characterise the Lyα line profiles coming from starbursts at high redshifts. Verhamme et

al. shown in a series of papers (Verhamme et al., 2006; Schaerer and Verhamme, 2008;

Verhamme et al., 2008) that photons escaping from a spherically symmetric shell with a ho-

mogeneous hydrogen number density can reproduce the observed Lyα profiles of a sample

of observed Lyman-break galaxies. Also Laursen et al. studied the variety of Lyα profiles and

escape fractions obtained from a sample of galaxies taken from an SPH simulation (Laursen

and Sommer-Larsen, 2007; Laursen et al., 2009a,b). Zheng and Miralda-Escudé 2002 (see

also Dijkstra et al. 2006; Barnes and Haehnelt 2010) applied a Lyα radiative transfer code

to study the properties of Damped Lyα Absorption systems (DLAs). Hansen and Oh (2006)

used a similar code to study the effect of a multiphase medium (where dust is concentrated

in clouds rather than being homogeneously distributed) on the emerging Lyα flux and escape

fraction. Tasitsiomi (2006) applied their Lyα radiative transfer code to an SPH simulation to

study the emergent Lyα flux of a z ∼ 8 galaxy.

Despite this variety of theoretical work, there has not been any attempt to incorporate

a detailed Lyα radiative transfer model in a fully fledged galaxy formation model. That is

the goal of the next two chapters of this thesis: To develop a Lyα radiative transfer code in

order to combine it with the GALFORM semi-analytical model to get an insight of the physical

properties that affect the escape fraction of Lyα photons and the observed properties of Lyα

emitters.

In the following, we will describe the physics and numerical implementation of the ra-

diative transfer of Lyα photon when crossing a dusty HI region. The result of coupling this

calculation to the GALFORM code will be discussed in the next chapter. The Monte Carlo

radiative transfer code developed here is similar to other codes developed in the past, and

mostly follows previous work by Zheng and Miralda-Escudé (2002); Verhamme et al. (2006);

Dijkstra et al. (2006) and Laursen et al. (2009a).
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5.2 Basics of Lyα radiative transfer

It is convenient to express frequencies, ν , in terms of

x ≡
(ν − ν0)

∆νD

, (5.1)

where ∆νD = vthν0/c, c is the speed of light, and vth is the thermal velocity of the hydrogen

atoms in the gas, which is given by

vth =

�

2kB T

mp

�1/2

, (5.2)

where kB is the Boltzmann constant, T is the gas temperature, mp is the proton mass and ν0

is the central frequency of the Lyα line, ν0 = 2.47× 1015Hz.

When a Lyα photon interacts with an hydrogren atom, the scattering cross section, in the

rest frame of the atom is given by

σν = f12
πe2

mec

Γ/4π2

(ν − ν0)
2+ (Γ/4π)2

, (5.3)

where f12 = 0.4162 is the Lyα oscillator frequency, and Γ = A12 = 6.25 × 108s−1 is the

Einstein coefficient for the Lyα transition (n= 2 to n= 1).

The optical depth of a Lyα photon with frequency ν is determined by convolving this

cross section with the velocity distribution of the gas,

τν(s) =

∫ s

0

∫ +∞

−∞
n(Vz)σ(ν , Vz) dVzdl, (5.4)

where Vz denotes the velocity component along the photon’s direction. Atoms are assumed

to have a Maxwell-Boltzmann velocity distribution. In Doppler units, the optical depth can

be written as

τx(s) = σH(x)nHs = 5.868× 10−14T
−1/2
4 NH

H(x , a)
p
π

, (5.5)

where nH is the hydrogen density, NH the corresponding hydrogen column density, T4 the

temperature in units of 104K and a is the Voigt parameter, defined as

a =
Γ/4π

∆νD

= 4.7× 10−4T
−1/2
4 (5.6)

The Hjerting function H(x , a) (Hjerting, 1938) describes the Voigt scattering profile,

H(x , a) =
a

π

∫ +∞

−∞

e−y2
dy

(y − x)2+ a2 , (5.7)
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which is often approximated by a central resonant core and power-law “damping wings" for

frequencies below/above a certain boundary frequency xc, which typically ranges between

2.5 < xc < 4. As a consequence, photons with frequencies close to the line centre have a

large scattering cross section compared to those with frequencies in the wings of the profile.

Hence, photons will be more likely to escape a medium when they have a frequency away

from the line centre.

Scattering events are considered to be coherent (the frequency of the photon is the same

before and after the scattering event) only in the rest frame of the atom, but not in the

observer’s frame. Thus, the thermal motion of the atom, plus any additional bulk motion

of the gas, will potentially change the frequency of the photons, giving them the chance to

escape from the resonant core. We will study this in detail in the next section.

5.3 A Monte Carlo radiative transfer code

Our goal is to understand the transfer of Lyα radiation in a large variety of physical config-

urations, so that we can apply our results to galaxies predicted by GALFORM. Of particular

interest are the emergent spectrum of the Lyα line and the escape fraction of Lyα photons

fesc.

The above quantities have been computed analytically for some specific cases. Harrington

(1973) computed the emergent spectrum of Lyα photons generated at the line centre escap-

ing from an optically thick, static, homogeneous and dust-free infinite slab. Almost 20 years

later, Neufeld (1990) generalised the previous result allowing the Lyα photons to be gener-

ated with frequencies away from the line centre. Later on, Dijkstra et al. (2006) followed a

similar procedure to that of Harrington and Neufeld to compute the emergent spectrum from

an optically thick, static, homogeneous, dust-free sphere.

As for the escape fraction in the presence of dust, less analytical progress has been made

due to the complexity of the task. Neufeld (1990) computed the escape fraction of Lyα

photons from an optically thick, static, homogeneous dusty slab. Using a Monte Carlo code,

Hansen and Oh (2006) computed fesc in a variety of multi-phase media, and provided fitting

formulae based on the Neufeld expression for fesc.
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Evidently, the above results are not suitable to study more general cases, which is why we

have developed our own Monte Carlo numerical code to compute the escape of Lyα photons

in a wide variety of possible scenarios.

Monte Carlo radiative transfer codes work on a 3D grid in which each cell will contain

information about the neutral hydrogen density nH , the temperature of the gas T , the bulk

velocity vbulk, and the probability of emitting a Lyα photon, which could, for instance, de-

pend on the distribution of sources, for instance. Once a Lyα photon is created, a random

direction and frequency are given to it, and the code must follow its trajectory and compute

each scattering event of the photon until it either escapes or is absorbed by a dust grain. If

the photon escapes, then its final frequency is recorded. In the following, we will call ξn a

random number in the range 0 < ξn < 1, where the subscript n = 1,2... reffers to different

random numbers when more than one is used in a given calculation.

5.3.1 Initial direction and frequency

The initial direction of the photon is randomly selected using the transformations

θ = cos−1(2ξ1− 1), (5.8)

φ = 2πξ2, (5.9)

where ξ1 and ξ2 are two random numbers, and θ and φ are in radians. The initial frequency

of the photon in the rest frame of the medium (which may not be static) will be, in Doppler

units, x ′i = 0. In the observer’s rest frame, the initial frequency of the photon will be

x i = x ′i + ni · vbulk/vth, (5.10)

where vbulk is the bulk velocity vector of the gas at the location of the emission, and ni is the

direction of emission in cartesian coordinates, given by

ni = (sinθ cosφ, sinθ sinφ, cosθ) (5.11)

5.3.2 Distance travelled

The location of the interaction (with either a dust grain or a hydrogen atom) is calculated

as follows. The optical depth τint the photon will travel is determined from the probability
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distribution

P(τ) = 1− e−τ, (5.12)

and so

τint = − ln(1− ξ). (5.13)

This optical depth corresponds to a distance travelled s given by

τ(s) = τx(s) +τd(s), (5.14)

where τx(s) and τd(s) are the optical depths due to hydrogen atoms and dust grains re-

spectively. The length of the path travelled is determined by finding the distance s where

τ(s) = τint by setting

s =
τint

nHσx + ndσd

, (5.15)

where nd and σd , the number density of dust grains and cross-section for interaction with

dust, are described below.

The cross-section for scattering with a hydrogen atom depends on H(x) (see Eq. 5.5),

which looks like a Gaussian in the core and a power law in the wings:

H(x , a)∼







e−x2
, core

ap
πx2 , wings.

(5.16)

These two approximations break down in the transition domain, which is why we choose

to compute the integral in Eq. (5.7) numerically and store the values of H(x , a) in a table

for a wide range of x and a. For frequencies larger than the one used to compute H(x , a)

numerically (xmax = 500), we use the power law approximation given in Eq. (5.16). This

alternative both improves the performance (it is faster to compute the expression of (5.16)

rather than interpolate values from a very long look-up table) and extends the validity of the

code over a very wide range in x .

Sometimes the distance travelled makes the photon leave the cell from which it origi-

nated. In this case, the physical conditions can change, and, thus, this may affect the dis-

tance the photon was originally intended to travel. For instance, if the number density of

hydrogen drops between two adjacent cells, then the total distance travelled by the photon

will be larger than that originally computed, since the optical depth in the low density cell
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translates into a larger travel distance than in the higher density cell. Temperature gradi-

ents and relative bulk motions between two adjacent cells have a similar effect on the total

distance travelled. To overcome this problem, we compute how much optical depth is used

after crossing each cell, until there is no more available optical depth to use. Numerically,

when the distance computed is larger than the distance of the photon to the edge of the cell

it is pointing to, then we let the photon travel to that edge, and compute the optical depth

expended in this part of the motion. Then we recompute a new distance using the conditions

in the new cell using Eq. (5.14), and repeat the procedure until all the original optical depth

assigned to the photon according to Eq. (5.13) has been used.

The final location of the photon corresponds to the point where it interacts with either a

hydrogen atom or a dust grain. To find out which type of interaction the photon experiences,

we compute the probability PH(x) of being scattered by a hydrogen atom, given by

PH(x) =
nHσH(x)

nHσH(x)+ ndσd

. (5.17)

We generate a random number ξ and compare it to PH . If ξ < PH , then the photon interacts

with the hydrogen atom, otherwise, it interacts with dust.

5.3.3 Dust scattering and absorption

Observationally, the extinction AV is found to be proportional to the column density of hydro-

gen both within the Milky Way and in the Magellanic clouds (Massa and Fitzpatrick, 1986;

Fitzpatrick and Massa, 2007), although with different proportionality coefficients.

Nevertheless, the cross section of dust interaction σd(λ) can be expressed as an effective

cross section per hydrogen atom. This eliminates any dependence of the cross section on the

dust size distribution, grain shapes, etc, and relies merely on observed extinction curves. The

optical depth of dust τd can be written as

τd = σd Nd , (5.18)

where σd is the cross section of dust particles (absorption plus scatterings), and Nd the

column density of dust, Nd ∝ Σdust. On the other hand, the column density of hydrogen,

NH ∝ Σgas. To relate both we assume that the mass of dust can be related to the mass of the

gas and the metallicity through

Mdust = εMgasZgas, (5.19)
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where ε = δ∗/Z∗, and δ∗ is the dust-to-gas ratio at the solar metallicity Z∗ = 0.02. We can

write then

Nd ∝ NH Zgas, (5.20)

which makes
τd

NH

∝ Zgas. (5.21)

The ratio τd/NH can be obtained at solar metallicity from a tabulated extinction curve. If

τd

NH

(Z⊙) = E⊙, (5.22)

then we find

τd =
E⊙
Z⊙

ZgasNH . (5.23)

Now, the optical depth of dust can be split in two separate terms, accounting for absorption

and scatter by dust grains: τd = τa + τs. Both are related by the albedo A, which is the

probability of a photon being scattered when interacting with a dust grain. Thus, if A is

known we have

τa = (1−A)
E⊙
Z⊙

ZgasNH . (5.24)

Notice that τd and A are assumed not to depend on the photon frequency, since over the typ-

ical frequency range photons travel both quantities do not vary significantly, even if thermal

motion of dust grains are considered.

When interacting with a dust grain, a Lyα photon can be either absorbed or scattered.

This depends on the albedo of dust particles. At the wavelength of Lyα, the albedo is usually

A ∼ 0.4, depending on the extinction curve used. If the Lyα photon is absorbed, then it is

lost forever. If not, then it will be scattered. The new direction will depend on a probability

distribution for the elevation angle θ , whereas for the azimuthal angle φ the scattering will

be symmetric. The scattering angle θ can be obtained from Henyey and Greenstein (1941)

phase function

PHG(µ) =
1

2

1− g2

(1+ g2 − 2gµ)3/2
, (5.25)

where µ = cosθ and g = 〈µ〉 is the asymmetry parameter. If g = 0, Eq.(5.25) reduces to

isotropic scattering. g = 1(−1) implies complete forward (backward) scattering. In general

g depends on the wavelength. For Lyα, g = 0.73.
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Figure 5.1: Probability distribution function of velocities of the scattering

atom u‖ parallel to the photon’s direction for 3 values of the frequency

of the incoming photon. The solid curves show the distribution from Eq.

(5.27), and the histograms show the numerical results from the method

described in section 5.3.4.

If the photon is interacting with dust, then we generate a random number ξ1 to determine

whether it is going to be absorbed or scattered, comparing this number to A. If the photon is

absorbed, then it is lost. If it is scattered, then a new direction must be drawn.

5.3.4 Hydrogen scattering

Scattering by hydrogen atoms is more tricky. Inside an HI region, atoms move in random

directions with velocities given by the Maxwell-Boltzmann distribution. Each of these atoms

will see the same photon moving with a different frequency, due to the Doppler shift caused

by their velocities. Since the cross section for scattering depends on the frequency of the

photon, the probability for an atom to interact with a photon will depend on a combination

of the frequency of the photon and the velocity of the atom.

The total velocity of the atom, v , that scatters the Lyα photon, is given by the sum of the
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bulk velocity of the gas plus the thermal velocity

v = vbulk + v th. (5.26)

In the directions perpendicular to the photon’s direction, ni , the two perpendicular compo-

nents of the velocity of the atom v⊥,1,2 follow a Gaussian distribution. The velocity component

parallel to the photon’s direction, v‖, will depend on x . The normalized probability distribu-

tion for u‖ ≡ v‖/vth in scattering events is found to be

f (u‖) =
a

πH(a, x)

e
−u2
‖

(x − u‖)
2 + a2 . (5.27)

Eq.(5.27) is not analytically integrable, so to draw values from this probability distribution

we make use of the rejection method. Following Zheng and Miralda-Escudé (2002), this is

done as follows. We need a random number u from

f (u)∝
e−u2

(x − u)2 + a2 , (5.28)

so we choose as a comparison function

g(u)∝
1

(x − u)2 + a2 . (5.29)

A first random number u is chosen from g(u), and then we keep it if a second random number

ξ1 is smaller than e−u2
. Unfortunately, when x ≫ 1, the chance of acceptance becomes very

small. To increase this fraction, the comparison distribution is modified to be

g(u)∝







[(x − u)2+ a2]−1 , u ≤ u0

e−u2
0[(x − u)2 + a2]−1 , u > u0.

(5.30)

The value of u0 is chosen as a function of x to minimize the fraction of generated values that

will be discarded, and will be discussed next. The acceptance fractions now are e−u2
and

e−u2
/e−u2

0 in the regions u ≤ u0 and u > u0 respectively. Once u0 is known, we must choose

which region to use. To do this a random number ξ is compared to p, defined as

p =

∫ u0

−∞
g(u) du

∫ +∞

−∞
g(u) du

(5.31)

=

�

θ0 +
π

2

��

(1− e−u2
0)θ0 + (1+ e−u2

0)
π

2

�−1
, (5.32)
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where

θ0 = tan−1 u0 − x

a
. (5.33)

u is generated from u = a tanθ + x , where θ is a random number distributed between

[−π/2,θ0] and [θ0,π/2] for R ≤ p and R > p respectively. Then, another random number

ξ determines whether the generated value of u is accepted by comparing it with the corre-

sponding fraction of acceptance.

