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Abstract 

Let D K be the ring of integers of a finite extension of Qp, and let h E Q~0 
be in its value group. This thesis considers the space of locally analytic 

functions of order h on D K with values in CP: that is, functions that are 

defined on each disc of radius p-h by a convergent power series. A necessary 

and sufficient condition for a sequence of polynomials, with coefficient in CP, 

to be orthogonal in this space is given, generalising a result of Amice [1]. 

This condition is used to prove that a particular sequence of polynomials 

defined in Schneider Teitelbaum [19] is not orthogonal. 
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Introduction 

Let p be a prime. For m E Z?0 , let (~) = ~!X (X -1) ... (X- (m-1)) be the 

binomial polynomial of degree m. Mahler [15] proved that every continuous 

function f on Zp with values in Qp can be written uniquely in the form 

+oo (X) f=~am m, 

where (am)mEZ is a null sequence in Qp. Moreover, we have 
)0 

llflloo = max { larnlp I m E Z?o}, 

where I lP is the p-adic norm on Qp and 11 lloo is the supremum norm. 

Amice [1] refined this by characterising the Mahler expansions of locally 

analytic functions. We say that a function f : Zp ---+ Qp is locally analytic if 

everywhere locally it is defined by a convergent power series with coefficients 

in Qp; we denote the space of all such functions by LA (Zp, Qp)· For hE Z?o, 

we say a locally analytic function is of order h if on each disc of radius p-h 

it is defined by a convergent power series; we denote the space of all such 

functions by LAh (Zp, Qp)· We can equip LAh (Zp, Qp) with a norm 11 IILAh. 
A mice proved that every locally analytic function f E LA ( Zp, Qp) can be 

written uniquely in the form 

+oo (X) f=~am m, 

where the sequence (am)mEZ C Qp is such that there exists r E Q, r > 0 
)0 

satisfying pmr lamlp ---+ 0 as m ---+ +oo. Moreover, if f E LAh (Zp, Qp) for 
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some h E Z~0 , she proved that 

11/IILA,, = max { lla, (~) IILA,, mE Z)o }· 

This statement is equivalent to the fact that the set of binomial functions 

{ (~)I m E Z~o} is orthogonal in LAh (Zp, Qp). 

Using this work, Amice and Velu [2] studied the continuous dual of 

LA (Zp, Qp): that is, the space of locally analytic distributions on Zp with 

values in Qp. To each locally analytic distribution 1-1 they associated the 

power senes 

~ (!') (T) =~I' ( (~)) 1'"', 

which is known as the Amice transform of f-1· The map 1-1 H J?1 (!-1) (T) 1s 

injective, and its image is the space of all power series in Qp [[T]] that converge 

on the maximal ideal of Cw The Amice transform is closely connected to 

the group of continuous characters on Zp with values in Q/. For z E pZP, 

we define the character 

~z : Zp ---t Qp x 

" e-> ~ z'" (:} 

the map z H ~z parameterises the group of continuous characters. V/e see 

that ~z is, in fact, locally analytic, and f-1 (~z) = J?1 (M) (z). A locally analytic 

distribution is said to be a measure if it can be extended to a continuous QP­

linear map from ~ (Zp, Qp) into Qp, where ~ (Zp, Qp) denotes the space of 

all continuous functions from Zp into Qp. Using the orthogonality of the set 

of binomial functions, Amice and V elu characterised the Amice transforms 

of measures: a locally analytic distribution on Zp with values in QP is a 

measure if and only if its Amice transform is a power series with bounded 

coefficients. 

The Amice transform can be used to help construct p-adic £-functions 

as follows. Let I< be a finite field extension of Qp, and denote its ring of 
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integers by D K. Col em an [7] associated a unique power series in D K [[T]] 

to each system of norm compatible units in the tower of fields generated by 

the division points of a Lubin Tate formal group over D K. If K = Qp then 

the inverse of the Amice transform can be used to obtain a measure on Zp 

from this power series. By choosing appropriate systems of norm compatible 

units, it is possible to produce measures that interpolate the values of clas­

sical £-functions. This approach was introduced by Coates and Wiles [6], 

and developed by various authors. As an example, consider an imaginary 

quadratic field F in which the prime p is split. De Shalit [9] explains how to 

use Robert's elliptic units to construct a measure that interpolates certain 

Hecke £-series associated to F. The assumption that p splits in F ensures 

that the completion ofF at a prime ideal above p is isomorphic to Qp; this 

is needed in order to apply the Amice transform, but the other ingredients 

in this construction - elliptic units and Coleman power series - work just 

as well for inert primes. The p-adic £-function described here was originally 

constructed by Manin and Visik [16] and Katz [10] using different methods. 

More recently, Schneider and Teitelbaum [19] extended much of Amice's 

theory to the case of a finite extension K of Qp. Denote the ring of integers of 

K by D K. A function f : D K ---+ Cp is said to be locally analytic if everywhere 

locally it is defined by a convergent power series in CP [[X]]; we denote the 

space of all such functions by LA (D K, Cp). Properly, these should be referred 

to as locally K-analytic functions, since it is also possible to define locally 

Qp-analytic functions on D K as functions that are defined locally by power 

series in [K : Qp] variables. However, the latter type of function will not be 

considered in this thesis, so "locally analytic" will always mean "locally K­

analytic". Just as in the case of K = QP, a locally analytic function is said to 

be of order h if on each disc of radius p-h it is defined by a convergent power 

series; we denote the space of all such functions by LAh (D K, CP). After 

choosing any Lubin Tate formal group l over D K, Schneider and Teitelbaum 

defined the sequence of polynomials (Pt,m (X) )mEZ;;.o C CP [X] by the identity 

+oo 

L Il,m (X) ym = exp (DtX At (Y)) , 
m=O 
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where >..1 (Y) is the logarithm of the Lubin Tate formal group l, and D1 is its 

period: a constant in CP. I will refer to them as the Schneider Teitelbaum 

polynomials. They generalise the binomial polynomials. Schneider and Teit­

elbaum proved that every locally analytic function f E LA (DK, CP) can be 

written uniquely in the form 

+oo 

f = LamPl,m, 
m=O 

where the sequence ( am)mEZ~o C CP is such that there exists r E Q, r > 0 

satisfying pmr lamlp -+ 0 as m -+ +oo. To each locally analytic distribution 

1-L on D K with values in CP they associated the power series 

+oo 

$[ (J.-L) (T) = L f.-L (Pl,m (X)) Tm, 
m=O 

which I will refer to as the Schneider Teitelbaum transform. The map 1-L 1-----t 

m[ (J.-L) (T) is injective, and its image is the space of all power series in Cp [[T]] 

that converge on the maximal ideal!Jcp of CP' For each z E !Jcp, they defined 

a locally analytic character 1'\,l,z : D K -+ CP x, and they proved that the 

Schneider Teitelbaum transform satisfies J.-L (K,1,z) =m[ (J.-L) (z). 

Let F be an imaginary quadratic field in which the prime p is inert. 

Schneider and Teitelbaum also explained how to extend De Shalit's construc­

tion of the p-adic £-function ofF to this case, using the Schneider Teitelbaum 

transform. The p-adic £-function obtained is essentially the same as the one 

studied by Katz [11] and Boxall [3]. However, we know only that this p-adic 

£-function is a locally analytic distribution, not that it is a measure. The 

problem is that we cannot deduce that a distribution is, in fact, a measure 

even if we know that its Schneider Teitelbaum transform is a power series 

with bounded coefficients. It would, therefore, be of great interest to charac­

terise the Schneider Teitelbaum transforms of measures, in order to be able 

to make this sort of deduction. 

This thesis demonstrates a difficulty in pursuing such a program. Vve 

will approach the theory of Schneider and Teitelbaum from the point of view 

taken in Amice [1]. The characterisation of the Amice transforms of mea­

sures on Qp depends on the orthogonality of the set of binomial functions. 
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We will give a necessary and sufficient condition for a sequence of polynomials 

(Pm(X))mEZ C CP [X] to be orthogonal in LAh (DK, Cp), generalising the ;;,a 

work of Amice (see proposition II.l.13, p. 38). We will then use this condi-

tion to prove that the Schneider Teitelbaum polynomials are not orthogonal 

in LA (DK, Cp) (see corollary V.2.5, p. 83). It is, therefore, impossible to 

apply the method of Amice to characterise the Schneider Teitelbaum trans­

forms of measures on D K. It should, perhaps, be emphasised that Schneider 

and Teitelbaum made no prediction about the orthogonality of the set of 

polynomials that they defined. 

Here is an outline of the contents of this thesis. In chapter I we will cover 

some background material on locally analytic functions, orthogonality, and 

convergent power series. In chapter II the necessary and sufficient condition 

for a sequence of polynomials (Pm(X))mEZ , in which Pm(X) has degree m, ;;,a 

to be orthogonal in LAh (DK, Cp) is proved, and we will discuss whether such 

a sequence forms a Banach basis. In chapter Ill we will recall, with full proofs, 

the results of Amice [1] and Amice V elu [2] on the binomial polynomials. In 

particular, we will emphasise the importance of the orthogonality of the set 

of binomial functions in their work. After recalling some Lubin Tate theory, 

in chapter IV we will define the Schneider Teitelbaum polynomials and state 

some of their properties, drawing parallels with the binomial functions. In 

chapter V we will prove that the set of Schneider Teitelbaum polynomials is 

not orthogonal. 

The results of chapters II and V are my own work and, as far as I know, 

are original. The results of chapters I, Ill, and IV are not original; they are 

drawn from various sources as indicated in the text. 
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Notation 

We will use the following notations throughout this thesis. 

We denote the ring of integers by Z, the field of rational numbers by Q, 

and the field of real numbers by R. We set Z;::o : = { n E Z In ;?: 0}, and use 

other similar notations. If r E R, we define lr J to be r rounded down to the 

nearest integer, and r r l to be r rounded up to the nearest integer. Ifs is a 

finite set, then #S will denote its cardinality. 

If R is any ring, we writeR [T] for the ring of polynomials with coefficients 

in R, and R [[T]] for the ring of power series with coefficients in R. For 

P(T) E R [T], we write deg (P (T)) for the degree of P(T). We denote the 

group of invertible elements of R by Rx. 

The letter p will always be a fixed odd prime. We denote the ring of 

p-adic integers by Zp, its field of fractions by Qp, and the completion of the 

algebraic closure of Qp by CP. We denote the valuation ring of Cp by Dcp, 

and its maximal ideal by Pep· We write ordP : CP -+ Q U { +oo} for the 

additive valuation on CP, normalised such that ordp (p) = 1. 

The letter K will always denote a finite field extension of QP contained 

in CP. We denote its valuation ring by DK, its maximal ideal by pg, its 

residue class field by kK, its ramification index by eK, and its residue class 

field degree by f K. We write qK for the number of elements in the residue 

class field of K, so that qK = pfK. The symbol 1r K will always denote some 

prime element of DK; that is, 1rK E DK such that ordp (1rK) = 1/eK. The 

symbol[ (X) will always denote a power series in D K [[X]] such that l (X) = 
1r](X modX 2DK [[X]] and l (X):= Xq]( mod1rKDK [[X]]. 

The letter L will always denote some complete valued subfield of CP 

containing K. We denote its valuation ring by DL, its maximal ideal by lJL, 
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and its residue class field by kL. We have, therefore, the following system of 

inclusions: 
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Chapter I 

Preliminaries 

In this chapter we will introduce the background material that will be needed. 

It >vill serve both to fix notations and to provide a firm foundation for the 

rest of the thesis. 

None of the material in this chapter is original; it draws on various sources 

as noted in the text. 

I.l Locally analytic functions 

In this section we will define the space of locally analytic functions on D K 

with values in L. These functions will be the principal objects of study 

throughout this thesis. 

In the main, I have followed the notation of Colmez [8], eh. I, pp. 495-502. 

Definition 1.1.1 An L-Banach space (E, orcle) is an L-vector space E 

equipped with a valuation function 

orcle : E ----+ Q U { +oo} 

that satisfies 

1. orcle (e)= +oo ~ e = 0, 

11. orde (ae) = ordp (a)+ orde (e) Va EL, e E E, 
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1v. orde (E) = ordP (L), 

and is such that E is complete with respect to the metric induced by orde. 

Remark 1.1.2 It is more usual to work with a norm on E, defined by 

llelle := p-ordE(e). However, since Newton polygons will play an important 

role in this thesis, I have decided to work exclusively with additive valuations. 

Notation 1.1.3 Let X be a subset of D K· We write lx : D K -----* {0, 1} for 

the characteristic function of X; that is, lx (a)= 1 if a EX and lx (a) = 0 

if a ~ X. 

Definition 1.1.4 Let h E Z;?o and let n E Z;?o. Let Rh/eK C D K be a 

set of representatives of D K j1r~D K. We say that a function f : D K -----* L is 

locally polynomial, of order h/ ej( and degree at most n, on D K with values 

in L if we can write 

for some af3,i E L. We write LP~;;~ (D K, L) for the £-vector space of all such 

functions. Note that LP\~;;~ ( D K, L) is independent of our choice of Rh/eK. 

Definition 1.1.5 Let hE Z;?o· Let Rh/eK C D I< be a set of representatives 

of D K / 1r~D I<. VVe say that a function f : D K -----* L is locally analytic of 

order h/eK on DK with values in L if we can write 

for some af3,i E L such that ordp ( af3,i) -----* +oo as i -----* +oo for all (3 E Rh/eK. 

VVe write LAh/eK (D K, L) for the £-vector space of all such functions. Note 

that LAh/eK (D K, L) is independent of our choice of Rh/eK. 

For all nE Z;?o we have LP~;;~ (DK, L) C LAh/eK (DK, L), and if h1 :( h2 

then we have LAhl/eK (DK, L) <:;;; LAh2 /eK (DK, L). 
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Definition 1.1.6 Let hE Z?o and let (3 E DK. We define 

ordLAhfeK,/3: LAh/eK (DK,L) ~ Q U {+oo} 

f H min { ordp (J(z)) lz E (3 + 1r~DcP }. 

