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Abstract 

F a c t o r s influencing foraging d e c i s i o n s in ruddy turnstones Arenaria 

interpres (L.) 

PhD thes is by Richard A. Fuller, 2003 

Animals must assimilate energy to survive and reproduce, but foraging conflicts with 

other demands on an animal's time. We know very little about how animals resolve 

these conflicts in natural settings. I studied foraging choices made by ruddy 

tumstones Arenaria interpres (L.) using rocky coastline in north-east England. In 

particular I explored how foraging decisions varied with resource quality, the 

predictability of patch appearance, and perceived predation risk while using 

alternative patches. This study includes the first quantitative investigation into the 

use of beach-cast wrack by shorebirds. 

Energy intake per unit time by foragers on supratidal habitats was much higher than 

on intertidal habitats. However, birds exclusively used intertidal habitats when these 

were exposed by the tide, and moved onto supratidal habitats only over the high 

water period. Moreover, the number of birds feeding over a given high tide did not 

depend on supratidal food availability. These results suggested that there were 

costs to foraging supratidally. Were some foragers being forced to pay these costs 

because of low foraging efficiency, or did some accept the costs because of other 

associated benefits? 

The use of supratidal habitats appeared to incur elevated predation risk for foragers; 

they were situated in areas where raptors could approach a foraging flock relatively 

closely before being detected. Accordingly, vigilance was much higher than 

expected on supratidal habitats, and increased with distance from the water's edge. 

Birds that regularly fed supratidally tended to be males, older and higher-ranking, 

and had smaller, less patchy home ranges than birds that rarely fed supratidally. 

This suggests that some birds were paying the cost of elevated predation risk 

associated with supratidal feeding for the benefits of stable group membership and 

higher social status, while others minimised their need for supratidal feeding by 

spatially tracking the variation in intertidal habitat quality. 
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Chapter 1: General Introduction 

Chapter 1 : General Introduction 

Animals must assimilate energy to survive and reproduce. Foraging activities, 

however, frequently conflict with other demands on an animal's t ime, or 

expose it to risks to its survival greater than those posed by immediate 

starvation. The study of foraging in animals has had a long and controversial 

history, al though a clear understanding of optimality rules and individual-

based foraging choices is now beginning to emerge (MacArthur & Pianka 

1966, Schoener 1971 , Charnov 1976, Pyke 1984, Pierce & Ollason 1987, 

Sti l lman et al . 2000a, Uchmanski 2000, Railsback & Harvey 2002, van Gils et 

al. 2003) . Foraging resources are often distributed patchily through the 

environment (Shorrocks et al. 1979). An individual's choice as to where it 

should forage will depend on the interactions of many potentially confl icting 

factors. Patch choice depends on patch quality, risk of predation, spatial and 

temporal resource predictability, physiological status and competit ive ability 

(see Stephens & Krebs 1986 for a review). 

This thesis reports work on a system in which foraging animals exploit high 

quality patchy and ephemeral resources within a matrix of low quality but 

more predictable resources. I attempt to unravel some of the costs and 

benefits associated with foraging on these alternative substrates, and 

investigate how foraging decisions in this system depend on resource 

characterist ics, physiological status, social status and predation risk. The 

implications of anthropogenical ly- induced change in resource quality, namely 

a reduction in al lochthonous nutrient input in the form of improved treatment 

of sewage eff luent discharged into the area, are also considered. 

Long-term studies on birds have provided much-needed empirical data that 

have thrown light on how animals choose foraging patches (Evans et al. 

1984, Hunt 1991 , Cody & Smal lwood 1996, Goss-Custard 1996). Birds are 

mobile, amenable to captivity and experimental manipulat ion, and show 

measurable behavioural and physiological responses to variation in both the 

predictability and quality of foraging patches, and their risk of predation while 



Chapter 1: General Introduction 

foraging on such patches. There remains, however, relatively little 

information about patch use under varying condit ions in unmanipulated 

natural environments, yet a complete understanding of the ecological 

importance of alternative foraging patches depends partly on field study of 

appropriate model systems. The results of such field study will al low the 

formation of quantitative hypotheses for experimental testing. 

1.1 Study s y s t e m 

I consider foraging choices made by ruddy turnstones Arenaria interpres (L.) 

on a stretch of predominantly natural rocky coastl ine in north-east England. 

This is an ideal model system for studying patch choice decisions by foragers 

under field condit ions, because ruddy turnstones will use a wide variety of 

foraging substrates, and the choice of habitat at any one time for these birds 

is limited naturally by tidal oscil lations. For example, supratidal habitats, 

defined here as those occurring above the most recent high tide mark, are 

available throughout the tidal cycle, whereas the extent of intertidal habitats 

varies greatly with tidal changes in sea level. The basis of this study, 

therefore, is to examine the distribution of foragers in relation to the changing 

availability and quality of intertidal and supratidal habitats. 

Quest ions about the role of supratidal foraging in shorebirds have recently 

received some attention in soft-sediment systems (Goss-Custard et al. 1996, 

Caldow et al. 1999, Sti l lman et al . 2000b) , but these habitats have radically 

different resource dynamics from the hard-substrate habitats studied here. In 

soft-sediment systems, individual oystercatchers Haematopus ostralegus (L.) 

of low foraging efficiency are more likely to use supplementary supratidal 

food suppl ies than individuals of higher foraging efficiency (Goss-Custard et 

al . 1996, Caldow et al. 1999, Sti l lman et al . 2000b). Intertidal substrates are 

inherently preferred, because the supplementary feeding areas are less 

profitable than intertidal substrates, and foragers use these marginal habitats 

only when the high quality intertidal habitats are unavailable. Soft-sediment 

coastal habitats are much more dynamic than rocky shore systems, with 

extreme spatial and temporal variation in physical substrate turnover and 

2 



Chapter 1: General Introduction 

recruitment patterns of invertebrate populations (Goss-Custard 1970, Evans 

& Dugan 1984). Moreover, recruitment is frequently affected by limited mixing 

and flushing in estuaries, so the system takes longer to recover from 

perturbation, and prey motility occurs in three dimensions either through prey 

movements or rearrangement of sediment by hydrological and weather 

conditions. Rocky-shore populations on the other hand are generally open, 

with rapid recovery from perturbation possible via recruitment from 

unaffected areas (Thompson et al. 2002), and invertebrate motility is 

necessarily two dimensional, the rocky substrate preventing burrowing. Does 

supratidal foraging play a similar supplementary role in these two systems 

with such radically different underlying resource dynamics? 

To answer this question, I used this study system to explore how foraging 

decisions varied with resource quality, the predictability of patch appearance, 

and perceived predation risk while utilising alternative patches. In particular, I 

described and interpreted the use of supratidal beach-cast wrack 1 by ruddy 

turnstones (see section 1.1.2). Beach-cast wrack is a highly dynamic and 

potentially profitable foraging resource for shorebirds, although no study has 

yet quantified its importance or described its ecological role as a foraging 

substrate for shorebirds. 

1.1.1 Physical features 

The study area comprises the coastal zone of southern Northumberland 

(north-east England) between Warkworth Harbour (55 9 20' 25"N 1 g 35' 33"W) 

in the north and St. Mary's Island (55Q 4' 37"N 1 s 27' 8"W) in the south (see 

figure 1.1). It is a complex, but broadly linear coastline, with a mix of rocky 

shore backing onto dunes or low cliffs (typically about four metres in height), 

and sandy beaches of varying length. A shallow offshore dip promotes the 

exposure of flat platforms, topographical features associated with high 

densities of rocky shore specialist shorebirds, in particular ruddy turnstones 

' The term wrack is often used to refer to marine algae of the genus Fucus. It is here used in the wider 

sense of marine vegetation, algae or the like, cast ashore by wave action. 
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Chapter 1: Genera! Introduction 

and purple sandpipers Calidris maritima (Brunnich) (Anthony 1999). Primary 

divisions of the study area were based on habitat discontinuities and are 

summarised in figure 1.1. See Eaton (2001) for further information on the 

study area. 

Figure 1.1 Map of the study area with locations of sewage outfalls (denoted by an 
asterisk), site names and principal habitat divisions. Land is shaded grey. 

Amble (rocky shore) 

Hauxley (rocky shore) 

Druridge Bay (sandy shore) 

Cresswell (rocky shore) 

Newbiggin (rocky shore) 

Blyth (rocky shore) 

^ St Mary's Island 
(rocky shore) 

5 km 
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Chapter 1: General Introduction 

A southerly surface current occurs off the Northumberland coast between 

Tynemouth and Newbiggin-by-the-sea, although there is no prevailing current 

at deeper levels (Evans 1957, 1959). Within each tidal cycle, an elliptical 

stream occurs, rotating clockwise on the surface, and anti-clockwise near the 

bottom, where the stream turns onshore at low water. This means that beach 

casting of suspended and floating marine debris is most likely to occur at the 

end of the ebb period, about 2.5 hours after low water (Evans 1959). 

1.1.2 Habitats 

Ruddy turnstones use a wide variety of habitats, both soft-sediment and 

rocky substrates, although the latter is preferred, particularly by wintering 

birds (Cramp & Simmons 1983). Indeed, of the intertidal habitats, rocky shore 

is used almost exclusively by ruddy turnstones in the present study area 

(Eaton 2001). Rocky shore habitats within the study area comprise bare 

wave-cut platforms colonised by small barnacles and mussels, as well as 

areas dominated by the growth of macroalgae, principally Fucus spp, 

Enteromorpha spp and Ascophyllum nodosum (L) . For the purposes of this 

study, two contrasting intertidal habitats were selected for data collection: 

Fucivs-covered rocks and barnacle-covered rocks. These were the most 

abundant habitats, and those present most evenly in rocky intertidal areas 

throughout the length of the study site. Furthermore, birds foraging on 

barnacle-covered rocks may be more visible to predators than birds using 

Fucus-covered rocks (Metcalfe 1984), presenting a natural experiment with 

which to look for responses to variation in predation risk. 

Supratidal habitats used by shorebirds in the study area included deposits of 

beach-cast wrack and strandline debris, fields, golf courses, piers, staiths, 

and other artificial structures. Artificial supratidal habitats were used relatively 

rarely by ruddy turnstones, so the two main types of natural supratidal 

habitats were distinguished for data collection. These were beach-cast 

wrack, and strandline sand or algal material. 

5 



Chapter 1: General Introduction 

Beach-cast wrack deposits, here defined as discrete aggregations of marine 

vegetation, algae and the like, cast ashore by wave action, occurred 

throughout the study site and were strongly selected by ruddy turnstones 

(see chapter 3). My definition of beach-cast wrack is equivalent to the wrack 

beds of Backlund (1945) and Egglishaw (1960). See chapter 3 for detailed 

information on beach-cast wrack. 

The other main supratidal foraging habitat for ruddy turnstones was close to 

the surf on sand more or less obviously strewn with strandline debris. Some 

strandline deposits were formed as beach-cast wrack was resuspended by 

wave action. This tended to result in damp algal material containing dead 

coelopid wrack flies that had colonised the beach-cast wrack, whereas 

naturally deposited strandline debris ("wrack strings" of Backlund 1945) 

tended to be loose, dry material colonised by amphipods and occasionally 

Coleoptera (Egglishaw 1965). Beach-cast wrack tended to occur close to the 

base of the cliff backing the beach, whereas strandline debris occurred much 

further from the cliff base, near the high water mark (see figure 3.1 on page 

41 for a diagram of a typical beach-cast wrack deposit). 

1.1.3 Anthropogenic influences 

In February 2000, the Northumbria Coast was declared a Ramsar Site and a 

Special Protection Area (SPA), with most rocky shore areas falling within the 

designation. This was based on a study of spatial distributions of ruddy 

turnstones and purple sandpipers, both species of some European 

conservation concern (Anthony 1999). Most stretches of sandy shore were 

specifically excluded from this designation, despite the fact that beach-cast 

wrack often forms on sandy substrates. The Northumbria Coast Ramsar Site 

supports 2.5% and 1.5% of Europe's wintering ruddy turnstones and purple 

sandpipers respectively (Anthony 1999) and it is a requirement of European 

law (EEC 1979) that significant pollution, disturbance, and deterioration of an 

SPA are avoided. 

6 



Chapter 1: General Introduction 

As a result of European and national legislation, water companies in the UK 

have invested heavily in new and improved coastal sewage treatment plants 

(EEC 1991). This fact, coupled with the banning of the dumping of sewage 

sludge at sea, suggests that levels of nutrients and sewage-derived 

suspended solids in the coastal zone will continue to fall over the coming 

years, despite the relatively low level of nutrient enrichment currently 

apparent in the western North Sea (Reid 1995). This could potentially impact 

foraging shorebirds through reductions in intertidal food availability or even 

reduce the carrying capacity of the nearshore environment. During summer 

2001, Northumbrian Water, the company responsible for water supply and 

sewage treatment in the present study area, upgraded the level of treatment 

given to sewage before discharge into the North Sea to at least secondary 

treatment (Northumbrian Water Limited 2001). This followed an earlier wave 

of improvements, completed in 1999, during which interceptor sewers were 

installed to concentrate output at fewer, more carefully selected sites. Seven 

offshore sewage outfalls have been built within the boundaries of the study 

area (see table 1.1). The present research programme focuses on foraging 

decisions made by ruddy turnstones, and the results are discussed in chapter 

7 in the light of possible changes in allochthonous nutrient input into the 

nearshore ecosystem. 

Table 1.1 Former and current sewage outflow sites within the study area. Interceptor 
sewers at Cresswell and St Mary's Island now pump sewage to other treatment works 
for disposal, so there has been a complete cessation of effluent dumping at these 
sites (Northumbrian Water Limited 2001). See figure 1.1 for locations of the sewage 
outfalls. 

Site Status 

Amble Secondary treatment output through an outfall 

Hauxley Secondary treatment output through an outfall 

Cresswell Interceptor sewer now in place 

Newbiggin Secondary treatment output through an outfall 

Blyth (north) Secondary treatment output through an outfall 

Blyth (south) Secondary treatment output through an outfall 

St Mary's Island Interceptor sewer now in place 
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There is a large literature on the effects of organic pollution on benthic, 

planktonic, and nektonic organisms (see Pearson & Rosenberg 1978, Welch 

1992 and Green et al. 1993 for reviews). Much of the evidence is 

correlational in nature, and although the theory of many interactions is 

becoming advanced, demonstrations of causal pathways remain limited. 

Shorebirds forage widely over the intertidal zone and are likely to integrate a 

wide span of spatial and temporal information on habitat quality (Furness et 

al. 1993), and as occupiers of high positions in the food web, can act as 

bioindicators of general "ecosystem health" (McKenzie et al. 1992). 

It has been suggested that changes in the frequency that shorebirds feed 

supratidally may reflect changes in intertidal habitat quality (Smart & Gill 

2003). This suggestion rests on a number of as yet untested assumptions 

about the causal basis of supratidal feeding. Before we can use supratidal 

feeding as an index of habitat quality, we need to establish whether the basis 

for supratidal feeding is similar across different shorebird foraging systems. 

1.1.4 Study species 

The ruddy turnstone is a coastal species, breeding along the northernmost 

fringes of the Holarctic, and spending the non-breeding season around mid to 

low latitude coasts in the northern and southern hemispheres. One of the 

most northerly breeding waders, its distribution is more or less circumpolar, 

and two subspecies are recognised. The nominate interpres breeds from the 

eastern Canadian Arctic across Greenland and northern Eurasia to western 

and northern Alaska, while morinella breeds in arctic Canada west of 

Ellesmere Island (Cramp & Simmons 1983). Breeding birds occur up to 83- N 

in Greenland and 80 e N in Svalbard, and as far south as the southern Baltic 

Sea. The ruddy turnstone is apparently declining in the Baltic, but little is 

known of population trends in arctic regions (Hagemeijer & Blair 1997). 

Most birds wintering in north-east England are from the Greenland and 

eastern Canadian Arctic populations. These birds can be identified in autumn 

by having commenced wing moult and showing no significant fat reserve with 
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which to continue onward migration (Branson et al. 1978). Birds thought to be 

of Fenno-Scandian origin (Prater 1981) on autumn passage through Britain 

are heavier, with fat reserves for onward migration to Africa, and have not yet 

commenced wing moult. These latter birds put on weight rapidly during their 

staging in Britain and then depart (Clapham 1979). 

Ruddy turnstones winter along virtually all coastline of the British Isles (Prater 

1981), although the poor coverage of non-estuarine coast by national 

surveys makes it difficult to generate a complete winter population estimate. 

The maximum UK winter population was estimated at 25,000 (Prater 1981), 

although this estimate involved extrapolation from survey work concentrated 

mainly on estuaries, and included anecdotal data from county bird reports 

and other sources. This may be a substantial underestimate if the proportion 

of birds using non-estuarine habitats is as high as the figure of 80% 

suggested by Waters & Cranswick (1993). 

The basic social foraging unit in wintering ruddy turnstones is a group of c. 20 

- 80 birds sharing a stable intertidal area, with a strongly linear dominance 

hierarchy (Metcalfe & Furness 1985, Metcalfe 1986). Winter flocking in many 

shorebirds is probably associated with decreased predation risk, rather than 

enhanced feeding success (Page & Whitacre 1975, Whitfield 1988a). Most 

individual ruddy turnstones are site faithful within and between winters, 

although some are more itinerant, probably as a result of instability in their 

food supply (Metcalfe & Furness 1985, Whitfield 1988a). Dominance is of 

males over females, adults over juveniles, and within a sex, older birds over 

younger birds. Rank decays with distance from an individual's home low tide 

feeding group (Whitfield 1985a, Metcalfe 1986, Whitfield 1988b). Variable 

plumage features during winter facilitate individual recognition rather than 

status signalling, as is predicted in a species showing stable group 

membership and extreme site fidelity (Whitfield 1988b). 

The ruddy turnstone is particularly well suited to a study of this kind, because 

in rocky shore habitats it is thought to be largely limited to diurnal foraging 

(Evans 1976). Many shorebirds possess a concentration of bill-tip Herbst 
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corpuscles used for tactile foraging either to locate hidden prey or forage at 

night (Gerritsen and Meiboom 1986, Piersma et al. 1998, Barbosa & Moreno 

1999), but the ruddy turnstone possesses few of these mechanoreceptors 

(Hoerschelmann 1972) and thus may be restricted largely to a visual foraging 

mode. Despite some evidence of nocturnal foraging by ruddy turnstones and 

other shorebirds in soft-sediment habitats (Clark et al. 1990, Robert et al. 

1989, Schneider 1985), it appears likely that ruddy turnstones rarely forage at 

night on rocky shores, confirmed at least for the present study population by 

recent radio-telemetry studies (Eaton 2001). Responses to variation in food 

availability in this species are therefore likely to be marked owing to its 

reduced maximum possible daily foraging time in comparison with other 

members of the species assemblage. 

1.2 Research questions 

1.2.1 Does the quality of alternative foraging substrates predict the 

frequency of their use? 

An important factor influencing the choice of foraging area is the relative 

quality of alternative possible foraging substrates in terms of potential energy 

intake rate (Stephens & Krebs 1986, Zwarts et al. 1996). I therefore first set 

out (chapter 2) to quantify prey densities and energy intake rates on the four 

main ruddy turnstone foraging habitats identified in section 1.1.2. The density 

of potential prey items did not differ between intertidal and supratidal 

habitats, although the energy intake rate per unit time was much higher for 

foragers using supratidal habitats. This finding was not unexpected, but threw 

up interesting questions that influenced the direction of the study. Supratidal 

habitats were always available to ruddy turnstones, and they appeared to be 

more profitable in terms of potential energy intake rate than intertidal 

habitats. Why then did foragers concentrate exclusively on intertidal habitats 

when these were available during low water, ignoring supratidal habitats? 

What was driving the decision to feed supratidally, and were there costs 

associated with feeding so high up the shore? 
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1.2.2 What are the spatial and temporal dynamics of supratidal foraging 

substrates? 

To help answer these questions about the apparent reluctance of shorebirds 

to use a profitable habitat, I needed to understand what was driving the 

decision to feed supratidally by describing the relationship between supratidal 

habitat availability and foraging decisions made by birds. There is little 

published information on the dynamics of supratidal habitats (Kirkman & 

Kendrick 1997), so chapter 3 describes the variation in spatial extent, quality, 

and temporal predictability of beach-cast wrack, the principal supratidal 

habitat used by ruddy turnstones. The chapter describes the physical and 

decompositional characteristics of deposits associated with large invertebrate 

colonisation events and discusses whether the future quality of a deposit is 

predictable by foragers, or at least exhibits temporal autocorrelation. The 

results showed that beach-cast wrack occurred in low predictability patches 

in an otherwise highly stable matrix of intertidal habitats. The emerging 

theme of the research project became trying to understand what was limiting 

the extent to which individuals exploited this unpredictable habitat and the 

implications for foraging theory. 

1.2.3 Are there differences in perceived predation risk and foraging 

behaviour between intertidal and supratidal habitats? 

One potential cost of foraging high up the shore that might limit supratidal 

feeding is elevated predation risk (Whitfield 1985b). Therefore, I next 

examined the level of predation risk perceived by foragers on alternative 

possible foraging substrates. If predation risk differed among the habitats, I 

predicted vigilance levels to be adjusted above that predicted by flock size 

alone on high risk habitats, and below that predicted by flock size alone on 

low risk habitats. I tested these predictions using comparisons between 

intertidal and supratidal habitats and alternative substrates thought to differ in 

predation risk within each of these broad habitat types. Chapter 4 shows that 

vigilance levels were adjusted as predicted, and also uncovers diurnal 

patterns in vigilance and intake rate consistent with the predictions of state-
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dependent foraging theory on substrates varying in predation risk and 

resource dynamics. My data supported the suggestion that elevated 

predation risk was a cost of foraging supratidally in this system. 

1.2.4 Do foragers try to avoid the need to feed supratidally by ranging 

more widely? 

Given that elevated predation risk appeared to be at least one cost 

associated with supratidal feeding, I next examined the relationship between 

spatial ranging behaviour of ruddy turnstones and their individual propensity 

to feed supratidally. Most ruddy turnstones are exceptionally site faithful, and 

dominance rank appears to decline with distance from the centre of an 

individual's home range (Metcalfe 1986). This suggests a social cost to 

ranging widely, but if feeding supratidally carries a cost of increased 

predation risk, a forager might be prepared to range more widely on intertidal 

habitats to track areas of high profitability thereby minimising the need to 

forage supratidally. For example, a highly site-faithful forager may have to 

accept more risk through environmental stochasticity than a forager that 

ranges more widely. 

In chapter 5, I show that birds that ranged more widely also tended to feed 

less frequently on supratidal habitats. Furthermore, birds that frequently fed 

supratidally were more closely associated with reliable areas for the 

formation of beach-cast wrack deposits than birds that fed supratidally less 

frequently. Several independent lines of evidence now suggested that 

supratidal feeding carried a cost, most likely predation risk, and that foragers 

compensated for this by altering their spatial distribution, as well as their 

antipredator responses. 
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1.2.5 What drives the decision to feed supratidally? 

After I had painted a picture of resource dynamics, foraging behaviour, 

vigilance adjustment and spatial associations, it remained to pull these 

elements together and look for convincing evidence of what was driving the 

decision to feed supratidally. If variation in energy intake while foraging 

intertidally was driving supratidal foraging, we would predict the proportion of 

the population feeding supratidally to be independent of the quality of 

supratidal foraging patches. In chapter 6, I therefore wanted to know (a) 

whether birds were more likely to feed supratidally when the availability of 

supratidal habitats was higher and (b) something about the individual 

characteristics (e.g. age, sex, rank) of persistent supratidal feeders. The data 

supported the explanation that variation in intertidal energy intake was driving 

the decision to feed supratidally, and indeed most supratidal feeding 

occurred over the high water period. Furthermore, higher ranking birds 

tended to feed supratidally more frequently than lower ranking birds. 

I distinguish four hypotheses that could explain the observed distribution of 

foragers, and conclude that all data collected during the course of this work 

suggest that supratidal feeding is a form of "reluctant compensation", 

whereby some foragers pay for their extreme site fidelity by feeding more 

frequently on risky habitats, thereby accepting elevated predation risk at 

particular points during their foraging cycle. 
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Chapter 2: Foraging substrate quality 

Chapter 2: The energetic quality of alternative ruddy 

turnstone foraging substrates 

2.1 Introduction 

Understanding the reasons why animals choose one place to forage over 

another has been the focus of a substantial body of research over many 

years (MacArthur & Pianka 1966, Morse & Fritz 1982, Milinski 1985, Brown 

1988, Mangel & Clark 1988, Johnson & Collier 1989, Wilmshurst et al. 1995). 

Probably the single most important parameter influencing this decision is the 

relative quality of alternative foraging patches, namely the density and net 

energetic value to the consumer of potential prey items inhabiting different 

possible foraging areas (Stephens & Krebs 1986, Zwarts et al. 1996, Schmidt 

et al. 1998, Wajnberg et al. 2000, Olsson et al. 2001). Typically, the number 

of foragers at a patch will be proportional to the quality of that patch (Fretwell 

& Lucas 1970). Although this distribution is influenced by many other factors, 

such as predation risk (Brown 1988), competitive ability (Parker & Sutherland 

1986) and interference (Meer & Ens 1997), it remains the best approximation 

to many distributions of foragers under natural conditions. 

Possible foraging habitats of many species vary greatly in the taxonomic and 

numeric composition of potential prey types, as well as their energy values, 

digestibility, and handling times (Palmer 1981). For example, ruddy 

turnstones have been recorded foraging on many different substrates, and 

are well known for their opportunism (Bayne 1941, Hobbs 1942, Bell 1961, 

King 1961, MacDonald & Parmalee 1962, Selway & Kendall 1965, Mercer 

1966, Jones 1975, Beven & England 1977, Nettleship 1973, Cramp & 

Simmons 1983, Whitfield 1990, Dobson 1997, Eaton 2001). There is, 

however, very little information about the relative quality of the most 

frequently used alternative substrates in terms of density and profitability of 

available food. Ruddy turnstones are known to take different food items in 

different habitats, but are relatively conservative within a given habitat. On 

rocky intertidal areas around Morecambe Bay, NW England, they chiefly took 
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amphipods and small littorinids, but also barnacles, small Mytilus, and crabs 

(Davidson 1971, Prater 1972), In similar habitat in Anglesey, north Wales, 

they again took mainly amphipods, littorinids and barnacles (Harris 1979). 

Analyses of pellets and stomach contents of German and Dutch birds using 

intertidal rocky shore habitats also indicated a reliance on crustaceans, in 

particular amphipods and barnacles (Glutz von Blotzheim et al. 1977). In 

contrast, in soft-sediment habitats such as the Wash, south-east England, 

ruddy turnstones concentrated on crabs and molluscan infauna (Jones 

1975). Ruddy turnstones appear then to consume relatively few different prey 

types while foraging intertidally, at least on rocky shore substrates. 

Little published information exists on the diet of ruddy turnstones while 

foraging on supratidal habitats, although they appear to use a much greater 

variety of habitats while foraging supratidally than intertidally (Cramp & 

Simmons 1983). The present study has shown that beach-cast wrack is the 

preferred supratidal foraging habitat on the Northumberland coast (see 

chapter 3), and Eaton (2001) suggested that ruddy turnstones rely mainly on 

larval coelopid wrack flies while using this habitat. Coelopids are indeed the 

main colonisers of beach-cast wrack in NE England (chapter 3; Egglishaw 

1965). 

The superabundance of coelopids in beach-cast wrack deposits suggests 

that, in the present study site at least, supratidal foraging may be more 

profitable in terms of energy intake per unit time than intertidal foraging. 

Nevertheless, many shorebird species, including ruddy turnstones, use 

intertidal habitats almost exclusively when these are available, and usually 

use supratidal habitats only over the high water period, when intertidal 

habitats are unavailable (Fleischer 1983, Goss-Custard et al. 1996, Dann 

1999, Masero & Perez-Hurtado 2001, Smart & Gill 2003, but see Luis et al. 

2002). Indeed, within the present study systems, ruddy turnstones prefer to 

use intertidal habitats when these are available (Eaton 2001). This reluctance 

to use supratidal habitats is perplexing, given that supratidal habitats are 

apparently highly profitable relative to intertidal habitats. 
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There are two broad classes of explanation for this apparent reluctance to 

feed supratidally. Either intertidal habitats are in fact richer than supratidal 

habitats, perhaps by high invertebrate densities compensating for their low 

individual calorific value, or there is some cost incurred by foraging 

supratidally that is sometimes worth paying when the opportunity of feeding 

intertidally is not available. To discriminate between these possibilities, it is 

crucial to obtain comparative data on instantaneous energy intake rate for the 

alternative habitats (Masero 2003). If potential energy intake rate is greater 

on supratidal than intertidal habitats, we might indeed expect there to be 

some cost of feeding supratidally. This chapter therefore provides new 

information on the relative profitabilities of alternative ruddy turnstone 

foraging substrates for an area of natural, predominantly rocky coastline in 

north-east England. 

As well as information about the energy content and relative density of 

available potential prey items, an understanding of the profitability of a 

foraging substrate requires information on the energetic requirements of the 

forager (Pienkowski et al. 1984). Shorebirds breeding at high latitudes and 

undergoing long migrations typically have a higher basal metabolic rate 

(BMR) and daily energy expenditure (DEE) than predicted by their body size 

(Kendeigh 1970, King 1974, Kersten & Piersma 1987). A high BMR may 

enable birds to ratchet up their DEE to a level necessary for coping with 

extreme energy demand, for example through thermal stress while wintering 

in northern latitudes, and during periods of high muscular activity while 

migrating (Gnaiger 1987, Kersten & Piersma 1987). However, the 

relationship between BMR and DEE is less clear in birds than in mammals 

(Koteja 1991, Ricklefs et al. 1996, Nagy et al. 1999). For example, evidence 

is emerging that individual birds may facultatively alter the percentage 

composition of metabolically active tissues to achieve a high maximal 

metabolic rate when necessary (Daan et al. 1990, Piersma et al. 1995,1996, 

but see Selman 1998). Whatever the mechanisms involved, the high DEE 

associated with shorebirds implies strong evolutionary pressure for foragers 

to select the most profitable foraging substrates. This is particularly important 

for populations of ruddy turnstones wintering in short daylengths at high 
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latitudes, because this species feeds visually and is largely restricted to 

diurnal foraging in rocky intertidal areas (Hoerschelmann 1972, Eaton 2001). 

