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Capturing and characterising pre-failure strain on failing slopes

Melanie J. Froude

Effective management of slope hazards requires an understanding of the likely
triggers, geometry, failure dynamics, mechanism and timing; of these the last two
remain most problematic. Reducing the epistemic uncertainty of these elements is
crucial, particularly for landslides that are not easily mitigated. The ‘inverse-velocity
method’ utilises the linearity in inverse-strain-rate change through time in brittle
materials to forecast the timing of final slope collapse. A significant body of published
deformation data is available, yet to date there has been no attempt to collate a
catalogue of landslide deformations from a large number of sites to examine emergent
behaviour; notably variations in and controls on movement prior to failure. This thesis
collates thirty-one examples of tertiary creep and related attributes from a broad
literature search of over 6,000 peer-reviewed journals. Results show that tertiary creep
operates over durations ranging from ~37 minutes to 3,171 days. Patterns of
acceleration corroborated with published parameterisations of brittle failure; namely
Voight’s (1989) model. Most examples (86%) were best-fit with hyperbolic curves,
described by an a coefficient within the 1.7 and 2.2 range; indicative of deformation
driven by crack growth. No significant relationships between slope and creep
characteristics were found within the database of examples, however the lack of
standard reporting of slope failures, particularly between industry documents and
academic papers, limits the analysis. The database validates the ‘inverse-velocity
method’ as a robust forecasting technique. Iterative a priori analysis of data has shown
that slopes deforming in a brittle manner are more likely to predict slope collapse ‘too
soon’ as a false positive prediction. Analysis has also shown that tertiary creep is
typically delimited (87% of examples) within the first 25% of the total creep duration.
Recommendations towards monitoring specifically highlight the need for instruments
to deliver spatial accuracies to ~10mm, surface based capture and continuous
measurement. Developing processing procedures for point cloud data derived from a
permanent terrestrial laser scanning system is recommended as the best approach to

small-scale deformation monitoring.
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Chapter 1- Introduction to study

1.1. Context and thesis justification

Landslides are complex natural phenomenon (Malamud et al., 2004),
dominating hillslope mass wasting (Hovius et al., 1997), playing a major role in
landscape evolution (Malamud et al., 2004) and posing a significant geological hazard
to local communities, particularly in mountainous regions of the developing world
(Alexander, 2004; Clague and Evans, 1994; Petley et al., 2005). This widespread dynamic
process (Noferini et al., 2007; Petley, 2009) claimed in excess of 75,000 lives between
2000 and 2009 (Petley, 2010), causes billions of dollars (USS) of damage annually and
worryingly, considerable evidence suggests landslide impact is increasing with time

(Alexander, 2004).

Effective management of slope hazards requires an understanding of the likely
triggers, geometry, failure dynamics, mechanism and timing (Bell et al., 2006; Rosser et
al., 2007); of these the last two remain most problematic (Rosser et al., 2007).
Reducing the epistemic uncertainty of these elements is crucial, particularly for
landslides that are not easily mitigated (Petley, 2009), for example the Anzola
landslide, Ceno Valley, Italy (Mandrone et al., 2007). In these cases, identifying the
extent of the hazard in space, predicting slope failure in time and disseminating this as
an early warning is critical (Corominas et al., 2003; Petley, 2009). Widely considered
the best predictive measure (Rose and Hungr, 2007) strain-rate underlies the ‘Inverse-
velocity method’ which utilises the linearity in inverse-strain-rate change through time

in brittle materials (Petley et al., 2008aa).

Predicting final failure using this technique has been successful for a number of
retrospective (Rose and Hungr, 2007; Saito, 1969) and a priori failures (Hungr et al.,
2005; Hungr and Kent, 1995a; Kilburn and Petley, 2003; Suwa, 1991; Zvelebil, 1984). The
Vajont landslide, Italy (Kilburn and Petley, 2003) is one such example where
retrospective analysis has indicated that catastrophic failure may have been forecast
using the Inverse-velocity method up to 30 days in advance. Tragically, over 2,000
people drowned on 9™ October 1963 when a 270 million m® rock avalanche generated

a 245m high wave that overtopped Vajont dam.

Our understanding of the controls on pre-failure behaviour in brittle slopes is

still very poor, potentially limiting the wider application of strain-rate based prediction.
2



Chapter 1- Introduction to study
One approach to this problem is to investigate the relationships between a large
number of brittle failures and their attributes. A significant body of published data is
available yet to date, there has been no attempt to collate a generic catalogue of
landslide deformations from a large enough number of sites to facilitate the
examination of emergent behaviour; notably variations in and controls upon

movement prior to failure.

The collation of such data is a critical basis for failure prediction models and
informs methods of quantifying pre-failure strain for slope hazard assessment (Crosta
and Agliardi, 2003). In turn, this feeds directly into improvements in landslide early

warning system.

1.2. Research aims and objectives

This thesis aims to: (1) build a database on the nature of pre-failure
acceleration from published examples of monitored failing slopes; and (2) using
observations from this database, to consider the methodological constraints on
detecting movement in the context of applying the inverse-velocity method for failure

prediction.

Objective 1: To build a database of pre-failure deformations for collapsed slopes, to
assess variables contributing to and controlling the nature of pre-failure strain

accumulation

Objective 2: To identify patterns of tertiary creep which may reflect physical

deformation mechanisms

Objective 3: To assess the application of the inverse velocity method to brittle failing

rock slopes for purposes of forecasting and early warning

Objective_4: To consider the constraints on ground-based remote sensing for

monitoring pre-failure movements
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1.3. Thesis structure

This thesis is structured to reflect the wider context of slope deformation and landslide

forecasting within which the collated database is situated and analysed.

Chapter 2: reviews key concepts in landslide mechanics, broadly describing
different stages of slope movement from stable through to reactivation. The
focus of the chapter then moves to overview the physical mechanisms

controlling pre-failure deformation.

Chapter 3: overviews different approaches to forecasting and prediction within
the context of landslide risk management. The Inverse-velocity method is

outlined here, followed by a review on displacement monitoring.

Chapter 4: describes the method of database collation. Results are then
presented to consider variations in patterns of pre-failure creep and the practical

application of the Inverse-velocity method for a priori forecasting.

Chapter 5: uses results from the database to critique the accuracy and precision
of forecasts derived from the Inverse-velocity method and to inform instrument

specifications for pre-failure deformation monitoring.

Chapter 6: provides a synthesis of research findings and conclusions.
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Chapter 2: Hillslope stability and landslide behaviour
2.1. Landslide definition

Landslides are complex natural phenomenon, and part of a broader group of slope
processes commonly referred to as mass movements (Glade and Crozier, 2005)

The term ‘landslide’ describes:

“...the movement of a mass of rock, debris or earth down a slope.” (Cruden,

1991, p.4 in; Sassa, 2007)

This definition was established by the International Geotechnical Societies’” UNESCO
Working Party on World Landslide Inventory- in conjunction with the United Nations
International Decade for Natural Disaster Reduction (IDNDR) - and is widely cited by

geomorphologists.

2.2. Slope stability

Mountainous topography reflects the interplay between uplift and erosion
(Schmidt and Montgomery, 1995). Hillslopes dominate these dynamic landscapes,
adjusting to rapid bedrock incision through increased rates of landsliding (Korup,
2008). Hillslope morphology is controlled by slope stability that sets a threshold on
slope angle (Montgomery, 2001). Slope stability is controlled by the balance between
forces driving and resisting the downslope movement of material. This relationship is
best illustrated by a simple force diagram of an object at rest on a plane inclined at
angle (9) to the horizontal (Figure 2.1). The forces in this problem are all generated by
the weight of the object, which acts vertically. The driving force is the product of
object weight and resultant. Resisting the weight of the object, the frictional force is
the product of the coefficient of friction (roughness of surfaces in contact) and the
normal force (equal and opposite too the normal reaction) acting perpendicular to the
slope. Engineers commonly refer to the balance of these forces as a factor of safety (F)
(see Figure 2.1 for equation). When the object is stable, F; >1. However when driving

forces exceed resisting forces, Fs; <1 and the object is in a state to move downslope.
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Resisting force W= weight
friction normal m= mass
reaction g= gravity
0= slope angle (deg)
F= friction

tan(¢)= coefficient of friction

normal force=normal reaction
N= normal force

W=m-g
Driving force= W-sin(8)

N= W-cos(0)
Resisting force (F)=(W-cos(0))tan(¢)

Fs= resisting force = (W-cos(0))tan(¢)
driving force W-sin(6)

Figure 2.1: Force diagram for a simple object stable on a plane
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Figure 2.2: Theoretical slope model: forces acting at a point on a potential failure

plane. (Adapted from Selby, 2005, figure 13.7, p.269)
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Translating the mechanics of a simple force model into the stresses operating

in a hillslope, Figure 2.2 depicts the stress attributes acting on a point on a potential
shallow slide shear plane. Here shear stress promotes downslope movement, assisted
by water pressure within the hillslope. The shear strength of the slope material will
prevent movement, until maximum shear stress is reached, causing the material to
rupture, or fail (Selby, 2005). It is more appropriate to model landslide mechanics in
terms of stress rather than force. Hillslopes typically behave as a continuum at scale,
composed of continuous mass or arbitrary blocks of soil and/or rock, rather than
discrete blocks on a plane, such as the object in Figure 2.1. Stress is a measure of the
average force per unit area; the force is distributed continuously through a deformable
body across imaginary internal surfaces (i.e. stress tensor). Using a method of analysis
similar to (Skempton and Delory, 1957) infinite slope model, (Anderson and Anderson,
2010) illustrate slope stability in terms of stress using a 3D slope segment from a
planar hillslope (Figure 2.3). The slab of regolith and/or rock in the model rests on a
potential slip surface, defined as the interface between regolith and bedrock or

alternatively a joint plane/ plane of weakness within bedrock.

dy

Pb
water table

—
o

Potential slip surface (interface
between regolith and bedrock
or a joint plane/ plane of
weakness within bedrock

Figure 2.3: Segment of planar hillslope showing geometry of a slab of regolith.