Following Laursen et al. (2009a), a value of u0 valid for a wide range of temperatures

and frequencies with an acceptance-to-rejection ratio of order unity is achieved when

u0 =











0 for 0≤ x < 0.2

x − 0.01a1/6e1.2x for 0.2≤ x < xcw(a)

4.5 for x ≥ xcw(a).

(5.34)

Here xcw defines the boundary between the core and the wings of the Voigt profile, i.e., where

e−x2

p
π
=

a

πx2 . (5.35)

The solution to this equation can be approximated by

xcw(a) = 1.59− 0.60 log a− 0.03 log2 a. (5.36)

The two velocity components perpendicular to ni , u⊥1,2 are drawn from a Gaussian distri-

bution with zero mean and standard deviation 2−1/2vth. Following Dijkstra et al. (2006),

these components are calculated using the Box-Muller method (see Press et al., 1992) in the

following way

u⊥1 =
p

− ln(ξ1) cos(2πξ2) (5.37)

u⊥2 =
p

− ln(ξ1) sin(2πξ2), (5.38)

where both velocities are in units of vth.

Figure 5.1 shows a comparison between the probability distribution of Eq. (5.27) and the

numerical algorithm described here for 100,000 values of u‖. The method reproduces the

expected distribution remarkably well, even at the resonance peaks shown.

We will assume that in the frame of the atom, the frequency of the outgoing photon is the

same as the incident frequency. In reality, it will differ slightly due to the recoil effect, which
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accounts for the transfer of small amounts of momentum from the photon to the atom during

the scattering process. The average fractional amount of energy transferred per scattering

can be written as (Field, 1959)

g =
h∆νD

2kT
(5.39)

= 2.6× 10−4(13kms−1/vth), (5.40)

where h is the Planck constant. For the applications studied in this thesis, the recoil effect has

been proven to be negligible (see also the discussion by Adams, 1971).

The new direction no is given by a dipole distribution, with the symmetry axis defined by

the incident direction ni

P(θ) =
3

8
(1+ cos2 θ), (5.41)

where θ is the polar angle to the direction ni . The azimuthal angle of the outgoing photon is

random and uniform in 0≤ φ < 2π.

Finally, the new frequency x ′ of the photon is given by

x ′ = x − ni · u + no · u (5.42)

= x − u‖ + no · u (5.43)

5.3.5 The resonant scattering calculation in detail

Once the total velocity of the atom is chosen according to the above probability distributions,

we first perform a Lorentz transform of the direction and frequency of the photon to the rest

frame of the atom. The direction and frequency of the scattered photon are then transformed

back to the laboratory frame. Below we will set out how this is done.

The photon’s initial direction is

n̂i = sinθ cosφ ı̂+ sinθ sinφ ̂+ cosθ k̂, (5.44)

where ı̂, ̂ and k̂ are fixed in the lab frame. The atom’s velocity satisfies

n̂i · u = u‖ = u cosα, (5.45)

where α is the angle between the direction of the photon and the atom. To calculate α we

need to know u, which satisfies

u2 = u2
‖ + u2

⊥,1 + u2
⊥,2. (5.46)
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Note here that u is the velocity of the atom in units of the thermal velocity, vth, Eq. (5.2). In

other words,

u =
v

vth

, (5.47)

where v[km s−1].

We must now define u in the coordinate system {̂ı, ̂, k̂}. At this point u could be pointing

in any direction within the cone formed by an angle α from n̂i . To fully specify the atom’s

direction, we define a set of vectors in the plane perpendicular to n̂i :

u = u‖n̂ i + u⊥,1n̂⊥,1+ u⊥,2n̂⊥,2 (5.48)

We fix their direction as

n̂⊥,1 = sinφı̂− cosφ ̂, (5.49)

n̂⊥,2 = cosφ cosθ ı̂+ sinφ cosθ ̂− sinθ k̂. (5.50)

We can now express û as

û =
1

u

�

�

u‖ sinθ cosφ + u⊥,1 sinφ + u⊥,2 cosφ cosθ
�

ı̂ (5.51)

+
�

u‖ sinθ sinφ − u⊥,1 cosφ + u⊥,2 sinφ cosθ
�

̂

+
�

u‖ cosθ − u⊥,2 sinθ
�

�

k̂

≡ ui ı̂+ u j ̂+ ukk̂

Since we will perform a Lorentz transformation, we also need to know the coordinates of the

vector perpendicular to the velocity of the atom, û⊥ lying in the plane formed by n̂ i and û,

which can be defined in the following way:

n̂ i = cosαû + (1− cos2α)1/2û⊥ (5.52)

Solving for û⊥ we find

û⊥ =
1

(1− cos2α)1/2
[(sinθ cosφ − cosαui )̂ı (5.53)

+(sinθ sinφ − cosαu j) ̂

+(cosθ − cosαuk)k̂]

≡ u⊥,i ı̂+ u⊥, j ̂+ u⊥,kk̂.
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Finally, to perform the Lorentz transformation we need to know the photon’s velocity in

the directions parallel and perpendicular to the atom’s velocity. These are simply

ni,‖(a) = c cosα, (5.54)

ni,⊥(a) = c sinα. (5.55)

So, in the atom’s frame, the velocity components of the photon are

n′
i,‖(a) =

c cosα− v

1+ (v cosα)/c
, (5.56)

n′i,⊥(a) =
c sinα

γ(1+ (v cosα)/c)
, (5.57)

where

γ =

�

1−
�

v

c

�2�−1/2

(5.58)

≈ 1, (5.59)

since v≪ c. The above equations can be rewritten as

n′
i,‖(a) =

c cosα− vthu

1+ u‖vth/c
, (5.60)

n′i,⊥(a) =
c sinα

(1+ u‖vth/c)
. (5.61)

Now the outgoing photon’s direction, n̂′o, satisfies

n̂′o · n̂′i = µ, (5.62)

n̂′o = µn̂′
i
+
p

(1−µ2)n̂′
i,p

, (5.63)

where µ = cosθ , and θ is the polar angle off the initial photon’s direction, taken from the

dipolar distribution, Eq.(5.41), and n̂′
i,p

is an arbitrary unit vector perpendicular to n̂′
i
.

Since the scattering is isotropic in the azimuthal angle, its direction must be randomly

drawn. The plane formed by the directions parallel and perpendicular to the atom’s velocity

contains one possible choice for this vector, which we will call ζ̂. In addition, we will call χ

the cosine of the angle between n̂′
i,p

and ζ̂. In other words, if

n̂′
i
= n′

i,‖(a)â+ n′i,⊥(a)b̂, (5.64)

ζ̂ = n′i,⊥(a)â− n′
i,‖(a)b̂, (5.65)
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where {â, b̂, ĉ} is a set of orthogonal, unit vectors, parallel and perpendicular to the atom’s

velocity (in fact â ≡ û and b̂ ≡ û⊥), then n̂′
i,p

must satisfy

n̂′
i,p
· ζ̂ = χ, (5.66)

n̂′
i
· n̂′

i,p
= 0, (5.67)

If n̂′
i,p
= (p1, p2, p3), then the above equations (plus the normalization condition) give

n′i,⊥(a)p1 − n′
i,‖(a)p2 = χ, (5.68)

n′
i,‖(a)p1 = −n′i,⊥(a)p2, (5.69)

p2
1 + p2

2 + p2
3 = 1. (5.70)

Solving we find

n̂′
i,p
=

n′
i,⊥(a)χ

c
â−

n′
i,‖(a)χ

c
b̂+

p

1−χ2 ĉ. (5.71)

where ĉ ≡ â× b̂. Now n̂′o can be written in the basis {â, b̂, ĉ} as

n̂′o =
1

c

 

µn′
i,‖(a) +

p

1−µ2
n′

i,⊥(a)

c2 χ

!

â (5.72)

+
1

c

 

µn′i,⊥(a)−
p

1−µ2
n′

i,‖(a)

c2 χ

!

b̂

+
�p

(1−χ2
p

1−µ2
�

ĉ,

≡ no1â+ no2b̂+ no3ĉ. (5.73)

In the atom’s frame, the photon has also changed its frequency due to the Doppler shift. The

frequency seen by the atom corresponds to

ν ′ = νemγ

�

1−
v · n̂i

c

�

, (5.74)

≈ νem

�

1−
v‖
c

�

, (5.75)

where ν ′ is the frequency seen by the atom and νem is the frequency in the laboratory frame.

Now we need to perform a Lorentz transformation back to the laboratory frame. To do

this we need to know n′
o,‖ and n′

o,⊥. Since â is the unit vector along the direction of the atom,

and {b̂, ĉ} are perpendicular to it, we can write

n′
o,‖ = no1 (5.76)

n′o,⊥ =
Æ

n2
o2+ n2

o3. (5.77)
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The Lorentz transformation is then written as

no,‖ =
cn′

o,‖+ vthv

1+
vthvn′

o,‖
c

, (5.78)

no,⊥ =
cn′

o,⊥

1+
vthvn′

o,‖
c

. (5.79)

Now that we are back in the laboratory frame, it is possible to express no in terms of the unit

vectors parallel and perpendicular to the atom’s velocity:

n̂o =
1

c

�

no,‖û + no,⊥û⊥,o

�

. (5.80)

Since now n̂0 lies on a different plane, û⊥,o 6= û⊥. However, û⊥,o is easy to read:

v̂⊥,o =
1

(n2
o2+ n2

o3)
1/2
[no2 b̂+ no3ĉ]. (5.81)

So the only remaining task is to express ĉ in the basis ı̂, ̂, k̂. Since ĉ = â× b̂ we get

ĉ = (u ju⊥,k − uku⊥, j )̂ı− (uiu⊥,k − uku⊥,i) ̂+ (uiu⊥, j − u ju⊥,i)k̂. (5.82)

Now it is possible to write

û⊥,o =
1

(n2
o2+ n2

o3)
1/2

�

[no2v⊥,i + no3(u⊥,ku j − uku⊥, j)]̂ı (5.83)

+[no2u⊥, j − no3(uiu⊥,k − uku⊥,i)] ̂

+[no2u⊥,k + no3(uiu⊥, j − u ju⊥,i)]k̂

�

≡ u⊥,oi ı̂+ u⊥,o j ̂+ u⊥,okk̂

So finally the outgoing direction of the photon can be written as

n̂o =
1

c
[(no,‖ui + no,⊥u⊥,oi )̂ı+ (no,‖u j + no,⊥u⊥,o j) ̂+ (no,‖uk + no,⊥u⊥,ok)k̂] (5.84)

This gives the final direction of the photon, which replaces n̂ i in Eq. (5.44). The frequency

shift, is easy to calculate:

ν f = ν ′
�

1+
v · n̂o

c

�

, (5.85)

= νem

�

1−
v‖
c

�
�

1+
v · n̂o

c

�

(5.86)
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Now, for convenience, we express ν in terms of x , defined in Eq.(5.1):

x f =
νem

∆νD

�

1−
v‖
c

�
�

1+
v · n̂o

c

�

− ν0, (5.87)

= x i +
νem

∆νD

�

v · n̂o

c
−

v‖
c

�

, (5.88)

= x i +
νem

ν0

�

v · n̂o

vth

−
v‖
vth

�

, (5.89)

= x i +
νem

ν0
(u · n̂0 − u‖) (5.90)

Usually νem ≈ ν0, in which case the expression reduces to what we already had in Eq.(5.43).

Finally, the dot product u · n̂o is equal to

u · n̂o =
u

c
[ui(no,‖ui + no,⊥u⊥,oi) + u j(no,‖u j + no,⊥u⊥,o j) + uk(no,‖uk + no,⊥u⊥,ok)] (5.91)

5.3.6 Accelerating the code

The algorithm described above will follow the scattering events of a photon until it escapes

(or is absorbed), and then the process starts again with a new photon travelling on a different

path, and so on until we are satisfied with the number of photons generated. In practise, for

the runs shown in this thesis the number of photons generated varies between a few thousand

up to several hundred thousand, depending on the accuracy of the result we wish to achieve.

For the typical HI regions studied here, the number of scatterings that photons will un-

dergo before escaping could be as high as several tens or hundreds of millions. If we want

to model several thousand photons, then the total number of calculations grows enormously

and the task could become computationally infeasible. However, most of the scattering events

will occur when the photon is at the line centre, or very close to it, where the cross section

for scattering peaks. Eq.(5.16) shows that the cross section for scatterings reduces as ∼ e−x2

near the line centre, and as ∼ x−2 away from it. Whenever the photon falls near the centre it

will experience so many scatterings that the actual distance travelled between each scattering

event will be negligible, since in this case it will be most likely scattered by an atom with a

velocity close to zero (see Fig. 5.1). Hence, the frequency after such scattering will remain

in the resonant core. This motivates the possibility for accelerating the code performance by

skipping those inconsequential scattering events.
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Following Dijkstra et al. (2006), a critical frequency xcr i t defines a transition from the

resonant core to the wing. Whenever a photon is in the core (with x < |xcr i t |) we can push

it to the wings by allowing the photon to be scattered only by a rapidly moving atom. We

do this by modifying the distribution of perpendicular velocities by a truncated Gaussian, i.e.

a distribution which is a Gaussian for u > xcr i t but which is zero otherwise. The modified

perpendicular velocities are then drawn from

u⊥1 =
Æ

x2
cr i t
− ln(ξ1) cos(2πξ2) (5.92)

u⊥2 =
Æ

x2
cr i t
− ln(ξ1) sin(2πξ2). (5.93)

When doing this, we allow the photon to redshift or blueshift away from the line centre, thus

reducing the cross section for scattering and increasing the path length. For the configurations

studied here, we found that a value of xcr i t = 3 provides a good balance between accuracy

and efficiency of the code, reducing the execution time by a factor 100 or more with respect

to the non-accelerated case.

5.3.7 Output of the code

We allow the code to generate output in two modes:

• A detailed output file for each photon, in which its position and frequency is stored

for every interaction followed by the code, until the photon either escapes from the

HI region or is absorbed by a dust grain. Other properties are also stored, such as the

velocity of the atom (if relevant) at the moment of scattering, and the running time

until each interaction event. This output mode is obviously inefficient when studying a

large set of photons, so it is used mainly for debugging purposes.

• A short output file, which stores the frequency and position of all photons at the mo-

ment they either escape or are absorbed by dust, along with other properties such as the

time it took the code to compute each escape/destruction of photons. This is the pre-

ferred mode of output to compute quantities which require a large number of photons,

such as the emergent spectrum or the escape fraction of photons.
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5.4 Validation of the code

The flexibility of this numerical approach allows us to reproduce configurations for which

analytical solutions are available. Hence, these analytical solutions are ideal to test the per-

formance of the code. In the following we will describe the tests we have performed on our

code, which prove its accuracy. Each comparison with an analytical solution is meant to test a

different aspect of the code, which is why a proper validation requires to test the code against

several analytical solutions.

5.4.1 The redistribution function

Hummer (1962) (and later on Lee, 1974) computed the redistribution in frequency of radia-

tion scattered from moving atoms. Both authors studied several cases including coherent and

non coherent scattering with isotropic or dipolar angular distributions and absorption profiles

with zero natural line widths or Voigt profiles. In our case, we are interested in the redistri-

bution function arising from coherent scattering in the rest frame of the atom, with a dipolar

angular distribution and including radiation damping. The expression for the redistribution

function is

RI I−B(x , x ′) =
3π−3/2

8
a

∫ ∞

|x−x |/2
e−u2

∫ x+u

x−u

�

3−
�

x − t

u

�2

−
�

x ′− t

u

�2

(5.94)

+3
�

x − t

u

�2
�

x ′− t

u

�2�
dt du

t2 + a2 ,

where x and x ′ are the frequency of the photon before and after the scattering and x and

x are the maximum and minimum between |x | and |x ′| respectively. This expression cannot

be computed analytically (although the integral over t is simple, the resulting expression is

too complicated to be shown here), so it must be computed numerically. It is also possible

to compute the redistribution function using our Monte Carlo code described above. Figure

5.2 shows the resulting redistribution function for 3 different initial frequencies using ∼ 105

photons, and the remarkably good agreement between the Monte Carlo code and the analyt-

ical expression of Eq.(5.94).