Note that the domain off is D K, but we can use the power series expansion 

+oo ( (J)i 
f(a) = ~ a/3,i a;; 

to define f(z) for all z E (3 + 1r~Dcp· For (31 = (32 mod 1r~DK, we have 

ordLAh/ , = ordLAh; , . 
eK•~-'1 eK•~-'2 

Let Rh/eK C D K be a set of representatives for D K / 1r~D K. We define 

ordLAhfeK : LAh/eK (D [{' L) ~ Q u { +oo} 

f H min { ordLAhfeK,/3 (f) lfJ E Rh/eK}. 

Note that ordLAhfeK is independent of our choice of Rh/eK. 

Proposition 1.1. 7 Let h E Z?o and let Rh/eK C D K be a set of representa­

tives of D K /1r~D K. Let f E LAh/eg (D K, L) and write 

Then for (3 E Rh/eK we have 

and 

Proof: 

This is an easy consequence of the 'maximum' principle (see proposition 1.4.8, 

p. 24). D 
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Proposition 1.1.8 Let hE Z~o and let nE Z~0 . 

~. We have that (LAh/eK (DK,L), ordLAh/eK) is an L-Banach space. 

zz. We have that (LP~~~~ (DK,L), ordLAh/eK) is a finite dimensional L­

Banach space. 

Proof: 

We must check that ordLAh; satisfies the conditions of definition 1.1.1, p. 15. 
eK 

Conditions (i), (ii), and (iii) are obvious. Condition (iv) follows from propo-

sition 1.1.7 above, and so does the fact that LAhfeg (DK, L) is complete. 

0 

Remark 1.1.9 Let h1 , h2 E Z;:o:o with h1 ~ h2. If f E LAhJ/eK (DK, L), note 

that ordLAhtfeK (f) ~ ordLAh
2
/eg (!). It follows that the natural inclusion 

LAhJ/eK (DK, L) Y LAh2 feK (DK, L) is continuous. 

Definition 1.1.10 We define the L-vector space LA (DK, L) of locally an­

alytic functions on D K with values in L to be 

LA (DK, L) := U LAhfeg (DK, L). 
hEZ;.o 

We give LA (DK, L) the inductive limit topology; that is, X ~ LA (DK, L) 

is open if and only if X n LAhfeg (D K, L) is open in LAh/eK (D K, L) for all 

hE Z:;:,o. 
/ 

Definition 1.1.11 We say that a function f: DK -----t Lx is a locally analytic 

character on DK with values in L if f E LA (DK, L), f(O) = 1, and 

We write HomLA (DK, Lx) for the group of all such characters. 

For much of this thesis, we will study the properties of polynomials in 

L [X], considered as elements of LAh/eK (DK, L). 

Notation 1.1.12 Let P(X) E L [X]. Then P(X) induces a function: 

DK -----t L 

af-t P(a), 

which we will denote si m ply by P. Clearly P E LA0 ( D K, L). 
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1.2 Locally analytic distributions 

In this section we will define the space of locally analytic distributions: the 

continuous dual of the space of locally analytic functions. As before, this 

section is based on Colmez [8], eh. I, pp. 495-502. 

Definition 1.2.1 Let 11 : LA (DK, L) --* L be an £-linear map, and let 

hE Z>-o· We define 
"' 

We have ordLAh/e K (J.L) E R U { ±oo}. Note that if h1 , h2 E Z~0 , h1 ::;; h2 then 

ordLAhtfeK (J.L) ~ ordLAh2feK (J.L). 

Proposition 1.2.2 Let J1: LA (DK, L)--* L be an £-linear map. Then J1 is 

continuous if and only if ordLAh/eK (J.L) > -oo for all h E Z~o. 

Proof: 

From the definition of the topology on LA (DK, L) (see definition !.1.10, 

p. 18), we know that 11 is continuous if and only if the restriction of J1 to 

LAh/eK (DK, L) is continuous for all h E Z~0 . This reduces the statement 

to the well known result regarding the continuity of linear maps on normed 

vector spaces. D 

Definition 1.2 .3 vVe say that a continuous linear map J1 : LA ( D K' L) --* 

L is a locally analytic distribution on D K with values in L. We write 

~LA (D K, L) for the £-vector space of all such distributions. 

We give ~LA (DK, L) the least upper bound topology of the topologies 

induced by { ordLAh/eK lh E Z~o}; that is, the sets 

for all h E Z~o and all s E R, form a fundamental system of open neighbour­

hoods of zero in ~LA (DK, L). 
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Notation 1.2.4 We define R := R U {r-lr ER}. We equip R with the 

total ordering < that coincides with the usual ordering on R and is such 

that r 1 < r:; < r 2 for all r 1 , r 2 E R, r 1 < r 2 . If f : R ---+ R is a continuous 

function and r ER, we set f(r-) := f(r). We define 

rJ:R---+{±1} 

rH +1 

r-H -1 

rE R, 

rE R. 

Definition 1.2.5 Let rJ E { ±1 }. We say that a sequence (ahhEz c R is ;.a 

r]- bounded below if: 

• rJ = 1 and { ah lh E Z;;;,o} is bounded below, or 

• rJ = -1 and ah---+ +oo ash---+ +oo. 

Definition 1.2.6 Let r E R. We say that M E 91LA (D K, L) is temperate 

of order r if the sequence (hr / eK + ordLAh/ (M)) is rJ(r )-bounded be-
e K hEZ;;.o 

low. We write 91r (D K, L) for the L-vector space of all such distributions. 

Note that if r < 0 then 91r (DK, L) = {0}, and if r 1 , r 2 E R, r 1 < r 2 then 

91r 1 (DK, L) C 91r2 (DK, L). We say that a distribution M is temperate if 

there exists r E R such that {t E 91r ( D K, L); we write 91temp ( D K, L) for the 

L-vector space of all such distributions. 

1.3 Orthogonality 

In this section we will study the notion of orthogonality in L-Banach spaces. 

This thesis will study sets of polynomials that are orthogonal in LA ( D K, L). 

None of the work in this section is original; it is based mainly on Schikhof [18], 

§50, pp. 145-149. 

Definition 1.3.1 Let (E, ordE) be an L-Banach space. Let x, y E E. vVe 

say that x is orthogonal to y, and write x ..l y, if 

ordE (x- ay) ~ ordE (x) 'ia EL. 
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Note that x l_ y if and only if y l_ x (see Schikhof [18], proposition 50.2, 

p. 146). 

Let D C E. We write x l_ D if x l_ d for all dE D. Note that if D is an 

L-linear subspace of e then this is equivalent to 

ordE (x- d) ~ ordE (x) Vd E D. 

We say that X C E is an orthogonal set if 

x0 l_ spanL {x EX lx "1- Xo} Vx 0 EX, 

where spanL Y denotes the L-linear span of a set Y c E. If, in addition, we 

have ordE (x) = 0 for all x EX, then we say that X is an orthonormal set. 

We say that X is a maximal orthogonal set if it is orthogonal and, for any 

orthogonal set X 1 c E such that X c X 1 , we have X = X 1 ; we similarly 

define a maximal orthonormal set. 

Proposition 1.3.2 Let (E, ordE) be an L-Banach space. 

z. A set X C E is orthogonal if and only if every finite subset of X zs 

orthogonal. 

zz. A set { x 0 , ... , X m} C E is orthogonal if and only if 

ordE ( t, a.;x;) = m in { ordE (a;x;) li E {0, ... , m}} Va0 , ... , a, E L. 

Proof: 

See Schikhof [18], proposition 50.4, p. 146. 0 

Definition 1.3.3 Let (E, ordE) be an L-Banach space, and let X be a 

subset of E. We say that X spans E as an L-Banach space if every element 

e E E can be written in the form e = l.:xEX axx, where, for every r E Q, 
there are only finitely many x E X such that ordp ( axx) < r. If, in addition, 

this expression is unique then we say that X is an L-Banach basis of E. If 

X is orthogonal, then we say that it is an orthogonal L-Banach basis of E, 

and similarly if X is orthonormal. 

21 



Definition 1.3.4 Let h E Z?o, let f3 E D K, and let i E Z?o· We define: 

Xf3,i: DK -t L 

"~ u:t)' a E f3 + 1r~DK 
a~ f3 + 1r~DK 

Proposition 1.3.5 Let h E Z?o, let n E Z?o, and let Rh/eK C D K be a set 

of representatives of D K /1r~D K. 

z. The set {Xf3,i l/3 E Rh/eK, i E Z?o} is an orthonormal L-Banach basis 

ofLAh/eK (DK,L). 

zz. The set {Xf3,i l/3 E Rh/eK, i E {0, ... , n}} is an orthonormal L-Banach 

basis of LP~;:~ (D K, L); in particular, LP~;:~ (D K, L) has dimension 

q~ ( n + 1) as an L-vector space. 

Proof: 

Immediate from the definitions and proposition 1.1.7, p. 17 (cf. Amice [1], 

lemma 6, p. 151). D 

I.4 Convergent Power Series 

Locally analytic functions are defined locally by convergent power series. In 

this section we will consider some of the properties of such power series. 

None of the material in this section is original; it is based mainly on 

Schikhof [18], §40-42, pp. 117-125. 

Definition 1.4.1 Let F(T) = 'L-i=~ aiTi E L [[T]]. We define the order of 

convergence rp ER U { ±oo} of F(T) to be 

rp := inf {rE Q lir + ordp (ai) -t +oo as i-t +oo }. 

Remark 1.4.2 Note that p-rF is equal to the well known definition of the 

radius of convergence of a power series F(T) E L [[T]]. 
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Proposition 1.4.3 Let F(T) E L [[T]] be a power series and let rp E R U 

{ ±oo} be its order of convergence. Then: 

• F(T) converges on {z E Cp iordp (z) > rp }, and 

• F(T) diverges on {z E CP iordp (z) < rp }. 

Proof: 

Follows easily from the definition of r F. D 

We will frequently need to refer to various discs in CP, so we introduce 

the following notation. 

Notation 1.4.4 Let r E R. Then we define: 

If rE Z then PrPcp = {prz [z E PeP} and prDcP = {prz [z E Dcp }, so there 

is no clash in our notation. 

Definition 1.4.5 We say that F(T) E L [[T]] is a convergent power series 

if its order of convergence Tp satisfies rp < +oo. 

The following proposition shows that the composition of two convergent 

power series is again convergent. 

Proposition 1.4.6 Let F(T), G(T) EL [[T]] be two convergent power series 

with G(O) = 0; write F o G(T) E L [[T]] for their formal composition. Then 

there exists r E R such that r > re, r > rFoG, G (prDcp) ~ prFPcp, and 

(FoG) (z) = F (G(z)) 

In particular, F o G(T) E L [[T]] is a convergent power series. 

Proof: 

See Robert [17], eh. 6, §1.5, theorem, p. 294. D 

23 



Definition 1.4. 7 Let r E R. Vve define the function 

ordr : L [[T]] ---7 R U { ±oo} 

as follows: 

• if F(T) E L [[T]] converges on PrPcp then we set 

• if F(T) E L [[T]] does not converge on PrPcp, then we set 

ordr (F (T)) := -oo. 

Note that if r 1, r2 E R, r 1 ~ r2 then ordr 1 (F (T)) ~ ordr2 (F (T)) for all 

F(T) E L [[T]]. 

Proposition 1.4.8 ('maximum' principle) 

Let F(T) = l:t:O aiTi E L [[T]], and let r E R. 

i. We have 

ordr (F (T)) = inf {ir + ordP (ai) liE Z~o }. 

zz. In addition, if r E Q and F(T) converges on prDcP, then 

ordr (F (T)) = inf { ordp (F(z)) lz E prDcP }. 

Proof: 

1. If F(T) converges on p~'pcp then see Schikhof [18], theorem 42.3(i), 

p. 124. If F(T) does not converge on PrPcP then ir + ordP (ai) ---7 -oo 

as i ---7 +oo, as required. 

11. See Schikhof [18], theorem 42.2(i), p. 122. 0 

Remark 1.4.9 Proposition 1.4.8 above is an elementary translation of the 

well known maximum principle into the language of the additive valuation 

ordp. Perhaps it would be better nomenclature to refer to this translation as 

the "minimum principle", but I will not do this. 
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Definition !.4.10 We write L ( (T)) C L [[T]] for the ring of all power series 

with order of convergence less than or equal to zero; that is, the power series 

that converge on PeP. 

We give L ( (T)) the least upper bound topology of the topologies induced 

by { ordr lr E R>o }; that is, the sets 

{F(T) EL ((T)) iordr (F (T)) ~ s}, 

for all r E R>o and all s E R, form a fundamental system of open neigh­

bourhoods of zero in L ( (T)). 

1.5 Newton polygons 

In this section we will study the Newton polygon of a power series. This 

construction gives us information about the distribution of the zeros of a 

power series, a topic that will prove to be very important in this thesis. 

None of the material in this section is original; it is based mainly on 

Koblitz [12], eh. IV, §3-4, pp. 97-107. 

Proposition 1.5.1 Let r E R and let F(T) = L:i=~ aiTi E CP [[T]] be a 

power series that converges on pr DcP. Then the formal derivative F' (T) := 

L:i=~ iaiTi-l also converges on prDcp 

Proof: 

This is clear since ordp (iai) ~ ordp (ai) for all i E Z~0 . D 

Definition !.5.2 Let r E Rand let F(T) E Cp [[T]]- {0} be a power series 

that converges on prDcp· Let z E prDcP such that F(z) = 0. We define the 

multiplicity of the zero z of F(T) to be 

max{n E Z~l~p(il(z) = 0 ViE {0, ... ,n -1} }, 

where p(i)(T) denotes the i-th formal derivative of F(T). We say that z is a 

simple zero if it has multiplicity equal to one. 
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Definition 1.5.3 Let r E Rand let F(T) E CP [[T]]- {0} be a power series 

that is convergent on prDcp· Then we define Z (r; F (T)) to be the number 

of zeros, counting multiplicities, of F(T) in prDcp· 

Definition 1.5.4 (Newton polygon) 

Let F(T) = L:t=~ aiTi E CP [[T]] - {0} be a power series. We define the 

Newton polygon of F(T) to be the boundary of the sup convex envelope 

of the points (i,ordp(ai)) in the (x,y)-plane; for details, see Robert [17], 

eh. 6, §1.6, definition, p. 299. For n E Z)1 , we define J-1 (n; F (T)) to be 

the slope of the Newton polygon of F(T) between the x co-ordinates n- 1 

and n. If ai = 0 for all i E {0, ... , n- 1 }, then we adopt the convention 

that JL(n;F(T)) := -oo; if ai = 0 for all {i E Z)o li;) n}, then we set 

JL(n;F(T)) := +oo. 