(From Anderson and Anderson, 2010, figure 10.25, p.331)
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Forces
area=dx-dy R= W-cos(8)
m= pp-h-dx-dy &= angle of internal friction
cross-sectional area= L-h friction coefficient= tan(®)
L= dx-cos(0) Resisting force=
Driving force= py(h-dx-dy-cos(0))g:sin(0) [pb(h-dx-dy-cos(B))g-cos(B)]-tan(P)

Force - stress
...divide expressions for driving and resisting forces by area= (dx-dy)

Stresses
Driving stresses= resisting stresses
py-h-g-cos(8)-sin(B)=py-h-g-cos’()-tan(d)

Water Cohesion
w= water (sum mineral root contributions at failure
b= bulk interface)
g= grains
n= porosity of the medium C= cohesion
d= water table height above failure plan C’= effective cohesion
Pb= Pg(1-n)+pwn = shear strength
pp= p%"’pdry(h'd) 1= effective shear strength
h

Coulomb equation...
= o-tan(®)+C [Equation 2]
= (o-Py)tan(d)+C’

o= normal stress (p,-g-h)

P.= water pressure (p,-g-d)

o'= effective normal stress
0’'=py-g-h-pygd [Equation 1]

Water and cohesion are accounted for...

Driving stress= p},-h-cos(0)-g-sin(0)
Resisting stress= py,-g-h-cos’(0)-p,-g-d]-tan(®)+C’  [Equation 3]

Factor of safety master equation...
F.= pp-g-h-cos’(6)-pw-g-d]-tan(d)+C’
Pp-h-cos(0)-g-sin(0)

Box 2.1: Equations related to the Factor of Safety calculation
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As previously stated, shear stress drives downslope movement. Adding
complexity (and reality) to the model, the resisting stress (effective shear strength) is
defined not only by the angle of internal friction but also by effective cohesion and
water pressure. Shear strength in a dry slab is expressed as a straight line on a normal
stress-v-shear stress plot, in which cohesion is defined by the intercept on the shear
stress axis, and the angle of internal friction is defined by the gradient of the line. This
relationship is described by the Coulomb equation (Equation 2, Box 2.1) (Selby, 2005).
Effective shear strength accounts for the presence of water within the slab which
changes the material’s bulk density and increases pore-pressure, undermining the
normal stress with a buoyancy effect (Selby, 2005). Effective normal stress (=normal
stress- water pressure) is calculated to account for water presence (Equation 1, Box
2.1). Cohesion is redefined as effective cohesion, to acknowledge the loss of surface
tension and resultant reduction in cohesion, with increasing pore pressures. The
resisting stress is thus the product of the effective normal stress and the coefficient of
friction, plus the effective cohesion (Equation 3, Box 2.1). The definition of the factor of
safety does not alter; as Fs decreases towards 1, the probability of instability increases-

most landsliding occurs when F; is between 1 and 1.3 (Selby, 2005).

2.3 Stages of slope movement

A hillslope is said to be in a state of stress, when external forces are applied,
setting up internal forces within the slope material. Strain, the ratio of change in
dimensions of the stressed body to its original dimensions or put simply, deformation-
is produced by stresses operating on and within the slope (Selby, 2005). Crozier (1986)
conceived slopes on a stability spectrum, essentially ranging from stable to actively
unstable (undergoing continuous or intermittent movement) based on slope stress
state. Once destabilised a slope progresses through four different movement stages
outlined in figure 2.4. This model, adapted from Leroueil et al. (1996) illustrates the
life-cycle of an unstable part of a hillslope. The duration of each stage depends on
many factors such as slope material properties, slope geometry, local seismicity, local
rainfall and anthropogenic interaction. This section outlines each stage of the model,

particularly focusing on pre-failure movements and mechanisms.
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1. Stable
'\ | -
+ 2. Pre-failure 3. Post-failure 4. Occasional reactivation 5. Active landslide
; ® = a
Displacement _Point'of
rate first failure
Point of
subsequent failure!
0 : : N
0

Time

Figure 2.4 Different stages of slope movements (adapted from Leroueil et al., 1996, in Picarelli et al., 2005, fig.1, p.29)
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2.3.1. Pre-conditions to slope instability

Hillslopes are stable when they are able to withstand the action of all natural
dynamic destabilising forces likely to be imposed under the current environmental
conditions and geomorphic regime. The composition of slope material is an important
pre-condition to landsliding; potentially acting as a catalyst for other dynamic

destabilising factors to operate more effectively (Glade et al., 2005).

2.3.1.1. Material intact strength

Lab-based measurement of material intact strength using stress testing (i.e.
triaxial cell) provide values for cohesion and the angle of internal friction, equating to
the y-intercept and slope angle respectively, of the Mohr- Coulomb failure line plotted
on a normal stress- shear stress graph (Selby, 2005). Cohesion is the main
differentiation between soil and rock; rocks possess significantly higher values of
cohesion (e.g. granite = 35,000kPa) in comparison to soils (e.g. sand = O0kPa;
cohesionless) (Selby, 2005). Cohesive strength is dictated by the nature of material
bonds on a microscopic scale. Frictional strength is the frictional resistance between
mineral particles, greatly influenced by particle density within a volume of material
(Selby, 2005). Friction provides the main control on strength for most rocks and soils,
but does not necessarily operate uniformly throughout a mass. In crystalline rocks and
clays, strength is anisotropic if minerals have a consistent orientation within the lattice
(Goodman, 1989). Here micro-scale damage (e.g. fissuring) is likely to occur
preferentially in weaker orientations that are aligned to the mineral fabric. In
comparison strength in undamaged soils is isotropic, in some cases purely controlled
by friction if the mass is cohesionless. Understanding basic distinctions in the petrology
of slope materials is important when discussing the wider context of hillslope lithology.
The chemical composition of soil and rock determines its response to stresses imposed
by temperature fluctuation or water immersion, for example. It also dictates the strain

energy needed for deformation (Selby, 2005).

2.3.1.2. Hillslope structure

Hillslope form is determined by the response of rock and soil to destabilising
processes. This response is governed by the physical properties of the material.

Although intact material strength is important to understanding slope stability,
12
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hillslopes are never composed entirely of intact rock or undamaged soil. An arbitrary
distinction may be made here between the behaviour of hillslopes composed of hard
rocks, soft rocks or soils. The persistence of asperities in a hard rock slope, tend to
control its stability. Asperities concentrate stress, control water movement in the rock
body and permit weathering to penetrate and weaken the mass. The shear strength of
partings is significantly lower than intact rock and greatly varies between fractures
within the same mass. Their effective shear strength is controlled by the material’s
frictional strength, the roughness of the walls of the parting and the thickness and
strength of infill material within the parting (Selby 2005). Measurement of rock mass
strength, taking into account the intact strength and nature of discontinuities, provides
a better value estimate of overall material strength when considering slope stability.
Soft rocks and some soils may also contain fissures; however the stability of these

materials is generally controlled by the action of water within slope.

(a) / (b) \\

=\ "T

Figure 2.5: Orientation of rock discontinuities in relation to hillslope gradient: (a) joints
are inclined against hillslope gradient and enhance rock strength, (b) joints are
horizontal and have near neutral effect on rock strength, (c) joints dip gently out of the
hillslope and moderately weaken rock strength, (d) joints dip steeply out of the
hillslope and greatly weaken rock strength. (Parsons, 1988, p.76 fig. 5.6).

Hillslope lithology is often complex, containing different geological layers each
with their own physical properties and internal structure. The orientation of macro-
structures within the slope has important bearings on material stability and surface
morphology. Parsons (1988) presents four structurally controlled hillslopes (figure 2.5).

Where discontinuities are inclined perpendicular to the gradient of the slope surface
13
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(figure 2.5(a)) the mass is strengthened, but where inclination is near parallel to the
slope surface, instability is promoted (figure 2.5(d)). Internal structure, material
properties and interactions between lithological boundaries are important factors pre-
conditioning hillslopes to destabilise. These features dictate how slopes behave under
stress and influence the magnitude of driving forces necessary to overcome effective

shear strength.