Photons at the line centre are more likely to remain in the line centre after a scattering

event, since the redistribution function is very narrow and peaks at x f = 0. For a photon with

an incoming frequency of x i = 5, there is a non-zero chance to get closer to the line centre.
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Figure 5.2: The redistribution function of Lyα photons scattered by hy-

drogen atoms for different initial frequencies. The histograms show the

resulting frequency distribution from the Monte Carlo code, whereas the

solid curves show a numerical integration of Eq. (5.94).

If this happens, subsequent scattering will increase the probability of approaching the line

centre even further, until the photon will eventually reach the line centre. Once there, it is

very difficult to change its frequency, which is why most of the scatterings tend to happen in

the line centre.

5.4.2 Lyα spectrum from a static slab

The emergent spectrum from an optically thick, homogeneous static slab with photons gen-

erated at the line centre was first calculated by Harrington (1973), and the result was gen-

eralised by Neufeld (1990), allowing the generated photons to have any frequency. Harring-

ton’s solution for the emergent Lyα spectrum for a slab with thickness characterised by its
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Figure 5.3: Lyα spectrum emerging from a homogeneous static slab at

T = 10[K], for optical depths at the line centre of τ0 = 104, 105, 106 and

107, as shown in the plot. The profiles are symmetric around x = 0. The

more optically thick the medium, the farther from the line centre the re-

sulting peaks of each profile are found. The solid lines show Harrington

(1973) analytical solution, and the orange, blue and red histograms show

the results from the Monte Carlo code for a choice of xcr i t = 0,3 and 5

respectively.
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optical depth at the line centre τ0, is

J(±τ0, x) =

p
6

24

x2

p
πaτ0

1

cosh
hp

π3/54x3/(aτ0)
i . (5.95)

The above expression is valid when aτ0 ¾ 103/
p
π, or for τ0 ¾ 1.2× 106 when T = 104K.

Figure 5.3 shows the emergent spectrum from a simulated homogeneous slab. The tem-

perature of the medium was chosen to be T = 10K, since in this regime the analytical ex-

pression is accurate for optical depths down to τ0 ∼ 104, which is faster to compute with the

code.

The typical Lyα flux profile is double peaked, and is symmetrical with respect to the line

centre. The centre of the peaks is displaced away from x = 0 by a value determined by τ0.

The higher the optical depth, the farther away from the line centre and the wider the pro-

file will be. Figure 5.3 compares the analytic solution of Harrington (1973) with the ouput

from the basic code (orange histogram), and two accelerated versions of it (blue and red

histograms). Overall, it is clear that the non-accelerated version of the code reproduces the

analytical formula over the range of optical depths shown here. When xcr i t = 3 (the blue

histogram in Fig. 5.3), the output is virtually indistinguishable from the non-accelerated ver-

sion, but the running time has been decreased by a factor∼ 200. If we increase xcr i t to 5 then

the agreement with the analytical result breaks down at τ0 = 104, shifting the peaks slightly

further away from the centre than the correct result. This occurs because some photons were

expected to escape with frequencies of x ≤ 5 at this optical depth, but since xcr i t = 5 those

photons were pushed into the wings of the absorption profile. The net effect is a shift in the

resulting spectrum.

Figure 5.3 confirms that the choice of xcr i t = 3 does not compromise the accuracy of the

results, although larger values do.

5.4.3 Mean number of scatterings

Harrington (1973) also computed the mean number of scatterings expected before a Lyα

photon escapes from an optically thick medium for the homogeneous slab. The result, already

studied by Avery and House (1968) using a Monte Carlo technique, is

〈Nscat〉 = 1.612τ0. (5.96)
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Figure 5.4: Mean number of scatterings as a function of the optical depth in

the line centre of the medium. The circles show the results from the Monte

Carlo code for configurations with different τ0. The dashed line shows the

analytical solution of Harrington (1973).

Fig. 5.4 shows a comparison between the mean number of scatterings computed using our

code against the analytical prediction of Harrington (1973). The agreement is remarkably

good.

5.4.4 Lyα spectrum from a static sphere

Following closely the methodology of Harrington (1973) and Neufeld (1990), Dijkstra et al.

(2006) computed the emergent spectrum from a static sphere. Their result is

J(x ,τ0) =

p
π

p
24aτ0







x2

1+ cosh
hp

2π3/27(|x3|/aτ0)
i






, (5.97)

which looks very similar to the expression for the emergent spectrum from an homogeneous

slab, Eq. (5.95). Fig. 5.5 shows a comparison between the analytic prediction and the output

from the code at different optical depths. Again, there is a very good agreement between

the two. The optical depths shown in Fig.5.5 were chosen to be different from those in Fig.
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Figure 5.5: Lyα spectrum emerging from a homogeneous static sphere at

T = 10K, for optical depths at the line centre of τ0 = 105, 106 and 107. The

profiles are symmetric around x = 0. The thicker the medium, the farther

from the line centre the resulting peaks of each profile are found. The solid

lines show the analytical solution of Dijkstra et al. (2006) (Eq. 5.97), and

the histograms show the results from the Monte Carlo code.

5.3 to show that the code is following closely the expected emergent spectrum for a range of

optical depths spanning several orders of magnitude.

5.4.5 fesc from a static dusty slab

Neufeld (1990) computed an analytical expression for the escape fraction of photons emitted

from an homogeneous, dusty slab. The solution, valid for very high optical depths (aτ0 >

103), and in the limit (aτ0)
1/3≫ τa, where τa is the optical depth of absorption by dust (Eq.

5.24), is

fesc =
1

cosh
h

ζ′
p

(aτ0)
1/3τa

i , (5.98)

where ζ′ ≡
p

3/ζπ5/12, and ζ ≈ 0.525 is a fitting parameter.

Fig. 5.6 shows a comparison between the escape fraction obtained from a series of simula-
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Figure 5.6: The escape fraction of Lyα photons from an homogeneous dusty

slab. The optical depth of hydrogen scatterings at the line centre τ0 is held

constant at τ0 = 106, and different values of the optical depth of absorption

τa are chosen. Circles show the output from the code, and the solid orange

curve shows the analytical prediction of Neufeld (1990), Eq. (5.98)

tions, keeping τ0 fixed and varying τa, with the analytical solution of Eq. (5.98). The escape

fraction, as expected, decreases rapidly for increasing τa, which, for a fixed τ0, translates

into having a higher concentration of dust in the slab. It is worth noting that the escape frac-

tion depends not only on the amount of dust, but also in the temperature of the gas (through

the a parameter), the column density of hydrogen (which defines the number of scatterings

in the medium, Eq. 5.96) and the amount of dust through τa. In a more general case, as

we will see next, the mean number of scatterings is also regulated by the bulk motions of the

gas, so in practice the escape fraction will depend on the bulk velocity of the gas as well.

5.4.6 Comparison with a similar code: Lyα spectrum from an expanding sphere

Another important parameter yet not taken into account is the bulk velocity of the medium.

As will be shown in the next chapter, the velocity of the medium plays a crucial role shaping
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Figure 5.7: The emergent Lyα spectrum from a linearly expanding sphere

with velocity zero at the centre and velocity at the edge vmax = 0,20,200

and 2000km/s shown in orange, blue, red and green respectively. The

optical depth at the line centre is kept fixed at τ0 = 107.06. The analytical

solution of Dijkstra et al. (2006) for the static case is shown in black. The

coloured histograms show the output from the code. The coloured solid

curves show the results obtained with the Laursen et al. (2009a) code (their

Fig. 8).

the profile of the emergent spectrum and the escape fraction as well.

To study the effect of bulk motions in the gas, we model the case of an expanding homo-

geneous sphere, with a velocity at a distance r from the centre given by

vbulk = Hr , (5.99)

H =
vmax

R
, (5.100)

where vmax is the velocity of the sphere at its edge, and R is the radius of the sphere.

There is no analytical solution for this configuration (except when T = 0, see Loeb and
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Rybicki (1999)), so we decided to compare our results to those found by a similar Monte

Carlo code. Fig. 5.7 shows a comparison between our code and the results obtained with

the MoCaLaTA Monte Carlo code (Laursen et al., 2009a), kindly provided by Peter Laursen.

The agreement between the two codes is encouraging. Moreover, the figure helps us under-

stand the effect of bulk motions of the gas in the emergent spectrum. First, when vmax = 0

we obviously recover the static solution, Eq. (5.97). When vmax = 20km/s, the velocity of

the medium causes photons to have a higher probability of being scattered by atoms with

velocities dominated by the velocity of the medium. These atoms see the photons as being

redshifted, and hence the peak of the spectrum is shifted slightly towards the red part of the

spectrum, although still a fraction of photons appear to escape blueshifted.

When vmax = 200km/s, the blue peak is completely erased, and the peak is shifted even

further to the red side. For very high velocities, such as vmax = 2000km/s, the velocity

gradient makes the medium optically thin, and the average number of scatterings decreases

drastically, and consequentially the photons have less chance of being redshifted far into the

wings, thus shifting the peak back to the centre, but still with no photons in the blue side of

the spectrum.

All the tests described in this section were used to validate our Monte Carlo code, but they

also served as an example of the performance and range of possibilities open to study with

our code. In the next chapter we will develop a model which will be suitable to be coupled

with the output from GALFORM, so that we can assign an escape fraction to each galaxy and

study statistical properties of Lyα emitters.



Chapter 6
Modelling the Lyα

emission of galaxies in a

hierarchical Universe

6.1 Introduction

In Chapter 3 we introduced Lyα emitters as a cosmological tool, particularly as a probe of

the high redshift Universe. Galaxies detected by their Lyα emission have been used to test

galaxy formation models (Le Delliou et al., 2005, 2006; Kobayashi et al., 2007; Nagamine

et al., 2008; Dayal et al., 2010a) , study the spectrophotometric properties of galaxies at high

redshifts (Gawiser et al., 2007; Gronwall et al., 2007; Nilsson et al., 2009), trace the large

scale structure (Shimasaku et al., 2006; Gawiser et al., 2007; Kovač et al., 2007; Orsi et al.,

2008; Francke, 2009; Ouchi et al., 2010) and to study possible constraints on the epoch of

re-ionization of the Universe (Kashikawa et al., 2006; Dayal et al., 2010b; Ouchi et al., 2010).

Despite the many applications of the study of Lyα emitters, there has been only slow

progress towards an understanding of the physical mechanisms driving the escape of Lyα

radiation from the galaxy until it reaches the observer. It is evident that in order to interpret

correctly the properties of Lyα emitters we must be able to understand the observed Lyα

emission of these galaxies, i.e. both the fraction of the intrinsic Lyα luminosity which origi-

nates in the galaxy that we are able to observe and the shape of the Lyα line profile.

Recent observational studies have been able to infer the escape fraction fesc of Lyα pho-

tons (Atek et al., 2008, 2009; Östlin et al., 2009; Kornei et al., 2010; Hayes et al., 2010a).

This is generally done either by comparing the derived star formation rates from Lyα lumi-

149
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nosities to those from ultraviolet continuum, or by comparing the observed line ratio between

Lyα and other hydrogen recombination lines, such as Hα or Hβ . The first method relies heav-

ily on the assumptions about the stellar evolution model used and the unattenuation of the

ultraviolet continuum. The second method is more direct, since the intrinsic line ratios are

a function of the Lyman continuum luminosity. The departure from case B recombination of

the ratio of the Lyα intensity to one or more hydrogen recombination lines is then attributed

to the escape fraction of Lyα differing from unity.

These measurements have revealed that the escape fraction of Lyα emitters can be any-

thing from 10−3 to 1. The observational data mentioned above also suggest a correlation

between the value of the escape fraction and the dust extinction, measured by E(B − V ),

although the large scatter found in this relation suggests there is a variety of physical param-

eters determining the value of fesc.

The first observations of local Lyα emitters suggested a strong correlation between the

metallicity of galaxies and the Lyα luminosity (Meier and Terlevich, 1981; Hartmann et al.,

1984, 1988), leading to the conclusion that dust, traced by the metallicity, is the most impor-

tant factor driving the visibility of the Lyα line. However, a more complete analysis showed

there was only a weak correlation between the two, and suggested instead the relevance of

the neutral gas distribution and kinematics (e.g., Giavalisco et al., 1996). Further analysis

of metal lines in local starbursts revealed evidence of the presence of outflows driving the

escape of Lyα photons. The asymmetric, P-Cygni Lyα line profiles observed are consistent

with Lyα photons escaping from an expanding shell of neutral gas (Thuan and Izotov, 1997;

Kunth et al., 1998; Mas-Hesse et al., 2003), establishing outflows as the main mechanism

driving the escape of Lyα photons from galaxies.

Observational data at higher redshifts also suggest that the Lyα line profiles observed in

galaxies resemble those expected when photons escape through a galactic outflow (Shapley

et al., 2003; Kashikawa et al., 2006; Kornei et al., 2010; Hu et al., 2010). Radiative transfer

models have been able to reproduce successfully a sample of observed profiles assuming that

photons escape from an expanding shell (Ahn, 2003, 2004; Verhamme et al., 2006; Schaerer,

2007; Verhamme et al., 2008). This method has proved useful at accounting for the variety
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of Lyα line shapes, both in emission and absorption, giving rise to symmetric, single peaked

profiles to asymmetric, P-Cygni, double peaked profiles and combinations of both.

It has also been suggested that the escape of Lyα photons could be boosted relative to the

UV continuum when photons travel through a multi-phase ISM, i.e. a medium where dust is

concentrated in clouds rather than being uniformly distributed (Neufeld, 1991; Hansen and

Oh, 2006). In such a configuration, the probability of photons to interact with a dust grain

is significantly reduced, since only the fraction of photons penetrating into a dust cloud are

likely to be absorbed, whereas the rest, even when reaching the edge of a dust cloud, have

the chance of being scattered off the dust cloud. In addition, a multi-phase ISM could also

exhibit asymmetric Lyα frequency profiles (Hansen and Oh, 2006).

In this chapter we attempt to study the first case, i.e. when photons escape through an

outflow of material. We leave the study of the impact of a multi-phase ISM on the visibility of

the Lyα line for a future work. Previous studies of the escape of Lyα photons from an outflow

focused on a sample of Lyman-break galaxies and attempted to fit the observed Lyα profiles

(Schaerer, 2007; Verhamme et al., 2008). Instead, here we use the semi-analytical modelGALFORM to study the properties of the Lyα emission of galaxies in a cosmological context.

This represents a significant improvement in the modelling of Lyα emitters over the model

presented in Chapter 3 (see also Le Delliou et al., 2005, 2006; Orsi et al., 2008), where a

constant escape fraction of 0.02 was assumed to fit the observed luminosity function of Lyα

emitters at z = 3.0.

In order to compute the escape of Lyα photons, we use the Monte Carlo radiative transfer

code described in chapter 5 to model the physical conditions of an outflow. Having described

the semi analytical model in chapter 2 and the Monte Carlo Lyα code in Chapter 5, we now

focus directly on how we perform the coupling between both codes.

6.2 Model description

In our model, the physical properties of the medium used to compute the escape of Lyα

photons depends on several predicted properties of galaxies from GALFORM. Throughout this
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chapter, we use the Baugh et al. (2005) version of the GALFORMmodel. In this thesis we focus

on two outflow models for the HI region surrounding the source of Lyα photons. Both models

are similar, although they differ in their geometry and the way the properties of galaxies fromGALFORM are used.