Proposition 1.5.5 Let F(T) E Cp [[T]]- {0}. Then 

sup{JL(i;F(T)) liE Z)I} = -rp, 

where rp is the order of convergence of F(T). 

Proof: 

This is just a translation of Koblitz [12], eh. IV, §4, lemma 5, p. 101 from 

the language of the norm I lP into that of the valuation ordp. D 

Theorem 1.5.6 Let F(T) E Cp [[T]] - {0}, and let r E Q such that F(T) 

converges on pr DcP. Then 

z (r; F (T)) = #{i E z)l IM (i; F (T)) ~ -r }. 

Proof: 

This is an easy consequence of Koblitz [12], eh. IV, §4, pp. 98-107. With­

out loss of generality we may assume that F(O) = 1. Since -r < -rp, 

by proposition !.5.5 above we have N := #{ i E z)l IM ( i; F (T)) ~ -r} is 

finite. By ibid., eh. 4, §4, theorem 14, p. 105 (noting that ,\ there cor­

responds to -r here), there exists a polynomial H (T) E Cp [T] of degree 

N and a power series G(T) E CP [[T]] that converges and is non-zero on 
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prDcP such that H(T) = F(T)G(T). Moreover, fJ (i; H (T)) = fJ (i; F (T)) 

for all i E {1, ... , N}. It follows from ibid., eh. IV, §3, lemma 4, p. 97 that 

z (r; H (T)) = #{i E z~1 IJJ (i; F (T)) ~ -r }, which is equal toN by defini­

tion. From H(T) = F(T)G(T) we see that Z (r; H (T)) = Z (r; F (T)), which 

completes the proof. D 

Definition 1.5.7 Let P(T) E CP [T] be a polynomial, let o: E DK, and let 

r E Q. Then we define Z (o:, r; P (T)) to be the number of zeros, counting 

multiplicities, of P(T) in o: + prDcp· 

Remark 1.5.8 

1. Note that Z (o:, r; P (T)) is equal to the degree of P(T) for all r « 0, 

and Z ( o:, r; P (T)) is integer valued and decreasing as a function of 

rE Q. 

11. For o:1 , o:2 E D K and k E Z~0 such that o: 1 - o:2 mod 1r~D K, we have 

Z (o:1 , r; P (T)) = Z (o:2 , r; P (T)) for all rE Q, r ~ kje. 

m. As a function of r E Q, we note that Z ( o:, r; P (T)) is a finite Z­

linear combination of the unit constant function and the characteristic 

functions of half open intervals of the form {rE Q la< r ~ b }, with 

a, b E { -oo} U Q. 
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Chapter 11 

Orthogonal bases consisting of 

polynomials 

In this chapter we consider the question: when does a sequence of polynomials 

(Pm(X))mEZ;;:o C L [X], with deg (Pm (X)) = m, form an orthogonal L­

Banach basis of LAh/eK (D K, L )? In §II.1 we prove a necessary and sufficient 

condition for such a sequence to be an orthogonal set; in §II.2 we consider 

whether it is also a basis. 

This generalises, in two different respects, the situation studied in Am­

ice [1], §9, pp. 150-158. Firstly, in our case the coefficient field L is not 

necessarily discretely valued. Secondly, Amice has Pm(X) dividing Pm+1(X), 

but we make no such assumption. We will need this extra generality in order 

to apply our results to the Schneider Teitelbaum polynomials. 

II.l Orthogonal sets 

In this section we consider which polynomials Pm(X) E L [X] of degree m are 

orthogonal to span£ {Xi liE {0, ... ,m -1}} in LAh/eK (DK,L). First we 

prove a formula that computes ordLAhfeK,Ct (Pm) in terms of the distribution 

of the the zeros of Pm(X). Through a series of estimates, we then produce 

an upper bound for ordLAh/eg (Pm), where Pm(X) is any monic polynomial 

of given degree m; and we show that this bound is achieved. It is then 
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easy to prove that Pm(X) is orthogonal to spanL {Xi liE {0, ... , m- 1}} in 

LAh/eK (DK, L) if and only if ordLAhfeK (Pm) achieves this bound. 

I have followed the ideas of Amice [1], §9, pp. 150-158 closely throughout 

this section. The main difference is that, since L need not be discretely 

valued, what appears in Amice [1], loc. cit. as finite sums appears here as 

integrals. 

Proposition 11.1.1 Let Pm(X) E L [X] be a polynomial of degree m with 

leading coefficient am. Let a E D K and let h E Z~o. Then 

Remark 11.1.2 Recall, from remark 1.5.8, p. 27, that Z (a, r; Pm (X)) is a 

step function in r, and for all r « 0 we have Z (a, r; Pm (X)) = m. Hence 

the integral in the proposition above is just a finite sum. 

Proof of proposition II .1.1: 

By definition 1.1.6, p. 17 we have 

Write Pm(X) =am TIT=l (X- Uj), with u1, ... , Um E CP. For j E {1, ... , m}, 

set Sj := ordp (uj- a), and order the Uj such that s 1 :::;; s2 :::;; ... :::;; sm· Set 

k := m- Z (a, hjeK; Pm (X)), so that Sj < h/eK if j :::;; k and Sj ;? hjeK if 

j ;? k + 1. Note that 

ordLA,1"K·" (Pm) = ord, (am)+ inf { ~ ord, ((z- uj)) z E <:> + 1r;Dc, }­

(1) 

If ordp (uj- a) < hjeK, then by the strong triangle inequality we have 

ordp (z- uj) = ordp (uj- a) for all z Ea+ 1r~Dcp· Hence 

k k 

L ordp (z- uj) = L Sj (2) 
j=l j=l 
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We now consider 

inf { t ordp (z- uj) z Ea+ 7r~Dcp}· 
j=k+l 

Since ordP (z- uj);? hjeK for all z E a+1r~Dcp and all j E {k+ 1, ... , m}, 

this infimum is certainly greater than or equal to _}]___ (m - k). We will show 
eK 

that equality holds. For all j E { k + 1, ... , m}, we have ui ~a E Dcp. Since 
'IrK 

the residue class field of Dcp is infinite, we can choose y E Dcp whose residue 

class is not equal to the residue class of uif:a for all j E {k + 1, ... , m}; that 
'IrK 

lS, 

Let z = a + 1r~ y. Then ordp ( z - Uj) = h / e K for all j E { k + 1, . . . , m}, and 

so 

Therefore 

m h L ordp (z- uj) = -(m- k). 
eK 

j=k+l 

inf { t ordP (z- Uj) lz Ea+ 1r~Dcp} = : (m- k). (3) 
j=k+l K 

Combining equations (1), (2) and (3) we have 

k hm hk 
ordLAh/ (Pm) = ordp (am)+'"""' s1 + - - -. 

eK,o. L.....t e e 
j=l K K 

(4) 

To complete the proof, we calculate the area hatched below in two different 

ways. 
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m- Z(a,r;Pm(X)) 

m I 
_j 

sl 82 s· J Sk h e I K Sk+l Sm 

We have 

J
h/eK k 

-oo m- Z (a, r; Pm (X)) dr = f; (hjeK- s1) 

hk k 

= -- Ls1. 
eK j=l 

Comparing this with equation 4 gives the result. 

--

D 

In order to apply proposition II.1.1, we will need to calculate integrals of 

the form J~~K m- ?ji(r)dr, where ?jJ is a step function such that ?ji(r) =m 

for all r « 0. We will start by defining an important example of such a 

function, and calculating the associated integral. 

Definition Il.1.3 Let m E Z>-o· Vve define the step function ,_.. 

?jim : Q ---t Z 

{

m 
rH 

l m/q~J 
r~O 

(k- 1)/eK < r ~ kjeK 

Recall that lm/ q~ J denotes m/ q~ rounded down to the nearest integer. 
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Remark II.1.4 Note that 1/Jm is a finite Z-linear combination of charac­

teristic functions of half open intervals of the form { r E Q I a < r ~ b}, with 

a, b E { -oo} U Q. 

Lemma II.1.5 Let mE Z>o and let hE Z>o· Then 
;/ ;/ 

l h/eK hm 1 h lmJ 
m-1/Jm(r)dT=---l: k · 

-oo eK eK k=l qK 

Proof: 

We have 

l
hfeK rh/eK 

-oo m-1/Jm(r)dT= Jo m-1/Jm(r)dr 

D 

In the following lemma, by using proposition II.l.l and lemma II.l.5, 

we will see how inequality relationships between 1/Jm (r) and Z (o:, r; Pm (X)) 

lead to bounds on ordLAhfeK,a (Pm). These bounds will eventually give us 

our upper bound on ordLAhleK (Pm), where Pm(X) E L [X] is any monic 

polynomial of given degree m. 

Lemma II.1.6 Let Pm(X) E L [X] be a polynomial of degree m with leading 

coefficient am. Let o: E D K and let h E Z>o. 
;/ 

z. If Z (o:, r; Pm (X)) ~ 1/Jm (r) for all r < hjeK, then 

u. If Z (o:, r; Pm (X)) ~ 1/Jm (T) for all r < hjeK, then 
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nz. If Z (a, r; Pm (X)) :::;; '1/Jm (r) for all r < h/eK, and there exist a, b E 

Q, a< b:::;; h/eK such that Z (a, r; Pm (X)) < '1/Jm (r) for all a< r :::;; b, 

then 

Proof: 

i. We have 

m- Z (a, r; Pm (X)) ~m- '1/Jm (r) 

so, by integrating with respect to r and using lemma II.1.5 above, we 

obtain 

l h/eK hm 1 h lmJ m-Z(a,r;Pm(X))dr~---2: k · 
-oo eK eK k=l qK 

Substituting this into proposition II.1.1, p. 29 we have 

as required. 

11. As for part (i), with the inequality signs reversed. 

m. Note that 

l h/eK hm 1 h l7nj 
m-Z(a,r;Pm(X))dr>---2: k · 

-oo eK eK qK 
k=l 

The proof then follows as in part (i), with inequalities replaced by strict 

inequalities. 0 

In order to use the lemma above, we will need to prove inequalities of the 

form Z (a, r; Pm (X)) :::;; '1/Jm (r) for all r < hjeK. We will use the following 

technical lemma to do this. 
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Lemma 11.1.7 Let P(X) EL [X], let a E DK! and let k0 E Z~o· Let BE 

Z~o such that Z (a, k0 /eK; P (X)) ~ B. Then for all h E Z, h ~ k0 ! there 

exists ah E D K such that ah - a mod 1!'~0 D K and! for all k E { k0 + 1, . . . , h}! 

we have 

Z (ah, r; P (X)) ~ lq~~ko J 

Proof: 

We will prove this by induction on h. 

k-1 
Vr>--. 

ei< 

For h = k0 , the choice ah := a trivially satisfies the required conditions. 

Now let h ~ k0 + 1. By induction, there exists ah_ 1 E DK such that 

ah_ 1 =a mod7r~0DK and, for all k E {k0 + 1, ... , h- 1}, we have 

Z (ah-1, r; P (X)) ~ l~J q~-ko 

k- 1 
Vr>--. 

ei< 

Set m := Z ( ah_ 1, he-:-
1

; P (X)) . If h ~ k0 + 2, then for k = h- 1 we have 

k0 < k ~ h- 1, and so: 

\::Jr > (h- 1)- 1 
eK 

If h = k0 + 1 , then 

m~B 

= lq~-~-ko J · 
Hence in both cases we have proved 

m ~ lq~-~-ko J · 
We will now find a suitable choice of ah. Let u 1 , ... , Um be the zeros of 

P(X) contained in ah_1 + 1l'~- 1 Dcp· Choose (31, ... , (3qg E DK such that 

qg 

ah-1 + 1!';-1 D K = Il f3i + 7r;D K. 

i=1 
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Fori E {1, ... , qK }, set mi := #{j E {1, ... , m} lu1 E /3i + 7r~- 1 PcP }. Note 

that the sets f3i + 7r~- 1 Pcp, for i E {1, ... qK }, are pairwise disjoint and 

contained in o:h- 1 + 7r~- 1 Dcp; hence 

qK 

:Z:::::mi :(m. 
i=1 

It follows that there exists i 0 E {1, ... ,qK} such that mio :( mjqK. Set 

O:h := f3io · 

We will now prove that o:h satisfies the required properties. We have 

o:h = f3io o:h-1 mod 7r~- 1DK. This implies that o:h - a: mod 7rt0 DK and, 

from remark I.5.8(ii), p. 27, that Z (o:h, r; P (X)) = Z (o:h_ 1, r; P (X)) for all 

r :( he-:.
1

. Hence by the induction hypothesis, for all k E { k0 + 1, ... , h - 1}, 

we have 

k-1 
Vr> --. 

eK 

In addition, for k = h and for all r > h-
1

, we have 
eg 

Z (o:h, r; P (X)) :( mio 

:( mjqK 

1 B 
~ - -..,,----:---;-­-...;:: h-1-ko 

qK QK 
B 

h-ko' q/( 

Z (o:h, r; P (X)) :( lq~~ko J 
h-1 

Vr > --. 
eK 

D 

We are now in a position to obtain our upper bound on ordLAh/eg (Pm)· 

Proposition 11.1.8 Let Pm(X) E L [X] be a polynomial of degree m with 

leading coefficient am. Let h E Z~0 . Then 
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Proof: 

For any a E DK, we certainly have Z (a, 0; Pm (X)) ~m. Now, by applying 

lemma II.1.7 above with k0 := 0 and B :=m, we have ah E DK such that, 

for all k E {1, ... , h}, we have 

Z(a,r;Pm(X)) ~ lmkj 
qK 

Hence 

Z (a, r; Pm (X)) ~ 1/Jm (r) 

so by lemma II.1.6(i), p. 32 we have 

k-1 
Vr > --. 

eK 

The result now follows from the definition of ordLAhfeK (see definition !.1.6, 

p.17). 0 

Our next task is to prove that this upper bound is achieved. vVe define 

below a set of polynomials that do so. 