2.3.3. Pre-failure movements and mechanisms

Pioneering work by Bishop (1967), Bjerrum (1967) and Skempton (1964),
documented that slopes are able to undergo progressive failure, i.e. fail without
mobilising peak strength. This process may be termed ‘creep’, although definitions of
creep vary by discipline, but is defined within engineering and material science as “the
deformation of slope materials under constant shear stress towards failure” (Ng, 2007;
p.30). Work attempting to understand landslide precursory movement has
demonstrated that behaviour appears to be dominated by the mode of shear zone
deformation (brittle or ductile) (Petley et al., 2005; Picarelli et al., 2005a), rather than
state- and rate- dependent friction proposed by Helmstetter et al., (2004), derived
from the Dieterich-Ruina friction law (Dieterich, 1978; Ruina, 1983). It is important to
understand both the time-dependant dimension and dynamic nature of pre-failure
creep. This section initially outlines differences in material deformation behaviour, the
development in understanding of the creep phenomenon and the three phase creep
model for strain development. It then proceeds to look at preparatory factors causing

strain to accumulate in hillslopes and triggering factors that initiate final failure.

2.3.3.1. Material deformation behaviour

Material behaviour under load is understood using intact samples in laboratory
pressure tests (Mazanti and Sowers, 1966). Pore-pressure reinflation tests, which use
pore-pressure inflation to reduce effective stress of a material under constant load,
provide insight into different modes of deformation relevant hillslope materials (Petley
et al., 2005a). Brittle deformation prevails in bonded or cemented materials at low
effective stresses, while ductile mechanisms are commonly found in materials with

little or no inter-particle bonding at higher effective stresses (Ng, 2007). Figure 2.6

14
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illustrates the different stress-paths produced by materials deforming in a brittle and

ductile manner under constant load.

Stress (o)

Peak strength o _DUCEIE -
[Elastic limit
Residual
3 strength
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Figure 2.6: Stress path for a typical brittle (orange) and ductile (green) material: (a)
stress- strain curve illustrating key mechanical parameters; (b) brittle deformation; (c)
ductile deformation. For (b) and (c): stage 1= initial elastic phase, stage 2= elastic-
plastic phase, stage 3= steady-state plastic deformation phase, stage 4= strain
weakening phase, stage 5= residual, steady-state phase [(b) and (c) after (Petley and
Allison, 1997 in Ng, 2007)].
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Both materials initially deform elastically, a phase in which strain is recoverable (stage
1, figure 2.6(a) and (b)). When the elastic limit is reached, elastic-plastic deformation
ensues as the weakest or most highly stressed bonds between particles permanently
break (stage 2, figure 2.6 (a) and (b)) (Petley and Allison, 1997). Internal slip,
dislocation and micro-fractures develop around weakened areas within the brittle
mass, which fails when the stress path reaches material peak strength (i.e. the peak
sustainable stress) (Petley et al., 2005b). During stage 4 (figure 2.6 (a)) strain localises
on the tips of micro-fractures, initiating shear surface development through a gradual
loss of shear resistance as the last inter-particle bonds between micro-fractures break,
creating a rupture through the mass. This plastic deformation occurs rapidly, driven by
the imbalance between shear stress and shear strength, caused by a sudden loss in
cohesion (Kilburn and Petley, 2003). The material fails when the stress-path reaches
residual strength, indicating a new steady-state for the material (stage 5, figure 2.6(a)).
Ductile deformation is not limited by material peak strength; when under constant
stress, plastic failure occurs during which particles in the material are restructured
(stage 3, figure 2.6 (b)). No clear shear surface forms as strain cannot localise, so
deformation is distributed throughout the mass (Petley et al., 2005a). Strain rate
increases as the mass is progressively restructured and affected by pore water

pressure fluctuations (Ng, 2007).

2.3.3.2. Progressive creep model: the brittle case

Terzaghi (1950) first identified the connection between material creep and
landslides, recognising progressive deformation of the basal shear zone. This work
illustrated the process of creep as a gradual decrease in factor of safety (i.e. the ratio
of shear strength to shear stress) through time (Ng, 2007). A hillslope fails when shear
stress and shear strength are in unity and the factor of safety equals one. Terzaghi’s
work was fundamental to understanding slope stability; providing insight into strain
development and final failure. However it does not explain the mechanics of

progressive deformation.

Bjerrum (1967) first described the process of progressive failure- recognising
that landsliding in cohesive materials generally requires the shear zone to undergo a

significant drop in resistance, transitioning from peak to residual strength (Petley et al.,
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2005a). Bjerrum’s model associates this behaviour to the formation of a continuous
shear surface, re-scaling the mechanisms involved in brittle deformation (section
2.3.3.1) to operate over a hillslope. As inter-particle bonds break under stress, elastic
strain energy is liberated, enabling localised plastic deformation. Stress redistributes
with each microscopic failure; stress is concentrated on unsheared crack tips within
the mass that gradually join to make a shear surface. As the proportion of unsheared
material in the shear zone decreases, shear stress tends to infinity and deformation
accelerates (Petley et al., 2008a). Bjerrum’s work highlights the presence of
“recoverable strain energy” in shearing materials (Bjerrum, 1967), facilitating

progressive failure in unstable hillslopes.

Strain
Transient I Accelerating
(primary) , | (tertiary)
creep | Steady-state | creep
: (secondary) !
| creep "
I . i P
Time

Figure 2.7: Three- phase creep model (Main, 2000 after ; Varnes, 1978)

Varnes (1978) described the progressive failure of materials under constant
stress, using a three-stage creep model (figure 2.7). This builds on Bjerrum’s
understanding of shear surface formation and is consistent with patterns of precursory
strain development observed in other natural phenomenon such as volcanic dyke
propagation (Kilburn, 2003) - also involving the slow cracking of rock. The three phases
of the model: primary (transient), secondary (steady-state) and tertiary (accelerating
creep) are associated with the contrasting processes of strain hardening and strain
softening, operating on a micro-scale within the rock mass (Martel, 2004). Strain
hardening (also known as work hardening in materials science), is the strengthening of
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a material by dislocation movements within the crystal structure (Callister and
Rethwisch, 2010). Strain softening facilitates shear surface development and
represents the gradual loss of shear resistance with strain after peak strength has been
reached (Prevost and Hoeg, 1975). The three-phase creep behaviour is explained using
a mechanics model (figure 2.8) adapted from those presented in Petley et al. (2005a)
and Petley et al. (2005b). This illustrates progressive failure of an infinite slope in terms
of time-dependant displacement and factor of safety. The mechanism of precursory
micro-cracking is primarily underpinned by theories of damage accumulation in solids
(Main, 2000), together with the results from laboratory reinflation tests (Petley et al.,
2005b; Petley et al., 2005a; Petley et al., 2008a) and observations of the progressive

dynamics of individual slope failures (Crosta and Agliardi, 2003).

Initially the slope is stable (figure 2.8, A); no features associated with instability
are present although a weak layer exists within the mass. Primary creep represents the
early stages of damage in which strain hardening mechanisms are progressively
mobilised. Initial elastic deformation stretches molecular level bonds, the weakest of
which break, rearranging atoms within the solid material (plastic deformation) (Kilburn
and Petley, 2003; Petley, 2009). Under continued stress, the material becomes
increasingly saturated with new dislocations (defects). This perhaps explains the
observed initially high displacement rate of the primary creep stage and a decline in
slope factor of safety (figure 2.8, B) (Petley and Rosser, 2009). As dislocations
accumulate they serve as pinning points, altering the local stress field within the lattice
and resisting internal plastic deformation; the material is strengthened (strain
hardened), increasing the force required to produce new dislocations (Smith and
Hashemi, 2006). A dominance of this process during the primary stage of creep
appears to account for declining displacement rates as progressive failure advances
towards the secondary phase (figure 2.8, B). Importantly it is noted here that primary
creep in landslide mechanics remains the least understood phase of Varne’s model
(Varnes, 1983); interpretation is thus based on established concepts applied in other

areas of materials science.

As shear forces overcome the elevated strength of inter-particle bonds,
dislocations begin to nucleate, initiating micro-fracture development throughout the

mass (Smith et al., 2006). Fluctuations in slope FoS during the primary creep stage
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Figure 2.8: Pre-failure deformation mechanisms of brittle rock slopes adapted from

fig.4, p. 203 (Petley et al., 2005a) and fig. 9 (Petley et al., 2005b)
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represent the en-mass progressive strain hardening and dislocation of inter-particle
bonds. Gradual damage accumulation within the slope decreases its stability. Petley et
al. (2005a) highlight microfracture initiation as an important FoS boundary,
propensiating further damage to the slope. Essentially stability at this point is
recoverable if effective stress is reduced; many damaged slopes are thought to exist in

an apparent stable state following a decline in local stress conditions.