In the following we describe the details of both outflow models. We assume the tempera-

ture of the medium to be constant at T = 10000 K. For simplicity, the source of Lyα photons

is at rest in the frame of the galaxy, in the centre, and emits photons only at the line cen-

tre. To ensure suitable time performance of the following calculations, we make use of the

accelerated version of the Monte Carlo radiative transfer code with xcrit = 3, as explained in

Chapter 5.

6.2.1 Expanding Shell

Previous radiative transfer studies of Lyα line profiles (see, e.g. Ahn, 2003, 2004; Verhamme

et al., 2006, and references therein) adopted an expanding super shell in the same way as

we define it here. This model, hereafter named the Shell model, consists of a homogeneous,

expanding, isothermal spherical shell. The Shell is described by an inner and outer radius

Rinn and Rout , which satisfy Rinn = fthRout. The exact value of fth is found to be irrelevant for

the escape of Lyα photons, provided that fth ¦ 0.9. Here we use fth = 0.9. In addition, the

medium is assumed to be expanding radially with constant velocity Vexp. The column density

of the Shell is given by

NH(r) =
MHI

4πmHR2
out

, (6.1)

where mH is the mass of the hydrogen atom, mH = 1.672× 10−27g. The mass in the outflow

is taken to be a fraction of the cold gas mass of the galaxy component from which the Lyα

emission comes from. In GALFORM, the Lyα luminosity comes from the disk (in quiescent

galaxies) or the bulge (in starbursts), but some galaxies also have contributions from both

galactic components. Therefore, to compute the mass of hydrogen in the shell, MHI, we

compute a luminosity-weighted hydrogen mass 〈Mgas〉 between the disk and bulge. In other

words,

MHI = fM 〈Mgas,H〉, (6.2)
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where fM is the fraction of hydrogen gas that flows in the shell, and is a free parameter of

the Shell model. Also,

〈Mgas,H〉=
fH

LLyα,tot
(MdiskLLyα,disk+Mbulge LLyα,bulge), (6.3)

where fH = 0.76 is the fraction of gas in the form of hydrogen, Mdisk and Mbulge are the mass

of cold gas in the disk and bulge respectively, LLyα,disk and LLyα,bulge are the Lyα luminosities

from the disk and bulge, and LLyα,tot = LLyα,disk+ LLyα,bulge. Likewise, the outer radius of the

shell Rout and its expansion velocity Vexp are calculated in an analogous way, i.e.

Rinn = fR〈R1/2〉, (6.4)

Vexp = fV 〈Vcirc〉, (6.5)

〈R1/2〉 =
RdiskLLyα,disk+ Rbulge LLyα,bulge

LLyα,tot
, (6.6)

〈Vcirc〉 =
Vdisk LLyα,disk+ Vbulge LLyα,bulge

LLyα,tot
, (6.7)

where Rdisk, Vdisk, Rbulge and vbulge are the half-mass radius and circular velocity of the disk

and bulge, respectively, and fR, fV are two extra free parameters of the model.

The metallicity of the outflow is taken to be 〈Zgas〉, i.e. the metallicity of the cold gas

weighted by the cold gas mass of the disk and bulge. This value is used to compute the

dust content in the outflow, which is assumed to be proportional to the gas mass content and

metallicity, i.e.

Mdust =
δ∗
Z⊙

MgasZgas, (6.8)

where the dust-to-gas ratio is taken to be δ∗ = 1/110 at the solar metallicity Z⊙ = 0.02. The

optical depth of dust at the wavelength of Lyα can be defined as

τd =
E⊙
Z⊙

NH Zgas, (6.9)

where E⊙ is the ratio τd/NH for solar metallicity at the wavelength of Lyα (1216 Å). Through-

out this work we use the extinction curve and albedo from Silva et al. (1998), which are fit to

the observed extinction and albedo in the local, Galactic ISM. For a dust albedo A, the optical

depth of absorption is simply

τa = (1− A)τd . (6.10)
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At the wavelength of Lyα, A= 0.39.

6.2.2 Galactic Wind

Supernovae heat and accelerate the ISM through shocks and hence generate outflows from

galaxies (see, e.g. Marlowe et al., 1995; Lehnert and Heckman, 1996; Strickland, 2002).

Here we develop an outflow model, hereafter the Wind model, which relates the predicted

mass ejection rate from galaxies due to supernovae to the density of the outflow. In GALFORM,

this mass ejection rate is given by

Ṁe j =
�

βreh(Vc) + βsw(Vc)
�

ψ, (6.11)

where

βreh =

�

Vc

Vhot

�−αhot

, (6.12)

βsw = fswmin[1, (Vc/Vsw)
−2], (6.13)

(6.14)

The parameters βreh and βsw define the two different modes of supernova feedback (the

reheating and superwind), as described in Chapter 2. We assume this outflow consists of an

isothermal, spherical flow expanding at constant velocity Vout, with inner radius Rinn. In a

stationary spherical wind, the mass ejection rate is related to the velocity and density at any

point of the wind via the equation of mass continuity, i.e.

Ṁej = 4πr2Vexpρ(r). (6.15)

Hence, the number density profile nHI(r) in the Wind model varies according to

nHI(r) =







0 r< Rinn

Ṁej fHI

4πmH r2Vexp
r≥ Rinn

(6.16)

The column density NH of the outflow is, then

NH =
Ṁej fHI

4πmHRinnVexp
, (6.17)

where the inner radius of the wind, Rinn, is computed in an analogous way to Rout in the

Shell model, i.e.
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Rinn = fR〈R1/2〉, (6.18)

where fR is a free parameter, and 〈R1/2〉 is defined in Eq. (6.6). The expansion velocity and

metallicity in the wind are computed using the same equations as in the Shell model.

In addition, for computational reasons, the radiative transfer code requires us to define

an outer radius Rout for the outflow. However, since the number density of atoms decreases as

∼ r−2, we expect that at some point the optical depth will become so small that the photons

will be able to escape regardless of the exact extent of the outflow. We found that an outer

radius Rout = 20Rinn is large enough to achieve converged results, i.e. the escape fraction of

Lyα photons does not vary if we increase the value of Rout further.

6.3 The effect of the UV background

For the Wind model, our radiative transfer code also allows the option of computing the re-

sulting ionization of the medium by photons in the intergalactic UV background. The outflow

as described above is completely neutral, but photoionization from the UV background could

have the effect of reducing the abundance of neutral hydrogen modifying the density profile

of the neutral gas.

It is generally believed that the extragalactic UV background is dominated by radiation

from quasars and massive young stars from active star forming galaxies (Haardt and Madau,

1996, 2001; Meiksin, 2009). The mean intensity of the UV background at the observed

frequency ν0 and redshift z0 is defined as

J0(ν0, z0) =
1

4π

∫ ∞

z0

dz
dl

dz

(1+ z0)
3

(1+ z)3
ε(ν , z)e−τe f f (ν0,z0,z), (6.19)

where z is the redshift of emission, ν = ν0(1+ z)/(1 + z0), dl/dz is the line element in a

Friedmann cosmology, ε is the proper space-averaged volume emissivity and τe f f is an effec-

tive optical depth due to absorption by the IGM. There is no explicit form of equation (6.19)

since it must be computed iteratively by solving the cosmological radiative transfer equation

(Peebles, 1993). For the analysis shown in this thesis we use the tabulated values of J0(ν , z)
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Figure 6.1: The effect of the UV background on the number density profiles

for two randomly selected galaxies at z = 0.2 (red curves) and z = 3.0

(blue curves). The solid curves show the initial, unattenuated profiles. The

dashed lines show the resulting profiles when including the UV background

but without including self-shielding. The dotted-dashed lines show the ef-

fect of the UV background when self-shielding is included.
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by Haardt and Madau (2001). Notice, however, that more recent calculations of the UV back-

ground flux (Bolton and Haehnelt, 2007; Meiksin, 2009) show that the calculation of Haardt

and Madau (2001) may be underestimated for z > 5.

The fraction of ionized hydrogen x ≡ nHI I/nH varies according to a balance between

radiative and collisional ionizations and recombinations inside the cloud:

αAne x = (ΓH +βH ne)(1− x), (6.20)

where αA = 4.18 × 10−13[cm3s−1] is the case A recombination coefficient at T = 104K

(Osterbrock, 1989), and the photoionization rate ΓH(z) from the UV background is given by

ΓH(z) =

∫ ∞

ν0

4πJ0(ν , z)

hν
σν(H)dν , (6.21)

and the collisional ionization rate βH(T ) at T = 104K , is (Cen, 1992)

βH = 6.22× 10−16[cm3s−1], (6.22)

As the UV flux penetrates the outflow, it will be attenuated by the outer layers of neutral

hydrogen (the fraction of atoms that remained neutral). The UV flux reaching an inner layer

of the HI region is attenuated by this self-shielding process according to

J(ν) = J0(ν)e
−τ(ν), (6.23)

where J0(ν) is the original, un-shielded UV flux, and the optical depth τ(ν) when UV photons

travel a distance d inside the HI region (coming from outside) is given by

τ(ν) = σν(H)

∫ d

Rout

nH(r)dr. (6.24)

The photoionization rate is computed from the outer radius inwards. For each shell inside

the outflow, ΓH is computed taking into account the attenuation given by equations (6.23)

and (6.24), making the photoionization rate smaller as photons penetrate inside the HI re-

gion.

Figure 6.1 shows two typical number density profiles and the effect of including the pho-

toionization by the UV background. The optically thin approximation shown is obtained when

using J0(ν) in Eq. (6.21), which translates into a constant attenuation. The result of the full
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calculation, including self-shielding, is very similar to the optically thin approximation for the

outer layers of the outflow, since at large radii the number density of neutral hydrogen is very

small. However, at some point there is a break and the outer layers start attenuating signif-

icantly the penetrating UV flux, thus bringing the number density profile back to its original

form given by Eq. (6.16).

Figure 6.1 also shows that the effect of the UV background is different at these two red-

shifts: At z = 0.2, galaxies have in general larger radii compared to z = 3, so the inner radius

of the outflow is significantly larger too. This makes the number density in the medium lower

than at z = 3, thus making the outflow more permeable to the UV background. In detail, the

effect of the UV background at modifying the number density profile of neutral hydrogen will

depend on the strength of the UV flux itself, which peaks at z ∼ 1−2 and has a sharp decline

with decreasing redshifts and a slower decline at high redshifts (Haardt and Madau, 1996,

2001). The number density of the medium, on the other hand, will depend on the physical

parameters of the outflow itself, i.e. the mass ejection rate, radius and velocity for the Wind

model.

To assess the effect of the UV background on the Lyα emission properties of galaxies, we

select a subsample of galaxies from GALFORM spanning the whole luminosity range at dif-

ferent redshifts. Then, we run the Monte Carlo code with and without the modification of

the neutral hydrogen density profile due to the UV background, and we compare the escape

fractions obtained. Figure 6.2 shows this comparison. We see that, on average, the escape

fractions obtained when including the ionization of the UV background are higher. The dif-

ference is particularly noticeable at z = 0.2 and z = 3.0, due to a combination of the strength

of the UV background at z ∼ 3 (the photoionization rate ΓHI(z) resembles to some extent the

shape of the global star formation density evolution, since quasars and hot stars are the main

sources of UV radiation Haardt and Madau 1996, 2001), and the low densities of the outflows

since their inner radius at z = 0.2 are usually larger by about an order of magnitude to the

inner radii at z > 3, making, in general, the number densities lower. At z = 5.7 and z = 6.6

the UV flux is not strong enough to modify the neutral density profile of the outflows signif-

icantly, hence the escape fractions are only slightly larger when including the UV background.
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Figure 6.2: The effect of the UV background on the escape fraction for the

Wind model. The y-axis shows the resulting fesc when including the UV

background, whereas the x-axis shows the result with the UV background

switched off. The four panels show the escape fraction of a sub sample of

galaxies taken from GALFORM at redshifts z = 0.2, z = 3.0, z = 5.7 and

z = 6.6



6. Modelling the Lyα emission of galaxies in a hierarchical Universe 160

Therefore, we include the ionization of the extragalactic UV background in the outflows

of the Wind model following the method described above. Although the effect of the UV

background can be noticeable in the escape fraction for some galaxies, as shown in figure

6.2, when studying statistical properties of Lyα emitters in the Wind model such as the Lyα

luminosity function we notice that the results are very similar to what we obtain without

including the ionization of the outflow by the UV background. This means that the Lyα es-

cape is determined mainly by the intrinsic properties of the outflow and the extragalactic UV

background plays a secondary role.

On the other hand, we do not attempt to include the effect of the UV background on

the Shell model, since, in this case, the number density inside the outflow depends on the

physical thickness of the shell, which in turn depends on fth. As discussed in the previous

section, this parameter is considered to have an arbitrary value provided that fth ¦ 0.9. If

we include the UV background in the Shell model, the Lyα properties would depend on the

value of fth assumed, which is an unnecessary complication to the model.

6.4 Comparison between the two outflow models

In summary, each outflow model requires the following parameters, provided by GALFORM, to

compute the escape of Lyα photons for each galaxy: (i) The luminosity weighted half-mass ra-

dius 〈RLyα〉, (ii) The luminosity-weighted circular velocity 〈VLyα〉, and (iii) the mass-weighted

metallicity of the gas Zgas. In addition, the Shell model requires the mass of cold gas of the

galaxy Mgas, whereas the Wind model requires the mass ejection rate due to supernovae Ṁej.

Figure 6.3 shows the evolution of the above mentioned parameters in the redshift range

0.2 < z < 6.6, as a function of the intrinsic Lyα luminosity LL yα,0. It is worth noticing that

these parameter values are extracted directly from GALFORM, so they do not depend on the

details of the outflow model.

Figure 6.3a shows the relation of the cold gas mass with the intrinsic Lyα luminosity. As

expected, overall the cold gas mass increases with LL yα,0, since the latter is directly propor-

tional to the star formation rate of galaxies. At low LL yα,0 quiescent galaxies dominate the
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Figure 6.3: The evolution of the physical parameters used to define the

outflow models for z = 0.2 (green), z = 3.0 (orange) and z = 6.6 (pink).

Each panel shows, as a function of intrinsic Lyα luminosity, median values

for (a) the cold gas mass of the galaxy Mgas; (b) the mass ejection rate Ṁej;

(c) the luminosity-weighted half-mass radius 〈R1/2〉; (d) the luminosity-

weighted circular velocity 〈Vcirc〉; and (e) the mass-weighted metallicity of

the gas 〈Zgas〉. Error bars show the 25-75 percentiles.
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abundance of galaxies; however there is a luminosity range where bright quiescent galaxies

and faint starbursts coincide in the same LL yα,0 bin. In this luminosity range there is a dis-

continuity with the cold gas mass, since faint starbursts have smaller cold gas masses than

bright quiescent galaxies. Luminosities above this region are dominated by starbursts.

The transition between quiescent and starbursts occurs at log(LL yα[erg s−1 h−2]) ∼ 44

for z = 0.2 galaxies, and then it shifts to fainter luminosities for higher redshifts. At z = 6.6,

starbursts start dominating at log(LL yα[erg s−1 h−2])> 41.5. This reflects the overall change

in the importance of starbursts relative to quiescent star formation with redshift.

The mass ejection rate is not found to evolve significantly with redshift, as shown in

figure 6.3b, although it is tightly correlated with LL yα,0. The mass ejection rate due to su-

pernovae is directly proportional to the star formation rate, as shown in equations (6.12)

and (6.13). Since the relation between LL yα,0 and the star formation rate does not depend

on redshift, it is not surprising that the mass ejection rate does not evolve with redshift either.

The luminosity-weighted half-mass radius 〈R1/2〉 is the parameter that has the strongest

evolution with redshift, as shown in figure 6.3c. Galaxies at z = 0.2 have typical sizes of

〈R1/2〉 ∼ 1kpc/h. The typical size of galaxies decreases rapidly with increasing redshift,

falling by an order of magnitude or more at z = 6.6. In addition, 〈R1/2〉 is found to correlate

weakly with LL yα,0.