Using the regression equation in Kersten & Piersma (1987), existence 

metabolism for ruddy turnstones experiencing an average daily temperature 

of 6.6 9 C as in this study should be about 250 kJ per day (-3.9 * 6.6 + 277). 

Net energy intake (NEI) will be substantially higher than this figure, and a 

value of 300 kJ per day is probably more representative of the NEI of free-

living ruddy turnstones, given that ringed plovers Charadrius hiaticula L. (a 

slightly smaller bird) in north-east England took 159 - 192 kJ per day and 

grey plovers Pluvialis squatarola (L.) (slightly larger bird) took 309 - 392 kJ 

per day (Pienkowski 1982). Given that the NEI values quoted here were 

recalculated assuming an assimilation efficiency of 85% (see Evans et al. 

1979), a value of about 350 kJ per day seems a reasonable estimate of gross 

daily energy requirement. Further support for this value comes from the fact 

that incubating ruddy turnstones had a field metabolic rate of 348.1 kJ per 

day (Piersma & Morrison 1994, Morrison et al. 1997, Piersma et al. 2003). 

Although red knot Calidris canutus (L.) wintering in Africa showed reduced 

metabolic activity (Lindstrom 1997, Kersten et al. 1998), birds wintering in 

temperate latitudes showed a similar DEE as when on their arctic breeding 

grounds (Piersma 2002). 

Some supratidal foraging habitats, beach-cast wrack in particular (see 

chapter 3), contain very high densities of potential prey items, but they can 

also be temporally unstable. Here I test the hypothesis that supratidal 

habitats (strandline debris and beach-cast wrack) are richer in terms of 

potential energy intake than intertidal habitats (Fucus-covered rocks, 

barnacle-covered rocks). I then relate the energetic values of potential prey 

items found in the alternative substrates to the estimated energy 

requirements of free-living ruddy turnstones. 
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2.2 Methods 

2.2.1 Intertidal habitats 

Intertidal habitats were represented by Fucus-covered rocks and barnacle-

covered rocks. Rvcus-covered rock was defined as bedrock with a complete 

overgrowth of Fucus serratus L. or F. vesiculosus L. Barnacle-covered rock 

was defined as bedrock with complete or near-complete overgrowth with 

Semibalanus balanoides (L) , and no algal growth. Transects in both habitats 

were run for 300 m up the shore from the low tide mark (1.1m above chart 

datum) during a spring tide series in early March 2003 at Amble, NE England 

(55Q 20' 09"N 1 5 33' 58"W). Random number tables were used to select co­

ordinates within each 10 * 10 m grid along the transect, resulting in 30 

sampling locations. A 10 * 10 cm quadrat was placed on the substrate at 

each randomly defined location, and all material transferred as quickly as 

possible into a sealed container. 

In the case of Ft/civs-covered rocks, 30 samples were taken, and scissors 

were used to cut the algae using the quadrat as a guide, aiming to cause 

minimal disturbance to mobile invertebrates within the algae. Amphipods 

seen in the field all appeared to move rather slowly along algal fronds upon 

being exposed, and generally stayed in close contact with the algal substrate 

at all times. Once all the algae had been transferred into the container, the 

exposed substrate below was checked carefully for remaining mobile 

invertebrates, which were also transferred into the sealed container. Sessile 

organisms on the rock surface were identified to genus level and the 

numbers of each taxon recorded. 

Because barnacle-covered rock was a relatively rare habitat, the nearest 

patch of barnacle-covered rock to 10 randomly-defined co-ordinate locations 

was used. The number of barnacles within the quadrat was counted, and a 

careful search was made for empty barnacle cases that had been colonised 

e.g. by gastropod molluscs or mussels Mytilus edulis. Invertebrates 
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colonising empty barnacle cases were counted, removed and stored 

separately by species. All barnacles within each quadrat were then scraped 

off the substrate with a knife and transferred into a sealed container. 

2.2.2 Supratidal habitats 

Supratidal habitats were represented by beach-cast wrack and strandline. In 

the case of beach-cast wrack, the samples taken from two wrack deposits at 

Cresswell (55 Q 13' 44"N 1 5 31 ' 41 "W) and one at St Mary's Island (55 s 4' 14"N 

1 9 27' 10"W) were used (see chapter 3 for detailed methods). Samples were 

obtained by placing a 10 cm * 10 cm quadrat on the surface of the beach-

cast wrack deposit, and cutting a litre cube out of the material, using the 

quadrat as a guide. Sixty-six samples were removed from the wrack deposit 

and transferred to sealed containers as quickly as possible to minimise 

escape by invertebrates. 

Strandline invertebrates were sampled in a similar way by transferring 20 

one-litre samples of strand material, including the sandy substrate 

underneath where the strand material was less than 10 cm in depth, to 

sealed containers as quickly as possible. Sampling was carried out at South 

Amble on 28th November 2001 and 11th January 2002. The first set of 

samples was taken from loose, dry strandline debris and the other from 

strandline comprising previously beach-cast material in the process of 

resuspension. This reflected the two major types of strandline habitat used by 

ruddy turnstones in this study (see chapter 1). 

The sampling regime on the two habitat types was designed to sample the 

density of prey available to foragers within a specific area (1 dm 2). In 

intertidal habitats, this meant scraping algal material from rocks to whatever 

depth it grew down to the rock surface. In supratidal habitats, samples were 

taken to a depth of 10 cm into the substrate, because observations of 

foraging birds suggested this was the maximum depth they could reach by 

excavating holes in the substrate. Therefore, although the precise volume of 

material sampled was different in intertidal versus supratidal habitats, both 
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sets of samples represented the density of available potential prey within a 

given area of foraging substrate. 

2.2.3 Estimating the energy content of prey species 

Samples were washed thoroughly over a 1 mm sieve and all 

macroinvertebrates were separated from algae or other material, identified to 

genus level, counted and removed. They were then killed by rapid freezing 

and stored in a dry sealed container. Invertebrates were washed in distilled 

water and any remaining surface water was blotted into tissue paper. At this 

stage, the invertebrates were divided into single species samples for 

calorimetry. Samples of each species were f reeze-dried to constant weight, 

homogenised thoroughly, and combusted in a Gallenkamp bomb calorimeter. 

The change in temperature of the shell of the calorimeter was calibrated 

against the change observed when known weights of benzoic acid were 

combusted. A regression model was fitted to the relationship between the 

initial dry weight of three benzoic acid samples and the temperature achieved 

by the calorimeter shell (TEMP = 116.3 * WEIGHT - 2.24, R 2 = 0.99, d.f. = 2, 

p = 0.024). The benzoic acid had a known calorific value of 26.454 kJ g" 1, 

thus the energy content of each sample could be estimated using the 

regression relationship. The amount of material left after combustion was 

weighed to provide a measure of indigestible content in the prey items. The 

proportion of organic material was calculated by dividing ash weight into the 

dry weight for each sample, and the water content by dividing dry weight into 

wet weight for each sample. 

2.2.4 Ruddy turnstone energy requirements and meal intake rates 

As discussed earlier, an approximate DEE of 350 kJ was used to estimate 

ruddy turnstone energy requirements. Average meal intake rates by ruddy 

turnstones foraging on the four substrates were taken from chapter 4. Birds 

were observed for 5-minute periods while foraging intertidally and supratidally 

to ascertain the proportion of time in each habitat that they spent feeding as 

opposed to roosting or performing maintenance or vigilance behaviours (see 
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chapter 4 for detailed methods). Of the time that birds were observed in the 

two habitats, they spent 0.78 (n = 16, range: 0.70 - 0.88) of their time 

actively searching for food in intertidal habitats and 0.87 (n = 20, range: 0.79 

- 0.98) of their time actively searching for food in supratidal habitats. 

Because there appeared to be substantial individual variation in the 

proportion of time birds spent foraging, NEI values were calculated using 

mean, minimum and maximum values for time spent actively foraging. 

2.3 Results 

2.3.1 Potential prey types 

Five main groups of potential prey types were found across the four habitats: 

amphipods, gastropod molluscs of the genus Littorina, bivalve molluscs of 

the genus Mytilus, barnacles of the genus Semibalanus, and wrack fly larvae 

of the genus Coelopa (table 2.1). 

Table 2.1 Numbers of individuals of the main invertebrate groups present in different 

habitats. For intertidal habitats (Fucus- and barnacle-covered rocks), invertebrates 

were scraped from the surface; for supratidal habitats (strandline and beach-cast 

wrack), invertebrates were sampled from the top 10 cm of the substrate. Values are 

numbers of individuals per sample ± 1 SD. N signifies the number of samples taken 

(dm 2 quadrats in the case of intertidal habitats, and litre samples in the case of 

supratidal habitats). 

Habitat N Amphipods Littorinids Mytilus Barnacles Coelopids 

INTERTIDAL 
Fucus-covered 
rocks 
Barnacle-
covered rocks 
^UPRATTDAL 
Strandline 
Beach-cast 
wrack 

30 

10 

20 

66 

4.2 ±4.59 

0 

5.5 ±3 .5 

0.045 ± 0.21 

2.2 + 6.5 

4.4 ±3 .1 

0 

0 

1.0 ±4 .0 

3.9 ±2.1 

0 

0 

41.3 ±53.1 

265 ±115.5 

0 

0 

0 

0 

14.9 ±30.1 

442.2 ± 684.6 
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2.3.2 Intertidal habitats 

Intertidal habitats contained low densities of littorinids, Mytilus, and 

amphipods, but very high densities of barnacles in suitable open habitat. 

Open barnacle-covered rocks also tended to support higher densities of 

littorinids and Mytilus than Fucus-covered rocks, many of which inhabited 

empty barnacle cases, presumably for shelter. Littorinids generally occurred 

at slightly higher densities than Mytilus in both habitats and all animals in 

intertidal habitats were less than 5 mm in length. Amphipods were found only 

on Fucus-covered rocks, where they were closely associated with damp algal 

fronds. With the exception of barnacles, all invertebrates on intertidal habitats 

occurred at densities of less than 5 individuals per dm 2 (table 2.1). Barnacles, 

however, were superabundant in suitable habitat patches, with a mean 

density of 265 individuals per dm 2 , and achieving a maximum density of 400 

individuals per dm 2 . There was a weak trend for decreasing invertebrate 

density with increasing distance from the low tide mark, but this was not 

statistically significant (r = 0.28, n = 30, p = 0.128), suggesting that intertidal 

habitat quality did not vary greatly with the height of the tide. 

2.3.3 Supratidal habitats 

The taxonomic composition of the samples from intertidal and supratidal 

habitats was very different. Coelopid flies occurred in both supratidal 

habitats, although at a much higher mean density in beach-cast wrack (442 

individuals I"1) than in strandline debris (15 individuals I"1). Strandline debris 

only held coelopids where it was formed by beach-cast wrack material 

undergoing resuspension, and many of the flies were dead or dying. 

Amphipods also occurred in both supratidal habitats, but at a higher mean 

density in strandline debris (6 individuals I"1) than beach-cast wrack (0.05 

individuals I"1). 
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2.3.4 Comparison of invertebrate faunas among the substrates 

The overall density of potential invertebrate prey species varied significantly 

among the four sampled substrates (one way ANOVA: F 3 , i 2 2 = 12.07, 

p < 0.001), but was similar on intertidal and supratidal habitats (t = 0.69, 

d.f. = 108.5, p = 0.422). The differences in invertebrate densities among 

substrates were driven by high densities on barnacle-covered rock and 

beach-cast wrack and low densities on strandline debris and Fucivs-covered 

rock (see figure 2.1). 

Figure 2.1 Fucus-covered rocks and strandline debris contained significantly fewer 

invertebrates than barnacle-covered rocks and beach-cast wrack (Tukey post-hoc 

tests: all p < 0.01). The high densities in barnacle-covered rocks and beach-cast wrack 

were generated by barnacles and coelopids respectively. Error bars are ± 1 S E . 

Because of the different nature of the two habitat types, macroinvertebrate densities 

were measured in 10 * 10 cm quadrats in the case of intertidal habitats and litre 

samples in the case of supratidal habitats. Although collected using different 

sampling techniques, these two measures approximate to the density of prey 

available to foragers in a 10 * 10 cm surface area of foraging substrate (see text for 

details). 

w 300 

Fucus Barnacle Strand Wrack 
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2.3.5 Energy value of prey species 

The oligochaetes found on Fucus-covered rocks were excluded from 

calculations of energetic values, as they were extremely small and unlikely to 

be detectable in the field by ruddy turnstones, which forage visually. 

Moreover, their exclusion from further analysis could only lead to an 

overestimation of average energy value of intertidal prey items; this was 

therefore a conservative approach. 

Energy value and organic content of the different potential prey types varied 

widely (table 2.2). Coelopid larvae had by far the highest energy content 

(0.147 kJ per individual), and also a very low ash content (9%). All other prey 

types had much lower values for energy content, between 0.044 kJ per 

individual (amphipods) and 0.072 kJ per individual (littorinids). The three 

shelled prey types (littorinids, Mytilus and barnacles) contained a very high 

proportion of ash (63 - 87%) and a low proportion of water (33 - 54%). This 

reflects the high proportion of indigestible hard body parts in these animals. 

The small size of amphipods appeared to be responsible for their relatively 

low energy value per individual, because their energy value per g of dry 

weight was relatively high (15.15 kJ g"1). 

Table 2.2 Energy value and ash content of potential prey types inhabiting alternative 

ruddy turnstone foraging substrates. Where more than one sample was obtained of a 

prey type, values are averaged. N represents the number of samples analysed with the 

calorimeter. 

Prey type N No. of Dry Water Ash content kJ/dry kJ/g Energy 

indivs weight content by dry wt 9 AFDM per indiv. 

(g) (%) (%) (kJ) 

Amphipoda 2 138 0.40 77 24 15.15 19.94 0.0444 

Littorinids 1 41 0.46 54 63 6.35 17.15 0.0718 

Mytilus 1 31 0.32 44 72 4.97 17.75 0.0510 

Barnacles 6 68 0.88 33 87 3.64 15.82 0.0540 

Coelopids 5 192 1.07 79 9 29.48 32.39 0.1470 
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2.3.6 Energy value of alternative foraging substrates 

To obtain an estimate of the energy value of an average potential prey item 

on each of the four substrates, the energy values of the different 

macroinvertebrate types were multiplied by their relative abundance in each 

of the samples (figure 2.2). The mean of these values were taken to 

represent the energy content of an average prey item in each sample for 

further analysis. Based on casual observations, the two strandline types 

(resuspending and dry) were estimated to occur with equal frequency. The 

energy value of an average potential prey item was much higher in supratidal 

than intertidal samples (Mann-Whitney test: U8o,4o = 333.0, p < 0.001), and 

varied significantly among the substrates (Kruskall-Wallis test: H = 102.3, 

d.f. = 3, p < 0.001). The main source of variation in substrate profitability was 

the differing proportions of energy-rich coelopid flies among the substrates. 

The energy value of a typical prey item in strandline debris was much more 

variable than in other substrates. This was because some patches of strand 

comprised material from beach-cast wrack deposits undergoing 

resuspension, and therefore contained a relatively high proportion of coelopid 

wrack flies. Drier deposits of strandline debris contained only amphipods. 

Figure 2.2 The energy value of an average potential prey item in each of the four main 

ruddy turnstone foraging substrates. Fucus = Fucus-covered rocks, Barnacle = 

barnacle-covered rocks, Strand = strandline debris, Wrack = beach-cast wrack. All 

comparisons were highly significant except that between the two intertidal habitats 

(Nemenyi post hoc tests: all p < 0.01; see Zar 1999). Error bars represent ± 1 SD. 

2 0.1 

Fucus Barnacle Strand Wrack 
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2.3.7 Relative profitabilities in relation to energy requirements 

Assuming a DEE of 350 kJ, an assimilation efficiency of 85%, and taking 

meal intake rates from chapter 4, table 2.3 gives the amount of time that, in 

the absence of selection, a ruddy turnstone would need to forage on each 

substrate to fulfil its daily energy requirement. The energetic value of an 

average prey item in each habitat was used to calculate the foraging time 

estimates. This approach assumed that foragers were indiscriminately 

ingesting all possible prey items found in the samples. To test the robustness 

of these results to possible selection of profitable prey items by foragers, 

table 2.4 gives the results assuming that birds fed only on the most energy 

rich prey items in each habitat. In accordance with initial expectations, ruddy 

turnstones foraging on supratidal habitats, particularly beach-cast wrack, 

should achieve their daily energy requirement much more quickly than birds 

foraging on intertidal habitats (table 2.3). This remained the case even when 

foragers were assumed to be highly selective (table 2.4). Mean daylength 

during the winter period (November - February) in the study area was 9.67 h. 

This means that on Fua/s-covered rocks, a forager would need to spend 

67% (or 49% if highly selective) of the daylight period foraging to achieve 

daily energy balance, assuming that rocky intertidal habitats were available 

throughout this time. Given that littorinids, the most profitable prey type on 

Fuci/s-covered rocks, occurred at very low densities (see table 2.1), it is 

unlikely that intertidal foragers could achieve a very high level of selection. 

However, regardless of selectivity, a forager would only have to spend 46% 

of the daylight period feeding on beach-cast wrack to achieve daily energy 

balance. 
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Table 2.3 Foraging time required to achieve daily energy balance assuming no 

selection by foragers, a D E E of 350 kJ per day (see text) using the mean, minimum 

and maximum values for the proportion of time birds spent foraging on each habitat 

type. Birds foraged on average for 0.78 of their time on intertidal habitats (range: 0.88 

- 0.70) and 0.87 of their time on supratidal habitats (range: 0.79 - 0.98). Energy intake 

per minute was calculated using mean meal ingestion rates on the different 

substrates. The number of hours' foraging time required to reach daily energy target 

was then calculated assuming (a) birds foraged for the mean proportion of their time 

on each habitat, (b) the maximum observed proportion of their time and (c) the 

minimum observed proportion of their time. 

Fucus-covered Barnacle- Strand Beach-cast 

rocks covered rocks wrack 

0.9915 0.3113 0.5058 1.2934 

6.47 20.59 11.36 4.44 

7.17 22.84 12.51 4.89 

5.75 18.31 10.09 3.94 

Energy intake per 

minute (kJ) 

Hours to reach 

daily energy target 

Hours if foraged for 

minimum time 

Hours if foraged for 

maximum time 

Table 2.4 Foraging time required to achieve daily energy balance assuming that 

foragers always selected the most energy-rich prey items in each habitat (littorinids in 

intertidal habitats, coelopids in supratidal habitats). For strandline, I assumed that 

coelopids were available in 50% of the cases , and that foragers were forced to take 

amphipods in the other 50% of cases . See legend for table 2.3 for details of the 

calculations. 

Fucus-covered Barnacle- Strand Beach-cast 

rocks covered rocks wrack 

lEneTgyTntakepeT 1T35T8 0.4~TT4 579272 1.2938 

minute (kJ) 

Hours to reach 4.74 15.58 6.20 4.44 

daily energy target 

Hours if foraged for 5.26 17.29 6.83 4.89 

minimum time 

Hours if foraged for 4.22 13.86 5.50 3.94 

maximum time 
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2.4 Discussion 

2.4.1 Prey types and energy values for alternative foraging substrates 

The five main prey types found in foraging habitats in this study accord well 

with what is currently known of the dietary preferences of ruddy turnstones. 

Previous studies on rocky intertidal systems have shown that amphipods, 

cirripeds, littorinids and Mytilus are the most frequent components of the diet 

of wintering ruddy turnstones (Davidson 1971, Prater 1972, Harris 1979). 

However, the relatively low energetic value of these prey types made 

intertidal habitats on average less profitable per meal obtained than 

supratidal habitats, where foragers concentrated on coelopid fly larvae and 

amphipods. The higher profitability of supratidal foraging substrates was not 

driven by a "superabundance" of prey items in supratidal habitats, as prey 

densities did not differ significantly between the two habitat types. Rather, the 

occurrence of energy-rich prey items in beach-cast wrack and strandline 

habitats was the key difference between intertidal and supratidal foraging 

profitabilities. Shorebird energy intake rates have recently been shown to be 

higher on supratidal salinas than on intertidal mudflats in Spain (Masero 

2003). For the first time, this study provides information on a natural rocky 

shore system. 

Intertidal habitats contained relatively few different potential prey types that 

also tended to have a low energetic value per individual. As the prey types 

found reflected closely those known to be taken by ruddy turnstones, we can 

be confident that the sampling protocol was providing a realistic picture of the 

available pool of prey. The results of the energetic analyses suggest that on 

intertidal habitats, amphipods were the most profitable prey item. Although 

the calorific value of individual amphipods was rather low because of their 

small size, their relatively low ash content (24%) implies that digestive 

efficiency would be higher than for the other prey types (mean ash content of 

non-amphipods = 72%). Ruddy turnstones always took small shelled 

organisms whole, so the inorganic content of their ingesta (e.g. calcite, 
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aragonite, nacre) would be very high relative to digestible material (Cummins 

& Wuycheck 1971). This would incur costs for intertidal foragers associated 

with the energy required to physically break down the hard parts in the 

gizzard, the time taken to achieve this, and the reduction in digestive 

efficiency because of the high proportion of inorganic material in the digestive 

system (Sibly & Calow 1986). These costs would be paid over and above the 

simple fact that the mean energy value per item consumed when foraging 

intertidally is lower than when foraging supratidally. Generalist species such 

as ruddy turnstones may show greater digestive plasticity than more 

specialist species (Hilton et al. 2000), for example by lengthening the gut. 

However, such physiological responses to a poor quality diet themselves 

carry costs in terms of manufacturing and maintaining those tissues (Sibly & 

Calow 1986). 

Supratidal habitats also contained relatively few different potential prey types, 

but they had far higher energy value and lower ash content per individual. 

Coelopid flies had a high energy and water content, and also contained very 

little indigestible material. This suggests that both energy intake and digestive 

efficiency would be higher for birds foraging supratidally than for birds 

foraging intertidally. Further investigation of prey handling times, mechanical 

breakdown and digestibilities of alternative prey items is required to complete 

this picture, but this study has at least demonstrated a large differential in 

potential energy intake rates between intertidal and supratidal foraging 

habitats. 

Very few identifiable hard parts have been found in the faeces of ruddy 

turnstones foraging supratidally (Eaton 2001). This makes intuitive sense, 

because coelopids contain very little indigestible cuticular and skeletal 

material, so little material will pass all the way through the digestive system. 

This reinforces the message that extreme care must be taken when 

interpreting results from analyses of faecal and stomach contents analysis, 

as digestion rates can vary dramatically and skew apparent proportions of 

prey types (Pienkowski et al. 1984, Votier et al. 2001, 2003). For example, 

redshanks are known to digest amphipods at a much faster rate than 

29 



Chapter 2: Foraging substrate quality 

Hydrobia (Goss-Custard 1969), the latter equivalent energetically to small 

littorinids in this study. The presence of soft-bodied prey items e.g. coelopids 

in the diet may therefore be completely overlooked using conventional dietary 

analyses of stomach, pellet or faecal contents. 

Sampling of invertebrates during this study was carried out within a fairly 

small time window at the end of winter (early March), and it is possible that 

the quality of the potential prey items might change both within and between 

seasons. For example, intraspecific variation in the calorific value of lesser 

sandeels Ammodytes marinus Raitt is large enough to bias dietary studies 

using mean values (Hislop et al. 1991). Settlement of rocky shore 

invertebrates generally occurs in late spring, and growth occurs increasingly 

rapidly as temperatures increase through spring and summer (Lewis 1964, 

Pillay 1993). Growth slows dramatically or ceases during late autumn and 

winter. The intertidal invertebrate samples for this study were taken in early 

March, a time when any winter growth would have occurred, and no 

significant temperature-driven spring growth would have started. There is no 

evidence of seasonal variation in the size of coelopid larvae (Egglishaw 

1960, Blanche 1992), and no obvious reason why this should occur in an 

insect with a very rapid life cycle inhabiting a seasonally uniform 

environment. The approach taken in this study is therefore conservative, in 

that intertidal invertebrates will be at their largest for the winter period. 

Further work extending these analyses across the entire winter period would, 

however, be interesting. 

2.4.2 Time required to reach daily energy balance 

The difference in profitability among the alternative foraging substrates led to 

a substantial inequality in the time required for a forager to achieve daily 

energy balance. This was approximately 4.5 hours in supratidal habitats and 

6.5 hours in intertidal habitats. These values fit well with existing information 

on the length of time that ruddy turnstones spend feeding in a day (Eaton 

2001). These values are conservative in that the analysis only considered the 

energy content of ingested prey items and applied a single estimate of 
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assimilation efficiency. It did not take account of additional costs and further 

reductions in digestive and assimilation efficiency caused by the high ash 

content of many intertidal invertebrates. 

It has been shown experimentally that foragers can increase their energy 

intake rate under time constraints (Swennen et al. 1989, Lilliendahl et al. 

1996), and it is possible here that ruddy turnstones could increase their 

intake rate facultatively under similar pressure, particularly on intertidal 

habitats. However, an increase in feeding rate in a field setting is likely to 

incur costs such as reduced time available for vigilance or maintenance 

behaviour, or greater risk of bill / muscle damage. Moreover, the low energy 

content of intertidal macroinvertebrates meant that even under conditions of 

extreme selection and foraging for a high proportion of its time, a forager 

would still do better on supratidal than intertidal habitats. 

These analyses assume that handling time is similar for the different prey 

items. Although handling times vary dramatically among prey types in some 

shorebird foraging systems (e.g. Zwarts et al. 1996), in this case all prey 

items are taken whole without the need for shell removal, so handling time is 

likely to be relatively uniform. The results of the present study were 

qualitatively unaffected even when extreme selection of the most energy rich 

prey types was assumed. It is unlikely, however, that foragers could achieve 

very high levels of selection in most cases, because the most energy rich 

prey type in intertidal habitats (littorinids) was relatively rare (see table 2.1). 

Given that the energy expenditure of free-living ruddy turnstones approaches 

the metabolic ceiling (Piersma & Morrison 1994, Morrison et al. 1997, 

Piersma et al. 2003), we would predict strong selection of the most profitable 

foraging substrates. The fact that ruddy turnstones appear to spend only a 

limited amount of time foraging on highly profitable supratidal habitats implies 

that there is some cost associated with supratidal feeding. Costs could 

include increased parasitic infection (Norris 1999, Le Drean-Quenec'hdu et 

al. 2001), elevated predation risk (Whitfield 1985b, Hilton et al. 1999a), 

disturbance, and nutritional limitation (Boutin 1990, Martin 1987). Further 
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work is required to resolve these possibilities and understand why the 
distribution of foraging ruddy turnstones among alternative foraging 
substrates does not reflect the quality of those habitats. 
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Chapter 3: The structure and dynamics of beach-cast wrack 

3.1 Introduction 

It is becoming clear that many shorebirds commonly regarded as intertidal 

specialists forage in both intertidal and supratidal habitats. Consensus is 

emerging that foraging shorebirds use supratidal habitats, often over the high 

water period, when energy intake during the low water period has been 

inadequate (Goss-Custard et al. 1996, Caldow et al. 1999, Dann 1999, 

Masero et al. 2000, Stillman et al. 2000b, Smart & Gill 2003), and 

furthermore, changes in supratidal foraging have been linked to energetic 

requirements (Goss-Custard 1969, Zwarts et al. 1990, Velasquez & Hockey 

1992) and intertidal habitat change (Tsai 2001). However, the natural 

dynamics of supratidal foraging resources have received very little attention 

in the literature, despite the fact that understanding the relationship between 

these resources and decisions made by foragers could throw much light on 

the adaptive significance of such habitat switching. Accurate interpretation of 

supratidal foraging patterns is very difficult without information on variation in 

supratidal resource characteristics. This chapter describes the natural 

dynamics of potentially one of the most important supratidal foraging 

resources for shorebirds, namely beach-cast wrack. 

Deposits of beach-cast wrack, here defined as discrete aggregations of 

marine vegetation, algae or the like, cast ashore by wave action, occur 

commonly along sea coasts, and are important components of productivity 

and nutrient cycling in littoral systems (Koop et al. 1982, Hansen 1984, 

Bergerard 1989, Kirkman & Kendrick 1997, Rossi & Underwood 2002). 

Beach-cast wrack is particularly important in supplying nutrients to a part of 

the shoreline with little resident primary production (McLachlan et al. 1981, 

Colombini et al. 2000). For example, up to 19% of seagrass production in a 

Kenyan lagoon passed through a beach-cast phase, contributing to local 

cycling of the nutrients tied up in their tissues (Ochieng & Erftemeijer 1999). 

Much of this nutrient supply is lost rapidly from beaches through wave action, 
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but some is retained interstitially in the sediment or enters the macrofaunal 

food chain (Brown & McLachlan 1990). These effects will be particularly 

strong in beach-cast wrack, where material cast onto the beach undergoes 

bacterial decomposition over a period of up to several weeks. Beach-cast 

wrack could therefore provide an important supratidal food resource for 

shorebirds in close proximity to their intertidal foraging and supratidal 

roosting habitats. 