Secondary creep represents a steady-state period of slow plastic deformation
(Main, 2000). The weak zone of material (figure 2.8, C) remains under constant stress
accumulating further damage resulting from a shifting balance of strain hardening and
softening forces (Carey et al., 2007). Local hardening mechanisms focus on tiny
material flaws (crack nuclei) and the tips of existing microfractures (Kilburn and Petley,
2003). Although surrounding material is initially strengthened under this process, the
greater shear force required to overcome peak strength and create new dislocations,
also enhances strain softening; once bonds break neighbours relax and release greater
amounts of built up elastic strain energy, driving additional fracturing (Lawn, 1993).
Initially deformation during the secondary phase is dominated by new crack formation,
but progressively it becomes a function of crack growth (Carey et al., 2007). As
material in the shear zone grows weaker an inflection point in the deformation-time
graph is observed (figure 2.8, C). This represents a shift from the dominance of strain
hardening to strain softening mechanisms (Petley et al., 2008a). Although crack growth
is inherently stable during this period- fractures’ remain isolated from one another and
controlled by the magnitude of shear and effective normal stress- deformation begins
to accelerate (Kilburn and Petley 2003). The progressive loss of cohesion and growth of
microfractures reduces hillslope FoS to a second important boundary (figure 2.8, C).
Here microfracture density becomes sufficiently high that neighbouring cracks begin to
interact (Petley et al., 2005a). Strain softening mechanisms localise deformation on the
unsheared material residing between crack tips (Cornelius and Scott, 1993). Shear
stresses acting on this intact mass increase at a hyperbolic rate as the process becomes
self-reinforcing (Petley et al., 2005a), driven purely by the elastic energy release of
micro-scale dislocation- independent of changing stress conditions (Petley et al.,
2005b). The initiation of this mechanism corresponds to the boundary between

secondary and tertiary creep, also described as critical strain (Kilourn and Petley,
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2003), it represents the point at which shear surface development is initiated within

the weak layer of hillslope (shear zone).

Shear surface development is characterised by a hyperbolically increasing bulk
displacement rate, corresponding to growing slope instability (decreasing FoS) and
accelerating damage within the shear zone (figure 2.8, D). Whereas deformation
during the primary and secondary creep stage is essentially ductile and distributed
throughout the weakening mass, tertiary deformation is a brittle process localised by
strain softening on a single plane within the shear zone (Main, 2000). In line with
Bjerrum’s (1967) model, final failure occurs when the deforming material reaches
residual strength (figure 2.6). Just before this point, the area of uncracked material in
the shear plane becomes infinitely small and shear stress becomes infinitely big (Carey
et al., 2007). Figure 2.8(E) illustrates that catastrophic landsliding occurs when FoS
reaches or is marginally below unity (1.0); the point at which shear stress exceeds

shear strength and the failure plane fully forms (Petley et al., 2005a).

Griffith’s criterion (Griffith, 1921) presents a two-stage feedback process to
explain the failure of brittle materials. His work recognised the changing stability of
crack growth driven initially by strain hardening (with negative feedback) but
progressing to strain softening mechanism (with positive feedback) (Main, 2000). His
equation K = Yox? (equation 1; Main, 2000, p.153), describes the stress intensity at
the crack tip (K) as the product of the loading configuration/mode of failure constant
(Y), the applied stress at the boundary (o), the half-length of the crack (x) to the power
of a crack growth stability constant (g). When g<0, feedback is negative, however
when g>0 accelerating unstable crack growth occurs. Griffith provided insight into
modelling the three stages of progressive failure proposed in Varne’s (1978) model.
Voight (1989) later proposed

dx 1- 1

Z=Ma-0C-t)+ 5 09

[Equation 4 (Voight, 1989; p.201)]

In this case x represents displacement, t is time, and A and a are empirical constant.
Importantly Voight (1989), with later verification from De La Cruz-Reyna and Reynes-

Davila (2001), found that a = 2 for movements of rock fracture in real systems (Petley
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et al., 2005a). This provides a hyperbolically accelerating rate of strain accumulation,

associated with the tertiary creep stage of Varne’s (1983) model (Main et al., 1993).

Main (2000) developed a simple hybrid model for creep in brittle materials,
following the work of Griffith (1921), Voight (1989) and Omori (1894); Omori
presented a law for the temporal decay of earthquake aftershocks, relevant to the

seismicity observed during micro-cracking of brittle materials.

t
£ = e[l +—]

[Equation 5 (Main, 2000, p.151)]

Equation 5 is used for strain rate, (t), where t is the ratio of initial crack length to
rupture velocity; strain hardening dominates when 0 < m < 1, whilst m < 0 when strain
softening controls microfracture development. Main’s model recognises secondary
creep as an emergent behaviour from the linear superposition of stable (transient) and
unstable (accelerating) crack growth within a power law rheology (figure 2.7, Main,
2000). Although other authors have modelled progressive failure with different
mathematical relationships (e.g. exponential form, Lawn (1993), a power-law is noted

to best describe crack coalescence behaviour (Main, 1999).

Kilburn and Petley (2003) present a model for crack growth during accelerating
creep, describing how microscopic deformation manifests to macroscopic bulk dilation
and downslope displacement. Based on the assumptions that each crack event breaks
a fixed distance of unbroken rock (by nucleating or cracking) and that bulk movements
are proportional to the total rate of cracking, rates of downslope displacement during
tertiary creep are given by,

dx dx
dt

= Y (x—x0)
dt ( t)oe

[Equation 6 (Kilburn and Voight, 1998)],

where x represents displacement, t is time, suffix 0 denotes conditions when crack
growth first dominates crack nucleation and v is an inverse length scale that depends

on the applied stress, rock properties and geometry of the crack array. The term,
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(dN/dx)

— 2¢Q2
b= Bo™STe gt

[Equation 7 (Kilburn and Petley, 2003, p.26)]

where w is an atomic stretching distance for breaking bonds at crack tips, S is the
remote applied stress (due to the downslope weight component of the unstable
slope), @ is the mean distance a crack extends during each step-like crack event, Y is
young’s modulus (see figure 2.6), k is Boltzmann’s constant (relating energy to
temperature), T is rock’s absolute temperature, B is a dimensionless term
incorporating Poisson’s ratio (ratio of transverse strain to axial strain) for the
deforming rock, the coefficient of friction along a crack’s touching surfaces, and terms
describing the geometry of the crack array (Lockner, 1993) and dN/dx denotes the
number of crack events per unit area (Kilburn and Petley, 2003). The model describes
slope behaviour beyond critical strain, importantly quantifying factors contributing to

the rate of crack growth within the mass.

Varne’s three-stage creep model is evaluated here with reference to an
adapted conceptual model from Petley et al, (2005a) and Petley et al. (2005b). Figure
2.8 presents a hypothetical infinite slope to illustrate progressive landslide
development. The hillslope may consist of soil or rock, however importantly both the
general hillslope material and weak layer are cohesive; the hyperbolic acceleration of
displacement during the tertiary creep stage is characteristic of brittle deformation
(Main, 2000; Petley et al., 2008). Although the weak zone of material in this schematic
maintains a consistent depth parallel to the slope surface, shear zones within natural
hillslopes are generally more complex (Skempton and Petley, 1967): often
discontinuous, occurring over different depths, composed of materials with varying
mass strengths (section 2.3.1.2.) and exposed to distinct local stress conditions.
Displacement-time and FoS-time graphs (figure 2.7) represent the entire slope at each
stage of the model; theoretically the progressive development of failure is consistent
throughout the shear zone because the slope modelled is infinite (Petley et al., 2005b).
In reality, displacement rates may vary across a hillslope, reflecting local shear surface
development (Petley, 2004; Terzaghi, 1950). Equally, FoS may vary spatially, with

different sections of hillslope destabilising at different rates; local FoS may drop below
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unity (1.0) as cracks coalesce but general slope FoS will remain above unity until the
shear surface fully forms (Petley et al., 2005a). Application of the three-phase creep
model to explain progressive failure in brittle materials is well established in damage
mechanics. Behaviour has been verified using laboratory static-load tests (e.g. Petley et
al. (2005a), Petley et al. (2005b), Petley et al. (2008a)), observed in field data (Carey et
al., 2007; Petley and Rosser, 2006; Rose and Hungr, 2007) and modelled numerically
(e.g. Crosta and Agliardi, 2003; Main, 2000; Voight, 1989). The physical mechanism of
progressive failure outlined here underpins methods of strain-based landslide
forecasting. This model will be discussed further in the context landslide movement

data presented in chapter 4.