The circular velocity of galaxies depends both on their mass and half-mass radius. Since

the radius of galaxies correlates only weakly with the intrinsic Lyα luminosity, the luminosity-

weighted circular velocity 〈Vcirc〉 is found to correlate with LL yα,0, as shown in figure 6.3d, in

the same way as the luminosity-weighted cold gas mass 〈Mgas〉.

Finally, the mass-weighted metallicity 〈Zgas〉 correlates strongly with LL yα,0 regardless of

the redshift (figure 6.3e). The median metallicity of galaxies with log(LL yα[erg s−1 h−2]) >

43.5 is found to reach a maximum around 〈Zgas〉 ∼ 0.01− 0.03.

The parameters shown in figure 6.3 are fed into the Monte Carlo radiative transfer code

to produce the Lyα escape fraction fesc and the line profile. The net Lyα luminosity of the
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galaxy is simply

LLyα = fesc × LLyα,0, (6.25)

where LLyα,0 is the intrinsic Lyα luminosity computed by GALFORM, as described in Chapter 3

of this thesis.

The escape fraction of a given galaxy depends on the choice of the outflow model. In ad-

dition to the geometrical configuration of each model, the input parameters used to compute

the interior of the HI region are different as well. The number density in the Shell model is

a function of the total cold gas mass of a galaxy and its size, whereas in the Wind model the

number density depends on the mass ejection rate given by the supernova feedback model,

the size and the circular velocity of the galaxy. This difference translates into different pre-

dicted properties of Lyα emitters, as will be shown in the next section. However, even when

the column density, velocity of expansion and metallicity are the same, the two models will

give different the escape fractions and line profile shapes due to their geometrical differences.

Figures 6.4, 6.5 and 6.6 illustrate the different line profiles obtained when matching the

main outflow properties for outflows with different column densities. In order to make a fair

comparison between the Shell and Wind outflow models, we compare configurations with

the same column density, expansion velocities and metallicities. In addition, the inner radius

in the Wind model is chosen to be the same as the outer radius in the Shell model.

The line profiles obtained can be characterised by the frequency distribution of photons

according to the number of backscatterings (the number of times photons cross the inner

empty region) they experience before escaping. The frequency at which backscattered pho-

tons peak depends on the ratio of the expansion velocity Vexp to the thermal (or, more gen-

erally, thermal and turbulent) velocity of the atoms, Vth, as shown by Eq. (5.10) of Chap-

ter 5. When photons first hit the inner radius of the outflow, a fraction of them will be

backscattered. These photons will reach the opposite side of the medium with frequency

x ≈ −2Vexp/Vth ≡ 2xbs. From those, a fraction will be backscattered again, reaching the

medium at a different place with frequency x ≈ −3xbs, and so on. This simple argument

explains the position of the peaks in both models, as shown by the arrows in figures 6.4, 6.5

and 6.6, although each one contributes with a different proportion to the overall spectrum for
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Figure 6.4: Comparison of the Lyα spectrum obtained with the Wind and

Shell models for NH = 1020[cm−2]. The orange histogram shows the full

spectrum for each case, whereas the blue, red, green and purple lines show

the spectrum of photons which experienced 0, 1, 2 and 3 or more back-

scatterings before escaping, respectively. The coloured arrows show posi-

tion of the frequencies x = xbs, 2xbs, 3xbs and 4xbs, where xbs = −Vexp/Vth,

corresponding to the expected peaks for 0, 1, 2, and 3 backscatterings re-

spectively (see text for details). Different values for the expansion velocity

vexp and the metallicity Z are used, as shown in the legend of each box.

The temperature in all configurations is fixed at T = 10000[K].
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Figure 6.5: Similar to figure 6.4, but with Lyα spectra obtained for config-

urations with NH = 1021[cm−2].
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Figure 6.6: Similar to figure 6.4, but with Lyα spectra obtained for con-

figurations with NH = 1022[cm−2]. Notice the wider range in the x-axis.

The metallicity used in the configurations shown in the last two rows is

Z = 0.002 instead of Z = 0.02, as in figures 6.4 and 6.5.
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each model. Previous studies (Ahn, 2003, 2004; Verhamme et al., 2006) have also found this

relation between the peaks of backscattered photons and xbs in media with column densities

of the order of NH ∼ 1020[cm−2], although they do not attempt to study the line profiles for

higher optical depths as we do here. When studying very thick media we find that the peaks

are displaced considerably from their expected position based on the above simple argument,

as shown in figure 6.6, since the number of scatterings photons must undergo broadens the

profiles and reddens the peaks position.

Figure 6.4 shows the line profiles from media with a column density of NH = 1020[cm−2].

The Wind model, with an expansion velocity of Vexp = 200[kms−1], presents an asymmetric,

single peaked profile as opposed to the Shell model, which can be split into up to three visible

different peaks, each one formed by photons being backscattered a different number of times.

For a higher expansion velocity of Vexp = 500[kms−1] the line profiles change drastically

in both cases. In the Wind model there is a strong emission peak at the line centre of photons

which did not undergo any scattering, followed by a flat plateau with a sharp break at the

position of the first backscattering peak. For the same column density and expansion velocity,

the Shell model splits into two asymmetric profiles, generated by photons with zero and one

backscattering.

Figure 6.5 shows the same configurations as the previous case, but now the medium has

a column density 10 times higher. At this larger column density photons escape after a larger

number of scatterings, which is why the different profiles appear wider than in figure 6.4.

Moreover, for media with column density NH = 1022[cm−2] (figure 6.6), the Lyα profiles are

broader than the previous two cases, and the position of the peaks have also shifted consid-

erably. For very thick media only a small fraction of photons manage to escape the medium

with fewer than 2 backscatterings.

In general, the fraction of photons escaping after different number of backscatterings

depends on an effective optical depth τe ≡ τ(x = −(N + 1)Vexp/Vth), where N is the number

of backscatterings, and the velocity of the medium. With each backscattering photons are

redsfhifted and thus the optical depth is decreased. After a number of backscatterings photons

will reach an effective optical depth τe ® 1, which will enable them to escape from the
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medium.

For the configurations with NH = 1020[cm−2] shown in figure 6.4, photons reach τe ® 1

after the first backscattering, which is why this peak is dominant in the overall line profile.

On the other hand, for NH = 1022[cm−2], photons reach τe ® 1 after three or more backscat-

terings, which is why this one becomes the dominant peak in figure 6.6.

Figures 6.4, 6.5 and 6.6 also show the effect of including dust in the media described

above. Overall, dust seems to remove a similar fraction of photons at all escaping frequencies,

and the shape of the obtained profiles is not significantly different from the dust-free version.

In figures 6.4 and 6.5 we show media with a metallicity Z = 0.02. We found that for a

column density NH = 1022[cm−2] such value of the metallicity results in the absorption of all

photons, which is why in figure 6.6 we use instead Z = 0.002 to illustrate the effect of dust

attenuation. It is interesting to note that the configurations with dust in figures 6.5 and 6.6

have different metallicities but the same optical depth of dust (since it also depends on the

column density).

However the escape fractions found are a factor 3-5 smaller in the configurations with

NH = 1022[cm−2] than in the configurations with NH = 1021[cm−2], since the number of

scatterings is higher in the former case, thus making photons more sensitive to the same op-

tical depth of dust.

The shell model is found to be more sensitive to dust than the outflow model for config-

urations with the same column density, expansion velocity, metallicity and radius. This is a

direct consequence of the median number of scatterings photons undergo inside the medium,

which is found to be approximately twice as many in the shell compared to the outflow in

all configurations studied. However, it must be kept in mind that for these calculations the

median number of scatterings is obtained using the accelerated version of the code, so it does

not corresponds to the physical median number of scatterings for the configurations studied.
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6.5 A grid of configurations to compute the escape fractionGALFORM typically generates samples numbering many thousands of galaxies brighter than a

given flux limit at a number of redshifts. The task of running the radiative transfer code for

each one of those galaxies is infeasible considering the time it takes the Monte Carlo code

to reach completion, which varies from a few seconds up to several hours for some extreme

configurations.

Therefore, this motivates the need to develop an alternative method to assign a Lyα es-

cape fraction for each galaxy predicted by GALFORM. Instead of running the radiative transfer

code to each galaxy, we construct a grid of configurations spanning the whole range of galaxy

properties, as predicted by GALFORM.

The first step to construct the grid is to choose which parameters will be used. In princi-

ple, each outflow model (wind or shell) requires 4 input parameters from GALFORM: three of

these, 〈Vcirc〉, 〈R1/2〉 and 〈Zgas〉 are used by both models. In addition, Ṁe j is required in the

Wind model, and MHI in the Shell model.

However, a grid of models using four parameters becomes rapidly inefficient when trying

to refine the grid. A grid with an appropriate binning of each parameter can have as many

elements as the number of galaxies for which the grid was constructed for, and hence also

becomes prohibitively expensive.

Therefore, we look for degeneracies in the escape fraction when using combinations of

the input parameters from GALFORM, in order to reduce the number of parameters for the

construction of the grid. The idea is to find a combination of parameters which, when kept

fixed while varying its individual components, gives the same escape fraction.

The natural choice for this is to use the column density NH as one parameter. Neufeld

(1990) found that the escape fraction from a homogeneous, dusty slab is a function of the

optical depth at the line centre τ0 and the optical depth of absorption τa (see equation 5.98

in Chapter 5). Both quantities are, in turn, a function of the column density NH . In the Shell

model, NH ∝ Mgas/〈R1/2〉2, whereas in the Wind model NH ∝ Ṁe j/(〈R1/2〉Vexp). Although
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Figure 6.7: The Lyα escape fraction of configurations with different param-

eters but with a fixed combination of 2 parameters. The top panels show

the effect of varying the mass ejection rate Ṁej (left) and the inner radius

Rinn (right) but keeping the ratio Cwind = Ṁej/Rinn constant. The lower pan-

els shows the same effect on the mass of the outflow Mgas and the radius

Rout when fixing Cshell = Mgas/R
2
out. Different colours correspond to dif-

ferent choices of Cwind, Cshell known to give different values of the escape

fraction.
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Figure 6.8: Comparison of the escape fraction obtained using a direct cal-

culation ( fesc,RT) or interpolating from a grid ( fesc,grid). Points represent a

subsample of ∼ 1000 galaxies selected from GALFORM at z = 0.2.

promising, we find that we do not recover a constant escape fraction in the Wind model

when the column density is kept fixed while varying its individual terms. The reason is that

the expansion velocity plays a more complicated role when computing the escape fraction,

with the escape fraction increasing rapidly with increasing velocity regardless of the other

parameters of the medium.

Figure 6.5 illustrates a suitable combination of parameters for each model which keeps

the escape fraction constant. In the Wind model, we find that the escape fraction is insensitive

to variations in Ṁej and Rinn when the parameter Cwind ≡ Ṁej/Rinn is left constant. Likewise,

in the Shell model, the escape fraction does not vary for different values of Mgas and Rout

when Cshell ≡ Mgas/R
2
out is fixed.

Therefore, we construct three-dimensional grids for each outflow model. In the Wind

model the parameters are Cwind, Vexp and Zgas, whereas in the Shell model we use Cshell, Vexp

and Zgas. We choose to cover each parameter with a bin size appropriate to recover the
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expected escape fraction with a reasonable accuracy when interpolating in the grid, but also

ensuring that the number of grid elements to be computed is significantly smaller than the

total number of galaxies in the sample.

We find that, when covering each parameter in logarithmic bins of 0.1 we get escape frac-

tions that are accurate enough, and the number of elements of the grid we need to compute

is usually a factor ∼ 20 smaller than the total number of galaxies in the sample.

We fix the number of photons to run for each grid point to compute the escape fraction,

since this will determine the speed at which each configuration will be completed. By study-

ing the resulting luminosity function of galaxies (see next section), we find that running the

code with a maximum number of photons Np = 1000 gives results which have converged

over the range of luminosities observed. This means that the minimum escape fraction we

are able to compute is fesc = 10−3. Although there are configurations where the fesc can be

lower than this, they do not contribute significantly to the luminosity functions, as we discuss

in the next section.

Figure 6.8 shows an example of the performance of the grid we use to compute the escape

fraction in the Shell model using a sub-sample of galaxies from GALFORM at z = 0.2, chosen

in a way to cover the entire range of intrinsic Lyα luminosities. The accuracy of the grid gets

progressively worse with lower escape fractions, since these have intrinsically larger errors

due to the constraint on the maximum number of photons used to compute fesc. However,

as discussed previously, we found that there is no need to reduce the size of the parameter

bins or increase the number of photons used to reproduce accurately the luminosity functions.

6.6 Reproducing the observational properties of Lyα emitters

The above procedure allows us to efficiently assign an escape fraction to each galaxy inGALFORM. However, the outflow models also have a set of free parameters which need to be

fixed before constructing the grid of configurations. In order to set the value of the free pa-

rameters [ fM , fV , fR] for the Shell model, and [ fV , fR] for the Wind model, we attempt to fit

the observed cumulative Lyα luminosity function (CLF) in the redshift range 0.2 < z < 6.6.
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To do this we generate a subsample of ∼ 1000 galaxies at different redshifts, and we run

the radiative transfer code directly over each one. By doing this we can efficiently seek for

the most suitable choice of parameters for each model, which is then used to construct the

multidimensional grid described previously.

6.6.1 Tuning the models with the observed Lyα luminosity functions

In principle, we would like to find a single set of parameter values to reproduce the observed

luminosity functions at different redshifts. Figure 6.9 shows a comparison of the predicted

Lyα CLFs at several redshifts compared to observational measurements, choosing the parame-

ter values to best fit the observed luminosity function at z = 3.0. Observational data is taken

from Deharveng et al. (2008) and Cowie et al. (2010) at z = 0.2; Gronwall et al. (2007),

Ouchi et al. (2008) and Rauch et al. (2008) at z = 3.0; Shimasaku et al. (2006), Ouchi et al.

(2008) and Hu et al. (2010) at z = 5.7; and Kashikawa et al. (2006) and Hu et al. (2010) at

z = 6.6.

Overall, the predicted CLFs at redshifts different from z = 3.0 do not reproduce the obser-

vational measurements. At z = 0.2, both models largely over-predict the abundance of Lyα

emitters. At z = 5.7 and z = 6.6, the predicted CLF with both models is below the observa-

tional measurements. Figure 6.9 also shows that the fiducial model, that we used in Chapter

3, with a constant escape fraction of fesc = 0.02 seems to reproduce well the observed CLFs at

all redshifts except z = 0.2. However, it must be kept in mind that the scenario of a constant

escape fraction, regardless of the galaxy properties, is unphysical, given the complexity of the

physics determining the escape of Lyα photons. Therefore, the difficulty to fit the observed

CLFs with a single choice of model parameters suggests that additional physical processes

not included in our model might be playing a crucial role, like the escape from a multi-phase

medium, the attenuation of the Lyα radiation by the IGM, or an erroneous calculation of the

intrinsic Lyα luminosity of galaxies, which does not depends upon our Lyα radiative transfer

modelling. Also, our outflow models are possibly too simplified, since we are assuming a

spherical geometry with a central empty region and photons generated in the centre of it.