During the various stages of its decomposition, beach-cast wrack supports a 

rich and dynamic, but relatively understudied fauna (Behbehani & Croker 

1982, Berzins 1984). Wrack flies (Diptera: Coelopidae) are dependent on 

beach-cast wrack for completion of their life cycle (Blanche 1992), and 

usually vastly outnumber other inhabitants of beach-cast wrack in temperate 

Europe (Backlund 1945, Egglishaw 1965). Most studies of beach-cast wrack 

fauna have therefore concentrated on coelopids (Egglishaw 1960, Phillips et 

al. 1995a,b Hodge & Arthur 1997, MacDonald & Brookfield 2002), although 

some have considered amphipods (Behbehani & Croker 1982, Marsden 

1991), Coleoptera (Keys 1918), mites (Halbert 1920) and assemblages more 

generally (Backlund 1945, Egglishaw 1965, Hansen 1984, Bergerard 1989, 

Inglis 1989, Colombini et al. 2000). The scattered literature on beach-cast 

wrack faunal studies awaits thorough review, but the general picture is that 

the size and composition of faunal assemblages vary dramatically with the 

algal species involved, geographical location, local topography, climate, tidal 

cycle and season, such that few generalisations can be made about the 

quality and predictability of these habitat patches for foraging shorebirds. 

The literature on the use of beach-cast wrack by shorebirds is extremely 

scant, despite suggestions that it may be an important foraging substrate and 

a plea for further research by Kirkman & Kendrick (1997). There are brief 

anecdotal reports of several bird species feeding on invertebrate 

colonisations within rotting beach-cast wrack (e.g. Backlund 1945, Egglishaw 

1965, Jones 1975, King 1978, Dobson 1997), but very few quantitative 

studies on the dynamics of this habitat, and its importance for wintering 

shorebirds. In a study on the Californian coastline, numbers of black 
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turnstone Arenaria melanocephala (Vigors) and ruddy turnstone, the only 

shorebird species present in the study area that used beach-cast wrack, 

increased after populations of a subtidal macroalga were restored, while 

numbers of other species did not change (Bradley & Bradley 1993). The 

authors suggested a positive relationship between the amount of beach-cast 

wrack and shorebird density, although the conclusion must be regarded as 

tentative as no direct measurements of the availability or quality of beach-

cast material were made before or after the change in macroalgal 

populations. 

Patch choice decisions by foragers depend crucially on the profitability 

(Chamov 1976, Milinski 1979a) and predictability of alternative possible 

patches (Caraco et al. 1980, Stephens 1981, Stephens & Charnov 1982), not 

least because more profitable patches may incur costs associated with 

density-dependence (Fretwell & Lucas 1970, Shorrocks et al. 1979, 

Sutherland et al. 1988) and predation risk (Caraco 1979, Gilliam & Fraser 

1987, Brown 1988). To understand the decisions of foragers using any 

resource, the first step therefore, must be to quantify spatial and temporal 

variation in the quantity and quality of the resource. It has been suggested 

that shorebirds feed over high water on invertebrates within deposits of 

beach-cast wrack as a supplementary food source to "top-up" inadequate low 

water food intake (Eaton 2001). However, there are several other 

explanations for this behaviour (see chapter 6). The "topping-up" hypothesis 

rests implicitly on a number of as yet untested assumptions about how birds 

respond to variation in the extent and profitability of these supratidal food 

resources. 

Beach-cast wrack is generally variable in its extent over time (Bergerard 

1989, Kirkman & Kendrick 1997, Ochieng & Erftemeijer 1999), but spatial 

and temporal variation in its profitability for foraging shorebirds is currently 

unknown. This chapter describes the extent of beach-cast wrack deposits as 

a foraging habitat for shorebirds, their ontogeny, and the characteristics of 

invertebrate colonisations. Spatial and temporal patterns of habitat availability 

and quality are also described. 
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3.2 Methods 

3.2.1 Beach-cast wrack 

This work was conducted on an east-facing, 39.5 km stretch of coastline 

between St. Mary's Island (55Q 4' 37"N 1 9 27' 8"W) and Amble (55 e 19' 60"N 

1 9 34' 60"W), on the north-east coast of England during winter 2000/2001 

(see figure 1.1 on page 4). Winter throughout is defined as the months of 

November to February inclusive, a period when migratory activity of 

shorebirds in the study site is minimal and populations are stable (Eaton 

2001). Data collection was restricted to this period to reflect most accurately 

the habitat choices faced by wintering shorebirds in the study site, and 

because variation in daylength was limited. 

The appearance of all beach-cast wrack within the study site was monitored 

during weekly visits made for 16 weeks throughout the winter study period. 

Each deposit was uniquely identified so it could be tracked over time. A 

wrack deposit was defined as an aggregation of algal and other beach-cast 

material above the most recent high tide mark sufficient to form a coherent 

mass of at least 10 m in length and 1 m in width (equivalent to the "wrack 

banks" of Backlund 1945). This meant that incoherent strandline debris not 

forming a distinct mass of at least these dimensions was excluded (the 

"wrack strings" and "wrack flakes" of Backlund 1945). This definition seemed 

to make biological sense, as large numbers of colonising invertebrates were 

observed only in such coherent wrack deposits. Deposits were considered 

distinct if they were separated by a gap of more than 10 m, or a physical 

barrier (such as a groyne or sluice). If a deposit was suspended and then re-

deposited between weeks, it was also treated as a new unit as the process of 

invertebrate colonisation would have to restart (Egglishaw 1965). For each 

deposit, the following was measured: width to the nearest metre and height 

to the nearest 5 cm at 10 m intervals along the deposit; temperature (taken at 

10 cm depth in the centre of the deposit at 10 m intervals); shape (tapered or 

symmetrical in cross section); and the presence or absence of strandline 
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debris in the vicinity of the deposit. The composition of the deposit was 

recorded by estimating percentage volume of the macroalgae Fucus and 

Laminaha, other algae, leaves from terrestrial plants, sand, coal, stones and 

bryozoan mats. 

The study site was divided into 79 sections each of 500 m, and the section in 

which each deposit formed was recorded. Based on 1:10000 maps 

(Ordnance Survey data, 1991), the aspect of each section was recorded as 

north-east, south-east, south-west, or north-west, and the distance from each 

section to the nearest area of rocky intertidal was measured. The frequency 

of beach-cast wrack appearance in each section was calculated by summing 

the number of weeks in which beach-cast wrack was recorded in the section. 

3.2.2 Weather data 

Measurements of wind speed and wind direction were extracted from UK 

Land Surface Station weather data for Boulmer (10 km north of the study site 

at 55Q 25' ON 1- 35' 0W) obtained from the Meteorological Office via the 

British Atmospheric Data Centre (BADC, Space Science and Technology 

Department, R25 - Room 2.119, Rutherford Appleton Laboratory, Didcot, 

Oxfordshire, OX11 0QX, UK). Mean, maximum, minimum and standard 

deviations were calculated for the two weather variables by pooling data for 

the seven days prior to each measurement of beach-cast wrack. As the wind 

direction data were circularly distributed, calculation of these statistics for 

wind direction followed Zar (1999). 

3.2.3 Invertebrate sampling 

Samples of invertebrates were taken from two wrack deposits at Cresswell 

(55 e 13' 44"N 1 Q 31 ' 41 "W) on 27th November 2001 and one at St Mary's 

Island (55Q 4' 14"N 1 Q 27' 10"W) on 11th January 2002. After measuring 

deposit width, depth, and temperature at 10 cm depth at the centre and 

seaward edge (temperature was only measured for the St Mary's Island 

deposit), litre samples of wrack were obtained in the centre, and at the 
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seaward edge every 10 m along each of the three deposits. This was done 

by placing a 10 cm*10 cm quadrat on the surface of the deposit, and cutting 

a 10 cm cube out of the material, using the quadrat as a guide. Based on 

over 400 observations of ruddy turnstones foraging on beach-cast wrack (see 

chapter 4), the maximum depth reached by the birds was estimated to be 10 

cm, usually by excavating the substrate. Samples were removed from the 

wrack deposit and transferred to sealed containers as quickly as possible to 

minimise escape by invertebrates. They were then washed thoroughly over a 

1 mm sieve and all invertebrates were removed. The numbers of each 

identified taxon (classified as either coelopid fly species or oligochaetes) in 

each sample were recorded, together with their life stage (larva, pupa, adult) 

in the case of coelopid flies. 

3.2.4 Data analysis 

Most statistical analyses were implemented in SPSS version 11 (233 S. 

Wacker Drive, 11th floor, Chicago, Illinois 60606). Data were transformed 

where appropriate. Because the relationship between deposit age and mean 

temperature was possibly dependent on deposit identity, it was investigated 

using simple linear regression with groups in Genstat version 5 (Genstat 5 

Committee of the Statistics Department, Rothamsted Experimental Station, 

Harpenden, Hertfordshire, UK). A cumulative ANOVA was then used to 

determine whether there was evidence of non-parallelism among the 

regression lines. 

3.3 Results 

3.3.1 Extent of beach-cast wrack availability 

Fifty deposits of beach-cast wrack were identified during the winter period, 

although 112 measurements of deposits were made in total, as some were 

present during more than one weekly survey. A mean of 7.0 deposits was 

38 



Chapter 3: Structure and dynam ics of beach-cast wrack 

present each week (range: 2 - 13, SD = 3.3), and each week a mean length 

of only 1 % of the coastline in the study area was populated with beach-cast 

wrack (mean weekly combined length of all deposits = 406 m, n = 16, range: 

9 0 - 8 1 0 m, SD = 233.8 m; total coastline length 39500 m). The mean total 

area occupied by beach-cast wrack each week was 1821 m 2 (n = 16, range: 

420 - 3500 m 2 , SD = 1075 m 2 , compare with 158,000 m 2 , the area of a strip 

along the coastline 4 m wide, the average width of the wrack deposits). 

Beach-cast wrack therefore formed an extremely small proportion of possible 

supratidal foraging habitat. 

3.3.2 Characteristics of individual deposits 

Deposits of beach-cast wrack were generally clearly distinguishable from 

surrounding habitat except when material was in the process of deposition. 

Boundaries of deposits were typically abrupt, although in 78% of cases, 

scattered algal debris was present in the vicinity of the main deposit. 

Summary statistics for the 50 deposits are given in table 3.1. See Appendix 2 

for data on individual deposits. The high coefficients of variation indicate 

large variation in deposit characteristics. 

Table 3.1 Physical characteristics of the 50 beach-cast wrack deposits recorded 
during winter 2000/2001 in the study area. Where a particular deposit was measured 
more than once because it was present during more than one weekly sampling period, 
values were averaged. 

Mean Range SD CV 

Length 54.3 m 10-125 m 29.5 0.54 

Volume 55.0 m 3 1.3-433.5 m 3 70.34 1.28 

Area 236.7 m 2 17.3-1011.5 m 2 198.66 0.84 

Depth 0.35 m 0.13-0.98 m 0.20 0.57 

Temperature 8.42 Q C 4.15-16.23 e C 3.09 0.37 

The major constituents of beach-cast wrack were Fucus spp (mainly F 

serratus, but also F. vesiculosus and F. spiralis L ) , forming on average 60% 
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of each deposit, and Laminaria spp (mainly L. digitata (Hudson), but also L. 

hyperborea (Gunnerus) and L. saccharina (L.) Lamouroux), comprising about 

25%. Average composition of the deposits is given in table 3.2. 

Table 3.2 Composition of beach-cast wrack deposits. Figures are mean percentage 
compositions by volume. Where a particular deposit was measured more than once 
because it was present during more than one weekly sampling period, values were 
averaged. 

Constituent Mean Range SD 

Fucus spp 60.0 10-95 19.5 

Laminaria spp 24.7 0-70 14.4 

Leaves of terrestrial plants 8.3 0-85 21.4 

Sand 2.6 0-50 9.4 

Coal 2.6 0-50 8.9 

Stones 1.5 0-40 5.4 

Bryozoans 0.3 0-30 2.9 

Rhodophytes / Chlorophytes 0.1 0-10 1.0 

Eighty-eight percent of beach-cast wrack deposits were tapered in cross 

section, with the tallest part nearest the water's edge (figure 3.1 shows a 

typical deposit diagrammatically). Potential foraging substrate for shorebirds 

would therefore consist of a level platform, with the depth of substrate 

increasing toward the shoreline. Deposits typically occurred above the high 

water mark, and the mean height of deposits above ordnance datum each 

week was greater than the height of high tide (Wilcoxon signed ranks test: 

Z = 1.99, n = 16, p = 0.047). There was frequently a vertical drop-off at the 

seaward edge of the deposit (figure 3.1). 
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Figure 3.1 A typical beach-cast wrack deposit. 

Beach-cast wrack tapered in cross section 
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3.3.3 Beach-cast wrack ontogeny 

The mean lifespan of beach-cast wrack deposits was 2.7 weeks (18.9 days), 

although the distribution was highly right skewed, with 46% of deposits 

observed on only one occasion (figure 3.2). Lifespan of beach-cast wrack 

deposits was uncorrelated with mean deposit width, length, volume and area 

(all rs < 0.6, n = 112, all p > 0.05). 

Figure 3.2 Frequency distribution of deposit lifespans. Mean lifespan was 2.7 weeks 
(n = 50, SD = 2.36; range: 1-10). 
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Mean temperature of a deposit increased with age (figure 3.3, simple linear 

regression with groups; F i , 3 3 = 37.08, p < 0.001). There was no evidence for 

non-parallelism among the regression slopes introduced by considering 

deposit identity ( F 4 1 i 3 3 = 0.79, p = 0.767), and the individual regressions did 

not require separate intercepts (F 22,33 = 1.2, p = 0.314). No deposit achieved 

a mean temperature of above 15 S C until it had been recorded on at least 

three consecutive weekly surveys, i.e. until it was aged between two and four 

weeks. 

Figure 3.3 The relationship between deposit age and temperature (n = 98). Age is 
expressed in cumulative number of weekly surveys in which a deposit had been 
recorded, and temperature is the mean value of measurements taken at a depth of 10 
cm in the centre of the deposit every 10 m along its length. See text for statistical 
analysis. 
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3.3.4 Predicting invertebrate density 

Samples from beach-cast wrack contained adult, larval and pupal stages of 

coelopid flies, together with smaller numbers of oligochaetes. The distribution 

of the invertebrates appeared uniform throughout each sample, although 

varied widely between samples. Mean density of coelopid larvae was 413 I"1 

(range 0 - 2600, SD = 664.5), pupae 29.3 I"1 (range 0 - 400, SD = 74.2), and 

adults 0.6 I"1 (range 0 - 6, SD = 1.4). The maximum number of non-adult 
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coelopids in a sample was 2609 in a sample with a temperature of 23.3 9 C. 

The mean density of oligochaetes was 144 I"1 (0-1300, SD 277.7). 

Oligochaete numbers were relatively low, and their average biomass was 

less than a tenth of that of coelopid larvae (estimated mean volume of 

oligochaetes: 814 mm 3 ! " 1 ; coelopid larvae: 17516 mm 3 ! ' 1 ) . Furthermore, 

shorebirds appeared to concentrate exclusively on coelopid flies, particularly 

larvae and pupae (see chapter 4). Consequently, subsequent data refer only 

to coelopids. The frequency distribution of coelopid numbers was strongly 

right skewed, many samples containing few or no fly larvae. This indicates a 

patchy distribution of coelopids across the deposits. Position on the deposits 

was important; mean density of coelopids of all life stages in samples taken 

from the centre of the deposit were more than four times greater than that of 

samples from the edge of the deposit (paired t-test, t = 4.28, d.f. = 32, p < 

0.001). This was almost certainly driven by temperature, which dropped from 

a mean of 19.3 QC in the centre to 12.0 S C at the edge (paired t-test, t = 4.43, 

d.f. = 16, p < 0.001). The drop in temperature did not vary with deposit width 

(r = 0.15, n = 17, p = 0.560). 

After investigating a maximal linear regression model including temperature, 

depth and width of the deposit at each sampling point, temperature was 

retained in the final model as the only significant predictor of the density of 

non-adult coelopids ( F 1 i 3 2 = 45.61, r2 = 0.58, p < 0.001, figure 3.4), although 

it explained little of the variation in the number of adult flies in the samples 

( F i , 3 2 = 0.35, p = 0.559). Because the relationship between temperature and 

density of coelopid larva appeared non-linear (figure 3.4), a sigmoidal 

gompertz curve was fitted to the data and compared with the simple linear 

model. The linear model was chosen as it outperformed the non-linear model 

(non-linear model: F 3 i 3 o = 15.08, r2 = 0.56). The linear regression equation for 

non-adult coelopids was: 

1 + (logio COELOPID) = (0.147 * TEMP) - 0.185 (Equation 1) 
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Figure 3.4 The density (individuals per litre) of non-adult coelopids increased with 
temperature. See text for statistical analyses. 
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3.3.5 Predicting patch quality 

The relationship between temperature and coelopid density derived from the 

sampling data was used to predict patch quality (i.e. non-adult coelopid 

density) using the temperature measurements taken from beach-cast wrack 

deposits throughout the winter period. The predicted density of non-adult 

coelopids was calculated by splitting each deposit into slices every 1 m along 

its length and assuming that the temperature, height and width of the deposit 

changed linearly along each 10 m section between the measured points. 

Temperature was also assumed to change linearly from the centre to the 

edge of the deposit using a proportional decline from the centre to each edge 

of 0.38 derived from the sampling data. The number of non-adult coelopids in 

the surface 10 cm of each 1 m slice was then calculated from equation (1). 

These values were then aggregated to provide summary coelopid density 

statistics for each deposit (see Appendix 2). 

Overall predicted mean density of non-adult coelopid flies in beach-cast 

wrack deposits was 212 flies I"1 (range: 2 - 4302, SD = 716.0). Estimated 

mean coelopid density began to increase significantly only after a deposit 

had been present for 3-5 weekly surveys (see figure 3.5), but remained 
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relatively constant after this. The error bars indicate a great deal of variation 

in the predicted density of coelopids. 

Figure 3.5 Changes in the estimated density of non-adult coelopid flies during the 
development of beach-cast wrack deposits. Fly density is mean number of individuals 
per litre for all deposits of a given age. Error bars are + 1 SE. Deposit age is expressed 
by the number of consecutive weekly surveys in which a particular deposit was 
recorded. 
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3.3.6 Spatial and temporal patterns in beach-cast wrack appearance 

Deposits of beach-cast wrack appeared in the study site throughout the 

winter period but, as discussed above, they varied dramatically in size, shape 

and duration, as well as in density of colonising invertebrates. Typically, 

deposits occurred over sandy substrates, and most usually in the southern 

edges of bays where floating and suspended material was trapped. These 

topographical features appeared to limit suitable sites for the formation of 

beach-cast wrack. Indeed, deposits occurred in only 18 of the 79 divisions of 

the study site, and the frequency distribution of the number of weeks in which 

beach-cast wrack was present in each section was strongly right skewed 

(skewness = 3.24, SE = 0.27). One north-facing division just north of St 

Mary's Island continuously held beach-cast wrack for all 16 weeks throughout 

the winter period. Observed and expected frequencies of beach-cast wrack 
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appearance did not change with aspect (G-test using frequency of beach-

cast wrack appearance in the four compass directions: Gadj = 2.86, 

p = 0.240). The frequency of beach-cast wrack appearance was greater on 

sandy divisions of the study site than rocky divisions (Gacij = 7.9, p = 0.005), 

and declined with distance from the nearest area of rocky intertidal 

(rs = -0.47, n = 79, p < 0.001), with no beach-cast wrack appearing at all in 

the 30 divisions of the study site more than 500 m from an area of rocky 

intertidal. 

Spatial homogeneity of the frequency of beach-cast wrack appearance was 

tested using simple autocorrelation analysis, thus treating the data as evenly 

spaced points along a line. There were no significant autocorrelations or 

partial autocorrelations at any lags (n = 79, all p > 0.05). Furthermore, 

characteristics of individual deposits showed no obvious temporal pattern 

over the winter period (figure 3.6), and there was no significant temporal 

predictability based on autocorrelation and partial autocorrelation analyses of 

the weekly data (n = 16). Variables investigated were total number of 

deposits, total length, total volume, mean area, mean depth, and mean 

deposit temperature. 

3.3.7 Predicting beach-cast wrack from weather conditions 

None of the wind speed or wind direction measures was correlated with the 

extent (length, volume, surface area) or quality (temperature, predicted 

coelopid density) of beach-cast wrack (wind speed data all p > 0.2; wind 

direction data all p > 0.05). 
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Figure 3.6. Variation in beach-cast wrack characteristics over the winter period, (a) 
Total length of all deposits combined; (b) total volume of all deposits combined; (c) 
mean temperature ± 1 SD; (d) total surface area of all deposits combined; (e) number 
of deposits; (f) total predicted number of non-adult coelopid flies available in the 
study site. 
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3.4 Discussion 

Beach-cast wrack comprised a small proportion of overall possible supratidal 

foraging substrate in terms of surface area, but the high densities of 

colonising invertebrates suggest it could form an important resource for 

foraging shorebirds. 
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There was great variation in deposit size and quality over time, but variation 

across space was much more limited, with only 23% of the 500 m sections of 

the study site hosting beach-cast wrack at least once during the winter 

period. This was not simply due to beach-cast wrack being a rare 

phenomenon, as deposits were recorded on 112 occasions during the study. 

If foragers could respond to environmental cues that predict a high likelihood 

of beach-cast wrack on a given stretch of coast, or learn the locations of 

these areas over time, much of the spatial uncertainty could be removed. For 

example, the sections in which beach-cast wrack occurred were 

overwhelmingly those containing or close to rocky intertidal areas. Possible 

explanations for this are that most material comprising the deposits was 

derived locally, deposition of drifting algae was favoured close to areas of 

rocky intertidal, or a combination of these. 

Areas near rocky intertidal outcrops may favour deposition of suspended 

algae, perhaps for topographical or hydrographical reasons. In a study 

conducted in Western Australia, floating drift cards (simulating transport of 

buoyant algae such as Fucus spp) travelled a mean distance of 9.3 km (1.8 -

40.8 km) from the release site, and negatively buoyant drift cards (simulating 

transport of kelps e.g. Laminaria) a mean distance of 4.6 km (0.8 - 29.6 km; 

Kirkman & Kendrick 1997). The Northumberland coast is an area of high 

natural dispersion (Hiscock 1998), suggesting that detached algae will drift 

similar or greater distances than in the Australian study. It therefore seems 

unlikely that all beach-cast wrack in the present study originates from within 

500 m of the deposition site. Outcrops of hard rock erode more slowly than 

the intervening soft-sediment coast, forming headlands that extend into the 

sea, and there is a southerly current stream along the Northumberland coast 

(Evans 1957, 1959), suggesting that material is likely to be deposited in the 

north-facing lips at the southern end of bays. This may explain why the north-

facing bay at St Mary's Island held beach-cast wrack continuously for the 

winter period. Indeed, this site has been used several times for the study of 

beach-cast wrack fauna (Egglishaw 1958, Phillips et al. 1995a), presumably 

because of this propensity to receive beach-cast material and retain it for 

extended periods. In terms of supratidal foraging by rocky-shore specialist 
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shorebirds, it is possible therefore that proximity to areas of rocky intertidal 

could be used as a cue for birds searching for supratidal foraging 

opportunities. 

Despite the spatial tendency for beach-cast wrack to form near areas of 

rocky intertidal, the pattern of its availability over time was highly 

unpredictable. In particular, the availability of material in one week could not 

be predicted from availability in previous weeks or from weather conditions. 

This means that although topographic features associated with high beach-

cast wrack availability could in principle be identified or learnt by foraging 

shorebirds, there were no obvious predictors of temporal variation in beach-

cast wrack availability. 

The most likely fate for a given patch of newly deposited algae was 

resuspension without any significant invertebrate colonisation. Colonisations 

occurred only in deposits that remained undisturbed for two or more weeks, 

but from the point of view of a foraging bird, any given deposit could not 

relied upon to remain intact from one tidal sequence to the next. The mean 

lifespan of beach-cast wrack deposits in this study was 19 days, and 

complete decomposition of an undisturbed deposit of the kelp Ecklonia 

radiata in Western Australia took 20 - 23 days (Kirkman & Kendrick 1997). 

The present study shows that in general, beach-cast wrack is highly 

ephemeral and may frequently be resuspended before colonisation by 

invertebrates. The life cycles and population genetic structures of beach-cast 

wrack fauna reflect the frequent occurrence of catastrophes and the need for 

extreme opportunism (Egglishaw 1965, Leggett et al. 1996). The foraging 

strategies of predators must to a certain extent show equivalent flexibility. 

Once decomposition of beach-cast wrack was underway, some very large 

colonisations by coelopid wrack flies were observed. Densities of over 2600 

non-adult flies per litre were observed in samples of beach-cast wrack, and 

even greater densities are reported in the literature (Egglishaw 1960). Beach-

cast wrack is therefore potentially a highly profitable foraging substrate for 

shorebirds. Furthermore, the quality of patches of beach-cast wrack for 
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foraging shorebirds can be estimated fairly accurately by using the 

relationship between temperature and density of coelopid flies. The 

regression model used here assumed for parsimony that this relationship 

was linear, although this may not be the case in reality, particularly at 

extremes of temperature. Two species of coelopid fly, Coelopa pilipes 

Haliday and C. frigida (Fabricius), occur commonly in north-east England. 

The latter is adapted for cooler temperatures, and the relative density of the 

two species between 20 Q C and 33 e C is determined by temperature-

mediated competition; below 20 Q C only C. frigida survives, and above 33 Q C, 

only C. pilipes survives (Phillips et al. 1995b). In addition, there are likely to 

be temperature thresholds below which larval development is severely 

retarded and above which competition inhibits further population growth. 

Additionally, the model may over-predict coelopid densities in cool deposits 

because it was based on deposits with a wide range of temperatures, in 

which larvae could migrate from warm areas to cooler areas in which 

development would not normally commence. Despite these caveats, 

however, the most parsimonious way to describe these data statistically was 

with a linear model, and this model fitted the relationship very well. Predicted 

invertebrate densities are therefore likely to reflect at least broadly the 

dynamics of patch quality for foraging birds. 

There was no relationship between temperature and the number of adult flies 

in samples of beach-cast wrack. Adult wrack flies are the dispersive stage in 

the life cycle, often emerging in large numbers and performing mass 

emigrations from habitat patches (Egglishaw 1961). Adult flies reach new 

deposits and begin the colonisation process once again. Adults are known to 

use temperature as a cue when choosing egg-laying sites (Phillips et al. 

1995b), but presumably they explore the deposit looking for regions of 

appropriate temperature before laying. Also, some adult flies may have 

escaped during the process of collecting samples from beach-cast wrack. 

These factors may lead to substantial scatter in the relationship between 

temperature and the density of adult coelopids. 
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This study has shown that at appropriate stages of maturity, beach-cast 

wrack is potentially a very rich food source for those foraging shorebirds able 

to exploit it, and that beach-cast wrack containing large invertebrate 

colonisations is available for a significant proportion of the winter period. 

However, the extent and quality of the resource are apparently unpredictable 

over time. For foraging shorebirds, beach-cast wrack deposits appear to form 

an unpredictable element (both in terms of habitat quality and availability) 

within a matrix of otherwise predictable intertidal foraging. 

The results of this chapter raise questions about how the presence of a 

profitable but unpredictable substrate influences patch-choice decisions by 

foragers. For example, the availability of beach-cast wrack might directly 

affect foraging effort (e.g. the relative proportion of time spent searching for 

food and engaged in vigilance) put in by birds during the intertidal phase. 
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Chapter 4: Patterns in vigilance, group size and foraging 

behaviour among substrates that vary in profitability, 

predictability, and predation risk 

4.1 introduction 

4.1.1 The group size effect 

Foragers often reduce individual predation risk by forming larger groups 

(Hamilton 1971, Pulliam 1973, Milinski & Heller 1978; see Krause & Ruxton 

2002 for a review), particularly when foraging in risky situations (Hager & 

Helfman 1991, Tegeder & Krause 1995, Spieler 2003). Such responses to 

predation risk can occur at a variety of temporal scales, from seasonal 

changes (Werner 1986, Lucas et al. 1996), down to daily changes and 

beyond (Dodson 1990, Dill & Gillett 1991). Forming larger groups under 

elevated predation risk benefits the forager because the vigilance effort 

required of individuals usually declines as group size increases (Lima 1995). 

There are two main hypotheses to explain this group size effect. Firstly, when 

there are more individuals in a foraging group, a smaller individual 

contribution is required to maintain a given level of overall group vigilance 

(Pulliam 1973, Powell 1974, Bertram 1980, Elgar 1989). This effect is usually 

measured by the interscan interval, the time period between successive 

initiations of vigilance postures within the group (Pulliam 1973, Bednekoff & 

Lima 1998, 2002). Secondly, the reduction in individual predation risk through 

numerical effects such as dilution (Foster & Treherne 1981), predator 

confusion (Milinski 1979b) and cooperative warning and escape effort 

(Humphries & Driver 1967, Proctor et al. 2003) imply that a lower level of 

overall group vigilance is required when foraging in larger groups, all else 

being equal. 

Although this reduction in overall group vigilance with increasing group size 

has been well documented (Barnard & Thompson 1985, Elgar 1989, Lima 

1990, Lima & Dill 1990, Quenette 1990, Cresswell 1994, Roberts 1995), a 
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growing number of recent studies has reported no detectable effect of group 

size on individual vigilance levels (Catterall et al. 1992, Scheel 1993, Jones 

1998, Krams 1998, Treves 2000). Furthermore, Roberts (1996) has pointed 

out that many variables might confound the relationship between group size 

and individual vigilance. For example, interpreting a meta-analysis of group 

size and vigilance in primates, Treves (2000) found scant evidence for the 

group size effect in mammals and, among other suggestions, proposed that 

vigilance will not decline with group size in situations where predators do not 

rely on surprise, because there is no benefit of collective decision-making 

and potentially a cost in terms of group conspicuousness. However, variation 

in predation risk itself could obscure or even reverse the relationship between 

group size and individual vigilance levels, even in situations where predators 

hunt by surprise. 