2.3.3.3. Ductile failures

As noted in section 2.3.3.1, ductile mechanisms are commonly found in
materials with little or no inter-particle bonding at high effective stresses (Ng., 2007).
Most non-cohesive soils are considered viscoelastic-plastic materials, whose behaviour
when placed under stress is strongly controlled by grain size, packing, fabric and water
content (Selby, 2005). Although ductile deformation is a process often associated with
reactivated landslides, moving on pre-existing shear surfaces (Petley et al., 2002),
shear zones may develop from non-brittle mechanisms in previously stable hillslopes.
Work by Ng, K (2007) investigating deformation in residual soils suggested that the
development of elastic strain during the initiation of primary creep was negligible for
non-cohesive or heavily weathered materials. Application of Bjerrum’s model (1967) to
reinflation test results(Ng and Petley, 2009) indicated that the elastic strain energy
required to advance progressive failure was absent from the weathered samples (Ng,
2007). In effect, such materials exist at residual shear strength, developing strain from
inter-particle movement. Dilative soil behaviour, typically in response to elevated pore
water pressures, loosens inter-particle contacts. Strain hardening mechanisms operate
as soil particles subjected to shear, rearrange- either by push and climb or sliding

movements (Wood, 1990)

Under constant stress crack nucleations form throughout the shear zone
(Inkpen, 2005). If Main’s model (Main, 2000) applies here, fractures should develop

under strain softening mechanisms, driven by the release of elastic energy as new
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dislocations form (Lawn, 1993). This positive feedback does not dominate deformation
in the secondary and tertiary phase of non-cohesive material creep. Shear strength in
soils is controlled primarily by inter-particle friction rather than cohesion (bonding)
between particles (Powrie, 2004). The granular nature of soil prevents strain localising;
deformation is distributed throughout the mass by generalised inter-particle sliding
rather than contributing to shear surface development (Ng, 2007; Petley et al., 2005a).
As the material internally is remoulded, strain rate accelerates exponentially (Petley et
al.,, 2002). Unlike the brittle behaviour observed during shear plane development in
cohesive materials, ductile deformation does not manifest in a sudden rapid bulk mass
displacement; typically surface movements are slower during tertiary creep (Ng, 2007).
Strain rate develops in response to changing stress conditions, particularly driven by
fluctuations in pore water pressure. The chemical make-up of soil (i.e. mineral
composition) governs its response to water penetration. Atterburg limits define
whether the material will deform as a plastic or flow as a liquid (Selby, 2005). As water
content increases within the mass, deformation accelerates in the shear zone
generating a characteristic surge movement (Allison and Brunsden, 1990). Failure
occurs when pore water pressure increase reduces soil strength below constant shear

stress (Ng, 2007).

Although significant research has been undertaken within the engineering
sector to understand deformation in non-cohesive soils using laboratory stress testing
(Powrie 2004), mechanisms controlling patterns of pre-failure movement in hillslopes
composed of such materials, are less well understood (Carey et al., 2007). Terzaghi
(1950) highlighted that patterns of surface movement leading up to failure provide
insight into processes occurring within the shear zone. Pre-failure strain accelerations
were discussed by Petley et al., (2002), who noted key differences between slopes
undergoing brittle and ductile deformation. The progression of creep in brittle
materials is characterised by a power law (section 2.3.3.2), whereas strain develops at
an exponential rate in ductily deforming materials (Petley et al., 2002). Importantly
basal mechanisms evolve through time; Varne’s (1978) three-phase model describes
an essentially ductile process during secondary creep which becomes gradually
dominated by strain softening leading to brittle deformation during the tertiary

stage(Petley, 2004). Both cohesive and non-cohesive materials experience ductile or
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plastic deformation during progressive failure. Under high pressures and
temperatures, cohesive rocks and soils may deform in a purely plastic manner (Hudson
and Harrison, 1997). Although these conditions generally exist at great depths from
the surface, shear zones forming on weak rocks or soils at depth within a hillslope-
leading to a deep-seated landslide- may alter their deformation behaviour from brittle
to ductile in response to confining pressures. Ductile failures will not develop into
catastrophic landslides (Rosser, 2010); strain rate is typically lower than that of failures

driven by unstable crack growth (brittle) (Ng, 2007).

The self-reinforcing nature of brittle failure presents possibilities to forecast
shear-plane development, using slope strain-state (section 3.4). Conversely, hillslopes
deforming under ductile processes are considered in terms of landslide likelihood;
based on an assessment of slope stress-state (Ng and Petley 2009) (section 3.3).
Landslides are incredibly complex phenomena. Although deformation processes have
been studied extensively within the laboratory, controls on progressive hillslope failure

remain poorly understood (Rosser, 2010).

2.3.3.4. Preparatory and triggering factors

Interacting with elements pre-conditioning hillslopes to instability (outlined in
section 2.3.1), preparatory factors reduce the margin of stability in a slope over time,
without actually initiating final failure (Glade and Crozier 2005). Conceptually all
hillslopes are located on a failure continuum, determined by physiographic setting,
intact material strength (Hudson and Harrison, 1997) and the sequence, dynamics and
intensity of environmental forcings (Densmore et al., 1997; Hertgarten, 2003; Rosser et
al., 2007). Slopes accumulate strain or permanent damage over a variety of timescales,
ranging from days to hundreds or perhaps thousands of years (Petley et al., 2008a).
Some preparatory processes- for example weathering, tectonic uplift, regional climate
change (table 1)- operate over long geological time scales, creating the general
physiographic environment in which intact material is slowly damaged. The action of
others- for example deforestation, rainfall, earthquakes (table 2) - is more immediate.
These events or environmental forcings alter the rate at which a hillslope accumulates
strain ordinarily within its physiographic setting. Basal mechanisms determine whether

final slope collapse is controlled by self-reinforcing shear surface formation, following
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from a critical strain or by the magnitude and frequency of stress events accelerating
rates of deformation to a critical strain. Hillslopes composed of brittle materials
initially develop strain in response to local physiographic mechanisms and
environmental forcing events (during primary and secondary creep). Slope strain state
evolves from zero to a critical threshold (peak strength), after which irreversible
accelerating deformation develops (tertiary creep) resulting in catastrophic failure as
effective shear strength falls to a residual value (Main, 2000; see sections 2.3.3.1 and
2.3.3.2). Hillslopes destabilising under ductile mechanisms also develop strain in
response to stress, however failure occurs at critical strain- when a triggering event
reduces shear strength below shear stress- rather than at the point of shear plane

completion (section 2.3.3.3).

Local physiographic mechanisms (table 1) operate continuously to degrade
hillslope material. Many of these processes fluctuate in intensity in response to
seasonal cycles. Some are dependent on fluctuations in other variables; many chemical
processes are modulated by temperature (Anderson and Anderson, 2010). All
physiographic mechanisms reduce material strength increasing the effectiveness of
subsequent environmental forcing events (table 2). In turn, periods of intense stress
readily enhance physiographic mechanisms- effectively both preparatory processes act
together in a symbiotic relationship to reduce hillslope strength. Intact material
strength of slope composites is an important pre-condition to the rate of progressive
hillslope failure (section 2.3.1.1). Figure 2.9 illustrates conceptually the process of
strain accumulation, highlighting the differential response of various rock strengths to
environmental forcing. Here material deformation is modelled on three-phase creep
(Main, 2000; see section 2.3.3.2); critical strain represents the transition from
secondary to tertiary creep leading to brittle failure. Rock resilience to damage defines
the rate of strain accumulation under stress through time. The weakest material is
sensitive environmental forcing; strain evolves and the slope reaches a critical strain
state, triggering shear surface development. The strongest material responds only
slightly to stress events; a small amount of deformation occurs (i.e. irreversible
damage), but the slope remains fairly intact, hypothetically residing in the primary

creep stage of progressive failure.
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Physiographic mechanisms typically exert constant low level stress on a
hillslope. Environmental forces act episodically, applying intense stress over discrete
periods. For damage to accumulate, each stress episode must reduce effective
material stress to a level equal or lower than that previously experienced (Petley et al.,
2005b). In brittle materials this process of hysteresis is known as the Kaiser-stress
memory effect (reviewed in Holcomb, 1993; Lavrov, 2005; Lockner, 1993); with each
‘effective’ stress episode the potential for catastrophic failure increases (Meredith,
2010). Under this model for cumulative damage a slope may exist for significant
amounts of time just below critical strain state in the absence of an event of suitable

magnitude to instigate the transition into tertiary creep (Rosser, 2010).

Pre-conditions and preparatory factors set the stage for triggering events,
initiating accelerating shear-plane development and catastrophic failure in brittle
materials (Rybar et al.,, 2002) and prompting sudden loss of strength in ductile
deforming shear zones. Most landslides are triggered by one of three key factors:
precipitation, seismicity or the action of humans (Petley, 2009). Water reduces shear
strength triggering failure: in brittle materials water acts as a catalyst to crack growth
(Kilburn and Petley, 2003), in ductile materials it saturates pore spaces, preventing
further ‘dilatant strengthening’ (Anderson and Anderson 2010). High intensity, short
duration rainfall events are particularly effective at triggering landslides (Guzzetti et al.,
2008), although long duration low intensity rainfall and rapid snow or ice melt are also
known to destabilise hillslopes (e.g. Guzzetti et al., 2009). Earthquakes generate strong
ground shaking, reducing the cohesion and/or frictional strength of hillslope material
through rockmass shattering or liquefaction (Meunier et al., 2008). Events of
magnitude greater than M= 4.0 (Keefer, 1984) have been observed to trigger
landslides, although it is noted that seismicity of any magnitude may reduce the
effective shear strength of the hillslope. Seismic acceleration is intensified in mountain
ranges as surface topography diffracts vertically incidient seismic waves (S-waves),
amplifying ground accelerations towards ridge crests (Parker, 2009). This highlights the

importance of hillslope morphology as a precondition to slope instability.
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PROCESS