We can test whether GALFORM computes the correct intrinsic Lyα luminosity by studying
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Figure 6.9: The cumulative luminosity function of Lyα emitters for redshifts

z = 0.2,3.0,5.7 and 6.6. Symbols show observational estimates of the

Lyα CLF. Green curves show the CLF obtained when using the intrinsic

Lyα luminosity, with no attenuation. The blue and gray curves show the

CLF obtained by using the Wind and Shell models, respectively, where the

free parameters of each model were chosen to match the observed CLF at

z = 3.0. The red dashed lines show the result of applying a constant escape

fraction (fesc = 0.02) in the CLF at every redshift.
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Figure 6.10: The unattenuated LF of Hα emitters at z = 0.2. Symbols show

observational data from different authors as described in the legend. The

blue curve show the Hα predicted LF of the Baugh et al. (2005) model.

the intrinsic (unattenuated) Hα luminosity function, since both emission-line luminosities

are directly related to the rate of hydrogen recombinations, which are in turn linked to the

production rate of Lyman continuum photons, so they differ only by their case B recombina-

tion emission coefficient. As discussed in Chapter 4, the Hα emission from galaxies is less

sensitive to dust than Lyα since these photons do not undergo resonant scattering in the ISM,

which makes their path lengths shorter than the typical path lengths Lyα photons experience.

In addition, the small attenuation by the existing dust in the galaxy can be estimated observa-

tionally by computing the ratio of the intensity of two or more emission lines and comparing

to what is expected from case B recombination (see, for example, Kennicutt, 1983, 1998b).

Figure 6.10 shows the resulting Hα luminosity function at z = 0.2 after correcting by

extinction removing the attenuation of the line by dust, i.e. using the intrinsic Hα luminosity.

Notice that this LF differs from the one shown in figure 4.1 of Chapter 4, where data atten-

uated by dust was shown instead. The observational estimates of the unattenuated Hα LF

are taken from Fujita et al. (2003); Hippelein et al. (2003); Ly et al. (2007); Morioka et al.

(2008); Pascual et al. (2001); Shioya et al. (2008); Sullivan et al. (2000) and Tresse and

Maddox (1998). The predicted Hα LF from GALFORM is found to be shifted by roughly a fac-
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z = 0.2 z = 3.0 z = 5.7 z = 6.6

Shell model

fM 0.10 0.10 0.10 0.10

fR 0.30 1.00 1.80 1.80

fv 1.00 1.00 1.00 1.00

Wind model

fR 0.01 0.15 0.50 0.50

fv 1.00 1.00 1.00 1.00

Table 6.1: Summary of the parameter values of the Shell and Wind models

used to fit the Lyα cumulative luminosity function at different redshifts.

tor ∼ 3 towards bright luminosities. This means that the intrinsic Lyα luminosity at z = 0.2

obtained with GALFORM could also be a factor ∼ 3 overestimated. Nevertheless, the Lyα lu-

minosities obtained at z = 0.2 are a factor ∼ 10 brighter than what is needed to reproduce

the observational results, meaning that the uncertainty in the intrinsic Lyα luminosity is not

responsible for the offset found in the LFs.

In order to reproduce the observed abundances of Lyα emitters at 0.2 < z < 6.6 we vary

the free parameters of the models at every redshift studied to find the best combination of

values. Table 6.1 shows the parameter values found for each redshift. For simplicity, we set

fV = 1.0 in both models. Also, we chose fM = 0.1 in the Shell model for every redshift, so, in

practise, only fR varies as a function of redshift. Therefore, all the model predictions shown

in the following make use of the parameter values shown in table 6.1.

Figure 6.11 shows the resulting CLFs when using the model parameters shown in table

6.1. When comparing the predicted CLFs from each model we notice a difference in the pre-

dicted slope from both models. This arises because the Wind model produces higher escape

fractions than the Shell model at faint luminosities, whereas at the bright end both models

give similar luminosity functions (since the free parameter values were chosen to match the

observed CLFs).

Current observational samples have only measured the faint end of the luminosity func-
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Figure 6.11: Same as figure 6.9, but here the free parameters of the models

were chosen to match the observed CLF at each redshift (see Table 6.1).

tion at z = 3.0 (Rauch et al., 2008), so it is difficult to assess which model reproduces the

faint end of the CLF the best at other redshifts. Both models seem to bracket the measure-

ment of the faint end of the CLF at z = 3.0, although the CLF predicted by the Wind model

is closer to the Rauch et al. (2008) data.

It is interesting to notice that the Shell model, with the choice of parameters shown in ta-

ble 6.1, produces similar CLFs to those obtained with a constant escape fraction of fesc = 0.02

over the luminosity range for redshifts z = 5.7 and z = 6.6. Nevertheless, as we will see next,

the escape fractions of galaxies predicted by the Shell model are anything but constant. To

avoid confusion, we emphasize that, in the following, all model predictions are calculated

using the parameter values shown in table 6.1.
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6.6.2 The Lyα escape fractions

As pointed out earlier, our outflow models are able to compute a minimum value for the

escape fraction of 10−3 when one photon out of 1000 escapes. However, in a significant frac-

tion of galaxies none of the photons escape from the outflows, as shown in figure 6.12. For

these cases, our models can only place an upper limit to the value of the real escape fraction.

As expected, the fraction of galaxies with real escape fractions fesc < 10−3 increases with

intrinsic Lyα luminosity, since, as shown in figure 6.3, Mgas, Ṁej and Zgas increase towards

higher LL yα,0, thus making the optical depth in the outflows thicker. Up to an intrinsic Lyα

luminosity of log(LL yα[erg s−1 h−2])∼ 42, the Wind model has a negligible fraction of galax-

ies with fesc < 10−3. The Shell model, on the other hand, shows a much higher fraction of

galaxies with fesc < 10−3, with approximately half of the galaxies at the faintest intrinsic Lyα

luminosity considered of log(LL yα[erg s−1 h−2]) = 40 having escape fractions below our nu-

merical limit of 10−3.

We assessed the effect of increasing the number of photons used to compute fesc from

1000 to 10000, finding that only a negligible fraction of galaxies have escape fractions in the

range 10−3 to 10−4. Furthermore, the effect of increasing the number of photons used by a

factor 10 is also negligible in the predicted Lyα luminosity functions, since the number den-

sity of galaxies with escape fractions below the numerical limit is small. Therefore, although

our outflow models cannot compute a non-zero escape fraction for all galaxies in GALFORM,

our statistical results are accurate enough and allows us to compare the distribution of escape

fractions observed with what our models predict.

Observational estimates of the Lyα escape fraction are generally based on either inferring

the SFRs from the intrinsic Lyα luminosity and comparing them to the UV continuum SFR,

or on the line ratio between Lyα and other non-resonant hydrogen recombination line. The

second method is regarded as more direct, since the first one depends on assumptions on the

stellar evolution models (the choice of the IMF, the modelling of dust) and the calibrations

of the SFR, whereas the second one only relies in the assumption that the extinction of the

comparison line can be estimated from an extinction curve, and that the intrinsic line ratio

corresponds to the ratio of the emission coefficients assuming case B recombination.
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Figure 6.12: The fraction of galaxies with fesc below 10−3 as a function of

intrinsic Lyα luminosity for redshifts z = 0.2 (top), z = 3.0 (middle) and

z = 6.6 (bottom). Grey and blue points show the results from the Shell

and Wind models respectively.
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Figure 6.13: The escape fraction as a function of extinction at z = 0.2.

Symbols show observational measurements. Blue and grey circles show

the median of the predicted distribution for the Wind and Shell models

respectively. The coloured regions show different percentiles around the

median values so that 10% to 50% of the simulated data is shown from

the darkest to the brightest colours. The left panel shows the predicted

E(B − V ) using the extinction of the continuum computed by GALFORM to

estimate the attenuation of the Hα and Hβ lines, whereas the right panel

shows the predicted E(B − V ) using the extinction computed by using the

column density and metallicity of the outflows.
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For this reason we focus on the escape fractions measured using line ratios. These are

often presented as a function of dust extinction E(B − V ) estimated from non-resonant re-

combination lines such as Hα and Hβ (Atek et al., 2008, 2009; Östlin et al., 2009; Hayes

et al., 2010a).

The method usually consists of inferring E(B− V ) by using (Atek et al., 2008)

E(B− V ) =
2.5× log(2.86/Robs)

k(λα)− k(λβ)
, (6.26)

where Robs = fHα/ fHβ is the measured line ratio between Hα and Hβ , and k(λα) = 2.63, k(λβ) =

3.71 are the values of the extinction at each corresponding wavelength from the Cardelli et al.

(1989) extinction curve. The constant 2.86 corresponds to the assumed intrinsic line ratio

under case B recombination for a medium at a temperature of T = 10000[K]. (Osterbrock,

1989)GALFORM predicts the intrinsic and attenuated Hα and Hβ luminosities, so we can use

these to compute E(B − V ) from equation (6.26). Moreover, the attenuation at each line is

computed as the attenuation of the continuum at each corresponding wavelength using the

radiative transfer model of Ferrara et al. (1999), taking into consideration the density profiles

of the disk and bulge and a given inclination, as discussed in Chapter 2 of this thesis.

Alternatively, we can also calculate the attenuation of Hα and Hβ when passing through

the outflow, since we know the column density and the metallicity of the outflow in each

galaxy. The line ratio is then computed as

Robs =
LHα,0

LHβ ,0
e[τa(Hβ)−τa(Hα)], (6.27)

where LHα,0 and LHβ ,0 are the intrinsic Hα and Hβ luminosities predicted by GALFORM re-

spectively, and τa at each line can be computed by using equations (6.9) and (6.10).

Figure 6.13 shows the predicted relation between the Lyα escape fraction and the extinc-

tion E(B− V ) compared to observational data from Atek et al. (2008) and an analysis of UV

spectroscopic data from the GALEX and IUE surveys by Atek et al. (2009).
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The model predictions shown in figure 6.13 include only galaxies with log(LL yα[erg s−1 h−2])>

41.5, in order to reproduce the selection of Lyα emitters in the GALEX survey (Deharveng

et al., 2008), although it is worth pointing out that the observational points shown in fig-

ure 6.13 do not represent a statistical sample, and instead are measurements of individual

sources.

Overall, both models show that with increasing extinction, the escape fraction of Lyα

decreases, which is in qualitative agreement with the observations. The E(B − V ) values

computed with the dust extinction model of GALFORM show a stronger anti-correlation which

seems to agree better with the observational results than the E(B − V ) computed with the

extinction due to the outflows. In this case, the Wind model predicts a flatter correlation

between fesc and E(B− V ) than the Shell model.

As we will see later, the difference on the predicted E(B − V ) value is directly related

to the column density NH of the outflow, and, in general, the Wind model predicts a larger

column density for the outflows than the Shell model.

6.6.3 The Lyα UV luminosity function

Observationally, the lower amplitude of the bright end of the Lyα LF at z = 6.6 compared

with the Lyα LF at z = 5.7 has been suggested as evidence that the ionization state of the

IGM is different between these two redshifts (Kashikawa et al., 2006). This interpretation is

supported by two arguments: first, observational data seems to be consistent with little or

zero evolution in the Lyα LF between z = 3.0 to z = 5.7 (Shimasaku et al., 2006; Ouchi et al.,

2008), so it is at least surprising that there is little evolution over a time period of over 1 Gyr,

and then a significant evolution over ∼ 0.2 Gyrs. The second argument is the measured lack

of evolution of the UV LF of Lyα emitters from z = 5.7 to z = 6.6 (Kashikawa et al., 2006),

which is assumed to be insensitive to the ionization state of the Universe.

Figure 6.14 shows the UV LF of galaxies selected as Lyα emitters at redshifts z = 5.7 and

z = 6.6. Here, the UV magnitude corresponds to the z′-band of the Subaru Suprime-Cam

(with mean wavelength λz′ ≈ 9500Å), which, in the rest frame at z ≈ 6 gives a mean wave-

length around 1300Å. Observational data at z = 5.7 comes from Shimasaku et al. (2006),
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Figure 6.14: The UV luminosity function of Lyα emitters at z = 5.7 (in blue)

and z = 6.6 (in red). Different symbols show observational measurements

of the UV LF from a sample of Lyα emitters. The dotted lines show the

predicted UV LF of the Shell model. The dashed line shows the predicted

UV LF of the Wind model.
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and at z = 6.6 from Kashikawa et al. (2006).

The obtained UV LFs with the Shell model seem to be consistent with the observational

measurements at both redshifts, whereas the Wind model predicts a consistent UV LF at

z = 5.7 only. The UV LF at z = 6.6 in the Wind model has a lower amplitude than the ob-

served one, which is consistent with the offset in the Lyα CLF at z = 6.6 shown in figure 6.11.

It is interesting to notice that the Shell model seems to be more consistent with the lack

of evolution in the UV LF at these two redshifts, whereas the Wind model predicts an offset

of the order of 1 magnitude. The Baugh et al. (2005) version of GALFORM does not include

a treatment of the attenuation of light by the IGM, although it does prevent the cooling of

haloes with Vcirc < 60[kms−1] at z < zreio, where the redshift of reionization is assumed to

be zreio = 10. Therefore, our predictions show that current observational measurements are

not sufficient to invoke a partial ionization state of the IGM at redshifts z ∼ 6 to explain the

Lyα and UV luminosity functions. Instead, the relative number densities between z = 5.7 and

z = 6.6 are sensitive, in our case, to the choice of the outflow model.

6.6.4 The observed Lyα line profiles

Several observational measurements of the Lyα line profiles show characteristic features

which suggest the presence of outflows in galaxies (e.g. Shapley et al., 2003; Kashikawa

et al., 2006; Dawson et al., 2007; Hu et al., 2010; Kornei et al., 2010). Figure 6.15 shows the

result of stacking the Lyα line profiles of a subsample of galaxies from GALFORM at different

redshifts. The limiting luminosity used, log(LL yα[erg s−1 h−2]) > 42.0, is set to reproduce a

typical Lyα limit from a high redshift survey.

We find that the stacking of Lyα profiles reveals an asymmetric peak in both models at

all redshifts studied. Furthermore, the detailed shape of the profile depends on the outflow

model used. The Shell model produces narrow asymmetric profiles, with increasing FWHM

for lower redshifts. It also produces a prominent double peaked profile at z = 0.2, evidenc-

ing the backscattering process discussed in section 6.4. A very small peak at the line centre,

corresponding to photons escaping without experiencing any backscattering, is also evident
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Figure 6.15: The stacked Lyα line profile at redshifts 0.2< z < 6.6 for both

models. The line profiles of galaxies with log(LL yα[erg s−1 h−2]) > 42.0

and EWrf > 20 Å were stacked. The gray and blue line shows the obtained

stacked spectra with the Shell and Wind models, respectively.



6. Modelling the Lyα emission of galaxies in a hierarchical Universe 186

Figure 6.16: Stacked Lyα spectra of samples at z = 5.7 (red) and z = 6.6

(blue). Figure taken from Hu et al. (2010).

at higher redshifts.

The Wind model, on the other hand, shows less evolution in the shape and width of the

Lyα profiles over the redshift range studied. The most noticeable difference between the pre-

dicted profiles in both models is the difference in the position of the main peak. The peaks in

the Wind model seems to be redshifted by ∼ 3Å at all redshifts compared to the Shell model.

In addition, at z = 0.2 the Wind model predicts a first backscattering peak that is much less

prominent than in the Shell model. The FWHM of the line profiles are larger by a factor ∼ 2

in the Wind model compared to the Shell model, except at z = 0.2, at which both models

give comparable widths of the line profiles.

A qualitative comparison with available observational data seems to support the shape

of the predictions of the Shell model. For example, figure 6.16 shows stacked Lyα profiles

taken from Hu et al. (2010) at z = 5.7 and z = 6.6. The stacking is made over the good

quality data, and consists of normalising the observed Lyα profiles to unity and then averag-
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ing over the normalised spectra. The resulting stacked spectra agree qualitatively well with

both models, but the width of the predicted stacked profiles with the Shell model seems to

be in closer agreement to the observational data of Hu et al. (2010) than the Wind model.

Nevertheless, it is not possible to rule out the predictions of any of the models on the basis

of a qualitative analysis. A more detailed analysis, including the absorption of continuum

emission and comparing to more observed Lyα profiles is needed, and it will be presented in

a future work.