Definition II.1.9 Let Pm(X) E L [X] be a polynomial of degree m and 

let h E Z?o· We say that Prn(X) is evenly distributed of order h if, for all 

a E DK and all k E {0, ... , h}, we have 

We say that Pm(X) is very evenly distributed if it is evenly distributed of 

order h for all h E Z:::, 0 . 
"' 

Remark 11.1.10 

1. A polynomial P(X) E L [X] is evenly distributed of order 0 if and only 

if all the zeros of P(X) lie in Dcp· 

u. If h1 ~ h2 and P(X) is evenly distributed of order h2 , then P(X) is 

also evenly distributed of order h1 . 
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Before we prove that evenly distributed polynomials achieve our upper 

bound for ordLAh/q( (Pm), we will first check that they actually exist. 

Proposition Il.l.ll For all m E Z?o and all am E L, there exists a poly­

nomial of degree m with leading coefficient am that is very evenly distributed. 

Proof: 

We will explicitly define such a polynomial. Write m = L~o siq~, with 

si E {0, ... ,qK -1} for all i E {0, ... ,n}. For each i E {0, ... ,n}, let 

Ri/eK C D I< be a set of representatives of D K /Tr~D K; note that #Ri/eK = q~. 

Set 

P(X) :=am [I ( ( IT (X- /3)) si) . 
t-0 fJER,IeK 

Then P(X) E L [X] has degree m and leading coefficient am. Let a: E D I< 

and let k E Z>-o· Then 
"" 

n 

i=O 
n 

i=k 

= l~J. 
Therefore P(X) is very evenly distributed. 0 

As previously promised, we will now show that evenly distributed poly­

nomials achieve the upper bound for ordLAhfeK (Pm)· 
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Proposition II.1.12 Let h E Z~0 . Let Pm(X) E L [X] be a polynomial 

of degree m with leading coefficient am that is evenly distributed of order h. 

Then 

Proof: 

Since Pm(X) is evenly distributed of order h, and since, by remark I.5.8(i), 

p. 27, Z (a, r; Pm (X)) is a decreasing function of r; we see, for all a E DK 

and all k E {0, ... , h}, that 

that is, 

Hence, by lemma II.l.6(ii), p. 32, for all a E D K, we have 

Therefore 

and by proposition II.l.8, p. 35 equality must hold. 0 

We can now give the connection between achieving our upper bound for 

orclLAh/eK (Pm) and orthogonality. 

Proposition II.1.13 Let Pm(X) E L [X] be a polynomial of degree m with 

leading coefficient a171 • Let h E Z~o. Then the function Pm is orthogonal to 

spanL {XJ IJ E {0, ... , m- 1}} in LAh/ei< (DK, L) if and only if 
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Proof: 

First assume that Pm(X) is orthogonal to spanL {XJ IJ E {0, ... ,m -1}} in 

LAh/eK (DJ<, L). By proposition II.l.ll, p. 37 we can find Ao, ,\1 , ... , Am-1 E 

L such that 2.::::7=~1 AjXj + Pm(X) is very evenly distributed. Then by propo­

sition II.1.12 above we have 

Now by definition 1.3.1, p. 20 we have 

hence 

and by proposition II.1.8, p. 35 equality must hold, as required. 

Conversely, assume that ord1Ah/ (Pm) = ordp (am)+_...!_ L::::Z- 1 l r;: J. Let 
eK e]( - qK 

R(X) E spanL {Xj lj E {0, ... , m- 1} }. By proposition II.1.8, p. 35 we 

have 

ordLAhfeK (Pm(X) + R(X)) :s; ordp (am) + __!__ t l r: J 
eK k=l q]( 

= ordLAhfeK (Pm). 

Hence by definition 1.3.1, p. 20 we have Pm(X) is orthogonal to the £-linear 

span of {XJ lj E {0, ... , m- 1} }, as required. D 

Corollary 11.1.14 Let h E Z~o and let Pm(X) E L [X] be a polynomial of 

degree m that is evenly distributed of order h. Then Pm is orthogonal to 

spanL {Xj lj E {0, ... , m- 1}} in LAh/eK (DI<, L). 

Proof: 

Follows immediately from proposition II.1.12, p 37 and proposition II.1.13 

above. D 
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vVe will now prove a partial converse to this corollary. In chapter V we 

will prove, for certain values of m E Z;;;:o, that the Schneider Teitelbaum 

polynomial P1,m (X) E CP [X] is not very evenly distributed. We will then 

use this converse to conclude that { P1,m I m E Z;;;:o } is not an orthogonal set 

in LAh/eK (DK, Cp) for certain values of hE Z;;;:o· 

Proposition II.1.15 Let h0 E Z;;;:o, and let m E Z;;;: 1 such that q~0 di­

vides m. Let Pm(X) E L [X] be a polynomial of degree m that is not evenly 

distributed of order h0 . Then, for all h E Z, h ? h0 , we have Pm is not 

orthogonal to span£ {XJ lj E {0, ... , m- 1}} in LAh/eK (DK, L). 

Proof: 

Let am EL be the leading coefficient of Pm(X). By proposition II.l.l3, p. 38 

it is enough to prove that 

Hence, by lemma II.1.6(iii), p. 33, it is enough to show that there exists 

a E DK such that Z (a, r; Pm (X))~ 1/Jm (r) for all r < h/eK, and that there 

exist a, b E Q, a < b ~ h/eK such that Z (a, r; Pm (X)) < 1/Jm (r) for all 

a< r ~b. vVe will find such an a E DK· 

The idea of the proof is now quite simple, although the details become 

rather intricate. Since Pm(X) is not evenly distributed of order h0 , there 

exists a 1 E DK and k1 E {0, ... , h0 } such that 

Using the geometry of DK, we can adjust a 1 to ensure that 

Z (a, r; Pm (X)) ~ 1/Jm (r) 

we will use lemma II.l. 7, p. 34 for this step. However, we also must be careful 

that 

Z (a, r; Pm (X)) ~ 1/Jm (r) 
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The following paragraph and subsequent claim will deal with this potential 

problem; it is here that we will use the hypothesis q~0 divides m. 

Foro: E DK, set 

an :=sup {ro E Q IZ (a:, r; Pm (X))- '1/Jm (r) ~ 0 Vr ~ ro }. 

By remark I.5.8(iii), p. 27 and remark II.1.4, p. 32, we see that an E Q U 

{+eo} and, if an <+eo, that Z (a:, an; Pm (X)) - '1/Jm (an) ~ 0. Set 

a:= inf {an la: E DK }. 

Note that an1 < kdeK, so a< h0 /eK. Let Rho/eK be a set of representatives 

of DK(rr~0DK· If f3 E DK with af3 ~ h0 je[(, then by remark I.5.8(ii), p. 27 

there exists o: E Rho/eK such that an = af3. Hence a= min {an jo: E Rho/eK} 

and so there exists o:0 E D K such that ano = a. We will now consider r ~ a 

and a < r ~ h/ ei< separately. The following claim deals with the first of 

these two ranges. 

Claim: 

For all o: E DK, we have 

Z (o:, r; Pm (X))= '1/Jm (r) Vr ~a. 

Proof of claim: 

Fix any o: E DK and any rE Q, r ~a. Set k := min {i E Z;;::o lr ~ i/ei< }; 

note that k ~ h0 . For all f3 E D K, we have 

Z ([3, r; Pm (X)) ~ '1/Jm (r) 

= l m/q~J 
= mjq~. 

Let Rk/eK C D K be a set of representatives of D K /1rtD K with o: E Rkfqc 

The sets f3 + prDcp, for f3 E Rkfei<, are pairwise disjoint, so 

m~ L Z([3,r;Pm(X)) 
{3ERk/e I< 

km 
~ q[(k 

qf( 
=m. 
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Hence equality must hold and Z ((3, r; Pm (X))= mjq~ for all j3 E Rk/eK; in 

particular, Z (a, r; Pm (X)) = 7/Jm (r), as required. This concludes the proof 

of the claim. 

We now turn our attention to the range r E Q, a < r ::::;; h/eK. Recall 

that there exists a 0 E Dg such that a00 =a, and that Z (ao, a; Pm (X))-

7/Jrn (a) ?: 0. Set ko := min {i E Z~o la< i/eK }, and set b := k0 /eK. Since 

Z (a0 , r; Pm (X)) is a decreasing function of r, and 7/Jm (r) is constant on the 

range r E Q, a < r ::::;; b, we must have Z (a0 , r; Pm (X)) < 7/Jm (r) for all 

r E Q, a < r ::::;; b. Now, by applying lemma II.1.7, p. 34 with a := a0 and 

B := mjq~0 , we obtain ah E Dg such that ah _ a 0 mod1r~0Dg and, for all 

k E { k0 + 1, ... , h}, we have 

Note that, by remark I.5.8(ii), p. 27, we have 

Z (ah, r; Pm (X))= Z (ao, r; Pm (X)) 

k-1 
Vr > --. 

eK 

Vr::::;; b. 

Combining this information with the results of the claim above, we have 

shown that ah E D K satisfies 

which is what we required. 

7/Jm (r) 

< 7/Jm (r) 

::::;; 7/Jrn (r) 

r::::;;a 

a<r::::;;b 

b < r::::;; hjeK, 

11.2 Maximal orthogonal sets and bases 

0 

In this section we will prove that a sequence of polynomials (Pm(X))mEZ , 
~0 

with deg (Pm (X)) = m, that is orthogonal in LAh/eK (D K, L) is in fact a 

maximal orthogonal set. We will then note that if L is discretely valued then 

every maximal orthogonal set is a basis, but that this is not the case if L is 

not discretely valued. 
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The proof that such a set of polynomials is maximal orthogonal again fol­

lows the ideas of Amice [1], §9, pp. 150-158. My reference for facts regarding 

orthogonality in L-Banach spaces was Rooij [21], eh. 5, pp. 165-202. 

Definition 11.2.1 Let (E, ordE) be an L-Banach space. vVe define DE := 

{x E E lordE (x) ~ 0} and PE := {x E E lordE (x) > 0}. The residue class 

space E of E is defined as E :=DE/PE· It naturally has the structure of a 

vector space over the residue class field kL of L. For x E DE, we denote the 

image of x in E by x. 
vVe denote the residue class space of LAh/eK (DJ(, L) by LAh/eK (DK, L), 

and that of LP)~;:~ (DK, L) by LP~~;~ (DK, L). 

The relevance of the residue class space of an L-Banach space to this 

section is revealed by the following proposition. 

Proposition 11.2.2 Let E be an L-Banach space and let X be a subset of 

DE. 

z. The set X is orthonormal in E if and only if {x lx E X} C E is kL­

linearly independent in E. 

n. The set X is maximal orthonormal in E if and only if {x lx E X} c E 

is a kL-basis of E. 

Proof: 

See Rooij [21], eh. 5, exercise .s.A, p. 167. 0 

vVe have the following elementary results about LAh/eK (Dg, L). 

Proposition 11.2.3 Let hE Z>-o· ,.... 

-(O,nj 1 
z. Let nE Z~o, then LPh/eK (DK,L) has dimension q~(n + 1) as a kL-

vector space. 

zz. We have 

LA (D L) U Lp [O,n] (D ' L) 
h/eK K, = h/eK I\' · 

nEZ~o 
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Proof: 

1. By proposition I.3.5(i), p. 22 we know that 

forms an orthonormal L-Banach basis of LP~;;~ ( D K, L); hence, by 

proposition II.2.2(ii) above, its image in LP~;;~ (D K, L) is a kr basis. 

Clearly #{xa,i la E DK/1f~DK, i E {0, ... , n}} = q~(n + 1). 

n. Let f E LAh/eK (DK, L) such that ordLAhfeK (f);:: 0. We will show that 

its image f E LAh/eK (DK, L) lies in LP~;;~ (DK, L) for some nE Z~o· 
We can write 

!= 
aEDK/7r'J.:DK 

iEZ~o 

with aa,i EL, ordp (aa,i)----+ +oo as 'i----+ +oo for each a E DK/1f~DK· 

Choose n E Z~0 large enough such that ordp ( aa,i) > 0 for all i > n 
h - -[On] 

and all a E DK/1fKDK· Then f E LPh)eK (DK,L). 
0 

Recall that in this section we are seeking to prove that an orthonormal 

sequence of polynomials (Pm(X) EL [X])mEZ , with deg (Pm (X)) = m, 
~0 

is in fact a maximal orthonormal set. Using propositions II.2.2 and II.2.3 

above it is possible to reduce this to proving that enough of the images 

Pm E LAh/eK ( D K, L) lie in each LP~;:~ ( D K, L); the details of this argument 

are given in the proof of proposition II.2.8. Given a polynomial Pm(X) 

of degree m, we are interested, therefore, in determining a small value of 

nE Z~o such that Pm E LP~;:~ (DK, L). This problem is solved by the next 

two propositions. 

Definition 11.2.4 Let hE Z~0 , let f E LAh/eK (DK, L), and let a E DK. 

We define !a,h := la+1r'KDKJ E LAh/eK (DK,L); that is, !a,h is the locally 

analytic function that is equal to f on a+ 1r~D K and identically zero outside 

this set. 
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Proposition !1.2.5 Let h E Z~o· Let P(X) E L [X] be a polynomial such 

that ordLAhfeK (P) = 0. Let a E D K such that ordLAhfeK (Pa,h) = 0. Then 
- -[O,n] 
Pa,h E LPh/eK (DK, L), where n = Z (a, h/eK; P (X)). 

Proof: 

Set m:= deg (P (X)). Write 

Since ordLAhfeK (Pa,h) = 0, we have min {ordp (ai) Ji E {0, ... , m}}= 0. We 

must prove that ordp (ai) > 0 for all i E Z, i > Z (a, h/eK; P (X)). 