Brittle communition; initiation

Ductile stratigraphic sequencing

Creep sub-critical crack growth

Fatigue low/high frequency loading/ unloading cycles (glaciations

isostasy, pore-water pressure fluctuation, freeze-thaw,
wet/dry, seismicity, salt cracking, plants)

Thermal (mechanical)

climate change; heating and cooling cycles

Tectonic

tectonic uplift; tectonic structures and lineaments; pre-
conditioned damage due to faults, folds and in-situ stress

Anthropogenic

Human disturbance (i.e. footpath erosion, burst pipe)

Physio-chemical

weathering, hydrothermal alteration, corrosion

Geomorphic

lithology; local bedrock outcropping; fluvial incision
promoting feedbacks from channel uplift to knick-point
migration; glacial debutrassing/ incision; slope
oversteepening by erosion activity; thermal cycling

Table 2.1: Types of hillslope damage resulting from physiographic processes operating

in the local environment (modified from Brideau et al. (2009, table 1, p.31) and Rosser

TYPE OF DAMAGE

(2010))

PROCESS

Fatigue

rainstorm; snowmelt

Thermal (mechanical)

extreme heating or cooling (i.e. sudden changes in
temperature or extreme temperatures for time of year)

Tectonic

earthquake

Anthropogenic

deforestation; slope disturbance by human activity ;
human modification; excavation or blasting

Geomorphic

fluvial incision (river in flood); sudden glacial collapse

Table 2.2: Types of hillslope damage resulting from environmental forcing events

modified from Brideau et al. (2009, table 1, p.31) and Rosser (2010))

29



Chapter 2: Hillslope stability and landslide behaviour

infinity /
P Low strength
1 Critical strain
High strength
0 ~N
”~

Time

Environmental forcing event (rainstorm, earthquake)

Figure 2.9: Conceptual mode of differential rock strain accumulation in response to
environmental forcing events (adapted from Rosser (2010; figure 3.10, p.75) and

Roberts (1977) in Selby (2005; figure 4.4 p.34))

Anthropogenic action is also a key contribute and triggering factor of hillslope failure.
Relatively small increases in population density are seen to drive big increases in
landslide density (number of events occurring per 1000 sq km) (Petley 2009).
Landslides are typically triggered both by construction (e.g. road development)- often
a result of poor engineering in marginal areas of rapidly urbanising centres (Smyth and

Royle, 2000)- and quarrying (i.e. excavation), (Brideau et al., 2009).

Rock strength evolution is widely considered in slope-scale engineering geology
(Main, 2000; Petley et al., 2008), leading to the concept that hillslope state lies within a
failure continuum. Rosser et al. (2010) suggested that all slopes within a landscape
reside at some point on a time-strain curve (figure 2.9) as a function of the ratio of
accumulated damage versus the critical strain required for failure at each location. The
adaptation of this model to represent three geological scenarios reflects observations
by Korup (2008) that terrain over the long-term retains a fingerprint of geology,
indicating that slope failure is fundamentally controlled by material strength and its
deterioration. Under conditions of catastrophic trigger some slopes will fail in clearing
events (Densmore et al., 1997) yet others remain superficially intact (Rosser, 2010).
Failures are also observed to occur without an apparent trigger. Critically here is the

idea that an event triggering failure in one slope may not collapse another, but instead
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contribute to its damage accumulation history, increasing the susceptibility of failure in
future events. Returning to an observation made earlier in this section, cohesive slopes
may exist in a state close to critical strain for significant amounts of time, requiring
only a small, potentially undetectable stress variation to initiate tertiary creep (Rosser,
2010). Some failures on slopes composed of non-cohesive materials have been known
to lag behind critical stress events (e.g. rainstorm). Ng and Petley (2009) discuss this
behaviour, recognising that although FoS may equal unity (1.0), actual slope failure is
time dependent as material deformation (internal restructuring) must occur. The
implication of these observations is that slope stability in both cohesive and non-
cohesive materials is ultimately controlled by strain, rather than the conventional
widespread use of stress, which develops in response to variable stress-state caused by

local physiographic mechanisms and environmental forcing events (Rosser, 2010).

2.3.4. Modes of failure

Several landslide classification schemes exist to describe the style of hillslope
movement after failure has been initiated. Most schemes are based on three key
elements: the type of movement, the kind of material and the rate of movement
(Varnes, 1978). The term ‘landslide’ (defined in section 2.1) is used to describe a
complex array of different mass movements. The infinite slope model (section 2.2,
figure 2.3) depicts stress balance for a sliding failure, however there a number of
different styles through which hillslope materials are mobilised downslope. Table 3
outlines the classification scheme adopted in this thesis; figure 2.10 is given to add
clarity to the principal categories. This landslide classification is based on the system
proposed by Varnes (1978), taking into account modifications made by Cruden and
Varnes (1996). The scheme was chosen because it emphasises movement style, rather
than slope condition or movement rate. For the purposes of this research, an
understanding of post-failure movement type is useful in deriving the nature of pre-
failure creep; monitoring strain accumulation and forecasting shear plane
development must account for the dimensionality and rotational attributes of
movement. Importantly the mechanisms (brittle or ductile) and form of shear zone and
slip-plane formation establish the style of slope failure whilst pre-conditions,

preparatory processes and triggering factors destabilise the slope and govern the
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velocity, water content and distribution of a landslide until it essentially stops (Picarelli

et al., 2005b).

Type of material
Engineering soils
Type of movement - -
Bedrock Predominantly Predominantly
fine coarse
Falls Rockfall Earth fall Debris fall
Topples Rock topple Earth topple Debris topple
Rotational Rock slump Earth slump Debris slump
Few Rock block slide | Earth block slide | Debris block slide
Slides units
Translation - - —
Many | Rock slide Earth slide Debris slide
units
Lateral spreads Rock spread Earth spread Debris spread
Rock flow Earth flow Debris flow
Flows Rock avalanche Debris avalanche
(Deep creep) (Soil creep)
Combination in time and/or space of two or more
Complex and compound o
principal types of movement

Table 2.3: Landslide classification based on Varnes (1978), modified to account for the

later scheme proposed by Cruden and Varnes (1996)

2.3.5. Actively unstable slopes

Actively unstable slopes are those which are unable to withstand destabilising
forces after first time failure, existing thus in an episodic state fluctuating between
reactivation and suspension (see: Cruden and Varnes 1996). Reactivation occurs when
all or part of a stationary but previously failed mass is involved in new movements
along pre-existing shear surfaces (Lee and Jones, 2004). The style of movement and
size of the new landslide body are dictated by the location of the relict slip surface
(Picarelli et al., 2005). Materials within the shear zone of a reactivating failure are at
residual strength, responding to local physiographic mechanisms and environmental
forcings that the slope prior to failure could have resisted (Lee and Jones 2004).
Reactivations are triggered much more readily than first time failure because less
strain is required to reach the critical threshold for landslide initiation. Movements are

typically slow, a
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Figure 2.10: Principal categories of slope movement (Cruden and Varnes 1996)

characteristic shared by ductile failures undergoing periods of intermittent activity.
Reactivations can evolve progressively driven by ductile mechanisms (section 2.3.3.3).
Brittle failure governed by unstable crack growth does not occur in previously failed
slopes unless a new shear surface is forming, in which case the sub-section of hillslope

is considered a first time failure, operating within an actively unstable slope.

Perhaps this last statement best illustrates a common theme running through
the processes described over the last chapter; landslides are incredibly complex
phenomena. They develop from hillslopes differing in material intact strength and
lithology, subjected to a veritable array of preparatory factors and responding to
triggering events initiating critical strain and time-dependent material deformation.
Following this, hillslopes may remain actively unstable within the landscape, creating a
mosaic of landslide features of various ages and origins, conceptually existing at

different points on a zero strain (stable) to critical strain curve (section 2.3.3.4). Pre-
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failure strain accumulation in hillslopes provides an important precursor to
catastrophic first time landsliding. Although a mechanistic understanding of brittle
creep has been utilised to forecast the timing of final failure retrospectively (chapter
3), the technique has rarely been applied to progressively unstable hillslopes in
advance of failure. Lack of understanding of the finer mechanisms governing unstable
crack growth and the controls on tertiary creep rate within a ‘real’ hillslope is perhaps
one explanation for the underuse and uncertainty surrounding this approach. Chapter
3 presents a review of the different methods available to forecast hillslope
susceptibility to failure, focusing on strain-based techniques. Whilst chapter 4 analyses
a compendium of published tertiary creep data, specifically comparing landslide
characteristics (e.g. geology) to attributes of observed brittle deformation (e.g.

velocity).
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CHAPTER 3

Landslide predictability and the
‘inverse-velocity’ method
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3.1. Introduction

The natural process of landsliding becomes hazardous when it has the potential
to cause damage or harm to vulnerable elements (such as people or buildings) (Glade
et al., 2005). In the context of a landslide risk management framework (figure 3.1.), the
term hazard takes a more technical definition, “the probability of occurrence, within a
specific period of time and within a given area, of a potentially damaging
phenomenon” (Varnes (1983) in Corominas et al. (2003; p.421)). Within this
framework unstable hillslopes are identified and assessed to establish appropriate risk
management strategies. Landslide hazards may be avoided through effective planning
and physical intervention- restricting new construction on vulnerable slopes and
stabilising engineering work (slope restructuring, drainage). However, throughout the
world, many people live on landslides (e.g. Taihape, New Zealand;(Massey, 2010) or in
regions affected by numerous events (e.g. Hong Kong; Ng, 2007) presenting
challenging mitigating conditions (Petley, 2009). In such cases, early warning and
evacuation, based on the science of forecast and prediction offers a management

strategy for those unavoidably exposed to landslide risk (Sarewitz, 2000).