Here, I consider a situation where the main risk of predation for foragers is 

from raptors hunting by surprise (Cresswell 1996). Foragers tend to form 

larger groups on high risk foraging substrates than on low risk substrates. 

Because group size and the probability that the group is attacked covary, the 

group size effect may be confounded in this situation. At the very least, this 

kind of system allows us to explore reasons for deviation from the group size 

effect, particularly where the high risk substrate is also profitable in terms of 

energy intake rate (see chapter 2). For any given group size, we might 

predict interscan interval to decrease under conditions of elevated predation 

risk; this requires individuals to modulate their own vigilance contribution 

based on the expected probability of a predator attacking the group. This 

would involve integrating clues from outside the group, as well as adjusting 

individual vigilance contribution to current group size. Although these effects 

can be distinguished experimentally, under natural conditions, elevated 

predation risk is frequently associated with higher profit foraging patches 

(Houston et al. 1993). Under these conditions, we might predict significant 

departures from the expected group size effect. 

This chapter considers how the group size effect is influenced by variation in 

predation risk by comparing the relationship between flock size and vigilance 
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levels of ruddy turnstones foraging among several habitats that vary in 

predation risk. Intertidal habitats are much further from cover from which 

raptors can launch surprise attacks than are supratidal habitats (see chapter 

6). Within intertidal habitats, foraging ruddy turnstones might be more visible 

to predators on pale, barnacle-covered rock than on darker, more mottled 

Fucus-covered rock (Metcalfe 1984). Foraging high up the shore is known to 

incur elevated predation risk in shorebirds (Whitfield 1985b, Hilton et al. 

1999a), probably because supratidal habitats are much closer to cover than 

intertidal habitats, and coastal features such as cliffs further restrict the 

distance from which a predator's approach can be detected. Within supratidal 

habitats, predation risk is influenced more by distance to cover (Hilton et al. 

1999a) than the conspicuousness of foragers to predators, so beach-cast 

wrack, which occurs closer to land than strandline debris (see chapter 1), 

should be a more risky foraging substrate in terms of predation risk. 

If foragers are adjusting their vigilance levels to external predation risk over 

and above that predicted by flock size, interscan interval should vary 

predictably for a given group size effect depending on the predation risk 

associated with the different substrates. On supratidal habitats, we would 

therefore predict (a) larger flock sizes than on intertidal habitats and (b) a 

shorter interscan interval than predicted by the general group size effect 

alone. We would also predict excessive vigilance on the more dangerous 

versus the safer substrate (beach-cast wrack versus strandline and barnacle-

versus Fucus-covered rocks) within the two broad habitat types. This could 

lead to departures from the expected reduction in vigilance with increasing 

group size, thereby demonstrating a confounder of the group size effect. 

4.1.2 Diurnal patterns in vigilance 

One reason foragers attempt to minimise their individual vigilance 

contribution is that scanning for predators conflicts with other important 

activities, such as searching for food, body maintenance and breeding 

behaviours (Dimond & Lazarus 1974, Caraco 1979, Lendrem 1983, Elgar 

1989, Mooring & Hart 1995, but see Lima & Bednekoff 1999a, Guillemain et 
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al. 2001). The physiological state of foragers therefore has a major effect on 

the trade off between vigilance and foraging effort. Foragers in a poor 

physiological state should devote less time to vigilance than predicted by 

predation risk or flock size because starvation is a more immediate risk than 

predation. This effect has been modelled extensively, and has given rise to 

predictions about the pattern of mass gain during the course of a foraging 

bout (McNamara & Houston 1986, 1990, Houston et al. 1993, McNamara et 

al. 1994). 

Providing that energy is assimilated at a greater rate than it is expended in 

acquiring and digesting food, the physiological condition of a forager will 

improve during the course of a foraging bout. In general, there will be an 

increase in vigilance as animals near satiation, because mortality through 

predation becomes progressively more likely than starvation (Milinski & 

Heller 1978, Krebs 1980, McNamara & Houston 1986, Ydenberg & Houston 

1986). However, the timing and trajectory of mass acquisition, and hence 

vigilance levels, will depend on characteristics of foraging substrates, such as 

their profitability, relative predation risk, and the ability of the forager to take 

cover in risk-free locations (Houston et al. 1993, McNamara et al. 1994, 

Cresswell 1998). 

Here, I compare the diurnal trajectories of energy intake and vigilance by 

ruddy turnstones between two habitats that vary in predation risk and 

predictability. Despite some circumstantial evidence of nocturnal foraging by 

ruddy turnstones (e.g. Clark et al. 1990, Robert et al. 1989, Schneider 1985), 

recent radiotracking data indicate that they rarely forage at night in the 

present study area (Eaton 2001). Supratidal foraging substrates are high 

quality, but temporally unpredictable resources (see chapter 3). Given that 

any particular supratidal foraging patch could be degraded or destroyed 

within a few hours by wave action, we might expect birds to acquire mass at 

a consistently high rate whenever the opportunity arises to forage 

supratidally. Moreover, because predation risk is relatively high on supratidal 

substrates, vigilance levels should increase through the day as foragers 

acquire mass, either because of increasing mass-dependent predation risk 
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(Witter et al. 1994, Metcalfe & Ure 1995, Bednekoff 1996), or because of the 

forager nearing satiation (Pravosudov & Grubb 1997,1998). 

Rocky intertidal substrates, on the other hand, are low quality, but relatively 

stable temporally. Chapter 2 showed that potential prey items in intertidal 

habitats in the present study area have a lower energy content than prey 

items in supratidal habitats. Rocky-shore invertebrate populations are 

generally open, with rapid recovery from perturbation possible via recruitment 

from unaffected areas (Thompson et al. 2002), and invertebrate motility is 

necessarily two dimensional, with the rocky substrate preventing burrowing. 

Given that intertidal foraging conditions are relatively predictable, we might 

expect birds to delay mass acquisition until late in the day to minimise mass-

dependent predation risk (Houston et al. 1988, 1993, Houston & McNamara 

1993). This predicts a rise through the day in energy intake rate when 

foraging on intertidal substrates, peaking just before dusk. The predictions for 

vigilance are less clear. Late in the day, a forager is at much greater risk of 

mass-dependent predation, so should be more vigilant. However, because 

feeding rate is high later in the day, vigilance will necessarily be traded off 

with food acquisition behaviours. The most likely outcomes are that vigilance 

will remain stable or decline through the day on intertidal habitats. 

It must be borne in mind that tidal state is not independent of time of day. In 

the present study area, spring low tides currently occur in the mornings, and 

spring high tides in the afternoons, although this pattern is not permanent, 

and will reverse in about 18 years. The above predictions about diurnal 

patterns in foraging and vigilance behaviours assume that suitable habitat is 

available. Analyses investigating diurnal patterns therefore controlled for tide 

height at the time of each observation to minimise these effects (see section 

4.2.5). 

The aims of this chapter are threefold. Firstly, it presents comparative 

information on ruddy turnstones foraging on alternative substrates that differ 

with respect to predictability, profitability and predation risk. Secondly, it 

investigates the effects of variation in patch quality and predation risk on the 
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relationship between individual vigilance and group size, and then asks 

whether these effects translate into flock-level disparities. Consideration of 

wholesale variation in predation risk among alternative foraging patches 

should explain deviations from purely group size effects. Thirdly, it describes 

the diurnal patterns of energy intake and vigilance levels in birds foraging on 

the alternative substrates. These data are used to test predictions arising 

from state-dependent models of the trade-off between starvation and 

predation. 

4.2 Methods 

Data were collected between 5 November 2001 and 4 February 2002 at a 

wide range of sites, times of day, tidal states and weather conditions along 

the coastline of Northumberland, NE England (see chapter 1 for details of the 

study area). Disturbance to birds was significant at weekends (RF, unpub. 

data), so data were collected on weekdays to minimise any effects of 

disturbance on ruddy turnstone foraging patterns. 

4.2.1 Flock measures 

Flocks of foraging ruddy turnstones were observed in intertidal and supratidal 

habitats. Foraging birds were approached carefully and watched at a range 

of 50 - 100 m through a tripod-mounted Optolyth telescope using 20 - 60x 

magnification. If observer-related disturbance to the flock was apparent, such 

as birds leaving the flock or moving away from the observer, the observer 

retreated and selected a new flock. A flock was defined as a group of birds all 

connected by a maximum nearest neighbour distance of 10 m. To allow 

calculation of overall flock density, the number of ruddy turnstones 

comprising each flock and the approximate area occupied by the flock were 

noted. All distances were estimated to the nearest metre by reference to 

known distances between natural features. 
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The substrate on which the flock was foraging was recorded as Fucus-

covered rock, barnacle-covered rock, strandline sand/debris, or beach-cast 

wrack. Although ruddy turnstones did use some other foraging substrates in 

the study area (see chapter 3), the use was too infrequent to allow adequate 

sample sizes to be obtained. If a flock switched substrate, or was followed 

from one tidal state to another, it was treated as a new observation. See 

chapter 1 for definitions of tidal states, and definitions of strand and beach-

cast wrack foraging substrates. Flock membership and boundaries were to a 

certain extent dynamic, particularly in supratidal habitats, so average flock 

values were calculated from a series of at least five measurements to obtain 

stable estimates. 

4.2.2 Individual foraging measures 

Each flock was allowed five minutes to settle before foraging data were 

collected. A focal bird was selected at random from the flock. If it was colour-

marked, the combination was recorded. Local forager density around the 

focal bird was calculated by estimating the number of other ruddy turnstones 

within an estimated 5 m radius of the focal bird. For flocks foraging on 

strandline debris and beach-cast wrack, the position of the focal bird within 

the flock was recorded as central or peripheral. A bird was considered to be 

central in the flock if it was completely surrounded by other birds, and 

peripheral if on the outermost edge of the flock, but within 1 m of a 

conspecific. Each focal bird was observed for 30 seconds while the following 

were noted (see below for definitions): number of pecks, number of meals 

obtained (allowing calculation of the number of pecks required per meal), 

number of head-ups, and number, polarity and outcome of aggressive 

encounters. If the bird went out of view for any part of the 30-second period, 

the observation was stopped, and a new focal bird selected. 

A peck was defined as an attempt by the bird to capture a prey item. It was 

therefore distinct from a bill movement to bulldoze seaweed, turn stones, or 

clear away debris. For example, a bird feeding on Fucivs-covered rocks 

would typically perform bill movements to flip seaweed to one side, and then 
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execute a series of pecks to capture exposed and disturbed prey items. All 

birds were observed through a telescope at up to 60x magnification, and it 

was usually possible to decide confidently whether a food item had been 

consumed following a peck. Frequently, the item was directly observable in 

the bill of the bird, or the bird's throat would bulge noticeably as the item was 

swallowed. Where it could not be ascertained with a high degree of 

confidence whether a food item had been ingested following a peck, the 

number of meals was not recorded for that particular bird, but the 30-second 

observation period was continued for the collection of the other behavioural 

data. It was generally not possible to identify prey items, as they were often 

small and visible only briefly. However, for birds foraging on beach-cast 

wrack, prey items were frequently identifiable as the larvae or pupae of 

coelopid wrack flies. 

Head-ups were recorded to provide a measure of vigilance for predators or 

competitors as distinct from visual searching for foraging areas or food items. 

Postures in which the bird's head was raised accompanied by very limited 

interruption of the forager's walking rhythm, the head remaining in a vertical 

orientation, and limited scanning eye movements (where possible to discern 

this) were interpreted as food searching-related behaviour. Postures in which 

the bird's head was raised accompanied by an interruption of the search path 

of the bird, tilting of the head and / or scanning eye movements, were 

interpreted as vigilance for predators and / or competitors, and recorded for 

the purposes of this study as head-ups. The distinction between these two 

postures was usually easy to make in the field. If a bird made an ambiguous 

posture, such as a tilted head with scanning eye movements, but with an 

apparently uninterrupted search path, the observation period was stopped, 

and a new focal bird chosen. 

A measure of overall flock vigilance was calculated. The average time 

elapsed between any member of the flock initiating a head-up posture was 

calculated as follows. First, mean flock size was multiplied by the mean 

number of head-ups performed by individuals comprising the flock. Thirty 

divided by this value gave the interscan interval i.e. the average gap in 
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seconds between the initiation of successive head-ups by any member of the 

flock. As head-up postures had non-zero duration, the interscan interval 

represented only the time period between initiation of vigilance postures (or 

the probability of any one individual initiating a vigilance posture) rather than 

the period when no bird in the flock was scanning for predators. A detailed 

investigation of head-up duration was beyond the scope of the current study, 

and to use an estimated mean value for head-up duration would simply 

subtract a fixed value from the current measure rather than add explanatory 

power. A further assumption of this method is that head-up postures are 

initiated by individuals at random with respect to other individuals within the 

flock. In the context of this analysis, this assumption is justified because the 

aim of calculating interscan interval here is simply to consider average 

vigilance in flocks as a whole, rather than patterns of vigilance contributions 

by individuals. Flocks with sample sizes less than five were excluded from 

the calculation of the interscan interval because mean head-ups could not be 

estimated with acceptable precision. Also, the one flock with a frequency of 

zero head-ups was excluded, as the probability of initiating a head-up 

posture could not be calculated. Sufficient data were available to calculate 

interscan interval for 44 flocks. 

After each 30-second observation period, a new focal bird was chosen and 

the process repeated, the flock measurements being updated as necessary. 

Two observers collected observational data on pecks, head-ups, and 

aggressive interactions. One observer, the more experienced, also collected 

data on the number of meals consumed. Before data collection commenced, 

each observer independently scored the frequency of pecks, head-ups and 

aggressive interactions for the same 20 focal birds following the protocol 

above to allow repeatability to be checked. Because two observers took 

measurements, standard intraclass correlation was not an appropriate 

measure of repeatability (Lessells & Boag 1987). The degree of 

correspondence between the two observers' scores was therefore assessed 

using the slope, intercept and Ft2 values from a linear regression analysis. 

Following Zar (1999), t-tests were used to test whether the slope of each 

regression model differed from 1, and the intercept differed from zero. 
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4.2.3 Time of day 

Because daylength varied throughout the winter period, the time each 30-

second observation period was expressed as the proportion through the 

period of daylight at which the observation was made. This was calculated 

from predicted times of civil twilight for Newbiggin-by-the-sea, 

Northumberland (55 s 11' 15"N 1 g 30' 32"W) obtained from the US Naval 

Observatory (Astronomical Applications Department, US Naval Observatory, 

Washington, DC 20392-5420, USA). Because flocks were observed for 

periods of up to three hours, mean observation time could not be used to 

express time of day directly for flock measures. The mean time of 

observation of the flock was therefore used to assign each flock to a division 

of the day. The daylight period of each day was divided into three equal 

phases based on this proportion, and the observations assigned to one of 

these phases. The phases were termed Morning (0-0.33 through the day), 

Midday (0.34-0.66) and Afternoon (0.67-1). 

4.2.4 Environmental conditions 

Real-time wind speed and temperature values were extracted from hourly UK 

Land Surface Station weather station data for Boulmer, Northumberland 

(55 s 25' ON 1 e 35' 0W), obtained from the Meteorological Office via the British 

Atmospheric Data Centre (BADC, Space Science and Technology 

Department, R25 - Room 2.119, Rutherford Appleton Laboratory, Didcot, 

Oxfordshire, OX11 0QX, UK). Predicted sea level height was calculated for 

each observation of a focal bird, using tidal curves in UK Hydrographic Office 

tide tables (UKHO, Admiralty Way, Taunton, Somerset, TA1 2DN, UK). 

4.2.5 Data analysis 

Most parameters were likely to be associated with flock size in some way. All 

analyses therefore controlled for flock size within the SPSS statistical 

package using, as appropriate, partial correlations, stepwise multiple 

regressions, or general linear models with flock size as a covariate. The last 
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is equivalent to an ANCOVA where a categorical variable is used as the fixed 

factor. In some cases, flock ID or bird ID was entered into the model as a 

random factor to account for the fact that multiple measurements were taken 

from the same flock or individual. In Northumberland, spring low tides occur 

in the morning, and neap low tides in the afternoon. Because tidal cycles 

were superimposed non-randomly onto diurnal cycles in this way, analyses 

looking for diurnal patterns included the height of the tide at the time of 

observation and flock size as covariates. 

4.3 Results 

4.3.1 Inter-observer reliability 

Foraging data were obtained for 764 focal birds in 44 flocks (22 flocks in 

intertidal habitats, 22 in supratidal habitats). The mean differences between 

the scores of number of pecks and head-ups made by the two observers on 

the 20 "training" birds were not statistically different from zero (paired t-tests, 

peck data: t = 0.06, d.f. = 19, p = 0.956; head-up data: t = 0.72, d.f. = 19, 

p = 0.479). Furthermore, regression models fitted to the peck data and head-

up data indicated a high degree of correspondence between the two sets of 

measurements (table 4.1). Both observers' scores for the amount and 

polarity of aggressive encounters were identical for all 20 birds. Because of 

this high degree of correspondence, data from the two observers were 

pooled for subsequent analyses. 
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Table 4.1 Regressions of measurements by two observers of number of pecks and 
number of head-ups performed by 20 foraging ruddy turnstones in a 30-second 
period. In both cases, the t-tests indicate that the slopes of regression models do not 
differ significantly from 1 and the intercepts do not differ from zero. This indicates 
that there is both high between-observer repeatability and no detectable systematic 
bias in the dataset. 

R2 Slope±95% CI t P lntercept±95% CI t P 

Pecks 0.84 0.87±0.27 -0.99 >0.2 3.36±7.45 0.95 >0.2 

Head-ups 0.82 1.09+0.38 0.52 >0.5 0.05±0.85 0.12 >0.5 

4.3.2 Weather conditions 

Wind speed varied between 2 and 38 knots during the period of data 

collection, and temperature varied between -1.2 and 14.1 S C. General linear 

models using wind speed, temperature and flock size as covariates, and 

foraging substrate as a fixed factor were constructed to investigate the 

effects of weather conditions on foraging performance. The foraging 

performance measures investigated were peck rate, meal acquisition rate, 

the number of pecks required per meal, and energy intake per unit time. 

Neither of the weather variables or their interaction affected peck rate (wind 

speed: F 1 i 3 i 6 = 1-94, p = 0.165; temperature: Fi j 3 ie = 0.4, p = 0.527; wind 

speed * temperature interaction: F i , 3 i6 = 1.1, p = 0.301). However, birds 

acquired fewer meals per unit time as wind speed increased (figure 4 .1 ; 

Fi,3i6 = 11.15, p = 0.001), although there was no effect of temperature or the 

interaction between wind speed and temperature on meals acquired per unit 

time (temperature: F i , 3 i 6 = 1.19, p = 0.276; wind speed * temperature 

interaction: F 1 i 3 1 6 = 2.37, p = 0.125). Foragers needed to perform more pecks 

per meal acquired in windier conditions ( F 1 3 1 6 = 13.1, p < 0.001), although 

temperature and the interaction between wind speed and temperature had no 

effect on this variable (temperature: F-i,3i6 = 0.89, p = 0.347; wind speed * 

temperature interaction: F 1 3 1 6 = 1.26, p = 0.262). These effects of weather 

conditions on foraging performance meant that foragers gained less energy 
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per unit time while foraging in high wind speeds ( F 1 3 i 6 = 18.8, p < 0.001), low 

temperatures ( F 1 3 1 6 = 5.1, p = 0.025), and a combination of these factors 

(wind speed * temperature interaction: Fi, 3-| 6 = 9,2, p = 0.003). There was a 

strong effect of substrate on all four foraging performance measures, 

independent of flock size and weather conditions (all F 3 , 3 1 6 > 7.9, all 

p < 0.001); this substrate effect is examined in more detail in the next 

section. 

Figure 4.1 The relationship between wind speed and foraging efficiency expressed as 
number of pecks required to obtain a meal for (a) intertidal foragers on Fucus-covered 
rocks (r = 0.93, n = 44, p < 0.001) and (b) supratidal foragers on beach-cast wrack 
deposits (r = 0.36, n = 246, p < 0.001). The relationship in (a) remained significant after 
removal of the three points with high leverage at 38 knots (r = 0.38, n = 38, p = 0.016). 
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4.3.3 Comparison between flocks foraging intertidally and supratidally 

Despite being available throughout the tidal cycle, habitats classified as 

supratidal (strandline, bare sand, beach-cast wrack) were only used during 

the high water period. During the low water period, observations were made 

on Fucus- and barnacle-covered rocks. Although use of habitats other than 

these, and use of these habitats at other tidal states was observed 

throughout the course of this research project, data from them were not 

collected for this part of the study as their use was relatively rare (see 

chapter 6). Flocks foraging on supratidal habitats were much larger than 

those on intertidal habitats (mean flock size on supratidal habitats = 18.9, on 

intertidal habitats = 7.2; t = 3.1, d.f. = 36, p = 0.004). Given this effect, and 

because flock size was likely to influence many aspects of foraging 

behaviour, all subsequent analyses control for flock size by including it as a 

covariate within a general linear model unless otherwise stated. Supratidal 

flocks were denser than intertidal flocks (F i , 3 5 = 22.91, p < 0.001). Individuals 

foraging supratidally performed more head-ups than birds foraging intertidally 

(Fi,76i = 34.3, p < 0.001), and were involved in more aggressive encounters 

(see figure 4.2; F 1 i 7 6 i = 48.3, p < 0.001). 
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Figure 4.2 Ruddy turnstones foraging on supratidal habitats were involved in 
significantly more aggressive encounters than birds foraging on intertidal habitats. 
Error bars are 95% confidence intervals. This difference remained highly significant 
after removing the effect of flock size (see text for details). 

Intertidal Supratidal 

Foragers positioned centrally within beach-cast wrack foraging flocks were 

involved in more aggressive interactions than peripheral foragers (mean 

aggressive encounters for central foragers: 0.80 per 30 s; for peripheral 

foragers: 0.32 per 30 s; F i , 2 5 2 = 17.51, p < 0.001). To test whether this 

increase in aggression was associated with an increase in vigilance (i.e. birds 

were using at least some head-up movements to scan for competitors), I 

looked at the difference between head-ups performed by central and 

peripheral foragers after removing the effect of flock size. There was no 

difference in vigilance between central and peripheral foragers on beach-cast 

wrack (ANCOVA: Fi, 252 = 2.4, p > 0.1). Moreover, individual vigilance on 

beach-cast wrack did not vary with the number of aggressive interactions the 

bird was involved in after the effect of flock size was removed (F 5 j 4 3i = 0.35, 

p > 0.8). These results suggest strongly that the head-up posture can be 

interpreted overwhelmingly as vigilance for predators rather than competitors. 

Peck rates did not differ significantly between intertidal and supratidal 

foragers (Fi , 7 6 i = 0.28, p = 0.597), although birds acquired more meals per 

unit time while foraging intertidally than supratidally (figure 4.3; F i , 3 3 3 = 29.65, 

66 



Chapter 4: Vigilance, group size and foraging behaviour 

p < 0.001). Consequently, intertidal foragers performed a mean of 3.4 pecks 

per meal, while supratidal foragers performed 4.8 pecks per meal. This 

difference was highly significant (F 1 j 3 2 i = 26.26, p < 0.001). 

Figure 4.3 Foragers ingested meals at a significantly faster rate on intertidal versus 

supratidal habitats. The mean intake rate on intertidal habitats was 7.23 meals per 

30 s , while on supratidal habitats it was 4.34 meals per 30 s . Error bars represent 95% 

confidence intervals. 

Supratidal Intertidal 

4.3.4 Substrate and foraging efficiency 

Peck rate did not vary with substrate (ANCOVA: F 5 , 7 5 4 = 0.74, p = 0.591), 

suggesting that foraging effort remained relatively constant among 

substrates. However, foragers needed to perform significantly fewer pecks 

per meal obtained on Fucus-covered rocks than all other substrates 

(ANCOVA: F 3,3ig = 10.31, p < 0.001). This result could possibly have been 

due to birds with poorer foraging efficiency going on to feed supratidally, 

leading to an underestimate of general foraging efficiency on supratidal 

habitats. This did not appear to be the case, however, because all three 

marked individuals where sufficient data existed made fewer pecks per meal 

foraging intertidally on Fucus-covered rocks than they did supratidally 

foraging on beach-cast wrack (Ring number SX83525, t = 3.42, d.f. = 18, 
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p = 0.003; SX83099, t = 3.6, d.f. = 13, p = 0.003; SX83524, t = 3.78, 

d.f. = 11.8, p = 0.002). 

Foragers obtained significantly more meals per unit time on Fuci/s-covered 

rocks than all other substrates (figure 4.4 (a); ANCOVA: F 3 , 3 3 1 = 8.69, 

p < 0.001). Despite this, energy intake (see chapter 2 for calculations of 

energy values) was significantly higher on beach-cast wrack than other 

substrates, independent of flock size (figure 4.4 (b); F 3 | 3 33 = 16.26, p < 

0.001). The higher energetic content of prey items taken while foraging on 

beach-cast wrack therefore offset the decreased rate of meal acquisition on 

beach-cast wrack. To check for density dependence on supratidal substrates, 

flock density was correlated with energy intake. The correlation coefficient 

describing the relationship between the two variables, although indicative of 

only a weak relationship, was in fact positive (r = 0.19, n = 259, p = 0.002), 

suggesting that energy intake was more dependent on substrate quality than 

density of foragers. 

Figure 4.4 (a) Foraging s u c c e s s per unit time on different foraging substrates. The 

only significant comparisons were between Fucus-covered rocks and the other three 

substrates (pairwise ANCOVAs; all p < 0.001). (b) Energy intake per unit time for a 

constantly feeding bird on the same four substrates. The high energy content of 

coelopid fly larvae meant that energy intake per unit time was higher on beach-cast 

wrack than other substrates. Error bars are ± 1 S E . 

Fucus Barnacle Strand wrack 
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Fucus Barnacle Strand Wrack 

These substrate effects translated into a significantly higher energy intake 

rate for foragers on supratidal habitats than for foragers on intertidal habitats, 

independent of flock size (figure 4.5; Fi , 3 2 i = 23.6, p < 0.001). 

Figure 4.5 Energy intake rate for a constanly feeding bird was much higher for 

foragers on supratidal habitats than intertidal habitats. Error bars are 95% confidence 

intervals. 

Intertidal Supratidal 
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4.3.5 The group size effect 

An ANCOVA using flock size as a covariate, rate of head-ups as the 

dependent variable, and substrate as a fixed factor confirmed the presence 

of a negative relationship between flock size and individual vigilance rate 

(F-1,727 = 45.8, p < 0.001). Furthermore, there was a highly significant overall 

effect of substrate on the group size effect (F 3 , 7 2 7 = 38.41, p < 0.001). 

Pairwise ANCOVAs including flock size as a covariate supported the three 

general predictions made above. Foragers on supratidal habitats initiated 

vigilance postures at a significantly higher rate than those on intertidal 

habitats ( F 1 J 6 i = 34.32, p < 0.001). Within intertidal habitats, foragers on 

barnacle-covered rocks initiated vigilance postures at a significantly higher 

rate than those on Fuct/s-covered rocks (Fi , 2 i6 = 4.05, p = 0.045). Within 

supratidal habitats, foragers on beach-cast wrack initiated vigilance postures 

at a significantly higher rate than those on strandline habitats ( F 1 5 i 0 , p < 

0.001). These results indicate that foragers on more risky habitats were 

increasing their individual vigilance levels above that predicted by the group 

size effect alone. 

After discovering these effects on individual vigilance, flock-level vigilance 

was investigated using interscan interval, the estimated gap in seconds 

between the initiation of a head-up by any one flock member. After controlling 

for the effect of flock size, interscan interval varied significantly among the 

four substrate types (ANCOVA: F 3, 3 1 = 6.1, p = 0.002). Subsequent pairwise 

comparisons showed that interscan interval was greater on intertidal habitats 

than supratidal habitats ( F 1 i 3 4 = 6.96, p = 0.012). Furthermore, within 

supratidal habitats, interscan interval was greater on strandline debris near 

the shoreline than on beach-cast wrack, situated further up the shore ( F i j 1 6 = 

7.58, p = 0.014). Within intertidal habitats, no difference could be detected in 

interscan interval between Fucus-covered rocks and barnacle-covered rocks 

( F 1 i 1 4 = 0.49, p = 0.494). These results indicate that vigilance by flocks 

foraging supratidally was greater than predicted by flock size alone, and 

further that birds were most alert on beach-cast wrack as opposed to other 

supratidal habitats. 
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In flocks feeding on beach-cast wrack, the number of head-ups performed by 

individual birds declined with flock size. Flock density had no separate effect, 

as it was excluded from a stepwise multiple regression model initially 

including flock size and flock density (final model: F 1 i 4 36 = 31.43, p < 0.001). 

This was because flock size and density were positively correlated (r = 0.44, 

n = 730, p < 0.001). The change in head-up rate appeared to be driven by a 

changing need for predator vigilance rather than as a result of increased 

competition for resources, as the number of aggressive encounters by 

individuals did not vary with flock density (r = 0.06, n = 438, p = 0.189), and 

was uncorrelated with vigilance (r = -0.001, n = 438, p = 0.977). 

4.3.6 Diurnal patterns in foraging behaviour 

The size of flocks foraging supratidally was significantly higher in the morning 

and afternoon periods than in the midday period (one-way ANOVA: 

F2.512 = 38.36, p < 0.001). Therefore, as with previous analyses, all tests for 

diurnal patterns controlled for flock size by including it as a covariate. As 

explained above, these analyses also control for tide height at time of 

observation by including it as a covariate within a general linear model. 