Set 
m 

Q(Y) := L aiYi. 
i=O 

Counting multiplicities, the polynomial P(X) has Z (a, h/eK; P (X)) zeros in 

a+ 1r~D K; hence we see that, counting multiplicities, the polynomial Q(Y) 

has Z (a, h/eK; P (X)) zeros in Dcp· Hence by theorem 1.5.6, p. 26 we have 

f-l (i; Q (Y)) > 0 for all i > Z (a, h/eK; P (X)). Therefore ordp (ai) > 0 for all 

i > Z (a, h/eK; P (X)), as required. D 

Proposition II.2.6 Let h E Z~o· Let Pm(X) E L [X] be a polynomial of 

degree m. Let a E D K such that ordLAhfeK·" (Pm) = ordLAhfeK (Pm). Then 

Proof: 

Sets:= Z (a, h/eK; Pm (X)). We will prove by induction that 

( 
h-i ) . Z a,--; Pm (X) ;? q~s 

e}( 
Vi E {0, ... , h }. 

The case i = 0 is trivial. 

We will now prove the induction step; assume that the statement is true 

for all i E {0, ... , i 0 }. For contradiction, assume that 

Z (a, h- ~: + l); Pm (X)) ~ q~+l s- 1. 
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Then, by applying lemma II.1.7, p. 34 with k0 = h- (i0 + 1) and B = 
q~+l s - 1, there exists ah E D K such that ah a mod 7f~-(io+l) D K and, for 

all k E Z, h- (io + 1) < k :( h, we have 

Hence we have shown that 

Z (ah, r; Pm (X))= Z (a, r; Pm (X)) 

and 

Therefore 

k-1 
Vr> --. 

eg 

h- (i0 + 1) - oo < r :( _ ____;_ _ ____;_ 
eg 

h- (i0 + 1) h _ ____;_ _ ____;_ < r :::; -. 
e/( e/( 

l

hjeg lhjeg 
-oo m- Z (ah, r; Pm (X)) dr > -oo m- Z (a, r; Pm (X)) dr, 

and so by proposition II.l.1, p. 29 we have 

which is a contradiction to ordLAh/eg,a (Pm) = ordLAh/eg (Pm)· This com­

pletes the induction. 

Now for i = h we have shown that Z (a, 0; Pm (X)) ?: q~s, and clearly 

m?: Z (a, 0; Pm (X)), so m/q~ ?: s, as required. D 

Corollary II.2. 7 Let hE Z~o· Let P(X) E L [X] be a polynomial of degree 

h th t d (p) '- 0 Then P E LPh[ 0;'elgm/ q~ J] (DK, L). m sue a or LAh/eg ,;:;. . 

Proof: 

Let Rhfeg be a set of representatives of D K / 1r~D K, so P = I: ER Pa h· 
Ct h/eg ' 

If ordLAh/eg (Pa,h) > 0, then Pa,h = 0. If ordLAh/eg (Pa,h) = 0, then by 

proposition II.2.6 above we have Z (a, hje/(; P (X)) :( l m/q~J, and then by 
. . h - -[o,lm/q~J] (D ) propos1t10n 11.2.5, p. 45 we ave Pa,h E LP hfeg K, L . D 

We can now prove the main result of this section. 
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Proposition 11.2.8 Let h E Z)o· Let (Pm(X))mEZ;;,o C L [X] be a se­

quence of polynomials that are orthogonal in LAh/eK (D K, L) and such that 

deg (Pm (X)) = m. Then {Pm lm E Z)o} is a maximal orthogonal set in 

LAh/eK (DK, L). 

Proof: 

For m E Z)o, set Vm := ordLAhfeK (Pm) and set Rm := Jr7;eKVm Pm; so we 

have ordLAhfeK (Rm) = 0. We must prove that { Rm I mE Z)o} is a maximal 

orthonormal set in LAh/eK(DK,L). By proposition II.2.2(ii), p. 43 it is 

enough to prove that { Rm lm E Z)o} is a kcbasis of LAh/eK (DK, L). 

Let n E Z)o· We will show that { Rm I mE {0, 1, ... , q~(n + 1)- 1}} 

forms a kcbasis of LP~;:~ (DK,L). If mE {0, ... ,q~(n + 1) -1}, then 

l hj - -(On] 
m/qK ~ n; hence by corollary II.2.7 above we have Rm E LPhfeK (DK, L). 

By proposition II.2.2(i), p. 43 we see that { Rm I m E {0, ... , q~ (n + 1) - 1}} 

is kL-linearly independent in LPi~;:~< (DK, L). By proposition II.2.3(i), p. 43 

we know that LP~0;:~< (DK, L) has dimension q~(n + 1) as a kL-vector space; 

{-~ h } -(On] hence Rm mE {0, ... ,qK(n+ 1) -1} formsakL-basisofLPhfeK (DK,L). 

Now by proposition II.2.3(ii), p. 43 it follows that { Rm lm E Z)o} IS a 

D 

We conclude this section by stating a theorem on the relationship between 

maximal orthogonal sets and orthogonal bases. 

Theorem 11.2.9 Let E be an infinite dimensional L-Banach space. 

z. If L is discretely valued, then every maximal orthogonal set in E is an 

orthogonal L-Banach basis. 

n. If L is not discretely valued, then there exists a maximal orthogonal set 

in E that is not an L-Banach basis. 

Proof: 

See Rooij [21], theorem 5.13(a), p. 177 and theorem 5.16(~.,), p. 179. D 
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Chapter Ill 

Binomial functions 

The main purpose of this chapter is to illustrate how the orthogonality of 

the binomial functions is essential in characterising the Amice transforms of 

measures. In section III.1 we will prove that the set of binomial functions is 

an orthogonal Banach basis of LAh ( Zp, L), for all h E Z~o. This fact is used 

in section III.2 to study the dual of LAh (Zp, L) and the Amice transform. 

None of the material in this chapter is original. The results are due 

to Amice [1] and Amice and V elu [2]. My presentation also owes much to 

Colmez [8], eh. I, pp. 495-502. 

111.1 Locally analytic functions on Zp 

In this section we recall the definition of the binomial polynomials (~) E 

Q [X] and, for each h E Z~0 , prove that they form an orthogonal L-Banach 

basis of LAh (Zp, L). The results of this section are due to Amice [1], with 

the minor difference that here we do not assume that L is discretely valued. 

Definition III.l.l Let m E Z~o· We define the binomial polynomial 

(X) 1 m-l 
:= -, IT (X - i) E Q [X]. 

m m. 
i=O 

When we consider (~) as an element of LA0 (Zp, L) c LA (Zp, L), we will 

call it a binomial function. 
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Proposition Ill.1.2 i. Let mE Z~0 . In Q [X1,X2] we have 

. 2: (~~1) (~2). 
Z! ,~2 EZ~o 
i1+i2=m 

ii. Let m E Z~0 and let a E Zp. Then ordP ( C~)) ~ 0. 

Proof: 

See Schikhof [18], proposition 47.2(iii,v), p. 138. 0 

In order to allow for the case of L not discretely valued, we will need the 

following technical lemma. 

Lemma III.1.3 Let E be a J( -Banach space, and let F be an L-Banach 

space such that E C F. Assume that there exists a set { bi li E Z~o} C E that 

is simultaneously an orthonormal J( -Banach basis forE and an orthonormal 

L-Banach basis for F. 

Then any orthogonal J( -Banach basis for E spans F as an L-Banach 

space. 

Proof: 

Let { cj lj E Z~o} C E be an orthogonal K-Banach basis for E. Let x E F. 

We must show that x can be written as the limit of a series of elements in 

the £-linear span of { Cj lj E Z~o }. 

Since {bi liE Z~0 } is an orthonormal L-Banach basis ofF, we can write 

+oo 

X= L f3ibi, 
i=O 

where (/3i)iEZ C L is such that ordP (f3i) ---+ +oo as i ---+ +oo. By orthonor­
~o 

mality, we have that ordp (f3i) ~ ordp (x) for all i E Z~o· 

Since { Cj IJ E Z~o } is an orthogonal J(-Banach basis for E, for each i E 

Z>-o we can write 
/ 

+oo 

bi = L "!ijCj' 
j=O 
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where ( '"Yij) ·Ez C I< is such that ordE ( '"Yiici) --+ +oo as j --+ +oo. By 
J ;;,o 

orthogonality, we have ordE (ryijcj)) 0 for all (i,j) E Z~o x Z~o· 

We have, therefore, 

+oo +oo 

X= L LP'i'"YijCj. 
i=O j =0 

Set aij : = P'i'"Yij Cj E F. For any s E Q, there are only finitely many ( i, j) E 

Z~o x Z~o such that ordp (aij) < s. Hence we have 

+oo +oo +oo +oo 

LLaij = LLaij 
i=O j=O j=O i=O 

(see, for example, Robert [17], eh. 2, §1.2, corollary, p. 76). Therefore 

+oo (+oo ) 
X= f; ~P'i'"'fij Cj 

and ordp ( (2.::~~ P'i'"Yii) Cj) --+ +oo as j --+ +oo, as required. D 

We can now prove the main result of this section. 

Theorem III.1.4 (Amice) The set of binomial functions { (~) lm E Z~0 } 

forms an orthogonal L-B ana eh basis of LAh ( Zp, L) for all h E Z ~0 . We have 

h 

ordLA,, ( (~)) ~ -ordP (m.1) + {; l; j . 
Proof: 

First we will prove that the polynomial (~) is very evenly distributed, for all 

mE Z~o· Let a E Zp and let k E Z~o· We must show that 

Since Z is dense in Zp we can choose n E Z n (a + pk Zp). The set of zeros 

of(~) is{0,1, ... ,m-1},and#(n+pkZP)n{0,1, ... ,m-1}) l~J,as 
required. 
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Fix h E Z)!o· By corollary II.l.l4, p. 39 we have that the binomial 

functions are orthogonal in both LAh (Zp, Qp) and LAh (Zp, L). It follows by 

proposition II.1.13, p. 38 that 

ordLA,, ( (~)) = -ordP (m!)+ t l;: J . 

It remains to prove that the binomial functions span LAh ( Zp, L) as an 

L-Banach space. By proposition II.2.8, p. 47 we have that the binomial 

functions { (~) lm E Z)!o} form a maximal orthogonal set in LAh (Zp, Qp), 

so by theorem II.2.9(i), p. 47 they form an orthogonal Qp-Banach basis of 

LAh (ZP, Qp)· Now, by proposition 1.3.5, p. 22 the set 

is simultaneously an orthonormal Qp-Banach basis of LAh (ZP, Qp) and an 

orthonormal L-Banach basis of LAh (Zp, L). Hence, by lemma III.1.3 above, 

the binomial functions { (~) I m E Z)!o} span LAh (Zp, L) as an L-Banach 

space, as required. D 

Next we will simplify the expression for ordLAh ( (~)). To do so, we will 

need the following useful fact. 

Lemma 111.1.5 Let m E Z)!o and write m in its base p expansion: m = 

2..:::~0 sipi, with si E Z, 0 ~si~ p- 1 for all i E {0, ... , n }. Then 

ordp(m!) = P~ 1 (m- P,s;). 
Proof: 

See Schikhof [18], lemma 22.5, p. 70. D 

Proposition 111.1.6 Let hE Z:::,o and let mE Z:::, 0 . Then 
;.-- ;.--
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Proof: 

Write m= I:;~0 SiPi with si E Z, 0 ~ si ~ p- 1 for all i E {0, ... , n}. If 

n < h, then set si:= 0 for all i E {n + 1, ... , h}. We have 

t l; J ~ t (t,s,p'-') 
= t (mii:h} SiPi-k) 

i=l k=l 

~ ~ (t>Pi-k) + t. (t s,p' k) 
~ p ~ 1 ( ~ s, (p' - 1) + t. s, (P' - pi-h)) 

~ p ~ 1 ( t, s, (P' - 1) - t. s, (pi-h - 1)) 

~ P ~ 1 ( (m -t, s,) ( l;: J - t. s,) ) 
= ordp (m!)- ordp (lm/phj !) , 

where we have used lemma III.l.5 above to obtain the last equality. The 

result now follows by theorem III.l.4, p. 50. D 

Using this formula, we will now give simple upper and lower bounds for 

ordLAh ( (~)). These bounds will allow us to determine which expressions of 

the form 2::::~1':'0 am(~), with (am)mEZ;:.o C L, converge to some element of 

LA (Zp, L). 

Definition 111.1. 7 For h E Z>-o, we define ,_.. 

1 

Lemma 111.1.8 Let mE Z>-o and let hE Z>-o· We have ,_.. ,_.. 
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Proof: 

Write m= I::'=o sipi with si E Z, 0 ~ si ~ p- 1 for all i E {0, ... , n }. From 

proposition III.1.6, above, and lemma III.1.5, p. 51, we have 

Now we have 

as required. Also 
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If j E Z~1 then z} ::;; z)+1 - p, hence ~ ::;; z} - 1. Therefore 

as required. 

rnrh+l - 1 ::;; -
1
- ~ si (pi-h - 1) 

p-1 6 
i=h+l 

Proposition III.1.9 (Amice) 

0 

Every locally analytic function f E LA (Zp, L) can be written uniquely in the 

form 

+oo (X) 
f =~am rn , 

with (am)mEZ;;,o C L such that there exists r E Q>o satisfying ordp (am) -

rnr -+ +oo as rn-+ +oo. 

Moreover, if a sequence (am)mEZ;;,o C L satisfies this condition, then 

2..::~:0 am(~) converges to an element of LA (Zp, L). 

Proof: 

By theorem III.1.4, p. 50, it is enough to prove that a sequence (am)mEZ;;,o C 

L satisfies this condition if and only if there exists h E Z~0 such that 

ordLAh (am(~)) -+ +oo as rn -+ +oo. 

Assume that there exists r E Q>o satisfying ordp (am) - rnr -+ +oo as 

rn-+ +oo. Choose h E Z~o sufficiently large that rh ::;; r. By lemma III.l.8, 

p. 52 we have 

ordLAh ( (~)) ~ -rnrh, 

~ ordLAh ( ( ~)) ~ -rnr, 

ordLAh (am(~)) ~ ordp (am)- rnr. 