The assessment of potential landslide location and timing is undertaken using
either a stress-based or strain-based approach; or in certain cases a combination of the
two (Petley et al., 2008a). This chapter initially reviews key differences between the
two methods, before focusing specifically on the ‘inverse-velocity method’. Developed
from observations of pre-failure slope movements by a Japanese railway engineer,
Saito (1969), this strain-based predictive method uses pre-cursory movements to
derive the timing of hillslope failure from the linear regression of inverse-velocity
plotted against time. Following from a detailed explanation of this technique (section
3.4.2.2.1); section 3.4.3 briefly overviews field methods used to record surface

displacement data for inverse-velocity-time based prediction.
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Figure 3.1: Landslide prediction and early warning in the context of landslide risk
management (adapted from Australian Geomechanics Society, 2000 in Glade et al.,
2005, p.10)

3.2. Prediction and forecasting

Prediction is defined as...

“... the foretelling of an event or condition and may be either absolute (an event
with particular characteristics will occur at a particular place and time) or
contingent (a particular event will occur if certain conditions are satisfied)”

(Wilcock and Iverson, 2003), p.18)

The term forecast is a synonym of predict; however forecasting is concerned with
probabilities rather than certainties (Webster (1986) in Krzysztofowicz (2001)). Both

predictions and forecasts operate over varied timescales: short-, intermediate- and
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long-term. Typically uncertainty is reduced as the lead-time to an event is reduced.
Short term predictions give a precise indication of where, when and the magnitude of
an event (Zschau and Kippers, 2003). A key element of forecasting is the role of expert
judgement, which uses an empirical understanding of the natural system to decide the
most probably projection of future behaviour. As forecast lead-time becomes shorter,
‘chaos’ within the system significant to the forecast output is overcome resulting in a
reduction in the number of potential outcomes and an increase in the probability each
result will occur (Armstrong, 2001). The more precise the prediction or forecast the
greater its potential value to a decision maker (Sarewitz, 2000). Importantly in the
context of a landslide risk management framework (figure 3.1), predictions and
forecasts feed into early warning systems for people affected by the hazard. The
process of...

Prediction - Communication - Use

(Sarewitz et al., 2000)

...is most effective when all three elements work holistically together.

100 | I w:
False negative True positive
80 -
v B0 _
c
@
-
W 40} -
201 . False positiveq
True negative 4 | {fal:sa alarm)
|
00 20 40 60 80 100
Prediction

Original prediction @ Reduced uncertainty === 100% certainty

Figure 3.2: Taylor- Russell diagram with reduced uncertainty, adapted from Sarewitz et

al. (2000; p. 45 and 50).

38



Chapter 3- Landslide predictability and the Inverse-velocity method

Critically, reducing uncertainty in the prediction stage of early warning, reduces

the probability of communicating a false alarm (false positive) or failing to recognise
precursors leading to a surprise event (false negative). The Taylor-Russell diagram,
figure 3.2, provides a conceptual model for predictive certainty; as deviation from the
linear-regression increases, the incidence of false positive and false negative
predictions increases (Sarewitz et al., 2000). Overall uncertainty in prediction and
forecasting is composed of two elements: epistemic uncertainty- knowledge of
processes that influence events- and aleatory uncertainty- natural and unpredictable
variation in the performance of the system (Daneshkhah, 2004). The following sections
critically review stress- (section 3.3) and strain- based (section 3.4) approaches to
landslide forecasting and prediction, highlighting sources of inherent epistemic
uncertainty surrounding techniques and the applicability of each within an early

warning framework.

3.3. Stress-based forecasting

Conventional stress-based approaches to landslide forecasting, relate the
impact of preparatory and triggering factors to the stability condition of the hillslope.
Landslide probability is assessed over different spatial scales; from global through to
regional, and at a site-specific level. Different methods are more appropriate to each

scale of investigation and these are outlined in the following sub-sections.

3.3.1. Global and regional assessment

Landslide forecasts made at a global and regional scale are typically generated

from three key inputs:

1. Alandslide inventory
2. Alandslide susceptibility model

3. Trigger thresholds (rainfall intensity/ duration or earthquake magnitude)

Inventories are the simplest form of landslide mapping (Guzzetti et al., 1999),
recording the location, extent and type (if known) of discernible failures in an area.
Most maps are created at a 1:25,000- 1:1,000,000 scale (Baum and Godt, 2010), for
landslides following a specific trigger event or as a general historical archive of slope

failures over time in a region (Malamud et al., 2004). Inventories may be limited by the
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spatial coverage or resolution of primary data. Traditionally aerial photographs are
used to identify and delineate landslides (Cardinali et al., 1990); however following
significant advances in remote sensing and image processing, satellite imagery is
increasingly utilised when compiling an inventory (van Westen et al., 2006). Aerial
photographs provide high resolution coverage capturing, in some cases, geomorphic
activity over several decades. Satellite images, on the other hand, offer broader spatial
coverage, regular acquisition, additional spectral information and are available in
digital format (Lillesand et al., 2007). Critically, landslides must be manually identified
from aerial photographs; a time and labour intensive process (Borghuis et al., 2007).
Semi-automated object-based classification techniques have been used effectively on
satellite data to delineate slope failures and indicate landslide type with a 76.4%
recognition and 69.1% classification accuracy (Martha et al.,, 2010). Clearly neither
method (manual or automated) is perfect, and both may result in cartographic errors
and incomplete databases (Malamud et al., 2004), however they generate a wealth of
data, providing a snap-shot on landscape stress-state; the foundations for a landslide
susceptibility map. Several national inventories have been successfully developed,
these include: Italy (Guzzetti, 2000), Hong Kong (Ho, 2004), Switzerland (Lateltin,
1997), France (Faure et al.,, 1988) and Colombia (Gonzalez, 1989). Work from such
databases contributes to a global landslide record; a valuable resource when validating

global and regional landslide susceptibility models (Dai et al., 2002).

Following the creation of a landslide inventory, the second required input is a
susceptibility map. This highlights which slopes within a landscape are most vulnerable
to landsliding and is based on factors preconditioning and preparing hillslopes for
failure (see section 2.3.1. and 2.3.3.4 for examples of preconditioning and preparatory
factors, respectively). Susceptibility assessments provide a measure of the likelihood of
landsliding over an area using factor mapping (precondition/ preparatory) to indicate
unstable ground, and past landslide inventories to associate instability factors with
landsliding (Glade et al., 2005). This is known as the precedence approach to landslide
susceptibility (Rice et al., 1969). Factors believed to contribute to slope instability and
thus typically included in assessment are: geology, known fault proximity, slope angle,
slope aspect, river channel proximity, land-use, road proximity, vegetation condition

(Miller et al., 2009). This is by no means a complete list and variables are included on a
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physical-basis if they are believed to improve the effectiveness of physiographic and
triggering processes (for examples see section 2.3.3.4) on destabilising a slope. Using
multi-temporal data sets to relate pre-failure landscape characteristics (earlier image)
to landslide distribution (later image)- with images perhaps bridging a widespread
trigger event (e.g. earthquake)- provides a basis on which to determine regional
landslide susceptibility. A number of different approaches are used to explore
relationships between variables and landslide occurrence (Gunther et al., 2004).
Statistical approaches include bivariate regression (Keefer, 2000), multiple regression
(Yin and Yan, 1988), logistical regression (Chung and Fabbri, 1999), principle
component analysis (Baeza and Corominas, 2001), discriminant analysis (Carrara et al.,
1991) and susceptibility indexing (Parise and lJibson, 2000). Heuristic (qualitative)
approaches are also used if theoretical models relating landslide susceptibility to
destabilising factors (Dai et al., 2002) are available, however the subjectivity inherent
to such methods limits result reproducibility (Barredo et al., 2000). Although
considered more appropriate for regional scale landslide susceptibility mapping (Dai et
al., 2002), statistical techniques can be applied in a black-box manner, with inadequate
appreciation of the mechanics of the physical processes involved, leading to coarse or

misleading regression correlations (Ho et al., 2000).