Energy intake rate by individuals foraging supratidally remained unchanged 

during the course of the day (figure 4.6 (a); ANCOVA: F2,265 = 0.10, 

p = 0.904). For birds foraging intertidally, however, there was a significant 

increase in energy intake rate throughout the day (figure 4.6 (b); 

F 2 ,63= 25.93, p < 0.001). 
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Figure 4.6 The diurnal pattern in individual energy intake rate for ruddy turnstones 

feeding (a) supratidally and (b) intertidally. Values are the mean number of meals 

ingested by foraging birds in 30-second observation periods. Error bars are ± 1 S E . 

For supratidal foragers, no comparisons were significant (pairwise ANCOVAs; all 

p>0.05). For intertidal foragers, the comparison between the midday and afternoon 

periods was significant ( F 1 | 6 2 = 34.9, p < 0.001). Data were collected for only one 

individual foraging intertidally in the morning period, so error could not be estimated. 

Morning Midday Afternoon 

Morning Midday Afternoon 

The number of pecks a forager performed on beach-cast wrack to obtain a 

meal changed significantly through the course of the day (GLM using flock 

size and tide height as covariates, and day division as a fixed factor: 

F2.241 = 3.42, p = 0.034). Subsequent pairwise ANCOVAs indicated that 

foragers performed more pecks per meal in the morning and afternoon 
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periods than in the midday period (morning versus midday period: F 1 2 o i = 

9.7, p = 0.002; midday versus afternoon period: F 1 1 5 7 = 11.57, p = 0.001). 

4.3.7 Diurnal patterns in vigilance behaviour 

The mean number of head-ups performed by individuals foraging supratidally 

changed significantly during the course of the day, after controlling for the 

effects of flock size and tide height (F 2 ,5 io= 7.47, p < 0.001); it increased 

between the morning and midday, and midday and afternoon periods (figure 

4.7 (a)). For birds foraging intertidally, however, individual vigilance declined 

throughout the day, although the overall effect was weaker (F2,244 = 3.25, 

p < 0.05), and the only significant difference was between the midday and 

afternoon periods (figure 4.7 (b)). 

Figure 4.7 The diurnal pattern in individual vigilance for ruddy turnstones feeding (a) 

supratidally and (b) intertidally. Values are the mean log head-ups performed by 

individuals in 30-second observation periods. Error bars are ± 1 S E . For supratidal 

foragers, all comparisons were significant (pairwise ANCOVAs; all p < 0.05). For 

intertidal foragers, only the comparison between the midday and afternoon periods 

was significant (pairwise ANCOVA: F^242 = 

6.14, p = 0.014). 
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ro n 4 

Morning Midday Afternoon 

To assess whether these individual effects translated into flock-level effects, 

change in flock interscan interval was also investigated in relation to time of 

day. In flocks foraging supratidally, interscan interval differed strongly 

between divisions of the day, after controlling for flock size and tide height 

(figure 4.8 (a); F 2 , 1 5 = 9.0, p = 0.003), declining significantly between the 

morning and afternoon periods, and between the midday and afternoon 

periods. For intertidal flocks, there was no difference in interscan interval 

between the midday and afternoon periods (figure 4.8 (b); F 1 ? 1 5 = 0.39, 

p = 0.540). No intertidal flock observations could be assigned to the morning 

period, although some individual observations were made during that time. 

This was because the mean time of observation of the whole flock was used 

to calculate flock measures (see section 4.2.3). No mean time of observation 

of a whole flock fell within the morning period. 
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Figure 4.8 The diurnal pattern in flock vigilance for ruddy turnstone flocks feeding (a) 

supratidally and (b) intertidally. InterScan interval is the estimated time in seconds 

between successive initiations of the head-up posture by any one flock member. Error 

bars are ± 1 S E . The significant comparison for the supratidal data was between 

morning and afternoon (pairwise ANCOVA: F 1 1 0 = 18.37, p = 0.002), although the 

midday and afternoon comparison approached significance (pairwise ANCOVA: 

F i i 9 = 3.72, p = 0.086). 

Morning Midday Afternoon 

Morning Midday Afternoon 

75 



Chapter 4: Vigilance, group size and foraging behaviour 

4.4 Discussion 

This study has demonstrated significant differences in vigilance, group size, 

and various foraging parameters among alternative foraging substrates. 

Foragers generally gained more energy per unit time, and showed higher 

vigilance levels on supratidal substrates than on intertidal substrates, which 

were also the substrates predicted to be subject to increased predation risk. 

Considering all substrates together, individual vigilance rate declined with 

increasing flock size as predicted by the group size effect, although there 

was some scatter in the relationship. Much of this scatter was explained by 

variation in predation risk among the habitats; birds were more vigilant than 

predicted by the group size effect in habitats in which a higher likelihood of 

attack by a raptor was predicted. These results provide much needed field-

based evidence that variation in predation risk confounds the group size 

effect (Roberts 1995, 1996, Lima & Bednekoff 1999b). 

This study has also demonstrated significant diurnal patterns in energy intake 

rate and vigilance contribution for ruddy turnstones. Foragers on profitable, 

but predation-risky and ephemeral habitats showed a consistently high level 

of energy intake through the day, predicting monotonic mass gain, and 

vigilance increased through the day, as foragers neared satiation and the risk 

of mass-dependent predation increased. Foragers on poorer quality, but 

relatively predation-safe and less ephemeral habitats delayed energy intake 

until late in the day, and decreased vigilance as the day progressed, directly 

trading off foraging effort and vigilance. These patterns generally agree with 

predictions arising from state-dependent foraging models. 

4.4.1 Predation risk and the group size effect 

The head-up posture performed by ruddy turnstones as defined here 

appeared to have the primary function of scanning for predators, rather than 

monitoring conspecifics or searching for prey items or foraging areas. This 

suggests that the rate of head-ups performed by a forager was a good 
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measure of anti-predator vigilance and that we can use it to study changes in 

perceived predation risk by foragers, and look for ways in which foragers 

integrate information on group size and predation risk. 

Foragers formed larger flocks in supratidal than intertidal habitats. Some of 

this effect may have arisen from the patchiness of supratidal feeding 

resources, but the fact that individuals foraging supratidally were more 

vigilant than intertidal foragers, despite the fact they were forming larger 

flocks suggests very strongly that the birds were, at least in part, responding 

to changes in perceived predation risk. This response had three stages. 

Firstly, supratidal foragers formed larger flocks, thereby reducing individual 

predation risk through the effects of dilution (Foster & Treherne 1981), 

predator confusion (Milinski 1979b) and cooperative warning and escape 

effort (Humphries & Driver 1967, Proctor et al. 2003). This also meant that 

the vigilance burden could be shared among more individuals. 

Secondly, the increase in flock size allowed individuals to reduce their own 

vigilance contribution, and there was an overall negative relationship 

between group size and individual vigilance, This effect translated into a flock 

effect, whereby interscan interval measured across the whole flock was also 

adjusted to flock size. The most frequently used supratidal foraging substrate 

was beach-cast wrack (see chapter 6). Given that this substrate is highly 

profitable, it is perhaps not surprising that no density-dependent depression 

in energy intake rate was found (Goss-Custard et al. 1992). It is likely that the 

high invertebrate numbers within beach-cast wrack deposits meant that 

ruddy tumstone flocks did not reach sufficient density to deplete stocks, and 

forager densities were not sufficiently high to cause direct interference 

(Houston & Lang 1998, Parker & Sutherland 1986, van der Meer 1997). This 

lack of density dependence suggests that ruddy turnstones on supratidal 

substrates will always do better in larger flocks. It also suggests that models 

of supratidal feeding need not include density dependent effects (i.e. the bird 

being less likely to feed supratidally if many others have made the same 

decision), only individual condition, and patch quality measures. 
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Thirdly, individuals moderated their reduction in individual vigilance to allow 

for the fact that the likelihood of a predator attacking the flock had increased. 

Birds were therefore more vigilant than predicted from the general group size 

effect. This suggests that foragers can integrate predation risk and group size 

information when making decisions about their vigilance contribution. 

Although foragers did form larger flocks on beach-cast wrack, these were not 

large enough to bring group vigilance up to the necessary level in response 

to the increase in predation risk. 

In common with many studies (see reviews in Barnard & Thompson 1985, 

Elgar 1989, Lima & Dill 1990, Roberts 1995), this study has detected an 

effect of group size on vigilance. However, using data from unmanipulated 

field conditions, it has shown that the relationship between individual- and 

flock-level vigilance and group size varies according to predation risk. 

Foragers in risky situations show greater vigilance than predicted by the flock 

size effect alone. It has been shown that the vigilance of starlings Sturnus 

vulgaris foraging on the periphery of flocks declines more slowly with flock 

size than the vigilance of birds foraging centrally, and this was attributed to 

variation in predation risk (Jennings & Evans 1980), although not interpreted 

in the sense of affecting the nature of the group size effect. This study 

therefore adds another variable to the growing list of confounders of the 

group size effect (Roberts 1996, Treves 2000, Beauchamp 2001). 

Lima & Bednekoff (1999b) recently extended Houston & McNamara's (1993) 

model to include alternative scenarios of temporal change in risk to foragers, 

and demonstrated that anti-predator behaviour must reflect the pattern of 

change in risk, not just the fact that risk changes. It would be interesting to 

look at the differences in risk-management strategies between the different 

high water feeding strategists. Lima & Bednekoff (1999b) predict that where 

high risk situations are rare, foragers should show the greatest anti-predator 

behaviour in that high risk situation, and that this must necessarily decline as 

high risk situations become commoner. This study system presents an ideal 

opportunity to test this hypothesis empirically. The model of Lima & 

78 



Chapter 4: Vigilance, group size and foraging behaviour 

Bednekoff (1999b) predicts that average vigilance on supratidal substrates 

should decline as the propensity of an individual to feed supratidally 

increases. 

Although the effect in this system is strong because the habitats differ 

significantly both in profitability and predation risk, these parameters may 

vary much more subtly in other systems, and confound the group size effect. 

Field studies using the group size effect would need to identify and control for 

variation in both profitability and predation risk among alternative foraging 

areas, whether or not these are immediately obvious to the human 

investigator. 

4.4.2 Diurnal patterns in vigilance and energy intake 

All diurnal patterns identified during this study occurred independently of 

changes in flock size. Furthermore, they were independent of changes in sea 

level height at the time of each observation, indicating that the fact that spring 

low tides always occurred in the morning period did not affect the results. 

Foragers formed larger flocks in the morning and afternoon periods than 

during the midday period. This could be in response to elevated predation 

risk at these periods of the day. It has been shown that vigilance during early 

morning foraging by dark-eyed juncos Junco hyemalis is influenced by 

perceived predation risk, in particular the brightness of available light (Lima 

1988b). Starting to forage too early in the morning could increase predation 

risk, and starting too late could increase starvation risk (Lima 1988a). 

Forming larger flocks early and late in the day could allow foragers to 

minimise their risk of predation while also minimising their own vigilance 

contribution at a time when energy reserves are low through overnight 

metabolism in the former case, and through the need to store reserves for 

the next overnight period in the latter case. 

Energy intake and vigilance showed distinct diurnal patterns, independent of 

flock size. Early in the day, foragers on supratidal habitats (unpredictable, 

profitable, risky) showed low levels of vigilance. Presumably, it is worth a 
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forager taking the risk with an unpredictable but profitable resource early in 

the day if it has access to a patch. McNamara et al. (1994) predicted that on 

high profit substrates, foragers would show a bimodal pattern of mass gain. 

The results of this study suggest that where the high profit substrate is also 

risky and unpredictable, foragers may be prepared to take the extra predation 

risk early in the day, and then increase vigilance levels as the day progresses 

and satiation and mass-dependent predation take effect, thereby by 

producing a single peak of mass gain early in the day. As the forager puts on 

weight through the day, starvation becomes less likely and it should be 

prepared to accept less risk. However, given that the resource is 

unpredictable, it is worth continuing to forage at a high rate if the forager still 

has access to a patch, accepting this elevated mass-dependent predation 

risk later in the day (Bednekoff & Houston 1994). 

It is surprising that vigilance and energy intake did not show mirrored 

relationships for supratidal foragers i.e. there did not appear to be a direct 

trade-off between intake rate and vigilance. However, the number of pecks a 

forager performed to obtain a meal was significantly lower in the midday 

period than in the morning or afternoon periods, so it is possible that changes 

in selectivity were occurring during the course of the day that were being 

masked by the approach of using mean prey energy value to obtain energy 

intake values based on the number of meals ingested. The possibility of 

diurnal changes in selectivity by ruddy turnstones requires further 

investigation. However, as a bird nears satiation, there is no reason why it 

should reduce foraging effort, but there are good reasons why it should be 

increasingly vigilant as the immediate risk to survival is influenced far more 

by predation risk than by starvation. A decrease in selectivity could be a price 

worth paying under such circumstances. Another possible complicating factor 

here is that birds not exhibiting a head-up posture may still be vigilant to 

some degree (Lima & Bednekoff 1999a), and presumably this "head-down" 

vigilance effort may vary with physiological state and time of day. This would 

be an interesting avenue for further study, including the effects of "head-

down" vigilance on the efficiency and selectivity of foragers. 
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In intertidal habitats, characterised by low profitability and predation risk, but 

high predictability, foragers appeared to trade off vigilance and feeding much 

more directly. Vigilance declined through the day, whereas energy intake 

increased. When using a predictable resource, the forager has control over 

when to achieve energy intake. Where there is no possibility of escape to 

predation-free areas (Bednekoff & Houston 1994, McNamara et al. 1994), it 

makes sense to delay weight gain until late in the day to minimise mass-

dependent predation risk. As foraging effort increases during the course of 

the day, foragers are increasingly constrained from devoting time to vigilance 

behaviours (Dimond & Lazarus 1974, Caraco 1979, Mooring & Hart 1995). In 

sum, these results present field evidence to support predictions that foragers 

dynamically adjust diurnal patterns of foraging and vigilance to resource 

characteristics such as predictability, profitability and predation risk (Lima & 

Bednekoff 1999b). 

4.4.3 Vigilance and aggression in supratidal flocks 

Aggression by supratidal foragers was not strongly density-dependent or 

related to vigilance or energy intake rate, although it did change with position 

in the flock. Unlike in some other cases, this study did not detect an effect of 

position within the flock on vigilance levels. Several studies have shown that 

peripheral foragers show elevated vigilance levels compared to central 

foragers (Hamilton 1971, Petit & Bildstein 1987, Dominguez 2003; although 

the last study did not control for flock size), and some have interpreted this in 

terms of elevated predation risk for peripheral foragers (Hamilton 1971, 

Jennings & Evans 1980). In the current study system, there is unlikely to be a 

large differential in predation risk across the flock. Mean flock diameter was 

only 6 m, and because supratidal feeders are likely to be attacked from 

above, predation risk is likely to be relatively uniform across the flock. This 

remains to be tested, particularly as absolute position up the shore will vary 

with position in the flock. The main effect of position in the flock in this study 

was on aggression levels, with central foragers engaging in more aggressive 

encounters than peripheral foragers. The elevated aggression levels 

associated with supratidal feeding, and particularly those in the centre of 
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supratidal feeding flocks, may play a social role, such as reinforcement, 

rather than simply being associated with high flock density. Again, this 

requires further investigation. 

4.4.4 Conclusion 

This part of the study has shown that foragers respond to variation in 

predation risk by forming larger flocks and then by adjusting their vigilance 

levels in a more subtle way than predicted by the group size effect alone. 

Furthermore, individuals alter their diurnal patterns of foraging and vigilance 

in the way that predictions arising from differentials in predation risk resource 

quality and resource predictability would suggest. The next stage is to tease 

apart in a field setting the effects of resource quality, predictability and 

probability of attack by a predator. The ruddy turnstone / beach-cast wrack 

system presents an ideal opportunity to achieve this. Given suitable 

resources, experimental manipulation of the quality and predictability of 

beach-cast wrack deposits could be achieved in a field setting, and variation 

in attack likelihood could be simulated. 
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Chapter 5: Spatial associations between ruddy turnstones 

and their food resources 

5.1 Introduction 

Resources available to foragers vary both spatially and temporally. The 

responses of foragers to this variation have been extensively modelled 

(Andersson 1978, 1981, McNair 1982, Lessells & Stephens 1983, Roche 

1996). Where potential food is distributed patchily through the environment, 

higher prey densities or more profitable prey types compensate for greater 

travel costs associated with visiting specific patches. If prey capture rate falls 

below a threshold level (theoretically the average prey capture rate across all 

possible patches), a forager should abandon the current patch and move to a 

new one (Charnov 1976). The time spent resident in a patch will therefore 

increase with prey density in that patch, particularly where a patch is highly 

profitable relative to other available patches. Because it is worth paying a 

higher cost of transport to get to a profitable patch, we might expect 

concentrations of foragers that have travelled varying distances in profitable 

patches and spatial tracking of profitable resource patches, particularly where 

foragers do not have to take food back to a central location such as a nest. 

Indeed, it has been shown experimentally that foragers spend a large 

proportion of their time in regions of highest prey density (Smith & Dawkins 

1971). 

Despite much theoretical (Oaten 1977, Green 1984, McNamara & Houston 

1980, Ollason 1980, Clark & Mangel 1984) and experimental (Krebs et al. 

1977, Ydenberg 1984, Tamm 1987, Naef-Daenzer 2000) support for these 

predictions, the distributions of foragers under natural conditions frequently 

cannot be predicted by this marginal value approach (Valone 1991, Valone & 

Giraldeau 1993, Alonso et al. 1995). For example, the costs of movement 

may vary among individuals in a population, particularly in social foragers. 

This might limit the degree to which a forager can track profitable patches 

across space. I studied spatial tracking of a highly profitable resource in a 
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non-breeding shorebird. Ruddy turnstones are generally highly site faithful 

within and between years, but the distribution of home range sizes is 

positively skewed (Metcalfe & Furness 1985, Metcalfe 1986), indicating that 

there is continuous individual variation in spatial ranging behaviour. I wanted 

to know whether this variation was associated with spatial tracking of a 

profitable resource, namely beach-cast wrack (see chapter 3). 

Ruddy turnstones typically forage on relatively poor habitats during the low 

water period, while some individuals go on to feed on relatively rich, but 

patchy and ephemeral supratidal resources during the high water period. The 

appearance of beach-cast wrack deposits is spatially predictable, but highly 

uncertain temporally (chapter 3). Consequently, foragers could predict where, 

but not necessarily when, patches will become available. We might therefore 

expect a close spatial association between sites that regularly hold beach-

cast wrack, and the locations of individual foraging ruddy turnstones. Indeed, 

it has been suggested that ruddy turnstones make excursive movements 

outwith their usual home range specifically to take advantage of deposits of 

beach-cast wrack, and that this might develop to such an extent that some 

individuals successively occupy multiple range cores in response to the 

appearance of beach-cast wrack (Eaton 2001). 

However, it is possible that individuals might range more widely to avoid 

having to feed supratidally, an activity that appears to incur elevated 

predation risk (see chapter 4). In this chapter, I formally distinguish these two 

possibilities and test the predictions arising from them by measuring the 

propensity of individuals to feed on supratidal habitats and relating this to 

range size, the degree of association with supratidal habitats, and other 

aspects of ranging behaviour. 
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5.1.1 Hypotheses to explain variation in ranging behaviour by ruddy 
turnstones 

(a) The avoidance hypothesis 

Perceived predation risk appears to be higher on supratidal habitats than on 

intertidal habitats (see chapter 4), and the fact that foragers use them only 

when energy intake during the low water period has been inadequate (see 

chapter 6) suggests there is a cost to foraging supratidally. This cost would 

therefore be minimised if birds completely avoided using supratidal habitats. 

Birds adopting this approach would need to range more widely on intertidal 

habitats to locate the most profitable patches. The avoidance hypothesis 

therefore states that individuals range more widely to track variation in 

intertidal habitat quality, thus minimising the need to feed supratidally. 

This hypothesis predicts a negative relationship between the propensity to 

feed supratidally and both range size and the degree of patchiness within a 

range. It also predicts that birds will feed intertidally, and to a lesser extent 

supratidally, during excursive movements. Intertidal and supratidal range 

sizes will therefore be approximately equal, because the trips are not 

specifically made to track the availability of supratidal resources, but rather to 

track long term changes in intertidal food availability. Some supratidal 

foraging will almost certainly be necessary even for "avoiders" over the long 

time scales I am considering here. Perhaps most importantly, the avoidance 

hypothesis predicts a negative relationship between range size and the 

degree of spatial association between bird locations and sites that regularly 

hold beach-cast wrack. This is because the motivation for ranging more 

widely is to sample and track variation in intertidal habitat quality, and there is 

no reason to expect intertidal and supratidal habitat profitability to covary 

spatially. 
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(b) The tracking hypothesis 

Because supratidal habitats contain higher densities of more profitable prey 

types than intertidal habitats (chapter 2), starvation risk would be minimised 

by utilising supratidal patches frequently. This preference for supratidal 

habitats means that birds adopting this approach would need to track 

spatially the appearance of beach-cast wrack deposits. The tracking 

hypothesis therefore states that individuals range more widely to track 

variation in supratidal habitat quality, thus minimising their risk of starvation 

by allocating more time to feeding on profitable habitats. This hypothesis 

predicts a positive relationship between the propensity to feed supratidally 

and both range size and the degree of patchiness within a range. It also 

predicts that birds will feed supratidally almost exclusively during excursive 

movements, and that supratidal ranges will be larger than intertidal ranges, 

because the trips are made specifically made to track the availability of 

supratidal resources. Furthermore, the tracking hypothesis predicts a positive 

relationship between range size and the degree of spatial association 

between bird locations and sites that regularly hold beach-cast wrack. This is 

because the motivation for having a large range is to sample and track 

variation in supratidal habitat quality. 

Here I use data collected as part of a long-term study (seven seasons to 

date) over a relatively large geographic area (39.5 km of rocky coastline in 

north-east England; see chapter 1) to investigate ranging behaviour of ruddy 

turnstones, and relate this to supratidal feeding parameters. The large 

geographic area covered by this dataset meant that, unlike many studies in 

shorebird ranging behaviour, substantial excursive movements by individuals 

could be identified. The aims of this chapter are twofold; firstly to determine 

whether foragers tracked spatially the appearance of supratidal foraging 

habitats, and secondly to investigate how the degree of spatial association 

varied with range size and structure. These data will allow the two 

hypotheses explaining variation in ranging behaviour to be distinguished. 
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5.2 Methods 

5.2.1 Sightings of colour-marked birds 

This chapter is based on sightings made between 10 February 1997 and 10 

November 2002 of ruddy turnstones marked with unique colour-ring 

combinations1. The study site was a 39.5 km stretch of the Northumberland 

coast in north-east England (see chapter 1 for details of the study area, and 

appendix 1 for full details of how resightings were collected). Sightings were 

only included where the observer had a good view of the colour-rings and 

was confident of the bird's identity. Where necessary, colour-ring 

combinations were read with the aid of a 20-60x Optolyth telescope. 

Additional sightings were received from members of the public, although non­

existent colour-ring combinations were rather frequent in these reports. 

Rather than attempt to screen the sightings, for example by deleting 

"unlikely" records, all data from members of public were excluded from the 

current analysis to avoid introducing any bias. 

The location of each bird was recorded to the nearest 20 metres by reference 

to a grid overlaid on 1:10,000 Ordnance Survey maps of the study area. The 

activity of each bird was recorded as feeding or roosting. Other behaviours 

were not recorded for the purposes of this part of the study. Successive 

sightings were separated by a minimum interval of one hour. Substrate was 

also recorded, and categorised into intertidal and supratidal habitats. Habitats 

above the most recent high water mark, and / or comprising beach-cast 

material, were considered supratidal. Intertidal habitats comprised Fucus-

covered rocks, bare rocks, barnacle-covered rocks, mussel-covered rocks 

and bare sand. Supratidal habitats comprised beach-cast wrack, strand, bare 

sand, fields and artificial structures. See chapter 1 for definitions strand and 

beach-cast wrack substrates. 

' Sightings were made by M . Eaton until 28 March 1999 and by R. Fuller after 4 October 1999 

87 



Chapter 5: Spatial associations with food resources 

5.2.2 Manipulating the dataset 

Birds with 10 or fewer fixes (the home range measures employed below 

require more than 10 samples for stability (Kenward & Hodder 1996)) were 

excluded from further analyses. To avoid confusing the analyses with migrant 

individuals, sightings made between April and September inclusive were also 

removed from the dataset. It was possible that trimming the dataset by 

removing birds seen on only a few occasions could have biased the sample 

toward birds that only fed infrequently in supratidal habitats, because there 

were relatively few sites where birds fed supratidally compared to intertidally, 

making detecting the presence of any one bird easier. To check for this, I 

related the proportion of the fixes for each bird that were on supratidal 

habitats to the total number of sightings of that bird. Despite the large sample 

size, there was no significant relationship between the two variables (r = -0 .1 , 

n = 227, p = 0.064). This suggests that higher detectability of birds feeding 

supratidally did not bias the dataset, and that selecting only winter records 

and birds with more than 10 fixes did not introduce further bias into the 

dataset. 

5.2.3 Estimating individual ranging behaviour 

Many methods have been used to describe empirically the home ranges of 

animals (White & Garrott 1990), and evaluations of the performance of 

various methods have formed entire studies in themselves (Spencer & 

Barrett 1984, Worton 1989b, Harris et al. 1990, Seaman & Powell 1996). The 

choice of method ultimately depends on the questions being asked. To 

describe spatial associations between ruddy turnstones and their foraging 

resources, I am asking questions about the maximum extent of individual 

ranging behaviour, the typical extent of individual ranging behaviour, and the 

degree of spatial variation in an individual's location, in other words 

patchiness of space use within the range. Each of these questions requires 

different spatial analysis techniques. 
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One of the best ways to measure the maximum extent of an individual's 

ranging behaviour is to construct a minimum convex polygon around all 

locations for that individual (White & Garrott 1990). Although the area and 

shape of the minimum convex polygon is heavily influenced by outlying fixes 

(Harris et al. 1990), it is the most objective way to measure the total area 

used by animals. Given that intertidal habitats in the study area were arrayed 

broadly linearly, a further measure, range span, was used to express total 

range of movement by the birds. Range span is simply the distance along the 

longest axis of the range of each bird. 

It is unlikely that the birds will use all areas within the minimum convex 

polygon equally. Although ruddy turnstones have relatively stable home 

range cores both within and between winters, they are also known to make 

excursive trips from these range cores (Burton & Evans 1997, Eaton 2001), 

so there is a need for a measure of the typical extent of individual ranging 

behaviour. For any location within an individual's home range there is an 

associated probability of encountering the animal at that point (Jennrich & 

Turner 1969, Anderson 1982, Worton 1989a). Kernel analyses identify 

regions of high usage by estimating the pattern of fix density across a range 

(Dixon & Chapman 1980, Spencer & Barret 1984, Worton 1989a). They are 

relatively unbiased by small sample sizes (Worton 1989a). An arbitrary grid is 

placed across the range, and fix densities are derived at intersections of the 

grid using a bivariate normal kernel estimator. Contours containing a 

specified percentage of the fixes are then interpolated across the grid and 

polygons constructed (Kenward & Hodder 1996). To reduce the influence of 

extreme outliers, the usual method is to exclude the 5% of the fixes furthest 

from the harmonic mean centre (Bekoff & Mech 1984, Harris et al. 1990, 

White & Garrott 1990), and this was the approach adopted here. 

While kernel analysis is useful for identifying areas of typical usage within a 

range, the technique best suited to identifying patchiness in range use, for 

example where individuals forage in several separate areas, is cluster 

analysis (Kenward & Hodder 1996). The technique begins by identifying the 

two fixes that are closest together and have the nearest third fix. The polygon 
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enclosing these points becomes the first cluster. Providing there is no other 

potential new cluster in which the distance to the third fix is shorter, the fix 

closest to the existing cluster is added to the cluster. If another potential 

cluster has a shorter distance to its third fix, that new cluster is formed. If the 

fix nearest any cluster is already assigned to another cluster, the two clusters 

join. When all fixes have been assigned to clusters, a minimum convex 

polygon is drawn around each cluster and its area calculated (Kenward 

2000). 

5.2.4 Home range measurements 

For spatial analyses, the locations of bird fixes (both feeding and roosting 

records) were converted into co-ordinates on a planar grid of 40 km * 1.5 km 

and imported into the Ranges software package (version 5; Kenward & 

Hodder 1996). To describe maximum range extent, the area of the minimum 

convex polygon around all fixes of each bird was calculated. To describe the 

area typically used by birds, the area of the fixed kernel enclosing 95% of the 

records was calculated (see above). Least-squares cross validation was 

used to select smoothing parameters to calculate the utilisation contours 

within home ranges. 

To describe range structure, three cluster analyses were performed on each 

range, using the fixes from all records, records from intertidal habitats, and 

records from supratidal habitats. Nearest-neighbour joining priority was used 

to define distance of fixes from clusters, and all fixes were assigned to 

clusters. The cluster analysis yielded the number of separate cores within the 

range, distances between cores, and the partial area of the range. Partial 

area is the summed area of the cluster polygons divided by the area of a 

single polygon around all the clusters. It is an index of patchiness, where a 

value of 1 indicates a single range core, and values below 1 indicate a patchy 

range. 
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5.2.5 Measures of foraging on supratidal habitats 

Birds were considered to be feeding supratidally where their location was 

above the most recent high water mark, and / or where their foraging 

substrate was beach-cast. Because the number of times a bird was observed 

feeding supratidally was related linearly to the total number of sightings 

(r = 0.86, n = 140, p < 0.001) and the number of days the bird had been 

colour-marked (defined as time elapsed from ringing until the last observed 

location; r = 0.65, n = 140, p < 0.001), indices of supratidal feeding were 

calculated. The first index was "supratidal feeding frequency", the number of 

times an individual was observed feeding supratidally as a proportion of the 

total number of sightings (feeding and roosting) of that bird. The second 

index was "supratidal feeding likelihood", the number of times an individual 

was observed feeding supratidally as a proportion of the number of times it 

had been seen in supratidal habitats. Supratidal feeding frequency gives a 

general index of how often a bird feeds supratidally, whereas supratidal 

feeding likelihood takes into account variation in the relative frequency of 

intertidal and supratidal sightings of each individual. 