Hence ordLAh (am(~)) -+ +oo as rn -+ +oo, as required. 
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Conversely, assume that there exists h E Z~o such that ordLAh (am(~)) ----+ 

+oo as m----+ +oo. By lemma III.l.8, p. 52, vve have 

1 - mrh+l ~ ordLAh ( (~)) , 

ordp (am)- mrh+l ~ ordLAh (am(~)) - 1. 

Hence orclp (am)- mrh+l ----+ +oo as m----+ +oo, so the sequence (am)mEZ>-o C 
"' 

L satisfies the required condition with r := rh+l· 0 

111.2 The Amice transform 

In this section we will use the binomial functions to study the space of locally 

analytic distributions on Zp with values in L. For f-l E ~LA (Zp, L), we recall 

the definition of the Amice transform J2l (J-L) (T) E L [[T]]. The orthogonality 

of the binomial functions will allow us to characterise the Amice transforms 

of measures and of temperate distributions. We will also examine the rela­

tionship between locally analytic characters and the Amice transform. The 

results in this section are clue to Amice and Velu [2]. 

Definition III.2.1 Let f-l E ~LA (Zp, L). vVe define the Amice transform 

J2l (~t) (T) E L [[T]] of f-l to be the power series 

Recall, from definition !.4.10, p. 25, that L ( (T)) denotes the ring of all 

power series with coefficients in L that have order of convergence less than 

or equal to zero. 

Proposition III.2.2 Let f-l E ~A (Zp, L). Then J2l (J-L) (T) EL ((T)). 

Proof: 

For all m E Z~0 , set Cm := f-l ( (~)). By the definition of the order of 

convergence (see definition !.4.1, p. 22), it is enough to show that mr + 
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ordp (cm) -+ +oo as m -+ +oo for all r E Q>o· Fix r E Q>o· Choose 

h E Z~0 sufficiently large that rh < r. From the definition of ordLAh (J.L) we 

have 

By lemma III.1.8, p. 52 we have 

Hence 

ordp (cm) ~ ordLAh (J.L) - mrh Vm E Z>-o, 
;/ 

mr + ordp (cm) ~ ordLAh (J.L) +m (r- rh) Vm E Z>-o· 
;/ 

Therefore mr + ordP (cm) -+ +oo as m -+ +oo, as required. 0 

Given a power series F(T) E L ( (T)), we will now construct a distribution 

f.LF E ~LA (Zp,L) such that d(J.LF) (T) = F(T). 

Lemma 111.2.3 Let F(T) = 2.::~:0 cmTm E L ( (T)). We define 

+= 
J H LamCm, 

m=O 

+= (X) where f = L::m=O am m is the 'Un'iqw:. expression for f given by proposi-

tion III.l. 9, p. 54. 

Then f.LF is a well defined element of ~LA (Zp, L) and, for all h E Z~0 , 

we have 

Proof: 

We first check that the series 2.::~:0 arncm converges, so that f.LF (f) is well 

defined. Fix f = 2.::~:0 am(~) E LA (Zp, L). From proposition III.1.9, 

p. 54 there exists r E Q>o such that ordp (am) - mr -+ +oo as m -+ +oo. 
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Since F(T) has order of convergence less than or equal to zero, we have 

mr + ordp (cm) ~ +oo as m~ +oo. Hence 

Therefore 2....:~':0 amcm converges, as required. 

It is clear that f-LF is L-linear, so ordLAh (J-LF) E R U { ±oo} is defined for 

all h E Z>-o· ;.--

Claim: 

Let h E Z>-o· Then 
;.--

Proof of claim: 

From the definition of ordLAh, it is clear that 

vVe will prove the opposite inequality. Fix f = 2....:~':0 am(~) E LAh ( Zp, L). 

From the definition of f-LF, we have 

From the orthogonality of the binomial functions, by proposition I.3.2(ii), 

p. 21, we have 

Hence 

ordP (J-LF (!)) - ordLAh (!) ~ 

min { ordp (am cm) [mE Z;:::o} - min { ordLAh (am(~)) I mE Z;:::o} 

~ min { ordp (amcm)- ordLAh (am(~)) I mE Z;:::o} 

m in { ordp (cm) - ordLAh ( (~)) I m E Z;:::o}. 
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Therefore 

ordLAh (J-LF) ;? inf { ordp (cm) - ordLAh ( ( ~)) I m E Z~o}, 

as required. This concludes the proof of the claim. 

It remains to prove that J-LF is continuous. By proposition I.2.2, p. 19 

it is enough to show that ordLAh (J-LF) > -oo for all h E Z~0 , and we have 

proved that ordLAh (J-LF) = inf { ordp (cm) - ordLAh ((~))I m E Z~o}. For all 

mE Z~0 , by lemma III.l.8, p. 52 we have 

hence 

as required. 0 

This lemma has two important consequences. 

Corollary III.2.4 The Amice transform 

d: !»LA (Zp, L) ---7 L ((T)) 

J-L H d (J-L) (T) 

is an L-linear isomorphism. 

Proof: 

It is clearly L-linear; it is injective by proposition III.l.9, p. 54; it is surjective 

by lemma III.2.3 above. 0 
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Corollary III.2.5 Let J-l E ~LA (Zp, L) and let hE Z~0 . Then 

Proof: 

Follows immediately from lemma III.2.3 and the injectivity of the Amice 

transform. D 

Remark III.2.6 Corollary III.2.5 allows us to read off information about 

the continuity properties of a distribution 1-l E ~LA (Zp, L) from its Amice 

transform sz1 (J-l) (T); it is the key result that allows us to characterise the Am­

ice transforms of temperate distributions and measures. Notice that the proof 

of this corollary depends on the claim made in the proof of lemma III.2.3, in 

which the orthogonality of the binomial functions played an essential role. 

Lemma III.2.7 Let fL E ~LA (Zp, L) and let hE Z~o· We have 

Proof: 

From lemma III.1.8, p. 52 we have 

ordp (1-l ( (~))) + mrh+l - 1 

~ ordp (1-l ( (~))) - ordLAh ( (~)) 
~ ordp (1-l ( (~))) + mrh, 

inf { ordp (1-l ( (~))) + mrh+l - 11 m E Z~o} 
~ inf { ordp (1-l ( (~))) - ordLAh ((~))I m E Z~o} 

~ inf { ordp (1-l ( (~))) + mrh I m E Z~o}. 

The result now follows from the 'maximum principle' (proposition 1.4.8, p. 24) 

and from corollary III.2.5 above. D 
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The bounds in lemma III.2.7 above immediately allow us to prove that 

the Amice transform is hi-continuous. 

Proposition III.2.8 The Amice transform 

J21:9hA(Zv,L) -+L((T)) 

JL H J21 (JL) (T) 

is an L-linear homeomorphism. 

Proof: 

By corollary III.2.4, p. 58, it is enough to show that J21 is hi-continuous. Re­

call that we have defined fundamental systems of open neighbourhoods of zero 

in ~LA (Zp, L) and L ((T)), see definition 1.2.3, p. 19 and definition 1.4.10, 

p. 25 respectively. 

Let r E R>o, let s E R, and set 

U := {F(T) EL ((T)) iordr (F (T)) ~ s}, 

so U is a general element of the fundamental system of open neighbourhoods 

of zero in L ( (T)). Choose h E Z)!o sufficiently large that rh ~ r. Then, by 

lemma III.2. 7 above, we have 

so J21 is continuous. 

Conversely, let h E Z)!o, let s E R, and set 

so V is a general element of the fundamental system of open neighbourhoods 

of zero in ~LA (Zp, L ). Then, by lemma III.2.7 again, we have 

{ F(T) EL ((T)) iordrh+ 1 (F (T));? s + 1} c J21(V), 

so d- 1 is continuous. 0 
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In fact, the bounds in lemma III.2. 7 are far stronger than would be nec­

essary just to prove continuity; they also allow us to prove the stronger 

statements that follow. Recall the definition of temperate distributions from 

definition !.2.6, p. 20. 

Proposition III.2.9 Let f-L E ~LA (Zp, L) and let r E R;:, 0 . Then J-L is 

temperate of order r if and only if the sequence ( hr + ordrh ( .Y1 (J-L) (T))) hEZ;;,o 

is TJ(r)-bounded below. 

Proof: 

Assume that J-L is temperate of order r. From definition !.2.6, p. 20 the se­

quence (hr + ordLAh (J-L))hEZ;;,o is TJ(r)-bounded below. Now by lemma III.2.7, 

p. 59, for all hE Z;:,o, we have 

ordLAh (J-L) ~ ordrh (d(J-L) (T)), 

==> hr + ordLAh (J-L) ~ hr + ordrh (d(J-L) (T)). 

Hence (hr + ordrh (d(J-L) (T)))hEZ;;,o is TJ(r)-bounded below, as required. 

Conversely, assume that the sequence ( hr + ordrh ( .Y1 (J-L) (T)) hEZ;;,o 1s 

TJ(r)-bounded below. By lemma III.2.7, for all hE Z;:, 0 , we have 

ordrh+ 1 (d(J-L) (T)) - 1 ~ ordLAh (J-L), 

==> hr + ordrh+ 1 (d(J-L) (T))- 1 ~ hr + ordLAh (J-L). 

Hence the sequence (hr + ordLAh (J-L))hEZ is TJ(r)-bounded below. D 
)0 

Remark III.2.10 Recall that a distribution J-L E ~LA (Zp, L) is a measure 

if it can be extended to a continuous L-linear map J-L: 't? (Zp, L) ----+ L, where 

't? (Zp, L) denotes the space of all continuous functions on Zp with values in 

L. It is not hard to see that J-L is a measure if and only if it is temperate 

of order 0 (cf. Colmez [8], remark I.4.3(ii), p. 499). The following corollary, 

therefore, characterises the Amice transforms of measures. 

Corollary III.2.11 Let J-L E ~LA (ZP, L); write Jt1 (J-L) (T) = l:~C:o cmTm. 

Then J-L is temperate of order 0 if and only if the sequence ( ordp (cm) )mEZ;;,o 

is bounded below. 
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Proof: 

By proposition III.2.9 above, it is enough to show that ( ordp (cm) )mEZ;;,o 1s 

bounded below if and only if (ordrh (d(p,) (T)))hEZ;;,o is bounded below. By 

the 'maximum' principle (proposition I.4.8, p. 24) we have 

ordr" ( Jd (p,) (T)) = inf {m rh + ordp (cm) I m E Z~o}. 

Assume that there exists B E Q such that ordp (cm) ) B for all mE Z~o· 

Then, for all hE Z~o and all mE Z~0 , we have mrh + ordp (cm) ) B; hence 

ordr" (d(p,) (T)) ) B for all hE Z~0 , as required. 

Conversely, assume that there exist B E Q such that ordr" ( JL1 (p,) (T)) ) 

B for all hE Z~0 . Then we claim that (ordp (cm))mEZ;;,o is bounded below by 

B- 1. Fix m0 E Z~0 , and choose h0 E Z~0 sufficiently large that morho ~ 1. 

We have 

B ~ ordrho (d(p,) (T)) 

= inf {nz,rho + ordp (cm) I m E Z~o} 

~ morho + ordp (cm0 ) 

~ 1 + ordp (cm0 ). 

Hence ordp (cm0 ) ) B- 1, as claimed. 0 

We will now turn our attention to the relationship between locally ana­

lytic characters and the Amice transform. We start by associating a locally 

analytic character to each element z E p L. 

Definition III.2.12 Let z E !JL· We define 

Koz : Zp ---+ L 

aH ~zm(~) 
Note that by proposition III.l.2(ii), p. 49 we have ordP ( C~)) ) 0 for all 

m E Z~0 and all a E Zp, so the series L::~c:;'0 zm (~) is convergent and Koz (a) 

is well defined. 
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Proposition III.2.13 Let z E IJL· Then K,z E HomLA (Zp, Lx). 

Proof: 

By proposition III.1.9, p. 54 we see that K,z E LA (Zp, L). Clearly /'\, 2 (0) = 1. 

Let a 1 , a 2 E Zp· Using proposition III.1.2(i), p. 49 we have 

as required. 

K, (al) K, (a,) ~ (~ z'' ( 7,')) (~ z't:)) 

~ ~ z"' (.!;~~ ( 7:) ( 7:)) 
= f: zm (a1 + ct2) 

1n 
m=O 

=K,z(a1+a2), 

0 

Proposition III.2.14 Let J1 E ~LA (ZP, L) and let z E IJL· Then J1 (K,z) = 

d(J.L)(z). 

Proof: 

By the linearity and continuity of J1, we have 

12 (K,) ~ 12 (~ z"' (~)) 

~ ~ z"'p. ( (~)) 
= d (J.L) (z). 
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Chapter IV 

Schneider Teitelbaum functions 

In this chapter we will give the definition of the Schneider Teitelbaum polyno­

mials and state some of their properties, drawing parallels with the binomial 

polynomials. This shall be done in section IV.2, after recalling some Lubin 

Tate theory in section IV .1. 

None of the material in this chapter is original. The results of section IV .1 

are taken from various sources as noted in the text; those of section IV.2 are 

from Schneider Teitelbaum [19]. 

IV.l Lubin Tate formal groups 

We will use Lubin Tate formal groups in order to generalise the ideas of the 

previous chapter; they are essential for the definition of the Schneider Tcit­

elbaum functions. This section summarises the parts of Lubin Tate theory 

that will be required in the remainder of this thesis. This class of formal 

group was introduced in Lubin Tate [14]. I have taken material from this 

paper and several other sources, as noted in the text. 

Notation IV.l.l Let R be any ring and let F, G ER [[X1 , ... , Xn]J, with 

n E Z;::: 1 . Vve will write F = G mod deg 2 if F - G is a power series of the 

form 
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Definition IV.1.2 A power series l (X) E D K [[X]] such that: 

• l (X) = 1rKX mod deg 2, and 

• l (X) = xqg mod Jr[(D K [[X]] 
is called a Frobenius power series. 

Notation IV.1.3 In the rest of this thesis l (X), or just l, will denote a 

Frobenius power series as above. 

Proposition IV.1.4 Let l (X) be a Frobenius power series. Then there ex­

ists a unique power series in DK [[X1 , X2]], which we will denote by Xd+]1X2, 
such that: 

We call Xd+J1X2 the Lubin Tate formal group associated to l (x). 