6.6.5 The Lyα Equivalent width distribution

The EW measures the strength of the line with respect to the continuum around it. We

compute the EWs simply by taking the ratio of the predicted Lyα luminosity of galaxies and

their continuum around the Lyα line computed by GALFORM, including attenuation by dust.

Figure 6.17 shows a comparison of the EW distribution measured at different redshifts with

the predictions from our outflow models. In order to present a fair comparison between the

observational measurements and the model predictions, we impose the luminosity cut of the

observed sample on the model predictions.

At z = 0.2, both outflow models are consistent with the EW distribution of the Cowie

et al. (2010) sample. In detail, both models show little differences between them, and both

decrease the abundance to higher values of EW extending to EWrf ∼ 300Å, whereas the ob-

servational data shows a sharp break at around EWrf ∼ 150Å.

At z = 3.0, we compare the model predictions with the samples at z = 3.1 and 3.7

from Ouchi et al. (2008), taking the Lyα limiting luminosity to be the same as the sample at

z = 3.1. Both observational measurements seem to peak at around EWrf ∼ 100Å and then

decline until reaching a maximum value of EWrf ∼ (150,250)Å, for the z = 3.1 and z = 3.7

samples respectively. The EWs predicted from the models show a similar distribution. How-

ever, both models predict EWs reaching values up to EWrf ∼ 450Å. The majority of the EWs

predicted by both models are, as shown in figure 6.17, consistent with the values measured

observationally.
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Figure 6.17: The equivalent width (rest-frame) distribution of Lyα emitters

for 0.2< z < 6.6. Observational measurements are shown in red and green

histograms. The Wind and Shell models histograms are shown in blue and

gray respectively. Model galaxies selected to construct the EW distributions

shown have a Lyα luminosity greater than the value shown in the labels, to

reproduce the observational selection at each redshift.
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The EWs from the outflow models at z = 5.7 and z = 6.6 are distributed in a completely

different way to the observational samples of Ouchi et al. (2008) at z = 5.7 and Taniguchi

et al. (2005) at z = 6.6. In both cases, the Wind model presents a flat distribution, without

any well defined single peak. The Shell model, on the other hand, peaks strongly at around

EWrf ∼ 200Å for z = 5.7 and EWrf ∼ 100Å at z = 6.6.

The disagreement in the EW distributions between the model predictions and the obser-

vations at z > 5 is difficult to explain from figure 6.17 alone. A possible explanation for this

general disagreement is the predicted abundance of Lyα emitters at the bright end of the LF.

The Shell model predicts more bright emitters than the observed data, and the Wind model

does the opposite, as shown in figure 6.11. This difference could translate into the distribu-

tion of EWs shown in figure 6.17.

However, a more intrinsic difference is noticed when we study the relation between the

EW and the Lyα luminosity, as shown in figure 6.18. This relation is basically determined

by the dependence of the extinction of the continuum around the Lyα line for different Lyα

luminosities.

Figure 6.18 confirms the good agreement between the model predictions and the ob-

servational data at z = 0.2, where both models seem to reproduce well the observational

measurements. At z = 3.0, however, the observational data are found at luminosities much

brighter than those predicted by the outflow models. The lack of bright Lyα emitters at

z = 3.0 predicted by the outflow models occurs because galaxies with the highest intrinsic

Lyα luminosities are found to have fesc < 10−3, and thus they do not appear in the model

predictions. The relation between the predicted escape fraction and the intrinsic Lyα lumi-

nosity is studied in more detail in the next section.

At z = 5.7 and z = 6.6, we find that both outflow models predict Lyα EWs higher than

those measured. This is translated into the disagreement found in the EW distribution shown

in figure 6.17 between the observational data and the outflow models predictions. In detail,

the Shell model predict EWs that are only slightly above the measured values.

However the Wind model predicts EWs an order of magnitude or more above the mea-

sured EWs. The difference in the predicted values of the EWs is due to the escape fractions
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Figure 6.18: The rest-frame Lyα EW as a function of Lyα luminosity for dif-

ferent redshifts, as labelled on the plot. The same observational data shown

in figure 6.17 is shown here with red circles and, in particular, with green

asterisks for the data of Ouchi et al. (2008) at z = 3.7 . The arrows show

data with only lower limits on the measured EW , taken from Taniguchi

et al. (2005) at z = 6.6. The model predictions for the Shell and Wind

model are shown in grey and blue respectively. The coloured regions show

the 45-55, 40-60, 35-65, 30-70 and 25-75 percentiles with the darkest to

brightest colours, respectively.
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predicted, which differ greatly at high luminosities.

Nevertheless, at z = 6.6, most of the EWs measured by Taniguchi et al. (2005) are lower

limits only, so in reality the comparison between measured and predicted EWs could agree

better at this redshift with improved observational measurements of EWs. Also, as discussed

previously, the IGM is expected to play an important role attenuating the observed Lyα lumi-

nosities at these redshifts. This effect should also modify significantly the measured EWs.

6.7 The physical properties of Lyα emitters

In the following we study some intrinsic physical properties of Lyα emitters that cannot be

observed directly, but they prove to be helpful to understand the physics that shapes the es-

cape of Lyα photons.

The most fundamental prediction of our models is the Lyα escape fraction from galaxies,

since all the properties studied in this chapter depend directly on fesc. Therefore, we begin by

studying the distribution of predicted fesc from the two outflow models, shown in figure 6.19.

Perhaps not surprisingly, given the differences in the predictions from both models shown

in the previous sections, the two models give completely different abundances of galaxies

with a given escape fraction. Overall, it is surprising though that the number density of

galaxies at a given fesc does not seem to evolve dramatically throughout the redshift range

0.2< z < 6.6, considering that the properties of the outflows do evolve in redshift.

The Wind model predicts that the majority of galaxies have fesc ∼ 1. This is consistent

with the shape of the predicted CLFs shown in figure 6.11, where low luminosity galaxies

(the most abundant) showed Lyα luminosities very close to their intrinsic values, hence pro-

ducing a very steep luminosity function.

The Shell model has a much flatter relation between the abundance of galaxies and their

escape fractions. Galaxies with high escape fractions are slightly more abundant than galax-
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ies with low escape fractions. This correlation is erased for higher redshifts and instead the

Shell model shows a weak preference towards higher escape fractions.

In order to understand the predicted fesc of both models, and hence the Lyα luminosities,

we now focus on the column density distributions, since as shown in figures 6.4,6.5 and 6.6,

the value of the column density NH plays an important role in shaping the Lyα line profile

and the escape fraction fesc, given its proportionality to the optical depth of scattering and

absorption.

Figure 6.20 shows the predicted hydrogen column density as a function of Lyα luminos-

ity. In the left panel we see how the predicted column densities correlate with the intrinsic

Lyα luminosity at different redshifts. Overall in the Wind model the column densities in-

crease towards higher LL yα,0. This correlation is mainly driven by the relation between the

mass ejection rate and the intrinsic Lyα luminosity. Thus, galaxies with intrinsic Lyα lumi-

nosities of log(LL yα[erg s−1 h−2])∼ 40 are predicted to have outflows with column densities

around NH ∼ 1021[cm−2], whereas galaxies with the brightest intrinsic Lyα luminosities have

NH ∼ 1023[cm−2]. This behaviour is common throughout the redshift range 0.2 < z < 6.6,

although in detail the correlation becomes noisier towards higher redshifts.

When studying the column density distribution in the Wind model as a function of the

predicted Lyα luminosity (i.e. including the escape fraction computed for each galaxy) the

relation changes significantly, becoming noisier at z = 0.2. The highest column densities are

found in fainter galaxies (in Lyα luminosity), basically because when the medium is very opti-

cally thick then the escape fraction is very small, thus displacing galaxies with a high intrinsic

Lyα luminosity to fainter luminosity bins. However, at higher redshifts the most luminous

galaxies still host the outflows with the highest column densities, although now the median

hydrogen column density for the brightest galaxies decreases to NH ∼ 1022[cm−2].

The Shell model, on the other hand, predicts a nearly constant column density slightly

below NH ∼ 1022[cm−2] regardless of the intrinsic Lyα luminosity at z = 0.2. The higher

cold gas mass of a bright Lyα emitters is compensated by the slight increase in their radius,

as shown in figure 6.3, since the column densities predicted by the Shell model are more
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Figure 6.20: The column density of hydrogen for galaxies with different

Lyα luminosities at redshifts z = 0.2 (top), z = 3.0 (middle) and z = 6.6

(bottom). The left column shows the column density as a function of intrin-

sic Lyα luminosity, whereas the right column shows the column densities

as a function of the Lyα luminosity predicted by the outflow models. The

predictions of the Wind model are shown in blue, and the Shell model is

shown in grey. The circles show the median of the column densities for

different luminosity bins. The coloured regions show different percentiles

around the median covering from 10% to 50% of the data from the darkest

to the brightest colours.
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sensitive to the radius of galaxies than the Wind model. At higher redshifts the column

densities fluctuate in a rather noisy fashion roughly between NH ∼ 1021−1023[cm−2]. When

using the predicted Lyα luminosity instead of the intrinsic, then the Shell model predicts a

consistent anti-correlation between the hydrogen column densities and the Lyα luminosity at

all redshifts studied, as shown in figure 6.20.

It is clear from figure 6.20 that Lyα emitter properties cannot be characterised only by

the column density of the medium where photons travel alone. Instead of looking at the de-

pendence of the escape fraction on each property of the outflow, we turn our attention to the

dependence of the escape fraction on the intrinsic Lyα luminosity LL yα,0, as shown in figure

6.21.

The intrinsic Lyα luminosity is a good tracer of the physical processes relevant to the es-

cape of Lyα photons, since it is proportional to the star formation rate of galaxies, due to the

fact that active star forming galaxies produce higher rates of Lyman continuum photons than

quiescent galaxies. Hence, LL yα,0 scales linearly with the mass ejection rate from supernova

outflows, as shown in figure 6.3. The cold gas mass was also shown to scale linearly with

LL yα,0 for both quiescent and starburst galaxies.

Overall, figure 6.21 shows that both outflow models predict a decline in fesc with increas-

ing LL yα,0. At z = 0.2 the Shell model predictions do not appear on the plot since this relation

is dominated by galaxies which have fesc < 10−3 (see also figure 6.12).

The Wind model, on the other hand, predicts escape fractions near unity for low intrinsic

Lyα luminosities. These galaxies are responsible for the steep slope of the predicted cumu-

lative luminosity function (see figure 6.11), since their net luminosity is very close to the

intrinsic one. For higher luminosities there is a sharp decrease in the predicted fesc reaching

the lowest possible escape fraction for the brightest galaxies. The Shell model also presents a

sharp transition between higher and lower escape fractions for high redshifts. However, at a

given intrinsic Lyα luminosity the escape fraction is generally lower in the Shell model than

in the Wind model.
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Figure 6.21: The escape fraction as a function of the intrinsic Lyα luminos-

ity at z = 0.2 (top), z = 3.0 (middle) and z = 6.6 (bottom). The predictions

of the Wind model are shown in blue, and the Shell model is shown in grey.

The circles show the median of the escape fraction at different luminosity
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Figure 6.22: The escape fraction as a function of the optical depth of ab-

sorption τa (left column) and the metallicity of the gas in the outflow Zgas

(right column) at z = 0.2 (top), z = 3.0 (middle) and z = 6.6 (bottom).

The coloured regions and circles represent the results from the Shell and

Wind models, in the same way as in figure 6.21.

6.7.1 The role of dust

Another important factor in the modelling of the escape fraction of Lyα emitters is the pres-

ence of dust in the outflows. It is generally accepted that Lyα emitters are sensitive to even

small amounts of dust. The effect of dust on the escape fraction has only been inferred from

the extinction E(B− V ), as shown in figure 6.13 for z = 0.2.
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Here we study a more fundamental dependence of fesc on the dust content of the galaxy.

Figure 6.22 shows a tight correlation between the escape fraction and the optical depth of

absorption τa (see equation 6.10), and the more complex relation between the escape frac-

tion and the metallicity of the gas in the outflow Zgas.

As expected, the escape fraction anti-correlates with the optical depth of absorption.

Galaxies with low values of τa have low amounts of dust in the outflow, and, thus most

of the photons manage to escape regardless of the other physical properties of the medium

they travel through. However, the point at which the escape fraction turns to low values is

different for the two models: the Shell model is more sensitive to dust than the Wind model,

for the same value of τa.

This conclusion is consistent with what we found in the comparison of fesc with E(B− V )

(figure 6.13), and is a direct consequence of the larger number of scatterings photons must

undergo in the Shell model compared to the Wind model, as we found in Section 6.4 (see

figures 6.4, 6.5 and 6.6). It is important to emphasize that this is an intrinsic property of

the outflow models, since configurations with the same physical properties are found to have

different escape fractions depending on the outflow model we use.

Since the metallicity is an indicator of the the dust content of galaxies, perhaps naively

we could expect the metallicity of the gas Zgas to correlate somehow with the Lyα escape

fraction. However, as figure 6.22 shows, the relation between fesc and Zgas does not resemble

the one found for τa, except perhaps at z = 3.0. At z = 0.2, for example, the escape fraction

is found to be nearly unity for both low and high metallicity outflows in the Wind model.

Likewise, in the Shell model the escape fraction fluctuates between lower and higher values

of fesc over the whole metallicity range. At z = 6.6 both models predict an anti-correlation

between fesc and Zgas, although the Shell model predicts a region of high escape fractions for

intermediate metallicities. This is not really surprising since the amount of dust is given by

a combination of the metallicity of galaxies and their column densities, which were found to

vary significantly for different luminosities, as shown in figure 6.20.
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6.7.2 Can Lyα emitters be used to trace the star formation rate?

Having in mind all the physical processes contributing to the way Lyα photons escape from

galaxies, it is interesting to investigate whether the Lyα luminosity can be considered as a

tracer of the star formation rate. Since Lyα is a hydrogen recombination line directly related

to the production rate of Lyman continuum photons, we would expect the Lyα luminosity to

correlate with the star formation rate. Figure 6.23 shows this relation in different redshifts.

As expected, the intrinsic Lyα luminosity shows a tight correlation with the SFR at all

redshifts. The Lyα luminosities obtained when using the outflow models are, however, cor-

related to the SFR in a different way. For example, at z = 0.2, the Wind model predicts that

the Lyα luminosity of galaxies has a very weak correlation with the SFR.

The dotted line in figure 6.23 shows where the median of the intrinsic Lyα luminosity

would be placed if adding a constant escape fraction of fesc = 10−3 to it (which corresponds

to the resolution limit of our outflow models), so it represents an upper limit under which

the median and percentiles shown are dominated by galaxies with fesc < 10−3. As figure 6.23

shows, the samples on bins with high SFRs are dominated by galaxies with fesc < 10−3.

Since the Shell model predictions are dominated by galaxies with fesc < 10−3, as shown

in figure 6.12, it is not possible to establish a correlation between the Lyα luminosity and the

SFR, except at the lower bins of SFR. The Wind model, on the other hand, exhibits a tight

correlation in the regime where the escape fractions are high, and thus the predicted Lyα lu-

minosities are very close to the intrinsic ones. However, regardless of the redshift, the median

luminosity falls rapidly below our resolution limit for galaxies with SFRs ≥ 1[M⊙ yr−1h−1].

In summary, whether there is a correlation between the observed Lyα luminosity and the

star formation rate of galaxies or not depends entirely on the model assumptions, which is

why it is not possible to determine a one-to-one correlation between both galaxy properties.

Hence, our results stress the need to compute the escape fractions of Lyα emitters if the Lyα

luminosity is to be thought of as a reliable indicator of the star formation rate.