5.2.6 Measuring the association between fixes and beach-cast wrack 

Spatial associations between individual fixes and the availability of beach-

cast wrack were investigated by comparing the distances of birds to reliable 

sites for beach cast wrack with a random null model. A fix-site analysis was 

conducted using the Ranges computer software (version 5; Kenward & 

Hodder 1996) to look for an association between the fix locations of birds, 

and the locations of the sites that held beach-cast wrack (hereafter "sites") at 

least twice during winter 2000/2001 (see chapter 3). Envelopes with radii of 

half of the mean site-site nearest neighbour distance were constructed 

around the location of each beach-cast wrack site, and a sample of 1000 

nearest-site distances for a set of random locations in the intertidal zone 

within the envelope was generated. The actual distance from each fix to the 

nearest site was then calculated and compared with the null model. Jacobs' 

Index (Jacobs 1974) was used to provide a single index describing the 
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degree of spatial association between beach-cast wrack sites and the 

locations of birds. This index was calculated as 

J = {r-p)/[(r+p)-2rp] 

where r is the distance from the bird locations to the nearest site, and p is the 

distance from the randomised locations to the nearest site. The index gives a 

value of 0 if the observed and possible distances were the same, rising to +1 

if the observed distances were small relative to possible distances (indicating 

attraction), and falling to -1 if the observed distances were large relative to 

possible distances (indicating avoidance; Kenward & Hodder 1996). 

5.2.7 Data analysis 

Most statistical analyses were implemented in SPSS version 11 (233 S. 

Wacker Drive, 11th floor, Chicago, Illinois 60606). Data were transformed 

where appropriate. Partial correlations were performed where it was 

necessary to test for an association between two variables while controlling 

for a third variable (Zar 1999). 

All hypotheses were defined a priori, and data were not dredged for 

correlations. Where multiple correlations were performed on several 

variables used to describe features, in particular when comparing range size, 

and indices of supratidal feeding, there were dangers of spurious results 

emerging by chance. This was of particular concern for elucidating the 

relationship between supratidal feeding and range size. To minimise the 

chance of type I errors where multiple correlations were performed, results 

were considered biologically meaningful providing correlation coefficients 

were above 0.2 and p-values were well below 0.05. 
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5.3 Results 

A total of 6780 observations of 227 colour-ringed birds was made, 4034 of 

the fixes being on intertidal substrates, 2595 on supratidal substrates, and 

151 where substrate was unknown. After the dataset was trimmed, 4927 

records of 140 birds remained, 2964 on intertidal substrates, 1854 on 

supratidal substrates, and 109 where substrate was unknown. Of the 4144 

fixes where the activity of the bird was known, the bird was feeding in 3643 

cases, and roosting in 501 cases. The relative frequency of intertidal and 

supratidal records was similar before and after trimming the dataset 

(G a d j = 0.52, d.f. = 1, p = 0.471). 

5.3.1 Range size and structure 

The mean home range size of all ruddy turnstones as expressed by the area 

of the 95% fixed kernel was 245.8 Ha, although there was much variation (n 

= 140, range: 0.04 - 3388 Ha, SD = 427.5)). Most birds had relatively small 

ranges, although some ranged much more widely, and distribution of range 

sizes was strongly positively skewed (figure 5.1 (a); skewness = 4.4, 

SD = 0.2). The mean range span was 6.0 km, although again there was large 

variation (n = 140, range: 0.1 - 30.6 km, SD = 7.2 km) and the distribution 

was positively skewed (figure 5.1 (b); skewness = 2.1, SE = 0.2), although 

markedly less so than the distribution of range sizes. Range size and range 

span were highly correlated (r = 0.88, n = 140, p < 0.001). The mean area of 

the minimum convex polygon enclosing all fixes for each bird was 491.7 

hectares (range: 0.26 - 4357.4, SD: 811.7), suggesting that the minimum 

convex polygon was including large areas not used by the birds when 

estimating home range size. For this reason, the area of the 95% fixed kernel 

was used as the range size measure in all further analysis. There was no 

systematic change in range size along the length of the study area. The 

ranges showed a nested pattern, with smaller ranges falling completely within 

larger ranges. 

93 



Chapter 5: Spatial associations with food resources 

Cluster analysis of the fixes revealed that many birds had multinuclear 

ranges and / or made excursive movements from the range core(s). 

Summary home range statistics for each bird are presented in Appendix 3. 

The ranges of 85 birds (61%) had only one core, while 55 ranges (39%) had 

more than one core (range 2-5 cores). Figure 5.2 shows representative 

mononuclear and multinuclear ranges. The mean partial area of the ranges 

was 0.7, indicating moderate to strong patchiness, although there was great 

variation in this statistic (range: 0.04 - 1 , n = 140, SD: 0.38). Of the 55 birds 

with multiple range cores, the mean distance between cores was 4.1 km 

(range: 0.1 -24.4, SD = 5.5). 
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Figure 5.1 (a) The distribution of range sizes of wintering ruddy turnstones as 

measured by the area of the 95% fixed kernel was highly positively skewed. The data 

are plotted on a log scale to show the detail of the distribution more clearly. Birds with 

larger range sizes tended to have multinuclear range structures, either as a result of 

abruptly switching to a new foraging site part-way through the study, or through 

making repeated excursive movements, (b) The distribution of range spans was also 

positively skewed, although this was less pronounced than in the distribution of 

range sizes. See text for details. 
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Figure 5.2 Representative range structures of ruddy turnstones in north-east England, 

(a) a widely-ranging bird with two discrete range cores (n = 21); (b) a narrowly-ranging 

bird with a single range core (n = 83); (c) an apparently itinerant bird with a large 

range (n = 18); (d) evidence of excursive trips from an otherwise stable range core (n = 

109). Land is shaded grey. 
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Range sizes derived from intertidal fixes alone were not significantly different 

from range sizes derived from supratidal fixes alone (mean intertidal range 

size = 200 Ha, supratidal range size = 249 Ha; paired t-test: t = 1.31, 

d.f. = 139, p = 0.194). Furthermore, range size derived using only intertidal 

fixes was positively correlated with range size derived using only supratidal 

fixes (figure 5.3; r = 0.52, n = 140, p < 0.001), implying that intertidal and 

supratidal range sizes were being driven by the same factors. This 

relationship remained strong after controlling for sample size (partial 

correlation: r = 0.46, d.f. = 137, p < 0.001). In addition, the mean distance 

between consecutive fixes within a particular habitat type (i.e. ignoring 

intervening fixes in the other habitat) was very similar for supratidal and 

intertidal habitats (mean interfix distance for intertidal habitats = 1070 m, for 

supratidal habitats = 1146 m; paired t-test: t = 0.25, d.f. = 139, p = 0.801). 

These results suggest that birds were not making specific journeys (reflected 

in range size and structure) only to access a particular habitat type. Rather, 

foragers fed both intertidally and supratidally during excursive trips and 

following core switching. 

Figure 5.3 Range size estimates broadly corresponded when using intertidal and 

supratidal fixes. Range size is the area in hectares of the 95% fixed kernel around the 

fixes. Note that the data are plotted on a log scale. 
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The scatter in figure 5.3 shows that there was much individual variation in 

relative range sizes on intertidal and supratidal habitats. Multiple regression 

analysis was used to investigate predictors of intertidal range size. A maximal 

model was constructed including supratidal range size, supratidal feeding 

frequency, and the number of intertidal fixes as predictors. All three terms 

retained significance in the final model (F 3 i i 3 6 = 24.12, p < 0.001). Not 

surprisingly, intertidal range size increased with both the supratidal range 

size and the number of intertidal fixes (supratidal range size: t = 5.43, 

p < 0.001; number of intertidal fixes: t = 2.04, p = 0.044). However, it was 

negatively related to supratidal feeding frequency (t = -2.46, p = 0.015). Birds 

with smaller intertidal range sizes, therefore, tended to feed more frequently 

on supratidal habitats, independent of the effects of sample size and 

supratidal range size. 

5.3.2 Home ranges and supratidal feeding 

The mean value of the supratidal feeding frequency index was 0.30 (figure 

5.4 (a); range: 0.09 - 0.67, n = 140, SD = 0.12), indicating that on average, 

30% of sightings of a given individual were of it feeding supratidally. The 

mean value for the supratidal feeding likelihood was 0.75 (figure 5.4 (b); 

range: 0.2 - 1.0; n = 140, SD = 0.16), indicating that on average, 75% of 

supratidal sightings of a given individual were of it feeding. 
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Figure 5.4 The frequency distributions of (a) supratidal feeding frequency and (b) 
supratidal feeding likelihood. Supratidal feeding frequency is the number of supratidal 
feeding sightings of a bird divided by the total number of sightings. Supratidal feeding 
likelihood is the proportion of sightings on supratidal habitats that were of a feeding 
bird. 
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Range size was negatively related to both indices of supratidal feeding using 

partial correlation controlling for the effect of the total number of fixes of each 

bird (supratidal feeding frequency: r = -0.31, n = 140, p < 0.001, supratidal 

feeding likelihood: r = -0.29, n = 140, p < 0.001). These results indicate that 

birds with smaller ranges were observed on supratidal habitats, and chose to 

feed rather than roost when on supratidal habitats, more frequently than birds 

with larger ranges. Although there was clearly a substantial amount of noise 
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in the relationships between the supratidal feeding indices and range size, 

and the partial correlation coefficients were rather low, there does appear to 

be a biological signal within these data. Both relationships were in the same 

direction, and were highly statistically significant. Taken together, these 

results indicate that birds with smaller ranges used supratidal habitats more 

frequently than birds with larger ranges. 

5.3.3 Foraging movements 

The typical length of foraging movements made by each bird was estimated 

by measuring the mean distance between the feeding fixes for that individual 

from the centre of its associated range core. This value was termed mean fix-

core distance, and it was calculated for all habitats combined, and for 

intertidal and supratidal habitats separately. Mean fix-core distance for all 

habitats combined was negatively correlated with supratidal feeding 

frequency (r = -0.31, n = 140, p < 0.001), suggesting that birds that tended to 

make only short trips between foraging sites fed more frequently in supratidal 

habitats. 

Multiple regression analyses were performed to investigate the relationships 

between the two supratidal feeding indices and fix-core distances. Models 

were constructed using total range size and the supratidal feeding indices as 

independent variables, and mean fix-core distance for intertidal and 

supratidal habitats separately as dependent variables. Not unexpectedly, 

total range size was positively related to mean intertidal fix-core distance in 

all analyses (all p < 0.01), indicating that birds with larger ranges tended to 

travel greater distances between both intertidal and supratidal foraging sites. 

Supratidal feeding frequency was negatively related to mean intertidal fix-

core distance independent of the range size effect (t = -2.27, d.f. = 137, 

p = 0.025), but was not related to mean supratidal fix-core distance (t = -1.5, 

d.f. = 137, p > 0.1). These results suggest that birds that tended to use 

supratidal habitats more frequently travelled shorter distances to intertidal 

foraging locations, but still made longer journeys to supratidal foraging sites. 
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In other words, birds that were using a relatively small area of intertidal 

habitat tended to forage supratidally more frequently. 

These results predict that supratidal foraging trips will be shorter in birds that 

keep shifting their range core, for example because they are responding to 

variation in food availability by shifting foraging site rather than over-

compensating by high risk supratidal feeding. To investigate this, I again 

used the distance of each fix to the centre of its associated core. The mean 

distance of each fix to its core centre declined as the number of cores in the 

range increased (rs = -0.30, n = 140, p < 0.001), suggesting that journeys to 

foraging and roosting sites were indeed shorter, on average, in birds that had 

multiple range cores. 

5.3.4 The association between bird locations and beach-cast wrack 
sites 

Twenty sites held beach-cast wrack more than once during winter 2000/2001 

(see chapter 3). The fixes (feeding and roosting) of most birds were 

significantly closer to these sites than expected by random draw. The mean 

Jacobs' Index value comparing observed with expected distances between 

fixes and beach-cast wrack sites was 0.59 (figure 5.5; range: -0.14 - 0.93, 

n = 139, SD = 0.19), indicating generally a strong positive association 

between bird locations and sites where beach-cast wrack occurred relatively 

frequently. A one sample t-test confirmed that the Jacobs' Index values were 

significantly greater than the zero expected if birds were no more closely 

associated with beach-cast wrack sites than expected by chance (t = 36.56, 

d.f. = 137, p < 0.001). Figure 5.5 indicates that, although no birds strongly 

avoided beach-cast wrack sites, some were no more closely associated with 

them than expected by chance, with Jacobs' Index values close to zero. 
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Figure 5.5 Frequency distribution of Jacobs' Index values. Jacobs' Index indicates 
how closely birds are associated spatially with beach-cast wrack sites, and ranges 
from -1 (strong avoidance) to 1 (strong attraction). 
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The fix-site analysis was repeated using fixes from intertidal and supratidal 

habitats separately. The mean Jacobs' Index value was much higher when 

birds were on supratidal than intertidal habitats (mean on supratidal habitats 

= 0.68; intertidal habitats = 0.49; paired t-test: t = 7.97, d.f. = p < 0.001), 

indicating that birds were more closely associated with beach-cast wrack 

sites while foraging supratidally than intertidally. There was a negative 

correlation between range size and mean Jacobs' Index values incorporating 

fixes on all habitats (r = -0.21, n = 139, p = 0.016; figure 5.6), indicating that 

wide-ranging birds were not strongly attracted to beach-cast wrack sites. 

Supratidal feeding frequency was positively related to the Jacobs' Index 

values, after removing the effect of range size (partial correlation: r = 0.28, 

n = 139, p < 0.001). These results indicate that the birds most closely 

associated with beach-cast wrack sites tended to be narrow-ranging and 

those that fed more frequently on supratidal habitats. 
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Figure 5.6 The relationship between range size and Jacobs' Index, a measure of how 
closely birds were associated with sites that regularly held beach-cast wrack. 
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5.4 Discussion 

5.4.1 Ranging behaviour and supratidal feeding 

The fact that birds with smaller ranges tended to feed more frequently on 

supratidal habitats than birds with larger ranges indicated that birds were not 

making excursive trips to track the appearance of patches of profitable 

supratidal habitat. In fact, wide-ranging birds used supratidal habitats less 

frequently, and were less closely associated spatially with reliable sites for 

supratidal habitat patch formation. These results provide clear support for the 

avoidance hypothesis and allow the tracking hypothesis to be rejected. 

Superficially, this result is counter-intuitive, as it might be expected that more 

widely-ranging birds will have more opportunities to access profitable 

supratidal resource patches. Rather, they appear to be more reluctant to use 

these habitats (and thereby pay costs such as elevated predation risk in 

return for high patch profitability) than more narrowly-ranging birds. There 

appears to be continuous individual variation in ranging behaviour and the 

propensity to feed supratidally. There are several possible explanations for 

these results. 

Firstly, there are costs associated with making movements that must be 

considered when interpreting these results. Ruddy turnstones are highly site-

faithful outside the breeding season (Metcalfe 1986), and they form stable 

dominance hierarchies that persist within and between winters (Whitfield 

1985a). This implies that movement could result in social costs, as has been 

shown in stripe-backed wrens Campylorhynchus nuchalis Cabanis using 

patchy resources (Carolina Yaber & Rabenold 2002). For example, it might 

pay high ranking birds to remain site-faithful, so they can maintain their 

position socially. This exposes site-faithful birds to variation in intertidal food 

availability occurring at fairly coarse scales, from month-to-month and year-

to-year rather than day-to-day. Resident birds would need to compensate for 

this variation by foraging supratidally when necessary. This means that high 
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ranking, resident birds pay the additional cost of elevated predation risk but 

have social stability. Lower ranking birds are not so tied to specific areas by 

the need to maintain their social position. This means they can respond to 

variation in intertidal habitat quality by spatial switching, thereby not needing 

to feed supratidally so frequently. This idea predicts that the propensity to 

forage on supratidal habitats will increase with rank (see chapter 6). 

Although this is one possible explanation of results, others need to be 

considered. Because no experimental manipulations were made as part of 

this study, it is difficult to determine the direction of causality. For example, it 

is possible that status is determined by movement patterns rather than the 

other way around. Birds that choose to feed less frequently on supratidal 

habitats might need to range more widely to compensate for this, thereby 

lowering their social status through being itinerant. Removal experiments 

would be necessary to distinguish between these two possibilities. 

It is possible that birds that have small ranges have a better knowledge of the 

arrival date of beach-cast material, so are better placed to predict when they 

will become profitable than more itinerant birds. This assumes that beach-

cast wrack is a preferred foraging resource (after taking into account the 

costs of foraging there, such as elevated predation risk). If this is the case, 

we would expect foragers to use these resources, when available, throughout 

the tidal cycle, and that more birds would use supratidal habitats when there 

was more of it around. In fact, shorebirds mainly use supratidal habitats over 

the high water period (Fleischer 1983, Goss-Custard et al. 1996, Dann 1999, 

Masero & Perez-Hurtado 2001, Smart & Gill 2003), and the number of birds 

feeding supratidally is unrelated to the availability of supratidal habitats 

(chapter 6). 

Another possible explanation is that those areas that tend to accumulate 

beach-cast wrack deposits (because of their topography) also offer profitable 

intertidal feeding, so high ranking birds tend to settle in these areas. Because 

these areas are higher quality, the birds would require only small intertidal 

home ranges and also make good use of the wrack deposits. Lower ranking 
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birds would be forced into more marginal intertidal habitats, that also more 

rarely have wrack deposits and are of poorer quality so require the birds to 

range more widely. It is currently unknown whether prey densities in intertidal 

and supratidal habitats covary spatially, and detailed invertebrate sampling 

would be required to answer this question. Again, this idea predicts that 

supratidal habitats are inherently preferred, so that they should be used more 

when more were available, and at all states of the tide. Also, the fact that 

smaller ranges were nested within larger ranges suggests that range size 

was determined more by individual identity than habitat quality. 

As well as tending to have smaller ranges, birds that frequently fed on 

supratidal habitats were much more closely associated spatially with sites 

that regularly held beach-cast wrack. This suggests that the occurrence of 

beach-cast wrack is one of the factors governing site choice by ruddy 

turnstones. Indeed, Eaton (2001) found that a measure of beach-cast wrack 

appearance was a significant predictor of ruddy turnstone densities among 

sites. The results of this study suggest that beach-cast wrack is important in 

determining the foraging locations of site-faithful birds, but less important for 

itinerant birds. During excursive movements, birds fed intertidally and 

supratidally, and ranged over a similar area on both habitat types, further 

suggesting that excursive trips were not made to track supratidal foraging 

resources. 

5.4.2 Range size and structure 

The range size distribution of many organisms at many scales is 

approximately logarithmic (Gaston 1994), and previous study has shown a 

strong right skew in the home range sizes of ruddy turnstones (Metcalfe 

1986). Most birds are narrow-ranging, and progressively fewer range more 

widely. There is no clear evidence of bimodality in the range size distribution 

(see figure 5.1), suggesting that ranging behaviour varies continuously 

between the two extremes. Range sizes in this study were much larger than 

those reported in Metcalfe (1986). This difference probably results from 

methodological differences between the two studies. The aim here was to 
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identify and include excursive trips and range core switching by examining 

ranging behaviour on a large scale and across many seasons, rather than 

investigate local associations among birds. This study has revealed great 

variation in range size and structure among individual ruddy turnstones, and 

shown that birds that ranged widely often occupied multiple range cores. 

5.4.3 Conclusion 

This chapter has shown that wide-ranging ruddy turnstones tended to feed 

less frequently on risky and unpredictable supratidal habitats than more 

narrow-ranging birds. Some birds made movements of varying distances, up 

to 30 km, and these movements sometimes resulted in birds switching their 

range core over time. Other birds remained more continuously site-faithful 

over time scales of several years, although there was evidence of a 

continuum of ranging patterns between these extremes. Highly site-faithful 

birds were closely associated with sites that regularly held beach-cast wrack, 

and may have compensated for the increased risk of predation on supratidal 

habitats with benefits gained from site fidelity such as a stable position within 

the dominance hierarchy or increased knowledge of when and where 

predator attacks may occur. 
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Chapter 6: Variation in foraging success affects the solution 

to the intake rate - predation risk trade-off 

6.1 introduction 

A central theme in ecology has been understanding how animals respond to 

variation in food supply, in particular how interference (Fretwell & Lucas 

1970; Meer & Ens 1997) and predation risk (Brown 1988) interact with food 

availability to influence foraging decisions. We know, for example, that 

individuals adjust their response to a given level of predation risk depending 

on their physiological status (Caraco 1979). Classical explanations for patch 

choice behaviour centre on the trade-off between maximising net energy 

intake while minimising predation risk (Sih 1980; Lima 1986; Houston et al. 

1993, Lima 1998). In particular, the relationship between energy intake and 

predation risk is often portrayed as a fitness isopleth (Caraco 1979), with 

high-risk high-gain, and low-risk, low-gain strategists co-existing within the 

population at a frequency determined by the distribution of resources. This 

view has led to a tendency to interpret alternative foraging strategies 

involving ecological trade-offs as evolutionarily stable strategies (ESSs) 

resulting in equal fitness outcomes. 

However, there are several other possible explanations for apparent 

alternative strategies of this kind. For example, it is easy to imagine a 

situation where a forager is forced into accepting an elevated predation risk 

in a novel patch as a result of low food availability in a previous patch. Rather 

than result in an ESS, this situation may lead to a fitness inequality between 

apparent "alternative" strategists. Where a forager's food intake rate falls 

below that required for energy balance, we may predict a spatial (McNamara 

& Houston 1986; Brown 1988) or temporal (Metcalfe et al. 1998) state-

determined compensatory shift to a high risk but high profit foraging patch, 

where such exists. An ideal system for investigating these general 

phenomena is supratidal foraging by ruddy turnstones. Outside of the 
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breeding season, ruddy turnstones forage on rocky intertidal substrates when 

these are exposed by the tide (see chapter 1). Despite some circumstantial 

evidence of nocturnal foraging by ruddy turnstones (e.g. Clark et al. 1990, 

Robert et al. 1989, Schneider 1985), recent radiotracking data indicate that 

they rarely forage at night in the present study area (Eaton 2001). 

Although many birds respond to high water by going to roost, even when this 

occurs during the period of daylight, some continue to feed on patchy and 

ephemeral supratidal deposits of beach-cast wrack (macroalgae of the 

genera Fucus and Laminaria), which are colonised by large numbers of 

coelopid wrack flies (Kirkman & Kendrick 1997; see chapter 3). These sites 

are usually in sheltered bays, close to cover from which raptors can launch 

surprise attacks, and there is good evidence that feeding supratidally 

exposes foraging shorebirds to elevated predation risk. For example, 

Whitfield (1985b) observed 33 attacks on wintering waders by sparrowhawks 

Accipiter nisus (L) , one of the main predators of ruddy turnstones. Thirty of 

these attacks, including all seven successful ones, were made on birds 

feeding on the strandline rather than lower down the shore. Moreover, 

shorebirds that roost over the high water period generally choose exposed 

sites, and it has been shown that redshanks use foraging sites further from 

cover on days of high raptor activity (Hilton et al. 1999a). Why then do we 

see some foragers choosing high-risk high-gain patches over the high water 

period, while others stop feeding altogether? This question is particularly 

pertinent given the patchy, ephemeral and unpredictable nature of supratidal 

foraging resources (see chapters 2 & 3). At least four hypotheses could 

account for these apparent alternative strategies (table 6.1 on page 113 

summarises the predictions made by each of the hypotheses). 
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6.1.1 Hypothesis (a): Resource sharing (e.g. ESS) 

The most parsimonious explanation is the existence of two strategies with 

equal payoffs (supratidal feeding and non supratidal feeding) within the 

population. This equates to the classical view of ecological trade-offs. 

Supratidal feeders trade off the increased predation risk associated with 

supratidal feeding with increased intake rates gained from such foraging, 

while non supratidal feeders opt for reduced predation risk at the expense of 

lower intake rates. The decision to feed supratidally over a given high water 

period depends on the availability of high profit patches, so the resource 

sharing hypothesis predicts a positive relationship between beach-cast wrack 

availability and the proportion of the population feeding over high water. It 

also predicts lower intake rates per unit time and/or time spent feeding for 

supratidal feeding strategists while foraging on intertidal rather than 

supratidal substrate, because these individuals can afford to spend more 

time engaged in vigilance and maintenance behaviours. 

6.1.2 Hypothesis (b): Interference competition 

Individuals may forage supratidally because these areas contain the most 

profitable food resources. Interference on supratidal resource patches 

excludes lower ranking individuals, limiting a proportion of the population to 

intertidal feeding alone (a truncated phenotype distribution; Parker & 

Sutherland 1986). By feeding on high-risk high-gain patches particularly over 

high water, a forager reduces the total amount of time it needs to spend 

foraging over the whole tidal cycle, and any elevated predation risk while 

feeding supratidally is offset by the high quality of supratidal habitat patches 

(particularly beach-cast wrack deposits) and the release of time for vigilance 

and maintenance behaviours while foraging intertidally. 

The interference competition hypothesis predicts close tracking of the 

availability of supratidal food resources, as the profitability of these drives the 
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decision to feed over any given high water period. It also predicts that 

supratidal feeding strategists will spend less time foraging and/or show lower 

intake rates when foraging intertidally than non supratidal feeding strategists 

because of the time saving gained over the high water period. A third 

prediction is that beach-cast wrack deposits will be used independently of 

tidal state, because supratidal resources are inherently preferred. 

6.1.3 Hypothesis (c): Reluctant compensation with (i) extrinsic or (ii) 
intrinsic variation in intake rate 

High risk feeding may be undertaken facultatively when energy intake rate 

falls below that required to balance an individual's energy budget. Energy 

intake could vary as a result of chance, extrinsic factors such as weather 

conditions or variation in intertidal habitat quality ((i) above), or fixed intrinsic 

factors such as individual foraging efficiency, competitive ability, or predator 

avoidance capability ((ii) above). The consequences of variation in food 

availability through extrinsic factors will depend greatly on individual 

characteristcs such as foraging efficiency and the ability to respond to 

variation in intertidal food availability by switching to different intertidal areas. 

We might expect individuals with low foraging efficiency to be 

disproportionately affected by reduced food availability since their energy 

intake rate at the low-risk low-gain patch may frequently fall below the 

minimum necessary for body maintenance. This may not be the case where 

animals can make spatial switches to higher quality intertidal areas, although 

there may be other costs associated with such itinerancy. Individuals forced 

to feed supratidally over a particular high water period to compensate for 

reduced low water intake pay the cost of an absolute elevation in daily 

predation risk, although the effect on mortality risk may be less pronounced if 

some animals can switch between different intertidal habitat patches. 

Chapter 5 described the association between supratidal feeding and 

alternative spatial strategies, and this chapter aims to identify the correct 

general explanation for supratidal feeding in ruddy turnstones. 
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The reluctant compensation hypotheses predict that the number of birds 

feeding supratidally will be independent of the availability of supratidal food 

resources, as the system is driven by variation in food intake while foraging 

intertidally. They also predict that individuals feeding supratidally will spend 

more of their time on intertidal habitats foraging than non supratidal feeding 

individuals, as the high water feeding is necessary to top up an inadequate 

energy intake during low water. Reluctant compensation with primarily 

intrinsic variation in intake rate predicts that supratidal feeders will show 

permanently lower foraging efficiency than non-high water feeders. This 

implies that supratidal feeders should in general be lower ranking than non 

supratidal foragers. Reluctant compensation with primarily extrinsic variation 

in intake rate predicts only temporarily lower foraging efficiency than non high 

water feeders, and makes no direct prediction about the relative ranks of 

supratidal and non supratidal foragers. 
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Table 6.1 Predictions made by each of the four hypotheses for supratidal feeding. 

Prediction 

Hypothesis 

Relationship 

between 

supratidal food 

availability and 

number of birds 

feeding 

supratidally 

Foraging 

efficiency of 

persistent 

supratidal 

feeders versus 

intermittent 

supratidal 

feeders 

Relative State(s) of 

proportion of time tide when 
on intertidal 

habitats spent 

feeding by 

persistent 

supratidal 

feeders 

supratidal 

habitats 

used 

(a) Resource sharing positive 

(e.g. ESS) 

equal low whole 

cycle 

(b) Interference 

competition 

positive high low whole 

cycle 

(c) i. Reluctant 

compensation with 

extrinsic variation in 

intake rate 

none temporarily 

low 

high high 

water only 

(c) ii. Reluctant 

compensation with 

intrinsic variation in 

intake rate 

none permanently high 

low 

high 

water only 

6.2 Methods 

6.2.1 Supratidal foraging by ruddy turnstones 

This work was conducted on the 39.5 km stretch of rocky coastline between 

St. Mary's Island (55Q 4' 37N 1 5 27' 8W) and Amble (55Q 19' 60N 1 s 34' 60W), 

on the north-east coast of England (see chapter 1 for a description of the 
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study area). Data were collected during winter 2000/2001 unless otherwise 

stated. Winter is here defined as the months of November to February 

inclusive, a period when migratory activity of ruddy turnstones is minimal and 

populations are stable (Eaton 2001). Numbers of ruddy turnstones feeding 

over high water were recorded weekly throughout the winter. During each 

count, the entire 39.5 km stretch of coastline was checked for feeding birds. 

High water was defined as the period two hours either side of high tide itself. 