For all a E DK, there exists a unique power series [a]1 (X) E DK [[X]] 
such that: 

v. [a]1 (X) = aX mod deg 2, 

vz. l ([a]1 (X)) = [a] 1 (l (X)). 

We have l (x) = [1r[(] 1 (X). 

Proof: 

See Lubin Tate [14], §1, equations ( 4, 5) and theorem 1, p. 382. D 

Proposition IV.1.5 The maps 

PL X PL ---+ PL 

(z1, z2) M zd+J1z2 
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and 

DK X PL -+ PL 

(a, z) r-+ [a]t (z) 

equip PL with the structure of a Dg-module. We denote this Dg-module by 

At (PL)· 

Proof: 

See Lubin Tate [14], §1, equations (12, 13), p. 383. 0 

Proposition IV.1.6 Let z E Pep· Then: 

z. ordp ([1r~]t (z))-+ +oo as n-+ +oo, 

Proof: 

Since [1rK]1 (X)= l (X) satisfies [1rK]1 (X)= 1rKX moddeg2 and [1r1,]1 (X)= 

XqK mod 1rKD K [[X]], we have 

The result follows. 0 

Definition IV.1.7 For nE Z>-o, we define 
y 

vVe also write 

At,+oo := U At,n/ei< C At (PeP) · 
nEZ:;,o 

Proposition IV.1.8 Let n E Z>- 1 and let "in E At__.!!___ -At .'!.=1· 
::;.-- 'eK 'eK 

i. The map 

D K j1r~D K -+ At,n/eK 

a H [alt ('Yn) 

is an isomorphism of D K -modules. In particular, #At,n/eK = q;~. 
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zz. We have ordp (rn) = eK ( qK~q7< 1). 

m. All the zems 1 E Al,nfeg of [1r~] 1 (X) are simple. 

Proof: 

1. See Lubin Tate [14], §1, theorem 2(b), p. 383. 

11. By Lang [13], eh. 8, theorem 2.1(ii), p. 197, the extension K(rn)/ K is 

totally ramified of degree q~ - q~- 1 , and the result follows. 

m. We have [1r~] 1 (X) Xq'J( mod 1rKDK [[X]]. By theorem 1.5.6, p 26, for 

any r E Q>0 , we have 

But by part (i), there are q~ distinct zeros of [1r~] 1 (X) in Pep; hence 

they must all be simple zeros. 
0 

We will now review the logarithm of a Lubin Tate formal group. My main 

reference for this material was Lang [13]. 

Proposition IV.1.9 There exists a unique power series ).1 (X) E K [[X]] 
such that: 

• ).1 (X) =X mod deg 2, and 

We call ).1 (X) the logarithm of the Lubin Tate formal group associated to 

l (X). 

Proof: 

See Lang [13], eh. 8, §6, lemma 1, p. 212. 0 

Proposition IV.l.lO i. For a E DK, we have Al ([a]1 (X))= a).l (X). 

zz. We have ).;(X) E DK [[X]], where ).;(X) denotes the formal derivative 

of the power series ).1 (X). 
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m. The logarithm At (X) converges on Pep· 

zv. Let z E Pep· Then z E At,+oo if and only if Al (z) = 0. 

Proof: 

1. See Lang [13], eh. 8, §6, lemma 2, p. 213. 

11. See Lang [13], eh. 8, §6, lemma 3(i), p. 214. 

111. See Lang [13], eh. 8, §6, lemma 3(ii), p. 214. 

1v. See Lang [13], eh. 8, §6, lemma 5, p. 217. 
D 

Proposition IV.l.ll Write At (X)= 2:::~~ ciXi. Let nE Z~0 . Then 

and 

Proof: 

By Cartier [5], §8, p. 282 there exists a Frobenius power series l' (X) such 

that 

Now if [1] 1,,1(X) E DK [[X]] is the formal isomorphism from X1[+]tX2 into 

Xd+]t,X2 (see Lubin Tate [14], §1, equation (5), p. 382), then we have 

A1 (X)= Al' ([1] 1,,1(X)), and the result follows. D 

In the final part of this section, we will study the formal group homo­

morphisms from a Lubin Tate formal group into the multiplicative group. 

This study depends on an important result of Tate [20]. I have followed the 

presentation of Boxall [4]. 

Notation IV.1.12 For the remainder of this thesis, we will assume that 

K is not equal to Qp. 
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Definition IV.1.13 We define 

Note that YC{ is a group under multiplication. The map 

(a, t(Y)) ~ t ([a] 1 (Y)) 

equips YC{ with the structure of an D K-module. 

Proposition IV.1.14 The DK-module YC{ is free of rank 1. 

Proof: 

See Boxall [4], p. 6. D 

Definition IV.1.15 Once and for all, we choose an DK-module generator 

of YC{ and denote it by tf (Y). For a E DK, we set tf (Y) := tJ ([a]1 (Y)) E 

Yt[. Vve define the constant 0.1 E Dcp to be the coefficient of Y in the power 

series t£ (Y). Note that 0 1 is independent, up to an element of DKx, of our 

choice of generator tf (Y) of ,Ytf. 

Proposition IV.1.16 Let a, f3 E DK. 

z. We have tf+f3 (Y) = tf (Y) tf (Y) and t~ (Y) = 1. 

zz. We have tff3 (Y) = t[' ( [!3]1 (Y)). 

m. If f3 E Zp, then we have tff3 (Y) = tf (Y)f3 , where we define t(Y)f3 := 

L:t=~ (t(Y)- 1r (~). 
Proof: 

See Boxall [4], §1, lemma 1(iv), p. 7. D 

Definition IV.1.17 Let n E Z~ 1 . We define f-Ln to be the group of n-th 

roots of unity; that is, f-Ln := { z E CP lzn = 1 }. 
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Proposition IV.1.18 The map 

Al,l/eK -t /-Lp 

I f--t tf (r) 
is a surjective group homomorphism. 

Proof: 

From the definition of YC[, this map is clearly a group homomorphism. Let 

7] E Al,l/eK - {0}. By Boxall [4], §1, fact 2, p. 6 there exists o: E DK such 

that tf (77) is a primitive p-th root of unity. Now, by the definition of tf (Y), 

we have ti ([a] 1 (77)) = tf (TJ), so 1f--t ti (r) is surjective. D 

Proposition IV.1.19 Let a E DK. We have 

( ) 
'\"'+oo yi 

where exp Y = 0 i=O if. 

Proof: 

Let log(1 +X) := l::T=~(-1)i-lXi/'i. Note that a~1 log(tf (Y)) satisfies 

the defining properties of the logarithm of the formal group l (see proposi­

tion IV.1.9, p. 67), so, by uniqueness, it must be equal to >.1 (Y). The result 

follows. D 

Proposition IV .1.20 We have 

Proof: 

See Schneider Teitelbaum [19], appendix, theorem (c), p. 33. D 

IV.2 Locally analytic functions on D K 

In this section we will give the definition of the Schneider Teitelbaum func­

tions and state some of their properties. All the results in this section are 

from Schneider Teitelbaum [19]. 

vVe continue to assume that J{ i= Qp. 
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Definition IV.2.1 For all m E Z;?o, we define the polynomials P1,m (X) E 

Cp [X] by the identity 

+oo 

L Pt,m (X) ym = exp (DtXAt (Y)), 
m=O 

where exp(Y) = 2:::=~ 1;!;. 
vVe will call the polynomials P1,m (X) the Schneider Teitelbaum polynomi­

als or, when we consider them as elements of LA0 (DK, Cp) C LA (DK, Cp), 

the Schneider Teitelbaum functions. 

Remark IV.2.2 

1. Note that this definition is slightly different from the one in Schneider 

Teitelbaum [19], which does not include the factor 0 1. 

11. Note that 

+oo (X) ~ m ym = exp (X log(1 + Y)), 

where log(1 + Y) = I::=~(-1)i-lyi/i; so the Schneider Teitelbaum 

polynomials are a direct generalisation of the binomial polynomials. 

Proposition IV.2.3 i. We have P1,o (X) = 1 and P1,m (0) = 0 for all 

m E Z:? 1 . For all m E Z:?o, we have P1,m (X) is a polynomial of degree 

exactly m, with leading coefficient 0[ /m!. 

zz. Let a E DJ<. We have 

+oo 

tf (Y) = L Pt,m (a) yrn, 
m=O 

m. For all m E Z;?o and all a E D K, we have Il,rn (a) E DcP. 

zv. Let mE Z;?o· Write At (X) = 2:::=~ ciYi E !{[[X]]. Then the formal 

derivative P/,m(X) of Pt,rn (X) satisfies 

m 

P/,rn(X) = nl L ciPl,m-i (X). 
i=l 
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Proof: 

1. Immediate from the definition. 

11. By definition 

+oo 

L Pt,m (X) ym = exp (fltXAt (Y)). 
m=O 

Substituting X :=a we obtain 

+oo 

L Il,m (a) ym = exp (afltAt (Y)), 
m=O 

and the result now follows from proposition IV.1.19, p. 70. 

m. Recall that t[ (Y) E Dcp [[Y]] and use part (ii). 

1v. By definition we have 

+oo 

L Pt,m (X) ym = exp (OtX/\1 (Y)). 
m=O 

By differentiating with respect to X we obtain 

+oo 

L P/,m(X)Ym = fltAt (Y) exp (OtXAt (Y)) 
m=O 

Now equate coefficients of ym. 
D 

The following theorem shows how the Schneider Teitelbaum functions 

generalise the work of §III.l. 
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Theorem IV.2.4 (Schneider Teitelbaum) 

Every locally analytic function f E LA ( D K, CP) can be written uniquely in 

the form 

+oo 

f = LamPl,m, 
m=O 

with (am)mEZ;,o C CP such that there exists r E Q>o satisfying ordp (am) -

mr ~ +oo as m~ +oo. 

Mo1·eover, if a sequence (am)mEZ C Cp satisfies this condition, then ;:.o 

2...:::~,:0 amPl,m converges to an element of LA (Dg, Cp)· 

Proof: 

See Schneider Teitelbaum [19], theorem 4.7, p. 26 and proposition 4.5, p. 24. 

D 

Remark IV.2.5 This is a direct generalisation of proposition III.l.9, p. 54. 

We will now consider how the Schneider Teitelbaum functions can be used 

to generalise the results of §III.2. 

Definition IV.2.6 Let 1-L E gLA (Dg, CP). We define the Schneider Teit­

elbaum transform .0'1 (!-L) (T) E CP [[T]] of p to be the power series 

+oo 

.0'1 (!-L) (T) := L J-l(Pl,m) rm. 
rn=O 

Proposition IV.2. 7 (Schneider Teitelbaum) 

The Schneider Teitelbaum transform 

.0'1: gLA (DK, Cp) ~ CP ((T)) 

f-L r-t .0'1 (p) (T) 

is a Cp-linear homeomorphism. 

Proof: 

See Schneider Teitelbaum [19], comments before lemma 4.6, p. 24. D 
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Remark IV.2.8 This is a direct generalisation of proposition III.2.8, p. 60. 

We will conclude this section by considering the relationship between 

locally analytic characters and the Schneider Teitelbaum transform. We 

start by associating a locally analytic character to each element z E Pep. 

Definition IV.2.9 Let z E Pep· vVe define 

K,l,z : D K ---+ CP 

a r--+ t? (z) 

Proposition IV.2.10 Let z E Pep· Then K,l,z E HomLA (DK, C/). 

Proof: 

By proposition IV.2.3(ii), p. 71 we can write K,l,z = I:~:o zm Pl,m, so by theo­

rem IV.2.4, p. 73 we have K,l,z E LA (DK, Cp)· Now by proposition IV.l.16(i), 

p. 69 we have K,l,z (0) = 1 and K,l,z (a1 + a2) = K,l,z (cri) K,l,z (a2), as required. 

Proposition IV.2.11 (Schneider Teitelbaum) 

Let fL E ~LA (DK, Cp) and let z E Pep· Then 

P (K,l,z) = ~ (p) (z). 

Proof: 

0 

By proposition IV.2.3(ii), p. 71 we have K,l,z = I::~:o zm P1,m, so by the 

linearity and continuity of p we have 

m=O 

= ~ (p) (z). 

0 

Remark IV.2.12 This is a direct generalisation of proposition III.2.14, 

p. 63. 
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Chapter V 

N on-orthogonality of the 

Schneider Teitelbaum functions 

In this chapter we will prove that the set of Schneider Teitelbaum func­

tions { Pl,m I m E Z;:o} is not orthogonal in LAh/eK (D K, Cp) for all h ~ 

max {1, [K: Qp]- eK }. The strategy of the proof is as follows. In §V.1 we 

will study the zeros of the power series ti (Y) -1. Using the Newton polygon, 

this gives us information about the coefficients of ti (Y) - 1, and we know 

that the coefficient of ym in ti (Y) is equal to Pt,rn (a). In §V.2 we will study 

the polynomial P1,m (a+ X). We know its leading coefficient, and the work 

of §V.1 tells us about its constant coefficient Pt,m (a). We can, therefore, use 

Newton polygons again; this time to derive information about the zeros of 

P1,m (a+ X) from our knowledge of its coefficients. In particular, for certain 

values of m E Z;:0 , we can prove that Pt,q'J( (X) is not evenly distributed of 

order m. The result then follows from proposition II.l.15, p. 40. 

Throughout this chapter we continue to assume that J( =/=- Qp. 

V.l The Newton polygon of t[ (Y) - 1 

In this section we will determine the Newton polygon of ti (Y) - 1. The 

following three propositions will: show that all the zeros of ti (Y) - 1 lie in 

Al,+oo, count #{ "( E Al,n/eK lti ('Y) - 1 = 0}, and prove that all these zeros 
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are simple. This is enough to give us complete information about the Newton 

polygon. 