6. Modelling the Lyα emission of galaxies in a hierarchical Universe 200

log(SFR [MO • h
-1 yr-1]

lo
g

(L
L

y
α[

er
g

 s
-1

 h
-2

])      
38

39

40

41

42

43

44 z = 0.2
LLyα,0
Shell
Wind

     
38

39

40

41

42

43

44 z = 3.0
LLyα,0
Shell
Wind

-3 -2 -1 0 1
38

39

40

41

42

43

44 z = 6.6
LLyα,0
Shell
Wind

Figure 6.23: The Lyα luminosity as a function of the SFR for redshifts

z = 0.2 (top), z = 3.0 (middle) and z = 6.6 (bottom). The green colour

represents the intrinsic Lyα luminosity, whereas the grey and blue are the

Shell and Wind models predictions respectively. The coloured regions show

different percentiles around the median covering from 10% to 50% of the

data from the darkest to the brightest colours. The dotted black line cor-

responds to a factor 10−3 of the median of the intrinsic Lyα luminosity, to

illustrate the lowest luminosity the models can predict at each SFR bin.
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6.8 Summary and conclusions

In this chapter we couple the galaxy properties obtained from the Baugh et al. (2005) ver-

sion of the semianalytical model GALFORM to a Monte Carlo radiative transfer model of Lyα

photons to study the properties of Lyα emitters in a cosmological context.

Based on the observational evidence of galactic outflows shaping the asymmetric Lyα line

profiles, we developed two different outflow models, each one defined using the predicted

properties of galaxies in GALFORM in a slightly different way. Our Shell model, which consists

in a spherical expanding thin shell, has a column density NH proportional to the cold gas mass

in the ISM of galaxies. Our Wind model, on the other hand, consists of a spherical expanding

wind with decreasing number density. The column density in the Wind model is related to the

mass ejection rate from supernovae, computed by GALFORM as a mode of feedback of galaxies.

The different geometry and detailed number densities inside the outflows for each model

produce significantly different Lyα profiles and escape fractions, as shown in figures 6.4, 6.5

and 6.6. Hence, the global properties of Lyα emitters depend strongly on the assumed model

for the escape of Lyα photons.

We assessed the effect of the UV background in reducing the number density of neutral

hydrogen in the Wind model, and found that although the UV background can have a signif-

icant effect in shaping the number density profiles, the overall Lyα luminosities do not suffer

a dramatic difference, and thus, quantities like the luminosity function are unaltered when

activating the UV background.

In order to compute the Lyα escape fraction for each galaxy in a GALFORM output we con-

struct multidimensional grids covering the full range of parameter space in GALFORM galaxies.

In this way we obtain fesc by interpolating on the grid, thus obtaining the escape fractions in

a much more efficient way than computing fesc for each galaxy individually. Furthermore, to

optimise the number of configurations needed to construct the grids, we reduce the number

of parameters used by noticing that the quantities Cwind = Ṁej/Rinn and Cshell = Mgas/R
2
out

can describe the escape fractions in the Wind and Shell models respectively without the need

to specify Ṁej,Rinn and Mgas,Rout individually. The obtained escape fractions from the grids



6. Modelling the Lyα emission of galaxies in a hierarchical Universe 202

are sufficiently accurate to allow a robust comparison with the observational data.

In order to choose the free parameters of each model, we attempt to find the best values

to fit the observed cumulative luminosity function of Lyα emitters over the redshift range

0.2 < z < 6.6. Perhaps disappointingly, we found that a single choice of parameters cannot

reproduce the observed CLFs. The need to tune the free parameters of both models at each

redshift studied is a strong suggestion that there might be other physical processes determin-

ing the escape of Lyα photons. Perhaps the assumption of Lyα photons escaping through an

outflow of material is not correct at all, or instead other physical conditions are also playing

an important role, like the presence of a multi-phase medium (our model assumes that gas

and dust are distributed in the same way inside the outflow), the effect of a partially ionized

IGM, or perhaps a more sophisticated outflow model is necessary, including a non-spherical

geometry or velocity gradients inside the outflow.

When tuning the parameters to fit the observed CLFs, we notice that the value of fR in

both models increases for higher redshifts. The luminosity-weighted radius of galaxies, how-

ever, decreases rapidly for higher redshifts. This anti-correlation could suggest that there is

a preferential range of sizes for the outflows over which the escape fractions have the value

required to reproduce the observed abundance of Lyα emitters. Roughly speaking, when tak-

ing into account the value of fR for each outflow model, we find that the inner radius of the

outflows in the Wind model is of the order of ∼ 100pc for all redshifts, whereas in the Shell

model the outer radius is found at a scale of ∼ 500pc. We plan to investigate this further in

a future work.

Despite the above, both models show good agreement in the relation between the escape

fractions and the extinction, measured as E(B − V ). The equivalent width distributions are

consistent with the ones observed for z = 0.2 or z = 3.0, although both models fail to repro-

duce the observed EWs at z ∼ 6.

The Lyα line profiles of both models, although different, are consistent with what has

been observed by several authors. A more detailed comparison of stacked spectra, including

the absorption of the continuum around the Lyα line, could help understanding better which
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one of our models reproduce the Lyα line profiles better, and predict which physical prop-

erties can be inferred from the observed profiles. This is a natural extension of the present

work, and will be tackled in the future.

Perhaps the main differences in the predictions for Lyα emitters from the Shell and Wind

models is due to the abundance of galaxies with a given escape fraction. The Wind model

predicts that most of the galaxies have escape fractions close to 1, whereas in the Shell model

there is no preferred escape fraction for galaxies. The contrast between these two behaviours

is translated into the dependence of Lyα luminosities and the physical properties of galaxies.

For example, the column densities in the outflows for a given Lyα luminosity are found

to be different between the two models. Furthermore, even with the same column density,

it was shown that each model predicts a different Lyα profile and escape fraction, since the

number of scatterings differs between the two models.

We found that the metallicity does not correlate with the escape fractions in a simple way,

since the amount of dust in the outflows depend also in the column density of hydrogen in

our models. However, even at the same optical depth of absorption, both models predict a

different escape fraction, with the Shell model being more sensitive to dust than the Wind

model.

Finally, we showed that the observed luminosity cannot be easily interpreted in terms of

the star formation rate of galaxies. Depending on the range of SFRs and redshift, the Lyα

luminosity could be anti-correlated or positively correlated to the SFR, varying according to

the way the escape fraction is related to the intrinsic Lyα luminosity.

The models presented in this chapter for the emission of Lyα in galaxies represents our

first attempt towards a detailed understanding of the physical properties of these galaxies.

Despite the further investigation that is clearly needed to refine the model predictions, we

have shown the potential that the combination of a Monte Carlo radiative transfer model of

Lyα photons and a semianalytical galaxy formation model has to understand the properties

of these high redshift galaxies. With the advent of large observational campaigns in the forth-
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coming years focusing in detecting Lyα emitters at high redshifts, a physical understanding

of these galaxies will enable us to improve our knowledge of galaxy formation and evolution,

particularly in the high redshift Universe.



Chapter 7
Conclusions

Throughout this thesis we have studied the nature of emission-line galaxies from a cos-

mological perspective, with two goals in mind: first, to understand what can emission line

galaxies tell us about galaxy formation and evolution across cosmic time; and second, to as-

sess emission line galaxies as a cosmological tool to probe dark energy.

Many current and forthcoming observational surveys are designed to trace the large scale

structure of the Universe with emission-line galaxies (e.g. Nilsson et al., 2007a; Hill et al.,

2008; Cimatti et al., 2009; Blake et al., 2009). As reviewed in Chapter 1, a correct interpre-

tation of the outcome of those surveys can only be achieved with a detailed understanding of

the properties of emission-line galaxies.

To accomplish both tasks we make use of the GALFORM semianalytical model of galaxy

formation, which is described in detail in Chapter 2. Semianalytical models are ideal for our

purposes due to their statistical robustness (since samples with a large number of galaxies

can be generated at any desired redshift) and the efficient parametrisation of the physical

processes governing galaxy formation and evolution, which allows us to make predictions for

emission-line galaxies in cosmological scales.

We start in Chapter 3 by studying the clustering of Lyα emitters. We tackle the uncer-

tainty on the escape fraction of Lyα photons by assuming that is constant at all redshifts and

has a value equal to 0.02. This oversimplification reproduces, surprisingly, the abundance

and clustering of this galaxy population remarkably well when comparing to observational

measurements. The clustering properties from our model predict a weak dependence of the

clustering strength on Lyα luminosity, except for the brightest galaxies. At the present day,

typical Lyα emitters are less clustered than the dark matter. However, for higher redshifts,

the effective bias of Lyα emitters is found to evolve strongly with redshift, although weakly

205
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with luminosity.

Furthermore, many current and future Lyα surveys attempt to measure and characterise

the clustering of Lyα emitters using samples of galaxies that are not large enough in a cosmo-

logical sense, i.e. they suffer from a significant cosmic variance. Hence, we use our model to

predict the expected variance in a selection of current and forthcoming surveys by construct-

ing mock catalogues.

We expect our predictions to encourage the design of surveys of emission line galaxies

covering larger solid angles when clustering measurements are proposed to be undertaken,

especially for high redshift galaxies.

In Chapter 4 we then focus our attention on Hα emitters and attempt to assess their

performance at probing dark energy from a large redshift survey. Basically, there are two

possible configurations being considered in the design of space missions to survey galaxies

in the whole extragalactic sky. The first one makes use of slitless spectroscopy targetting Hα

emission, whereas the second one relies on slit spectroscopy of a magnitude selected sample

of galaxies in the H-band.

We find Hα emitters to be weakly clustered compared to H-band galaxies, mainly because

the former do not trace the highest density peaks of the dark matter distribution, since the

cores of galaxy clusters are dominated by massive and passive galaxies, and Hα emission

traces active star forming galaxies instead. The H-band, on the other hand, is found to trace

the massive structures. Nevertheless, for this reason Hα emitters are less affected by random

galaxy motions giving rise to fingers of god in redshift space, thus they are potentially better

for estimating cosmological redshift space distortions.

An analysis of the variance in the power spectrum for typical galaxy selections show that

an Hα emitter survey can be competitive with an H-band selected survey provided that Hα

emitters are selected down to faint enough fluxes. We predict the equation of state parameter

of dark energy wDE to be measured with an error < 1% for such cases.

In contrast to the Hα emission, Lyα is a resonant line with a large cross section of scatter-

ing, which means that photons typically experience much larger path lengths before escaping
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from a galaxy. This makes Lyα photons very sensitive to the presence of dust, in a way that

cannot be described by a simple extinction curve.

On the other hand, the increasing relevance of Lyα emitters as tracers of very high red-

shift galaxies and the many cosmological applications they can be used for motivates our

interest in developing a more physical model of the luminosities of Lyα emitters than the one

shown in Chapter 3.

The only robust way to understand the physics of the escape of Lyα photons is through

a detail modelling of the radiative transfer photons experience when crossing an HI region.

Therefore, we start by developing a Monte Carlo radiative transfer code of Lyα photons in

Chapter 5. In summary, photons are generated and followed individually in a Monte Carlo

algorithm through each interaction with either a hydrogen atom or a dust grain. Dust grains

have the ability to scatter or absorb the photon, whereas hydrogen atoms scatter them and

can change their frequency. The code follows all the interactions the photon experiences until

it either escapes or is absorbed by dust. The whole process is repeated several times until we

find convergence of the properties we are interested in. This usually requires from 103 to 105

photons. The output of the code is the frequency distribution of the photons that managed to

escape from a given HI region, defined arbitrarily by the user. Our code is similar in fashion

to other codes found in the literature, which simplifies the task of testing it.

Finally, in Chapter 6 we couple this Monte Carlo radiative transfer code to the galaxies

predicted by GALFORM. To achieve this we investigated two different outflow models for the

escape of Lyα photons from galaxies.

We find that the predicted escape fraction of galaxies can vary greatly. However, the value

of fesc predicted depends strongly on the parameters and geometry of the outflow model as-

sumed.

The comparison with observational data forces us to tune the free parameters in our

outflow models to different values for different redshifts to reproduce the observed luminosity

functions of Lyα emitters at 0.2 < z < 6.6. We believe this suggests that the escape of Lyα

photons is in reality more complicated than what we are modelling. Nevertheless, we carry

on and study the predictions from our models, i.e. the dependence of the escape fraction
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with the intrinsic Lyα luminosity, metallicity, extinction, etc.

Furthermore, we find that our outflow models predict consistent line profiles with those

found in the literature for several redshifts. The detailed shape is, however, model dependent,

which opens the possibility of favouring one model over the other with a detailed observa-

tional comparison.

Finally, we predict that the observed Lyα emission does not correlate in a simple way with

the star formation rate of galaxies, due to the complicated dependence of the escape fraction

with the physical properties of the outflows.

7.1 Future directions

Many of the topics we investigated throughout this thesis require further development. In

particular, we plan to address the following extensions of the work shown here in the future:

• The clustering of Lyα emitters is becoming a popular probe of the large scale structure

of the Universe at high redshifts. With the advent of large Lyα surveys such as HETDEX

(Blanc et al., 2007; Hill et al., 2008), it will be interesting to assess the accuracy of Lyα

clustering predictions. So far, as shown in Chapter 3, we have focused only on general

clustering properties and their performance for small narrow band surveys. Therefore,

we plan to extend the current work to study, for example, the accuracy in measuring

the BAO scale with Lyα emitters. Further improvement over the work shown in Chap-

ter 3 can be achieved by using the more detailed model for Lyα emitters we introduced

in Chapter 6.

• Hα emitters can be regarded as clean tracers of the star formation history in the Uni-

verse, since their luminosity scales directly with the production rate of Lyman contin-

uum photons, once dust attenuation is taken into account. The model presented in

Chapter 4 represents our first attempt to model this galaxy population. A natural ex-

tension of the current work involves a careful treatment of the extinction of Hα. We

found evidence that the Baugh et al. (2005) overestimates the intrinsic Lyman contin-

uum luminosities, which in turn affects all our predictions. In addition, the production
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rate of Lyman continuum photons can be directly inferred from the unattenuated Hα

luminosity function. A non-zero escape fraction of Lyman continuum photons plus a

calculation of their intrinsic extinction when crossing HII clouds before reaching the

ISM could, for example, explain the offset between the predicted unattenuated Hα LF

and the observed one.

A model reproducing the observed abundances of Hα emitters could potentially char-

acterise accurately the star formation history of the Universe, allowing us to get a direct

insight into the physical processes which determine the star formation of galaxies, and

hence, galaxy formation and evolution itself.

• Our most immediate future work planned is to investigate further the predictions of

the properties of Lyα emitters shown in Chapter 6. Several areas which require further

research include:

– There is a possible preferred size of the outflows suggested by the evolution of

the parameter fR with redshift in both models. Outflows over which Lyα photons

escape could well happen locally in a galaxy, and thus they may not be related to

the size of the galactic disk or bulge at all.

– The shape of the predicted Lyα line profiles could potentially help to favour one

outflow model over the other when comparing in detail with observational data.

In addition, quantitative measures of the properties of the Lyα line profiles, like

the skewness of the line, the FWHM, and the offset of the (single or multiple)

peaks from the line centre, can be assessed and used to interpret current observa-

tions in terms of physical properties.

– When studying galaxies at z > 6, it is generally believed that a partially ionized

IGM plays an important role at attenuating and shaping the observed Lyα line

(Dijkstra et al., 2007; Dayal et al., 2010b; Laursen et al., 2010). Therefore, a

complete physical model of Lyα emitters must include a model for the attenuation

of the emission by the neutral fraction of the IGM. It is expected, however, that

the Lyα properties would not be greatly affected for galaxies with z < 6.
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In summary, there is still plenty of research to be done in developing a complete under-

standing of galaxy formation traced by emission-line galaxies. The theoretical interpretation

of the outcome of current surveys is still limited and sparse, but the increasing relevance of

the subject urges the need to develop further galaxy formation theories to interpret correctly

the current and forthcoming observational data; and, most importantly, to improve our un-

derstanding of galaxy formation and evolution.
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693–710, March 2010.
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