The location, substrate and number of birds comprising each high water 

feeding event were recorded, as was the distance from the foraging flock to 

the extreme high water mark. In addition, roosting ruddy turnstones were 

counted, when seen. Two roost sites were located on offshore islands not 

visible from the mainland, so these sites could not be counted during the 

weekly sessions, although complete counts were made at appropriate stages 

of the tide every two weeks as part of another study. Where there was a clear 

disparity between the high water counts and the total present in the study site 

as estimated from the complete counts, the complete count nearest in time to 

the high water survey was used to derive a value for the number of birds 

roosting out of sight. 

Because the number of times a bird was observed feeding supratidally was 

related linearly to the total number of sightings (r = 0.86, n = 140, p < 0.001) 

and the number of days the bird had been colour-marked (r = 0.65, n = 140, 

p < 0.001), indices of supratidal feeding were calculated. The first index was 

"supratidal feeding frequency", the number of times an individual was 

observed feeding supratidally as a proportion of the total number of sightings 

of that bird. The second index was "supratidal feeding likelihood", the number 

of times an individual was observed feeding supratidally divided by the 

number of times it had been seen roosting supratidally. Supratidal feeding 

frequency gives a general index of how often a bird feeds supratidally, 

whereas supratidal feeding likelihood takes into account variation in the 

relative frequency of intertidal and supratidal sightings of each individual. 
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6.2.2 Availability and quality of beach-cast wrack 

The availability and quality of beach-cast wrack deposits along the study site 

were also measured on the same day as the high water counts. See chapter 

3 for details of obtaining beach-cast wrack measurements. Measures of the 

availability and quality of supratidal foraging resources were derived for each 

week's data; these were an index of beach-cast wrack deposit spread, total 

combined length of all deposits, and total combined volume of all deposits. 

To describe overall patchiness of supratidal resource availability, beach-cast 

wrack deposit spread was expressed as the number of 500 m divisions of the 

study site containing deposits each week. Total length of wrack deposit could 

potentially have been used by foragers to assess habitat availability, but as 

there was no relationship between weekly combined length of wrack deposits 

across the study site and mean temperature (r = -0.17, n = 15, p = 0.543, 

maximum temperature (r = 0.03, n = 15, p = 0.993), or the predicted total 

number of available coelopid wrack flies (r = 0.01, n = 15, p > 0.996), total 

length was unlikely to indicate patch quality to foragers. Mean deposit age, 

mean and maximum coelopid density, and total coelopid availability in the 

deposits were therefore used as indicators of aspects of patch quality, 

although it is likely that only deposit age could be used directly by the birds in 

making a priori foraging decisions. 

6.2.3 Time spent foraging by intertidal foragers 

During the low water period (within two hours either side of time of low tide), 

colour-ringed ruddy turnstones were selected at random and the time spent 

foraging within a five-minute period was recorded. A bird was considered 

foraging if it was head-down and actively searching for or handling food. To 

reduce effects of habitat selection, data were collected only on birds foraging 

on rocky intertidal areas dominated by Fucus spp. The number of times each 

colour-ringed bird was observed feeding in the high water period was 

obtained from the database of sightings of colour-ringed birds made during 
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the course of five years' work on the present study population (see chapter 5 

for details of how those data were collected). Similarly, estimated distances 

to the extreme high water mark from the centre of each of 143 flocks 

observed foraging intertidally were extracted from the sightings database. 

6.2.4 Individual rank, sex and biometric data 

Observations of aggressive encounters involving colour-marked birds were 

collected between October 1996 and November 2002 1. The outcome of each 

aggressive encounter was recorded. Too few dyadic interactions between 

colour-marked birds were made to allow construction of a robust dominance 

matrix, so the proportion of victories by each bird was used as a surrogate 

measure of rank. To stabilise these proportions, only individuals with more 

than five recorded aggressive encounters were included in any analysis. 

Information on the sex of 54 colour-marked birds was supplied by M. Eaton 

(see Eaton 2001 for details). Birds were sexed for that earlier study using a 

combination of DNA sex-determination and field-based observations of birds 

in Spring as they acquired breeding plumage. The two methods showed a 

very high level of concordance, so birds sexed by either technique were 

included in the current analysis. 

Wing length, mass and age of birds trapped for colour-marking were 

recorded. Seventeen birds known to be juveniles (i.e. known to be hatched in 

the most recent breeding season) were ringed during the course of the work. 

The dates of subsequent sightings of these birds were used to calculate their 

age in months at each sighting, assuming the bird hatched in the July prior to 

ringing. In arctic Canada, ruddy turnstones usually hatch in mid-July, and 

there is very little inter-annual variability (Nettleship 1973). Records of 

known-age birds were extracted from the database of sightings of colour-

1 Observations were made by M. Eaton until 28 March 1999 and by R. Fuller after 4 October 1999 
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marked birds. For each sighting, the bird's behaviour was recorded as 

feeding or roosting, and the habitat as supratidal or intertidal. 

6.2.5 Data analysis 

Preliminary exploration of beach-cast wrack and bird count data indicated 

that no important autocorrelation or partial autocorrelation existed within the 

time series of 16 weeks (correlation coefficients were within the 95% 

confidence limits at all lags), and as such, each week's data could be treated 

as independent samples. Biologically speaking, the birds' decisions to feed 

over the high water period during each weekly count were likely to be 

independent of their decisions during the previous survey (14 tides earlier). 

The association between high water feeding and various measures of beach-

cast wrack availability was therefore tested using uncorrected parametric 

correlation. 

6.3 Results 

6.3.1 Supratidal habitat choice 

Total numbers of ruddy turnstones in the study were stable throughout the 

study period (mean = 437, range: 414 - 461). A mean of 54.4% of the 

population fed supratidally over any given high water period, though this 

varied from 33.8% to 72.0%. There were no significant monthly changes in 

the relative numbers of birds feeding over high water (G a c i j : = 6.12, d. f. = 3, 

p > 0.1). Birds were observed foraging on seven supratidal substrate types, 

with the numbers feeding on beach-cast wrack and to a lesser extent 

strandline debris being significantly greater than expected from an even 

distribution (figure 6.1; Friedman test: X r 2 4 , i 6 = 52.2, p < 0.001). Beach-cast 

wrack deposits covered a very small fraction of the area of the study site 

(mean 403 m or 0.8% of the total coastline, range 9 0 - 8 1 0 m), indicating 

strong selection of this substrate. 
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Figure 6.1 Choice of supratidal foraging substrates by ruddy turnstones feeding over 

the high water period. The proportion of high water feeding birds is the mean of the 16 

weekly proportions for each substrate. Based on 452 high water feeding events during 

winter 2000/01. Error bars are +1 S E . BCW - beach-cast wrack, STR - strandline 

debris, BCH - beach, ROC - rocks, FLD - fields, MUD - mudflat, ART - artificial 

structures. Post hoc tests showed that beach-cast wrack and strandline debris were 

preferred over the other substrates (Wilcoxon tests: beach-cast wrack all p < 0.02; 

strandline debris all p < 0.05). 
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Flocks feeding supratidally over the high water period were much closer to 

the extreme high water mark than flocks feeding intertidally (mean distance 

on supratidal habitats = 6.7 m, SD = 3.0; on intertidal habitats = 175.2 m, 

SD = 90.9; unpaired t test: t = 22.16, d.f. = 59, p < 0.001). 

6.3.2 Supratidal feeding and resource availability 

The proportion of the ruddy turnstone population feeding supratidally was 

independent of beach-cast wrack availability as measured by length of 

deposits (figure 6.2 (a); r = 0.08, n = 16 weekly surveys, p > 0.7) and volume 

(r = -0.11, n = 16, p > 0.6). Furthermore, there was no significant relationship 

between the two measures of patch quality and the proportion of birds 

feeding supratidally (estimated total coelopids present in the study area: 

r = 0.13, n = 15, p = 0.641, mean coelopids per wrack deposit: r = 0.21, n = 
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15, p = 0.446). However, the number of birds feeding on beach-cast wrack 

deposits expressed as a proportion of the total number feeding supratidally 

was strongly correlated with beach-cast wrack availability as measured by 

spread (r = 0.67, n = 16, p = 0.008) and length of deposits (figure 6.2 (b); r = 

0.59, n = 16, p = 0.012), but not by volume (r = 0.35, n = 16, p = 0.164) or 

quality (total coelopids: r = 0.13, n = 15, p = 0.625, mean coelopids per wrack 

deposit: r = -0.03, n = 15, p = 0.990). These results suggest that the decision 

to feed supratidally was not driven by beach-cast wrack availability or quality, 

although birds feeding supratidally preferred beach-cast wrack deposits when 

their availability was higher. 

Figure 6.2 (a) The proportion of the ruddy turnstone population feeding supratidally 

each week was independent of availability of beach-cast wrack deposits as measured 

by their combined length, (b) The proportion of supratidally feeding birds that were 

using beach-cast wrack deposits increased with their availability as measured by 

combined length. 
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6.3.3 Supratidal feeding and individual characteristics 

Intertidal foraging data were collected for 16 birds marked with unique colour-

ring combinations. Supratidal feeding frequency was significantly positively 

correlated with the proportion of time a bird spent foraging in a five minute 

period during low water (figure 6.3; rs = 0.60, n = 16, p = 0.014). Thus, birds 

that tended to feed supratidally spent a higher proportion of their time 

foraging when on intertidal habitats. 
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Figure 6.3 The proportion of its time on intertidal habitats an individual spent foraging 

during a five-minute period increased with the proportion of times it was observed 

feeding supratidally. Supratidal feeding frequency is the proportion of total sightings 

of each bird that were of it foraging on supratidal habitats. 
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High water feeding frequency and high water feeding likelihood were both 

positively correlated with the proportion of victories by individuals (figure 6.4; 

supratidal feeding frequency: r = 0.47, n = 27, p = 0.013, supratidal feeding 

likelihood: r = 0.44, n = 23, p = 0.036). The proportion of victories by birds 

involved in aggressive encounters did not differ between the sexes 

(U4,5 = 8.5, p = 0.730). The sample size was low on this analysis because 

there were few sexed birds with more than five aggressive encounters 

recorded. I therefore conducted a further comparison using all birds where 

more than one aggressive encounter had been recorded (9 females and 19 

males). There remained no significant difference between the sexes in 

proportion of victories (Ug jg = 72.5, p = 0.530). Males fed supratidally more 

frequently than females (U 1 6,38 = 195.5, p = 0.040; males = 0.31, females = 

0.25), although supratidal feeding likelihood did not differ between the sexes 

(Ui6,38 = 278.15, p = 0.629). 
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Figure 6.4 Birds that won more aggressive encounters tended to feed more frequently 

on supratidal habitats (a) and sightings of these birds at high water were more likely 

to be of them feeding than roosting (b). Proportion of aggressive encounters won 

arcsine transformed prior to analysis. See text for details of supratidal feeding 

indices. 
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Four hundred and forty-eight sightings were made of known-age birds. Ages 

ranged from three to 55 months. Supratidal feeding frequency was positively 

correlated with age (figure 6.5; r = 0.60, n = 26, p < 0.001), although there 

was no significant relationship between supratidal feeding likelihood and age 

(r = -0.36, n = 26, p = 0.284). 
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Figure 6.5 Supratidal feeding frequency increased with age. Supratidal feeding 

frequency is the number of supratidal sightings of a bird divided by the total number 

of sightings. 
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Wing length and mass at ringing were known for 120 birds. The two variables 

were entered into a principal components analysis to extract a single 

measure of size. The first component of the solution (PC1) explained 63% of 

the variation in the data. There was no relationship between bird size (PC1) 

and either of the indices of supratidal feeding (supratidal feeding frequency: 

r = 0.02, n = 120, p = 0.986, supratidal feeding likelihood: r = 0.07, n = 95, 

p = 0.516). 

Flock size (the mean size of flocks in which a given bird was found) on 

supratidal habitats decreased as supratidal feeding frequency increased 

(r = -0.38, n = 139, p < 0.001), although supratidal feeding likelihood did not 

change with flock size (r = -0.15, n = 107, p = 0.134). The size of intertidal 

flocks was unrelated to either supratidal feeding measure. 
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6.4 Discussion 

That birds foraging intertidally were much further away from the extreme high 

water mark than birds foraging supratidally over high water suggests strongly 

that feeding supratidally incurred elevated predation risk. Hunting 

sparrowhawks can attain a maximum flight speed of 25 m per second for 

short bursts (Newton 1986, Hilton et al. 1999b). As this is substantially slower 

than escape flight speeds of shorebirds, sparrowhawks must rely on surprise 

to mount a successful attack (Newton 1986, Cresswell 1996). The difference 

in distance to cover means that ruddy turnstones foraging intertidally would 

have an average of 7 s (175.2 / 25) to detect a sparrowhawk after it had left 

cover, whereas those foraging supratidally would have only 0.27 s (6.7 / 

13.89). Given that response differentials of 0.7 s have been shown to 

influence the mortality risk of foraging redshanks Tringa totanusUom a 

particular predator attack (Hilton et al. 1999b), this additional warning time is 

likely to result in a substantial difference in predation risk. 

6.4.1 Which hypothesis? 

These data clearly support one of the reluctant compensation hypotheses. 

The proportion of ruddy turnstones feeding supratidally was independent of 

beach-cast wrack availability, indicating that birds were not using supratidal 

resource availability as a cue for supratidal feeding. This rules out ESS-type 

and interference competition explanations (table 1). Moreover, persistent 

supratidal feeders spent more of their time in intertidal habitats feeding than 

intermittent supratidal feeders, suggesting that they had reduced energy 

intake while foraging intertidally, something predicted by both reluctant 

compensation hypotheses (table 1). Low foraging efficiency is not necessarily 

a permanent feature of supratidal feeders, but low energy intake on a 

particular low water period will lead to supratidal feeding. As there was great 

individual variation in the tendency to feed supratidally (see chapter 4) purely 

extrinsic control, for example by weather conditions seems unlikely. It is 
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possible, however, that extrinsic factors may interact with intrinsic factors to 

influence energy intake while foraging intertidally. 

These results indicate that the decision to feed supratidally is driven by 

variation in energy intake during the low water period. The reasons for this 

variation in energy intake are unclear. Supratidal feeders behave as the 

reluctant compensation models predict, apparently topping-up over high 

water as a result of inadequate low water energy intake and thereby being 

forced into paying the cost of increased predation risk. However, these birds 

tend to be older and higher ranking than non-supratidal feeders, and it 

appears that they are feeding supratidally to avoid switching intertidal 

foraging area (see section 5.4.1 on page 104). Although older birds are more 

experienced foragers, they may also have more to lose from itinerancy. 

It has been shown that high ranking ruddy turnstones tend to have smaller 

home ranges than lower ranking birds (Metcalfe 1986). This may be because 

they can defend a stable resource base. This study has shown that high 

ranking birds, particularly males, are also more likely to feed on risky but 

profitable supratidal habitats. It is possible that higher ranking birds have a 

greater energy demand than lower ranking birds. It is known that BMR 

increases with rank (Hogstad 1987), although it is unclear to what extent this 

affects daily energy expenditure (Bryant & Newton 1994). High ranking birds 

also tend to be involved in more aggressive interactions than lower ranking 

birds (Jarvi et al. 1987), who may avoid confrontation with dominants 

(Metcalfe 1986). 

There is some support for the idea of reluctant compensation from studies of 

supratidal feeding in oystercatchers (Goss-Custard et al. 1996; Caldow et al. 

1999; Stillman et al. 2000b). It has been shown that individuals of low 

foraging efficiency are more likely to use supratidal supplementary food 

supplies than individuals of higher foraging efficiency, although in the 

oystercatcher system, supplementary feeding areas are less profitable than 
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intertidal substrates. The current work suggests that, where the supratidal 

foraging substrate is of sufficient quality, and intertidal habitats are relatively 

stable, it may in fact pay higher ranking birds to adopt a foraging strategy 

involving use of substrates where predation risk is high (see chapter 7). I 

have excluded the possibility that variation in high water food resource 

availability drives the decision to feed over high water, and considered 

explicitly the effects of predation risk and considerations arising from the 

maintenance by individuals of their position in the dominance hierarchy. 

6.4.2 Modelling the decision to feed supratidally 

The ruddy turnstone example provides a template for a more general model 

describing how individuals should choose between low-quality low-risk 

patches and high-quality high-risk patches. 

If high profit substrates incur elevated predation risk, foragers may only 

choose to pay this increased cost when energy intake in low profit substrates 

has proved inadequate. In the ruddy turnstone system, inadequate energy 

intake can result from the forager being unwilling to make excursive 

movements to track intertidal resource availability. This is important because 

it implies that individuals will vary in the way they manage the trade-off 

between energy intake and predation risk, and while such foraging may be 

adaptive (sensu Sih 1980), fitness outcomes of the "alternative strategists" 

may be different, suggesting a threshold for switching intertidal foraging site if 

energy intake on the low-quality low-risk remains low. This system can be 

described with a very simple model (figure 6.6). Although this model is 

described in terms of "strategies", in reality there will be a continuum of 

intermediate states between the two extremes. The alternative strategies are 

L to feed only on the low quality low risk substrate (i.e. feeding during the low 

water period on rocky shores), and /-/additionally topping-up energy intake 

by continuing to feed over high water on high quality high risk substrate. 

Here, we measure fitness by overall survivorship S (the product of the 
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probability of avoiding starvation Sf and the probability of avoiding predation 

S p), as we are dealing with a non-breeding population (Caraco 1979; Lima 

1986). 

Relationships between foraging efficiency E and Sf for the two strategies 

(Sf(L) and Sf(H)) will take the form of convex curves through the origin (figure 

6.6 (a)). Where e=0, an individual will certainly die, but the rate of increase of 

Sf will diminish with increasing e. As the density of available food in high 

water feeding substrates dH is far greater than in low water substrates d L , 

Sf(H) will never be lower than Sf(L), although the curves will meet at the 

origin and asymptote at the same level. Therefore, purely considering Sf, an 

individual should always choose a high water foraging strategy (figure 6.6 

(a)), although there is little difference between the two strategies for 

individuals that achieve very high or very low energy intake while foraging 

intertidally. Such relationships can be described explicitly in a number of 

different forms, for instance Sf(/.)=1-exp(-o,

L*£) and Sf(H)=1-exp(-c/H*£). 

Estimates for predation-based survivorship S p on the two foraging substrates 

take the form of constants p . and PH for low and low+high water foraging 

substrate predation-based survivorship respectively (Sp(/_) and SP(H)). 

Because PH<PL, different strategies for maximising S now emerge depending 

on the intertidal energy intake achieved by the forager (figure 6.6(b)). The 

immediate fitness implications of the two strategies will depend on the 

product of Sf and S p for each value of e (figure 6.6 (c)). Within a general trend 

of increasing survivorship with intertidal energy intake, individuals doing 

poorly at low water will maximise survivorship by following the supratidal 

feeding strategy, whereas individuals doing well while foraging intertidally at 

low water should avoid high risk feeding substrates even though they are of 

high food quality. The relative importance of choosing the correct strategy 

therefore also varies with i (figure 6.6(c)). At an intermediate level of e, the 

strategies will have equal fitness consequences (i.e. Sf(H)*pH = Sf(L)*p L ) . 
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Figure 6.6 Simple three-step model describing constraints on the trade-off between 

energy intake and predation risk placed on individuals that achieve low energy intake 

while foraging intertidally. (a) food-based survival (S,) is positively related to energy 

intake t and will be greater if a topping-up feeding strategy H is employed rather than 

exclusive intertidal water feeding at low water L. (b) After the incorporation of survival 

constants pi. and p» for strategies L and H respectively, individuals that achieve low 

energy intake during intertidal feeding maximize their overall survival by feeding 

supratidally over high water, (c) the importance of choosing the correct strategy (i.e. 

the difference in S between the two strategies) is greater for individuals of low and 

high E , although foragers achieving a very low energy intake will have an extremely 

low overall S anyway. 

a 

b) 

H 

CO 

S(H) = S(L) 

(c 

i f ) 
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6.4.3 Conclusion 

Gould & Lewontin (1979) famously warned against considering purely 

adaptationist explanations for the characteristics of organisms. Here I show 

the importance of considering constrained explanations when trying to 

understand how animals distribute themselves in relation to food supply. In 

many cases, it may not be adequate to view such a system in terms of an 

adaptive trade-off between simple imperatives without considering the wider 

picture of individual constraints such as foraging efficiency or social costs to 

movement. A purely adaptive view of "alternative" foraging strategies would 

interpret the phenomenon as a simple fitness-indifferent response to the 

choice between low energy low predation risk and high energy high predation 

risk foraging patches. When individual variation in energy intake and costs to 

itinerancy are considered, the system is seen in the light of constraints 

leading to reluctant compensatory foraging. 

This work has implications for the interpretation of any situation where we are 

tempted to impute fitness indifference to individuals, populations and species 

where "alternative" strategies are observed. Simple models can be used to 

incorporate the fitness inequalities arising from the cryptic (to the observer) 

acceptance of increased costs to following one or other of the strategies. 

Risk of predation is important in determining the distribution of foragers, but 

as shown here, individuals may vary in their opportunity to moderate this risk, 

and individuals must integrate several types of cost and benefit. 
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Chapter 7 - General Discussion 

7.1 Feeding decisions by ruddy turnstones 

This study has demonstrated that supratidal feeding appears to play a very 

different role in rocky shore systems than in soft-sediment systems. The 

likelihood of an individual going on to use high-risk supratidal habitats over 

the high water period appeared to depend not on supratidal resource 

availability, but on social constraints and events that occurred while the 

forager was using intertidal habitats. Foragers that frequently used supratidal 

substrates tended to be higher ranking, older, and more narrowly-ranging. 

However, this is a field-based study, and it is difficult to establish cause and 

effect. Birds may attain high rank by virtue of remaining highly site faithful 

rather than the other way around. At this stage, it is not possible to suggest 

relative fitness values for birds adopting different approaches to supratidal 

foraging. These results indicate that we are certainly not looking at a simple 

"topping-up" system in which poor quality foragers compensate for 

inadequate intertidal energy intake by feeding supratidally. The decision to 

feed supratidally is also affected by the interplay of other factors including 

predation risk and social status. 

Relatively stable intertidal resource dynamics appear to be the ultimate 

reason why soft- and hard- substrate systems work in different ways. Stable 

resource dynamics mean that high ranking birds can remain highly site-

faithful within and between years. However, despite the general stability of 

intertidal habitats, there will be some variation in intertidal habitat quality 

within and between winters. Because the spatial response to this variation by 

site-faithful birds is constrained for social reasons, they must use additional 

supratidal resources. It is worth these birds paying the cost of elevated 

predation risk in the short term for the long term benefits of a stable social 

system and associated benefits of stable group living. An analogous system 

operates in alpine choughs Pyrrhocorax graculus (L) , where foragers in 
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groups pay short-term costs in foraging efficiency for the long-term benefits 

associated with maintenance of social bonds (Delestrade 1999). 

In this study I demonstrated that naturally-occurring supratidal foraging 

patches were much more profitable in terms of energy intake per unit time 

than intertidal patches. An average prey item in beach-cast wrack contained 

three times more energy value than an average item in intertidal habitats, 

and a forager continuously using beach-cast wrack needed to forage for 2.4 

hours less per day than a bird using Fucus-covered rocks continuously. 

Despite this apparent energetic advantage to supratidal habitats, foragers 

were reluctant to use them, and were clearly not distributing themselves in 

proportion to available food, as would be predicted from an ideal free 

distribution model (Fretwell & Lucas 1970). Moreover, flocks that were found 

on supratidal habitats maintained a higher level of vigilance than would be 

predicted from their flock size alone, while flocks on intertidal habitats were 

less vigilant than expected. This suggests that a high perceived risk of 

predation was the reason why ruddy turnstones were reluctant to use 

supratidal habitat patches. The use of supratidal habitats in this study system 

appeared therefore to represent a direct trade-off between the risks of 

starvation and predation. 

The decision to feed supratidally was not driven by the availability of 

supratidal resources, suggesting that some ruddy turnstones fed supratidally, 

usually over the high water period, because they had not fulfilled their energy 

intake requirements while feeding intertidally during the low water period. 

This has been shown before in soft-sediment systems (Velasquez & Hockey 

1992, Goss-Custard et al. 1996, Dann 1999, Masero et al. 2000, Masero & 

Perez-Hurtado 2001). In these systems, individuals of low foraging efficiency 

are thought to be forced into continuing to forage when intertidal habitats are 

unavailable. Furthermore, supratidal habitats used by oystercatchers were 

poorer in quality than intertidal habitats, and also thought to elevate parasite 

burden. In this sense, supratidal foraging incurs two costs; the extra foraging 

time needed to fulfil energy requirements, and an increase in parasite 

burden. My work suggests that predation risk should now be considered an 
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additional cost of feeding supratidally. In all the systems so far studied, the 

prevailing current interpretation of supratidal feeding is that poor quality birds 

are forced into paying additional costs to extend their daily foraging beyond 

the period when intertidal habitats are available, such as parasite burden, 

increased time spent foraging, and predation risk. 

Here, I studied a rocky shore system, in which intertidal resources were 

much more predictable than in soft-sediment systems. Resource 

predictability may be one of the factors that led to the evolution of a stable 

and complex social structure in populations of non-breeding ruddy 

turnstones. Individual ruddy turnstones pay a high cost in terms of access to 

predictable resources if their position within the dominance hierarchy is 

supplanted (Whitfield 1990). Not unexpectedly, therefore, higher ranking 

birds tend to have smaller home ranges than lower ranking birds (Metcalfe 

1986, Eaton 2001). However, foraging success depends not only on 

individual quality, but also on the forager's energy and nutrient requirements, 

long term changes in food availability, extrinsic factors such as weather 

conditions, and the forager's ability to compensate for these factors by 

spatially tracking the best current foraging areas. 

In this study, higher ranking ruddy tumstones, and males independently of 

rank, tended to feed supratidally more frequently than lower ranking and 

female birds. These birds pay the cost of increased predation risk associated 

with supratidal feeding, but have the benefit of retaining their position in a 

socially complex environment. Moreover, as is frequently the case with high 

ranking individuals, their risk of starvation is relatively low because they gain 

and defend access to predictable intertidal foraging areas (Clark & Ekman 

1995, Hake 1996, Pravosudov et al. 1999). However, their risk of predation is 

relatively high because in times of depressed intertidal food availability, they 

are forced to continue feeding over high water, thereby exposing themselves 

to elevated risk of raptor attack. 

Lower ranking birds are less attached to specific foraging areas, and so 

range more widely during the course of the winter. Because they can 
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respond to variation in intertidal food supply by seeking new foraging areas, 

they need to supplement daily energy intake through supratidal feeding less 

often than more narrowly ranging birds. These birds pay a cost of increased 

travelling time and energy expenditure, and never have access to the best 

intertidal foraging sites in any given area. Therefore, they run the risk of 

starvation. However, their risk of predation is lower than more narrowly 

ranging birds, because they need to feed supratidally less frequently. 

As with other systems studied so far, the proximate cause of supratidal 

feeding in ruddy turnstones appears to be inadequate energy intake while 

foraging intertidally. However, the ultimate causes for the patterns of variation 

in supratidal feeding uncovered in this study appear to be very different. The 

birds feeding supratidally were not necessarily poor quality birds, rather those 

that had limited opportunity to respond spatially to variation in food 

availability. 

7.2. The benefits of site fidelity and the costs of movement 

Close spatial associations with particular sites or social groups can affect 

how foragers solve trade-offs such as that between intake rate and predation 

risk. For example, although adult striped bass Morone saxatilis (Walbaum) 

perform better at low water temperatures, they showed no change in site 

fidelity during the non-breeding season despite large spatial variation in water 

temperature (Jackson & Hightower 2001). The fish were apparently prepared 

to sacrifice physiological performance (presumably increasing their risk of 

predation) for benefits associated with site fidelity. Maintaining site fidelity 

makes sense in situations where there are strong benefits to group living, 

such as a stable resource base best exploited by high ranking individuals 

(Krause & Ruxton 2002). It may be worth paying a cost of e.g. additional 

predation risk for the reduced variance in energy intake rate through 

continuous access to good quality foraging sites. This hypothesis predicts 

that variance in energy intake during intertidal feeding in ruddy turnstones 

should increase with dominance status, something that could be tested in 

further study. 
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High ranking ruddy turnstones in this study showed high site fidelity and fed 

more frequently on supratidal habitats than low ranking birds. This indicates 

that the more mobile birds are doing something that allows them to reduce 

the amount of time they spend on high risk supratidal habitats. It is likely, 

therefore, that they are switching to higher quality intertidal habitats following 

a decrease in food availability in the current area. It does not appear that 

wide-ranging birds are tracking the occurrence of ephemeral supratidal 

habitats (Eaton 2001) because (a) upon quantitative spatial analysis, these 

habitats were found to be spatially rather predictable and (b) wide-ranging 

birds travelled the same distances to supratidal habitats than did narrow-

ranging birds. 

A further benefit of site fidelity in ruddy turnstones may be migrational 

synchronicity. Arrival time on breeding grounds in Greenland exhibits little 

variation despite some variability in spring weather, and occurs usually 

around late May to early June, highly stereotyped in particular areas 

(Manniche 1910, Nettleship 1973). Birds arrive in southern regions of 

Greenland from about 23 May, and reach the north coast by the first week of 

June (Bent 1929, Salomonsen 1950). Spring departure from staging sites in 

Iceland falls similarly within a very narrow time window between 25 May and 

1 June, and is remarkably constant from year to year (Meltofte 1985, 

Alerstam et al. 1986, 1990). Ruddy turnstones have no way of predicting 

weather conditions so far from their starting point, so birds must rely on social 

synchronisation to time arrival using endogenous cues (Alerstam et al. 1990). 