Proposition V.l.l Let a E DK-{0}, and let z E Pep such that t{ (z)-1 = 

0. Then z E Al,+oo· 

Proof: 

Let F(Y) = exp(Y) and let G(Y) = aD1).1 (Y). By proposition 1.4.6, p. 23 

there exists r E Q such that 

(FoG) (x) = F (G(x)) 

By proposition IV.1.6(ii), p. 66 we can choose nE Z~0 sufficiently large that 

ordp ([pn]1 (z)) ~ r. We have 

t{ (z) 1, 

::::} t{ (z)Pn 1, 

::::} t{ ( [pn ]I ( Z)) 1 (by proposition IV.1.16, p. 69), 

::::} F o G ( [pn J1 ( z)) 1, 

::::} F (G ([pn]1 (z))) 1. 

Now exp(Y) is injective where it converges (see, for example, Schikhof [18], 

proposition 44.1, p. 128), so we must have 

G ([pn]l (z)) 0, 

::::} Al ( [pn ]I ( Z)) 0, 

::::} pn At (z) 0 (by proposition IV.1.10(i), p. 67), 

::::} At ( z) 0. 

The result now follows by proposition IV.1.10(iv), p. 68. D 

Proposition V.1.2 Let a E DK- {0}. Let nE Z, n/eK ~ ordp (a) and set 

i := f nje](- ordp (a)l E Z~o, where f r l denotes r rounded up to the nearest 

integer. Then the map 

t{ : At,n/eK -t /-Lpi 

z H t{ (z) 

is a surjective group homomorphism. 
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Proof: 

First we check that t'f' (z) E /Lpi for all z E At,n/eK· We have 

[7r~]l (z) 0, 

=? [pia]1 (z) 0, 

=? tf ([pia]1 (z)) 1, 

=? t'f' (z)P; 1 (by proposition IV.1.16, p. 69). 

Hence tf' ( z) E /Lpi, as required. 

Since t'f' E Yt[, it is clear that the map is a group homomorphism. 

It remains to prove that the map is surjective. Since any primitive 

pi-th root of unity generates f.Lpi, it is enough to find 1 E At,n/eK such that 
i-1 

t'f' (rY #- 1. By proposition IV.1.18, p. 70, the map tj : At,l/eK -t /Lp is 

surjective. The map [1r~- 1 ] 1 : At,n/eK -t At,l/eK is certainly surjective, so we 

can find 11 E At,n/eK such that tj ([1r~- 1 ] 1 (rt)) #- 1. Set j3 := 1r~-l japi- 1
. 

We have 

n-1 
ordp (j3) = --- (ordp (a)+ i- 1) 

e/( 

= !!..._- ordp (a)- I!!..._- ordP (a)l + 1- ~ 
eK I e/( eK 

) 0, 

so j3 E DK· Set 1 := [/3]1 (rl). Now, using proposition IV.l.16, p. 69 again, 

we have 

as required. 

tr bYi-1 = ti ([pi-laL b)) 

= t} ([Pi- 1af3]
1 
(Id) 

= tj ([1r~-lL (Id) 

=1- 1, 

Corollary V.1.3 Let a E DK- {0}. 

z. Let nE Z~0 , njeK ~ ordp (a). Then 

#{ 1 E At,n/eK itr (r) - 1 = 0} = q~. 
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n. Let n E Z, n/e]{ ;? ordp (ex) and set i ·- f n/e]{- ordp (o:)l E Z~o­

Then 

Proof: 

1. For all 1 E At,n/eK, we have t? (r) = t£ ([o:] 1 (I)) 

#At,n/eK = q~ by proposition IV.1.8(i), p. 66. 

t£ (0) 1, and 

11. By proposition V.l.3 above we have that t! : At,nfei< -t f..lpi is a surjec­

tive group homomorphism; hence 

0 

Proposition V .1.4 Let o: E D K - { 0}. Then the power series t! (Y) - 1 

has only simple zeros in Pep. 

Proof: 

Let z E Pep such that t! (z) -1 = 0. We must show that (tl)' (z) # 0, where 

(tl)' (Y) denotes the formal derivative oft! (Y). 

As a formal power series we have 

i/ (Y) 
(tl)' (Y) 

exp (o:OtAt (Y)), 

o:01..\;(Y) exp (o:01..\1 (Y)) 

o:01..\; (Y)t! (Y) . 

Now t! (Y) E Dep [[Y]] and, by proposition IV.l.10(ii), p. 67, we have 

..\; (Y) E D K [[Y]], so both these power series converge on Pep. It follows 

that (tl)' (z) = 0 if and only if either .A;(z) = 0 or t! (z) = 0. Butt! (z) = 1, 

so it is enough to prove that .A;(z) # 0. 

By proposition V.l.1, p. 76 we have z E At,+oo; choose nE Z~o sufficiently 

large that [1r~] 1 (z) = 0. By proposition IV.l.8(iii), p. 67, we have [1r~]; (z) # 

78 



0. By proposition IV.l.10(i), p. 67 we have 

>-t ([n~] 1 (Y)) 7r~At (Y) , 
::::} [n~J; (Y)>.; ([n~lt (Y)) n~>.;(Y), 

::::} [n~J; (z)>.;(o) n~>.;(z), 

::::} [n~J; (z) 7r~>.;(z). 

Hence >.;(z) =1- 0, as required. 0 

We summarise our results about the zeros oft[ (Y) - 1 in the following 

proposition. 

Proposition V.1.5 Let a E DK- {0}. 

z. We have 

Z (r; t[ (Y) - 1) = 1 
1 

Vr E Q, ( _ 1) < r ~ +oo. 
eK qK 

zz. Let nE Z;:;: 1 , njeK ~ ordp (a). Then 

Z (r; t[ (Y) - 1) = q~ 
1 1 

( +1 
) 

< r ~ ( 1). e K q~ - q1j( e K q~ - q~-

m. Let nE Z;:;: 1, n/eK ;? ordp (a) and set i := fn/eK- ordp (a)l E Z;:;:o· 

Then 

Z (r; t[ (Y)- 1) = q~jpi 
1 1 

( +1 ) < r ~ ( 1) . e]( q~ - q1j( e/( q'};; - q~-

Proof: 

Let nE Z>-1· Let In E At,_!]_- A1 !!..=.!· By proposition IV.1.8(ii), p. 67 we 
/" eK 'ei< 

have 

By proposition V.l.1, p. 76 and proposition V.l.4 above, part (i) now follows 

and, for all nE Z:>- 1 , we have 
;/ 

The result now follows by corollary V.l.3, p. 77. 0 
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Remark V.1.6 It is a simple task to use proposition V.1.5 above to build 

the Newton polygon of t[ (Y) - 1 for any a E D K - { 0}. Here I will just 

extract the information we will need in the following section. 

Proposition V .1. 7 Let a E D K x. Let n E Z;;:: 1 , and if K / Qp is totally 

ramified assume that n ~ 2. Set i := I njeK 1. Then 

Proof: 

The coefficient of Y in t{ (Y) - 1 is arl1, and ordp ( arl1) = ordp ( 0 1). By the­

orem 1.5.6, p. 26 and proposition V.1.5 above, the slopes of the Newton poly­

gon 1-L (j; t{ (Y) - 1) < 0 for all j E Z;;::o. It follows that all the vertices of the 

Newton polygon oft{ (Y)- 1 lie below ordp (01). By proposition IV.2.3(ii), 

p 71 we know that Pt,q'K/pi (a) is the coefficient of yq'J<: !Pi in t{ (Y), and using 

proposition V.l.5 again we see that (q~jpi,ordp (Pt,q'J<:fpi (a))) is a vertex of 

the Newton polygon oft{ (Y) - 1. The result follows. D 

V.2 The zeros of Pt,q]( (a + X) 

In this section, for certain values of m E Z;;:: 0 , we will prove that the Schneider 

Teitelbaum polynomial Pt,q'j( (X) is not evenly distributed of order m. It 

then follows from proposition II.1.15, p. 40 that, for all h E Z, h ~ m, 

the function Pt,q'j( is not orthogonal to spancp { X1 lj E { 0, 1, ... , q7/ - 1}} 

in LAhfeg (DK, Cp)· 

For a E DKx, we will study the Newton polygon of the polynomial 

Pt,q'j( (a+ X). The valuation of its constant term was studied in §V.1, and 

we know that its leading coefficient is nj'R jq7/!. The assumption Pt,q'j( (X) is 

evenly distributed allows us to estimate the slopes of the Newton polygon of 

P1,q'R (a+ X), and leads to a contradiction. 

In this section we will work exclusively with Schneider Teitelbaum poly­

nomials whose degree is a power of qK. The following proposition obtains 

the information we will require about ordp (Pt,q'R (a)) from the work of the 

previous section. 
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Proposition V.2.1 Let mE z~l such that we can write m= n- r njeK l I fK 

for some nE z~2· Let a E DKX. Then 

ordp (A,q'j{ (a)) < ordp (S1L). 

Proof: 

Set i := fn/eK l, so q~jpi = q~-ln/eKl/!K = qr;)'. Hence, by proposition V.1.7, 

p. 80, we have ordp (Pl,q'j{ (a)) < ordp (S1L). D 

Remark V.2.2 There are infinitely many m E Z~ 1 satisfying the condition 

of proposition V.2.1, the smallest of which is m= [K: Qp]- eK if K/Qp is 

not totally ramified, or m = 1 if K jQP is totally ramified. 

We will now estimate the slopes of the Newton polygon of P (a + X), 

where P(X) E CP [X] is an evenly distributed polynomial of degree qr;)'. 

Proposition V.2.3 Let m E Z~0 and let P(X) E Cp [X] be a polynomial of 

degree q;~l that is evenly distributed of order m. Let a E D K. Then 

Proof: 

Since P(X) is evenly distributed of order m, from definition II.1.9, p. 36, for 

all k E {0, ... , m}, we have 

Hence, by theorem 1.5.6, p. 26, we have 

f-L (i; P (a+ X)) ~ -k/eK w· {1 m-k} V~ E , ... , qK . 
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Therefore 

qK m ~K 

LJ-L(i;P(a+X)) = J-L(1;P(a+X)) + L L J-L(i;P(a+X)) 
i=l 

m-1 
1 ~. 

= ---;--- L..t q~ 
K j=D 

q~ -1 
e[((q[(-1)· 

We are now ready to prove the main result of this section. 

0 

Proposition V.2.4 Let mE z~l such that we can write m= n- r nle[( l If[( 

for some n E Z~2 . Then the Schneider Teitelbaum polynomial Pl,qK (X) zs 

not evenly distributed of order m. 

Proof: 

Let a E D Kx. By proposition IV.2.3(i), p. 71, we know that Pl,qK (a+ X) 

has degree exactly m and leading coefficient DjK I q~!. By considering its 

Newton polygon we see that 

qK ( qK) ~ f.L (i; Pl,qK (a+ X)) = ordp ~;! -ordp (Pt,qK (a)). 

Now, by propositions V.2.1, p. 81 and IV.l.20, p. 70, and by lemma III.l.5, 
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p. 51, we have 

Therefore 

so, by proposition V.2.3 above, the polynomial Pt,q'l( (X) is not evenly dis­

tributed of order m. 0 

Corollary V.2.5 For all h E Z, h ;? max {1, [K: Qp]- eK }, the set of 

Schneider Teitelbaum functions { P1,m lm E Z?o} is not orthogonal in the CP­

Banach space LAh/eK (DK, Cp) 

Proof: 

If J( /Qp is totally ramified, set n := 2, so r n/ eg l = 1. If J( /Qp is not totally 

ramified, set n := [K: Qp]- (eK -1), so fn/eKl = fK· In both cases, set 

m:= n- fn/eKl /JK = n -1. Note that m= max{l, [K: Qp]- eK}· By 

proposition V.2.4 above the polynomial Pt,q'l( (X) is not evenly distributed 

of order m. Hence by proposition II.1.15, p. 40, for all h E Z, h ;? m, 

the function Pt,q'l( is not orthogonal to spancp {X1 lj E {0, ... , qr;)- 1}} in 

LAh/eK (DK, Cp)· 0 

Remark V.2.6 In proposition V.2.4, p. 82 we have shown that there are 

infinitely many m E Z? 1 such that Pt,q'l( (X) is not very evenly distributed. 

However, for fixed hE Z, h ;? max {1, [K : Qp] - eK }, we have only exhibited 

finitely many m E Z?o such that P1,m (X) is not evenly distributed of order 

h. 

I will conclude this thesis with a small result that is, perhaps, a little 

more encouraging than corollary V.2.5. 

83 



Proposition V.2.7 Assume that eK ~ p- 1. For mE Z~1, the polynomial 

Pt,q'J( (X) is evenly distributed of order m- 1. 

Proof: 

Let a E D K and let k E {0, ... , m- 1 }. vVe must show that 

Choose a set R c DK of representatives of a+ntDK in DK/n7/DK; that 

is, such that 

a+ n~D K = lJ (3 + n7)D K. 

/3ER 

Note that #R = qr;:-k. By proposition IV.l.20, p. 70 we have ordp (D1) < p~l, 
so we have ordp (D1) < 1/eK since eK ~ p- 1. SetT:= m/eK- ordp (D1); we 

have r > ~: 1 . It follows that the sets (3 + prDcp, for (3 E R, are pairwise 

disjoint and contained in a + ntDcp· Hence it is enough to prove that 

Z (f3,r;P1,q'J( (X))~ 1 for all (3 ER. 

Fix (3 E R. We will consider the Newton polygon of Pt,q'J( ((3 +X). By 

proposition IV.2.3(iii), p. 71 we know that ordP (Pt,q'J( ((3)) ~ 0. vVe wish to 

estimate ordp ( P{,q'J( ((3)). Write >.1 (Y) = I:i=~ cy·i E K [[Y]]. By proposi­

tion IV.2.3(iv), p. 71 we have 

q'J( 

P(,q'J( ((3) = nl L ciPl,q'J(-i ((3) . 
i=l 

Hence, by proposition IV.l.11, p. 68, we have ordp ( Fl',q'J( ((3)) = ordP (Dt) -
m/eK = -T. It follows that 

f.L ( 1; Pt,q'J( ((3 + X)) ~ orclp ( P(,q'J( ((3)) - ordp ( Pt,q'J( ((3)) 

~ -T. 

Hence, by theorem 1.5.6, p. 26, we have Z (f3, r; Pt,q'J( (X)) ~ 1, as required. 

D 
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