This high degree of synchronisation in migration and return to the breeding 

grounds may be achieved in part through the high group cohesiveness and 

site fidelity seen in this species during the non-breeding season (Sutherland 

1981, Cramp & Simmons 1983, Whitfield 1985a). Conventionally, winter site 

fidelity has been explained in terms of resource use during the non-breeding 

season (Metcalfe & Furness 1985, Burton & Evans 1997), but an additional 

benefit may be the achievement of breeding ground arrival synchronicity, of 

great adaptive consequence given the narrow time window for breeding in 
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such northerly latitudes (Green et al. 1977). The period immediately after 

hatching must coincide with maximum food availability (Nettleship 1973). 

This idea predicts a positive relationship between site fidelity and group 

cohesiveness, at both individual and population levels. Itinerant individuals 

might be part of less cohesive groups than highly resident individuals. At the 

population level, this idea could be tested by looking at winter site 

faithfulness in southern breeding (Fenno-Scandian) birds, where the time 

window for breeding is wider than northern Greenland. This study has shown 

that extreme site faithfulness during winter may carry the cost of reducing a 

bird's ability to cope with spatial variation in food availability. 

For high ranking birds, the costs of movement to compensate for variation in 

habitat quality appear greater than the costs of increased predation risk by 

staying put. Movement between sites by wintering ruddy turnstones are likely 

to result in lost foraging opportunities, in particular because of the time taken 

to identify intertidal areas of higher quality than the one they left. These costs 

will multiply with distance travelled. Indeed, translocated orb web spiders 

Metepeira incrassata paid increasing foraging opportunity costs the further 

they were moved, and this is likely to be a frequent pattern across many taxa 

(Jakob et al. 2001). 

7.3 Implications for foraging theory 

Although specific costs and benefits associated with alternative foraging 

decisions can be modelled explicitly and investigated experimentally, the 

interactions among different types of costs and benefits can be very hard to 

observe. More importantly, these interactions can completely obscure or 

reverse some relationships predicted from necessarily simplified modelling or 

well-controlled experiment. This study has demonstrated two novel effects of 

this kind, both of which have implications for foraging theory. I have shown 

that variation in predation risk can disrupt the group size effect (chapter 4), 

and that position within the dominance hierarchy can affect the solution to the 

trade off between the risks of starvation and predation, by leading to spatial 

constraints on ranging behaviour (chapter 6). 
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The results of this study highlight the complexity of in-the-field decisions 

made by foraging birds, and the difficulty of interpreting observational data on 

the distribution patterns of foragers. During the early stages of this study, I 

interpreted this system as a simple trade off between starvation and 

predation, with birds of low foraging efficiency being forced into paying 

additional costs of predation risk by foraging supratidally, as is the case in the 

soft-sediment systems studied so far. I assumed these birds would also 

range more widely to keep track of patchy and ephemeral supratidal food 

resources. However, as I began to uncover the spatial strategies of persistent 

supratidal foragers, and realised that these birds were in fact higher ranking 

than intermittent supratidal foragers, it became clear that there was a 

substantial cost of movement to new intertidal foraging sites within and 

between winters, particularly for high ranking birds. This study has shown 

that the consequences of dispersive movements depend on social status. 

There is little information on the ontogeny of movement patterns over the 

lifetime of individuals (but see Townshend 1985). I was unable to detect age 

effects in this study owing to small sample sizes, but the balance between 

the costs and benefits of site-fidelity is likely to change over an individual's 

lifetime. This is particularly important for long-lived species such as the ruddy 

turnstone, and deserves further investigation. 

7.4 Implications for conservation science 

It is common to base conservation decisions on the relative importance of 

different habitats to organisms. On the basis of the traditional assumption 

that ruddy turnstones are rocky shore specialist shorebirds, sandy beaches 

were excluded from the area designated as an SPA (Anthony 1999, Stroud et 

al. 2001). Indeed, ruddy turnstones spend most of their time on rocky shore 

habitat. However, this study has highlighted the ecological importance of 

beach-cast wrack, which is usually deposited on sandy susbtrates. Although 

foragers spent relatively little time using beach-cast wrack, it was important 

ecologically as a foraging resource for narrow-ranging birds. Therefore, when 
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considering the relative importance of different habitats used by animals, it is 

essential to consider not just how long an animal spends in alternative 

habitats or how much of its home range overlaps particular habitat types, but 

the functional role of the different habitats used. Studies prioritising areas for 

conservation will make inappropriate recommendations if the ecological 

importance of alternative areas is overlooked. 

It has been suggested that changes in the frequency that shorebirds feed 

supratidally may reflect changes in intertidal habitat quality (Tsai 2001, Smart 

& Gill 2003). However, this study has shown that we must understand the 

causal basis of supratidal feeding before using it as an index of habitat 

quality. Individual ruddy turnstones may respond to deteriorating intertidal 

habitat quality not by foraging more frequently on supratidal habitats, but by 

ranging more widely along the coast both within and between winters to track 

intertidal resource quality. This may or may not be associated with increased 

levels of supratidal foraging. 

7.5 Implications for organic pollution policy 

As stated in the introduction, improved levels of treatment applied to sewage 

effluent before discharge into the study area are likely to lead to falling 

nutrient levels over coming years. The literature on the effects of organic 

pollution on marine environments is large, and the general picture is of 

benefits for species diversity and abundance at moderate levels of 

enrichment (Pearson & Rosenberg 1978). Species involved include molluscs 

and polychaetes (Anger 1975). As organic inputs increase still further, both 

species diversity and biomass decline, as body sizes become smaller and 

the fewer highly opportunistic species begin to dominate. However, it is likely 

that organic enrichment in the present study area is no more than moderate, 

as it is classified as an area of high natural dispersion (Hiscock 1998). 

Few studies have been carried out on rocky shore habitats; much of the 

above information is based on estuaries and using soft-sediment dwelling 

invertebrates (but see Littler & Murray 1975, 1977, Gappa et al. 1993, and 
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Rogers 1999 for important exceptions). Shelled organisms found in rocky 

intertidal habitats may be able to buffer some of the effects of organic 

enrichment through greater control over water transfer than soft-bodied 

invertebrates. 

Several studies have related bird numbers to organic pollution events (see 

Green et al. 1993 for a comprehensive review for estuarine systems). The 

general pattern is for reduced prey populations to lead to depressed 

shorebird numbers, but it must be borne in mind that improved water quality 

has many other benefits (EEC 1976, Obiri-Danso & Jones 1999). 

Since sewage treatment began in 1977, sea duck populations in the Firth of 

Forth, formerly concentrated around sewage outfalls (Milne & Campbell 

1973) declined steeply. Species particularly affected were greater scaup 

Aythya marila (L.) and pochard Aythya ferina (L ) , although mallard Anas 

platyrhynchos L. and teal Anas crecca L. also declined. Red knot and dunlin 

Calidris alpina (L.) at Kinneil declined following foreshore reclamation works 

and changes in patterns of effluent disposal, although ruddy turnstone 

numbers increased in the Firth of Forth over the period. Effects of national 

trends were removed from these data, and changes in sewage treatment 

regimes overall since 1977 were implicated in reducing the importance of the 

Firth of Forth as a wintering area for shorebirds and wildfowl (Bryant 1987). 

The only study explicitly to cite organic pollution as a probable cause of 

increase in bird populations is that of van Impe (1985). Organic pollution to 

the Western Scheldt estuary in The Netherlands has increased markedly 

since the 1950s, during which time populations of sediment-dwelling 

invertebrates also rose, with an associated decline in species diversity. Bird 

populations also increased dramatically over the period, although national 

trends were not reported, and the importance of immigration as a product of 

deterioration of other sites is not discussed fully. 

Much of the evidence gathered to date is necessarily of a correlational 

nature, and does not demonstrate a causal link between changes in effluent 
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treatment regimes and bird populations. Any such causal link is likely to be 

convoluted, owing to the complex and variable nature of littoral ecosystems, 

and the difficulty of quantitatively studying trophic and nutrient pathways. This 

is particularly true in the present study system. Even if we accept that 

diversity and abundance will decline in the study area, the potential impact on 

the ruddy turnstone population is unclear. 

There is no evidence to suggest that the population is near the carrying 

capacity of the environment (Eaton 2001), and energy intake appears to be 

more limited by individual variation in foraging efficiency and trade-offs 

associated with predation risk and social status. However, it would be 

interesting to study this population again in 15 years' time to look for 

correlates of environmental change. We might predict fewer and smaller 

deposits of beach-cast wrack and because of this, increased itinerancy by 

ruddy turnstones as birds are forced to range more widely. We might also 

expect lower stability of social groups, possibly leading to fitness impacts on 

the population. 

7.6 Where next? 

The thrust of this work has been to reveal some of the patterns in ruddy 

turnstone foraging behaviour in a field setting. As with any study of an 

unmanipulated natural system, it is difficult to reach firm conclusions about 

causality. The next steps in this research programme must include 

manipulations to isolate various components of foraging decisions by these 

birds and provide experimental underpinning. 

Perhaps the most important next step is to quantify predation risk in the 

different parts of this system. We need to demonstrate empirically that 

predation risk is greater for foragers on supratidal habitats than on intertidal 

habitats, and in particular foragers on beach-cast wrack. Predation risk while 

roosting is also an important quantity. This will involve lengthy observations 

of shorebird flocks and documentation of predator attacks. An alternative 

approach is to vary predation risk experimentally in a field setting using 
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flyovers of trained raptors and then looking for effects on vigilance 

behaviours and the propensity to feed supratidally. 

Given suitable manpower and resources, the size, quality, and predictability 

of beach-cast wrack deposits could be manipulated in the field. Foraging 

decisions could then be related experimentally to spatial and temporal 

resource dynamics. This would be interesting because this system allows 

experimental manipulation of a naturally patchy and ephemeral resource. 

Many foraging experiments, even if based in the field, have used unrealistic 

set-ups involving artificial apparatus for manipulating resource dynamics. 

It would be interesting to relate individual differences in risk-management 

strategies to supratidal feeding. Lima & Bednekoff (1999) predict that where 

high risk situations are rare, foragers should show greatest antipredator 

behaviour when on a high risk substrate, and that this antipredator behaviour 

must necessarily decline as high risk situations become commoner. In the 

current system we might predict that persistent supratidal feeders will show 

less vigilance on average than intermittent supratidal feeders. 

Ruddy turnstones appear to be limited to diurnal foraging, and thereby forced 

to use high risk habitats to compensate for variation in intertidal energy 

intake. We might therefore predict a latitudinal gradient in supratidal foraging 

by ruddy turnstones, driven by the poleward reduction in winter daylength. 

Ruddy turnstones winter across much of the globe, so they present an ideal 

opportunity for study, particularly as birds wintering in the southern 

hemisphere will experience very long daylengths in comparison with those 

wintering in the north. Current information on supratidal feeding by shorebirds 

is too scattered and methods not comparable, so further quantitative field 

study would be necessary. There is some support in the literature for the idea 

of a latitudinal gradient in supratidal feeding. Working in California, Fleischer 

(1983) reported that no ruddy turnstones fed supratidally, while at high 

latitudes in Europe, several shorebird species regularly feed supratidally 

(Goss-Custard et al. 1996, Smart & Gill 2003). 
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Appendix 1. Study population and general methods 

A1.1 Study population 

The study site comprised a 39.5 km stretch of rocky coastline in north-east 

England (see chapter 1 for physical characteristics and descriptions of 

habitats). Fieldwork for this study was conducted bewteen October 1999 and 

March 2003. The wintering populations of ruddy turnstones and purple 

sandpipers in north-east England are of international importance. Over 1400 

ruddy turnstones regularly spend the non-breeding season in the 

Northumberland Shore SPA, the large protected area comprising much of the 

coast of north-east England and wholly encompassing the study area (five 

year peak mean 1991/2 - 1995/6; JNCC 2001). The population within the 

study area itself is approximately 500 birds (seven year peak mean 1996/7 -

2002/3 = 499; figure A1 , Eaton 2001). Monthly maxima for 1969 - 1976 

presented by Prater (1981) suggest about 350 ruddy tumstones used the 

area between Whitley Bay and the Coquet Estuary during that period. The 

difficulty of counting shorebirds on rocky coast habitats makes a detailed 

historical analysis of population trends impossible, although data on winter 

maxima published anecdotally in Birds of Northumbria since 1970 appear to 

indicate that shorebird populations have remained stable in the study area 

over the past 30 years, against a background of a national decline 

(Cranswick et al. 1999). 

Count data collected by Eaton (2001) and as part of this study indicate that 

the highest numbers of birds are present between October and April, with a 

few birds oversummering each year (figure A1). A detailed analysis of the 

data presented here are beyond the scope of this study, and they are only 

shown to give an impression of the numbers of birds using the study area 

over the course of the year. 
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Figure A1. Average monthly counts of ruddy turnstone present in the study area 
between October 1996 and April 2003. Data prior to October 1999 taken from Eaton 
(2001). 
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A1.2 Counting birds: general methods 

Good road access to the study area greatly facilitated the counting of birds 

over a wide area relatively quickly. With the exception of Newbiggin, where a 

20 minute walk was required to view all roosting and feeding sites up to 

Beacon Point (see figure A1), all parts of the shoreline were visible from 

vantage points within a few minutes' walk of a vehicle. Counts of all 

shorebirds in the study area were made twice a month as part of a study 

monitoring the effects of changes in nutrient discharges into the nearshore 

environment. 

Where a count had to be achieved within a single high water period (defined 

as two hours either side of the time of high tide), counting always 

commenced at the northern end of the study area and proceeded southward. 

This took advantage of the 20-minute delay in tidal flow from the northern to 

southern end of the study area. Vantage points allowing a clear view of all 

exposed habitat along the shoreline were visited, and all fields within 500 m 

of the coastline were checked during each count period. Counts were usually 

completed within four hours. 
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Figure A1. Map of the study area showing access roads. 
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A1.3 Catching and marking birds for study 

Ruddy turnstones were caught using cannon-nets at Amble, Hauxley, 

Cresswell, Newbiggin and St Mary's Island between 5 February 1997 and 26 

October 2000. Catches were generally accomplished by firing the net over 

groups of birds foraging on beach-cast wrack deposits. To minimise bias 

caused by catching birds only when feeding over high water, sampling was 

only carried out on occasions where a high proportion of the population was 

high water feeding. Birds were ringed with a combination of coloured plastic 

rings and a metal ring, totalling four or five rings on each bird. The scheme 

was designed to allow birds to be resighted in the field, so bright and easily 

distinguished colours were chosen (green, lime, orange, red, white, yellow). 

All rings were fitted on the tarsus, except where four coloured rings were 

used, in which case the metal ring was fitted on the tibia and all four coloured 

rings on the tarsus. Birds showing distinct pale buff fringers on their inner 

median coverts were aged as juveniles (Prater et al. 1977). However, the 

usefulness of these feathers in diagnosing juveniles declines after November, 

and many birds not showing buff fringes to the median coverts could not be 

aged with certainty. 

Over 11 attempts, a total of 229 birds was caught by cannon-netting and 

colour-ringed. This represents over 40% of the ruddy tumstone population in 

the study area. Average catch per sampling session was 20.8 birds (range: 2 

- 50). Twenty-three birds were aged with certainty as juveniles, only 10% 

were aged with certainty as juveniles, although as explained above, some 

juveniles were probably overlooked. 

A1.4 Resighting birds: general methods 

Resighting data were collected opportunistically while carrying out other parts 

of the fieldwork schedule. Resighting data were collected on 349 dates 

between 10 February 1997 and 16 November 2002. Mean height of high tide 

on dates where resightings were made did not differ significantly from mean 

high tide height of all dates during the study period (t = 0.35, d.f. = 2452, p = 
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0.726), indicating that resampling of birds was carried out randomly with 

respect to magnitude of tide. A mean of 14.4 colour-ringed birds was 

resighted each day in the field (range: 1 - 72). On only 7% of occasions was 

a bird resighted more than twice in a day, helping to minimise temporal 

autocorrelation in the dataset. 
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Appendix 2 

Characteristics of the 50 deposits of beach-cast wrack observed during winter 
2000/2001. Where measurements were taken from a particular deposit more than 
once, the data are averaged. * indicates data not collected or could not be calculated. 
Weeks are numbered consecutively from the first week of November. See chapter 2 
for analyses. 

ID Lifespan 
(weeks) 

Week 
appeared 

Length 
(m) 

Volume (m3) Surface 
area 
(m2) 

Temp 

(SC) 

Estimated 
total 

Coelopids 
(*10,000) 

Estimated 
maximum 

Coelopids I' 

1 6 1 84.2 61.1 381.4 13.8 2295.1 85545.9 

2 1 1 16.0 1.5 17.3 * * * 

3 5 1 108.0 187.6 592.1 14.8 3768.6 192919.2 

4 4 1 25.0 12.3 90.5 8.2 4.6 16.5 

5 6 1 51.0 75.6 300.9 13.1 91.5 895.9 

6 1 1 10.0 1.3 21.2 * * * 

7 1 1 36.0 2.7 35.2 * * * 

8 1 41.0 30.8 154.9 8.8 10.4 15.2 

9 1 1 41.0 4.5 63.9 * * * 

10 1 1 90.0 102.8 1011.5 * * * 

11 1 58.3 177.9 377.7 11.3 292.9 17142.0 

12 1 1 30.0 47.0 225.1 * * * 

13 1 1 80.0 17.4 205.5 * * * 

14 2 45.0 61.0 171.6 9.3 29.8 2219.6 

15 1 2 100.0 433.5 978.3 8.9 64.2 19.6 

16 1 2 30.0 5.7 62.8 8.7 4.0 14.7 

17 1 2 20.0 11.5 84.4 9.1 5.8 20.3 

18 1 2 10.0 1.9 19.3 * * * 

19 1 3 70.0 29.7 242.9 6.5 10.6 10.2 

20 3 52.0 30.9 178.9 10.0 2300.2 170318.8 
21 1 3 60.0 10.9 127.8 6.9 6.1 13.8 

22 1 3 40.0 16.8 142.5 6.7 6.4 10.2 

23 3 4 30.0 20.7 189.5 9.7 16.9 64.2 

24 2 5 90.0 38.6 307.5 9.9 25.3 23.1 

25 2 7 35.0 16.6 215.8 4.1 7.1 6.0 

26 6 7 76.7 58.2 281.6 12.0 466.7 13593.0 
27 5 8 48.0 24.5 170.1 8.9 45.4 1383.4 

28 1 8 50.0 14.5 125.3 8.5 7.8 29.0 
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29 1 8 70.0 70.6 229.3 8.6 15.3 38.9 

30 1 8 40.0 70.5 171.9 7.9 9.0 13.0 

31 2 8 40.0 22.3 186.7 6.5 6.8 8.2 

32 2 9 90.0 55.1 370.5 5.2 12.0 5.7 

33 1 9 50.0 81.8 281.4 5.4 9.4 7.3 

34 1 9 30.0 10.5 90.5 4.8 2.8 4.5 

35 1 9 20.0 47.3 203.4 5.3 6.7 5.3 

36 2 9 110.0 47.3 329.6 5.3 10.9 6.4 

37 2 9 60.0 94.4 339.8 5.7 12.2 6.4 

38 2 9 125.0 144.0 471.0 5.7 17.3 6.9 
39 4 9 47.5 36.4 191.2 6.6 14.7 134.0 

40 1 10 20.0 21.4 106.8 5.1 3.5 5.7 
41 1 10 120.0 50.2 291.9 5.7 10.9 9.3 
42 1 12 90.0 124.8 251.0 6.5 10.3 8.2 

43 1 12 20.0 3.3 47.6 5.3 1.6 5.1 

44 2 12 50.0 38.1 251.8 7.8 12.8 11.3 

45 4 13 67.5 74.0 346.0 14.9 3586.6 292449.6 

46 4 13 45.0 31.2 161.4 16.2 6041.2 546038.9 
47 4 13 42.5 74.5 197.2 13.9 498.2 51352.3 

48 1 15 20.0 3.6 27.1 6.7 1.2 8.0 

49 2 15 80.0 118.0 350.1 9.1 20.3 70.9 

50 1 15 50.0 35.6 165.9 6.5 7.0 8.2 
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Appendix 3 

Supratidal feeding and ranging statistics for the 140 colour-marked birds with 
sufficient data. See chapter 5 for analyses. 

ID Supratidal Supratidal Range Area of Area of Number Partial 
feeding feeding span (m) MCP 95% of cores area 
frequency likelihood (Ha) fixed 

kernel 
in range 

1 0.23 0.69 23.42 3366.51 2468.25 2 0.42 

2 0.34 0.74 3.65 260.52 122.09 2 0.23 

3 0.2 0.83 3.78 246.03 145.78 2 0.2 

4 0.28 0.79 30.55 3658.24 849.76 1 1 

5 0.11 0.4 3.04 206.35 108.46 2 0.55 

6 0.38 0.79 3.19 158.31 27.17 1 1 

7 0.28 1 1.55 34.19 67.22 2 0.44 

8 0.44 0.88 3.84 241.95 46.36 2 0.17 

9 0.16 0.6 1.41 34.74 10.46 5 0.17 

10 0.23 0.6 1.58 55.36 139.43 1 1 

11 0.27 0.89 2.83 201.59 109.52 2 0.24 

12 0.14 0.33 11.73 925.39 333.51 1 1 

13 0.32 0.75 3.22 149.15 78.16 2 0.18 

14 0.26 0.88 3.19 293.47 71.82 2 0.41 

15 0.36 0.67 1.92 28.96 93.48 2 0.27 

16 0.32 0.93 4.12 406.21 192.11 1 1 

17 0.15 0.46 4.12 469.69 253.89 4 0.18 

18 0.1 0.75 11.71 960.89 321.93 1 1 

19 0.5 0.89 2.63 129.13 12.76 1 1 

20 0.29 0.8 1.69 119.49 145.78 1 1 
21 0.37 1 2.82 159.27 109.91 2 0.21 
22 0.21 1 1.73 62.35 17.57 2 0.26 

23 0.31 0.8 2.44 68.01 159.21 2 0.27 
24 0.22 0.81 30.56 1825.41 688.16 1 1 

25 0.5 1 30.36 3098.77 1126.99 2 0.42 

26 0.23 0.73 2.72 137.27 92.85 1 1 
27 0.31 0.73 30.3 4357.36 1384.49 2 0.25 

28 0.29 0.8 11.63 643.91 173.33 1 1 

29 0.13 1 2.53 104.11 72.2 2 0.14 

30 0.17 0.67 2.4 98.45 7.49 1 1 
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31 0.26 0.86 3.49 389.49 193.34 1 1 

32 0.24 0.8 2.79 138.98 91.4 2 0.14 

33 0.14 0.67 1.73 122.83 171.4 1 1 

34 0.17 1 18.26 1817.29 1000.24 1 1 

35 0.29 0.63 3.42 270.09 193.47 1 1 

36 0.15 0.4 0.64 7.41 19.28 4 0.12 

37 0.29 0.88 3.42 337.77 160.98 1 1 

38 0.2 0.4 3.32 137.15 344.28 1 1 

39 0.46 0.92 1.03 30.2 28.84 2 0.18 

40 0.35 0.89 0.95 9.77 26.3 1 1 

41 0.32 0.78 2 76.57 15.39 1 1 

42 0.38 0.89 0.3 4.93 6.29 1 1 

43 0.38 0.8 12.45 666.84 929.52 3 0.04 

44 0.2 0.75 2 94.91 91.3 1 1 

45 0.33 0.5 2.4 198.69 326.51 1 1 

46 0.2 0.71 3.2 451.09 291.13 4 0.25 

47 0.36 0.45 16.82 1676.41 595.54 2 0.11 

48 0.3 0.75 2.59 15.01 65.43 1 1 

49 0.26 0.75 1.84 71.61 38.67 1 1 

50 0.21 0.67 3.34 231.51 242.46 2 0.26 

51 0.23 0.57 3.62 417.41 257.28 2 0.65 

52 0.25 0.76 2.98 172.51 55.44 1 1 

53 0.31 0.73 1.06 24.01 17.57 1 1 

54 0.44 1 1.79 54.71 149.8 1 1 

55 0.33 0.78 3.62 208.71 29.36 1 1 

56 0.18 0.6 3.29 341.83 257.28 3 0.31 

57 0.15 0.71 2.78 61.31 83.75 1 1 

58 0.18 0.53 2.31 177.33 66.18 2 0.26 

59 0.18 0.9 3.11 198.71 66.64 2 0.3 

60 0.28 0.72 2.78 212.45 56.77 1 1 

61 0.33 0.74 1.35 21.97 14.89 1 1 

62 0.33 0.88 0.72 14.11 9.2 1 1 

63 0.32 0.77 13.19 891.72 195.05 1 1 

64 0.25 0.53 3.62 268.99 117.57 2 0.18 

65 0.28 0.6 3.44 366.51 112.63 1 1 

66 0.2 0.67 3.55 284.81 512.52 4 0.21 

67 0.26 0.7 3.62 233.51 78.12 3 0.12 

68 0.2 0.69 11.93 394.31 100.04 1 1 

69 0.14 0.75 11.75 1133.21 604.24 1 1 

70 0.27 0.88 3.85 243.69 124.39 2 0.33 
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71 0.38 0.67 16.86 1242.11 1121.22 2 0.13 

72 0.27 0.67 1.35 23.69 23.19 2 0.79 

73 0.4 1 0.72 5.01 8.88 1 1 

74 0.22 0.57 1.08 11.11 9.64 1 1 

75 0.33 0.8 0.98 14.77 17.54 1 1 

76 0.24 0.73 3.36 196.99 95.36 1 1 

77 0.09 0.2 2.7 192.21 227.18 2 0.23 

78 0.27 0.77 30.53 2843.41 564.78 1 1 

79 0.28 0.56 28.48 2712.47 3387.99 1 1 

80 0.34 0.75 1.95 121.41 14.84 1 1 

81 0.25 0.59 13.19 2537.54 523.25 3 0.06 

82 0.37 0.88 11.53 980.63 380.54 1 1 

83 0.5 0.75 0.95 23.44 6.6 1 1 

84 0.21 0.75 11.53 333.33 167.27 1 1 

85 0.27 1 6.17 149.86 141.01 1 1 

86 0.29 0.71 12.2 269.81 328.13 2 0.06 

87 0.56 0.9 7.75 151.61 76.19 1 1 

88 0.25 0.63 1.84 37.41 40.29 1 1 

89 0.6 0.9 11.45 256.84 192.91 1 1 

90 0.5 0.86 12.19 222.49 388.35 1 1 

91 0.14 0.38 15.74 1887.63 962.68 2 0.22 

92 0.52 0.93 12.05 1246.93 954.02 3 0.06 

93 0.44 0.88 1.84 49.51 58.59 1 1 

94 0.28 0.69 12.52 1212.51 234.41 2 0.13 

95 0.37 0.86 3.27 183.91 132.9 2 0.5 

96 0.36 0.71 4.17 507.5 174.88 1 1 

97 0.32 0.82 3.18 313.61 151.51 1 1 

98 0.36 0.89 2.55 143.11 140.54 2 0.41 

99 0.29 0.82 2.71 157.71 87.07 2 0.46 

100 0.16 0.57 17.2 2534.41 981.69 2 0.32 

101 0.21 0.56 2.55 172.11 205.06 3 0.15 

102 0.36 0.69 11.29 435.06 182.89 1 1 

103 0.1 0.67 5.22 427.31 150.34 1 1 

104 0.14 0.36 3.92 376.13 159.5 1 1 

105 0.36 0.67 2.55 135.61 72.86 2 0.32 

106 0.3 0.75 3.92 507.21 206.72 1 1 

107 0.3 0.74 3.56 428.87 154.13 1 1 

108 0.22 0.69 3.35 208.71 144.3 4 0.15 

109 0.34 0.78 3.16 209.67 156 3 0.24 

110 0.23 0.7 3.8 317.83 126.74 3 0.2 
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111 0.25 0.82 11.57 727.61 250.59 1 1 
112 0.21 0.76 11.56 1356.35 299.45 1 1 

113 0.25 0.75 2.66 150.74 91.39 0.04 

114 0.21 0.6 11.75 676.31 279.45 1 1 

115 0.23 0.48 3.56 381.97 166.54 1 1 

116 0.23 0.64 3.32 402.73 161.31 1 1 
117 0.39 0.7 3.18 295.81 212.75 1 1 

118 0.33 0.71 2.53 125.11 126.94 0.1 

119 0.21 0.57 5.22 362.31 191.78 1 1 

120 0.29 0.64 12.29 769.01 428.19 0.1 

121 0.23 0.73 3.16 140.77 153.61 1 1 
122 0.32 0.93 5.36 410.97 131.11 1 1 
123 0.29 0.71 30.63 3369.79 1210.1 1 1 
124 0.25 1 11.08 537.81 146.94 1 1 
125 0.43 1 3.54 145.81 44.52 1 1 
126 0.36 0.8 1.07 33.36 39.92 1 1 
127 0.64 0.9 0.23 2.1 2.23 1 1 

128 0.47 0.89 0.7 11.29 15.5 1 1 

129 0.63 0.88 0.45 4.25 0.85 1 1 
130 0.3 0.5 2.29 45.99 77.37 1 1 
131 0.67 1 0.12 0.26 0.04 1 1 
132 0.65 0.92 0.13 0.97 0.6 1 1 

133 0.67 0.83 0.45 2.08 0.4 1 1 
134 0.3 0.5 0.63 8.21 4.92 1 1 
135 0.67 0.92 0.6 5.14 2.21 1 1 
136 0.13 1 0.52 6.96 18.93 1 1 
137 0.21 1 0.36 2.56 1.83 4 0.09 

138 0.13 1 0.36 4.06 5.58 2 0.34 

139 0.39 1 1.19 16.95 8.64 1 1 
140 0.35 0.75 1.95 89.94 19.75 1 1 
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