Unless insufficient data is available, most susceptibility models are based on the
precedence that landslides will occur when geo-environmental conditions that led to
past slope failure, are replicated (Hervas and Bobrowsky, 2009). As with landslide
inventories, the quality and nature of information used to build the model will
determine the accuracy with which landslide probabilities are assigned (Dai et al.,
2002). Both inventories and susceptibility maps are limited within their time-frame of
acquisition. To account for continual changes in terrain as susceptible material is
mobilised and slope resistance increased, assessments must undergo frequent revision
(Glade et al., 2005). This is both a costly and difficult task, especially if a region,
geomorphically, is highly active. In addition, assessments are spatially constrained
within the region where the precedence was established; application in areas beyond

this will contain inherent uncertainty (Dai et al., 2002).

Landslide susceptibility models indicate the location of vulnerable slopes in a

landscape based on the action of preconditioning and preparatory factors, however
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estimates of landslide probability depend on both conditioning and triggering variables
(Godt et al., 2009). Threshold analysis identifies the nature and intensity of conditions
associated with landslide initiation in the past and compares these with conditions that
did not trigger movement (Hutchinson, 2001). Trigger events are both natural and
anthropogenic however the latter are difficult to assess on a threshold basis;
precipitation and seismicity are key variables commonly considered in global and

regional scale landslide forecasting (Glade et al., 2005).

Rainfall thresholds are devised on the assumption that direct relationships exist
between landslide occurrence and precipitation quantity (intensity and duration) (Dai
et al., 2002). The technique is well used and thresholds have been developed for real-
time landslide warning systems in a number of regions: US (Keefer et al., 1987), Hong
Kong (Geotechnical Control Office, 1984), Italy (Panizza et al., 1996; Premchitt, 1994),
South Africa (Garland and Olivier, 1993), the San Francisco Bay region (Keefer et al.,
1987), Rio de Janeiro (D’Orsi et al., 1997), Nagasaki (lwamoto, 1990), Jamaica (Ahmad,
2003), Piedmont region, Italy (Aleotti, 2004), La Honda regional Santa Cruz Mountains,
California (Wilson and Wieczorek, 1995), Central mountains Puerto Rico (Larsen and
Simon, 1993) and Seattle, USA (Chleborad, 2003; Godt et al., 2006). Global thresholds
have also been published following the work of Caine (1980) by Innes (1983), Clarizia
et al. (1996); Crosta and Frattini (2001); Cannon and Gartner (2005) and most recently
Guzzetti et al., (2008). Alongside geographical extent, rainfall thresholds may be
classified by the precipitation attributes used to establish critical limits: intensity-
duration, total event, total event-duration and total event-intensity rainfall, where
intensity-duration is most commonly used (Guzzetti et al., 2008). Thresholds are
derived either physically using process-based models (e.g. Crosta (1998); Salciarini et
al. (2008); Terlien (1998); Wilson and Wieczorek (1995)) or empirically from statistical
analysis (e.g. Corominas (2000); Aleotii (2004); Frattini et al. (2009); Wieczorek and
Glade (2005); Guzzetti et al. (2007, 2008)). Both methods create probabilistic limits for
landslide occurrence under certain triggering conditions (Frattini et al., 2009), however
the former uses spatially distributed stability models while the latter draws on detailed
landslide inventories to relate past slope failures with precipitation conditions. Physical
models are limited by environmental assumptions: antecedent rainfall is poorly

accounted for by the steady-state pore pressure distribution and landscape scale
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variations in morphology and geology are challenging to replicate (Frattini et al., 2009).
Uncertainty inherent to approaches founded on database analysis is reduced as the
size of the landslide inventory and its temporal range is increased (Guzzetti et al.,
2008). Different recording procedures and inaccurate reporting also hinder threshold
development (Glade, 1998). Landslide inventories derived from remotely sensed data-
outlined earlier in this section- do not suffer from human reporting error, but are

temporally limited by the frequency of available imagery.

Thresholds combine with meteorological data and precipitation forecasts,
reporting on antecedent conditions and landslide susceptibility maps to evaluate slope
failure probability under different trigger events (Baum and Godt, 2010). Precipitation
data is provided in real-time both remotely from satellites (e.g. Tropical rainfall
measuring mission (TRMM) and multi-satellite precipitation analysis (TMPA); Hong and
Adler (2007)) and by rain gauge networks (Baum and Godt, 2010). Of the two systems,
rain gauges present the greatest number of challenges when used in the context of
landslide forecasting; they can vary in quality (Guzzetti et al., 2008), are not always
located close to landslide activity (Brunetti et al., 2010) and may suffer technical
difficulties when measuring very high intensity rainfall (Guzzetti et al., 2008).
Antecedent conditions associated with pre-failure precipitation and soil moisture are
equally important to ascertain as rainfall measurement (Guzzetti et al., 2007, 2008;
Dahal and Hasegawa, 2008). The infiltration and evapotranspiration process is difficult
to account for when developing rainfall thresholds (Saito et al., 2010). Several authors
report adjusting thresholds after 48 hours of continuous precipitation, recognising this
as the duration for which antecedent precipitation and soil moisture conditions
become important for the initiation of landslides (Aleotti, 2004; Chleborad, 2003;
Crozier, 1999; Glade et al., 2000).

Global rainfall thresholds provide a basis for landslide warning where regional
thresholds are not available (Hong et al., 2007). However differences in the shape and
scale of power law threshold curves defined for different climates indicate intrinsic
uncertainty associated with the definition of a single minimum global threshold
(Guzzetti et al., 2008) and results in false positive and false negative forecasts. Regional
thresholds are climate specific: for mid-latitude climates rainfall intensity is more

important whereas in mountainous areas and mild marine climates, rainfall duration is
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most relevant to landslide initiation (ibid.). Although regional thresholds provide more
accurate forecasts, they are not spatially explicit: rainfall trigger conditions are
extrapolated over a wide area (Glade et al.,, 2005), orographic effects are not
considered (Baum and Godt, 2010) and infiltration, when included in models, is

oversimplified as a constant value (Reichenbach et al., 1998).

Rainfall thresholds are based on a number of assumptions, primarily that triggering
and environmental conditions remain constant (Aleotti and Chowdbury, 1999).
Earthquake triggers are not so well studied in terms of threshold analysis (Bommer and
Rodriguez, 2002), but the principle static-state assumption transcends this technique
also. Slope stability is assessed when subjected to peak ground accelerations for
different return periods using a pseudo-static analysis (Dai et al., 2002). Although real-
time earthquake warning systems are in place (e.g. USGS?) or under development (e.g.
Crampin and Gao (2010)), “forecasting seismic waves is still at least several years away
in seismology” (Hong and Adler, 2007; p. 3717). As technology advances, earthquake
thresholds will become more useful to global and regional landslide forecasting.
Rainfall thresholds are most relevant to shallow and wet flows, caused by increases in
soil pore-pressure (Reid, 1994), whereas seismic events are likely to trigger more deep-
seated failures. Importantly both types of threshold, rainfall and earthquake, rely on
landslide susceptibility maps to deliver a temporal and spatial probability of landsliding
(Ahmad and McCalpin, 1999), although exact landslide location from a particular storm

is beyond threshold forecasting (Baum and Godt, 2010).

3.3.2. Site-specific assessment

Unstable slopes may be identified within the landscape from field-based
observations. Signs of fresh cracking (particularly at the top of a slope), changes to
slope surface (depressions, slump-like features), tree-trunk curvature or damage (if
vegetated), bare-ground and (or) patches of fresh rock or loose sediment from
localised small failures, and increased overland transport of sediment (visible in
downstream water sources) are all indicative of hillslope instability. Site-specific
approaches to landslide forecasting require a good geotechnical understanding of the

slope, including its geology, structure, mass-strength and hydrology (Read, 2007). This

2 http://www.usgs.gov/newsroom/article.asp?ID=2366&from=rss
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provides an assessment of passive (pre-conditioning) factors and dynamic
(preparatory) mechanisms setting up landslide activity (Baum and Godt 2010).
Dynamic factors control slope stress-state and eventually trigger failure, thus it is

important to monitor them and their effect on slope kinematics.

Direct instrumentation including piezometers (for porewater pressure),
raingauges, snow gauges, thermometers and pressure cells are used to record the
changing conditions on and within the hillslope (e.g. Angeli et al., 2000). This
information feeds into models which evaluate static slope stability (Bromhead, 1996),
providing a factor of safety (FoS) estimate (section 2.2). Slip-surface geometry- where
possible derived from borehole investigations- determines whether an Infinite-slope
Model (planar slip-surface, translational failures; Haefeli (1948); Skempton and Delory
(1957)) or Slices Model (curved slip-surface, rotational failures; Kennedy (1970); Janbu
(1957)) is used to establish FoS. Running a Monte Carlo simulation (or similar test) on
the chosen model, produces an estimate of the stress conditions capable of
destabilising the slope (Dai et al. 2002). Relating this to key triggering variables such as
rainfall, allows thresholds to be defined past which failure is more likely. One
particularly good example of this widely applied technique is to the Mam Tor landslide,
Derbyshire. Here rainfall thresholds were established from past kinematic records by
relating periods of significant movement to local precipitation. Both antecedent
conditions (750mm during May to November) raising local groundwater tables to a
critical level, and winter events (210mm in a calendar month between November and
February) expected to trigger slope movements were accounted for (Waltham and
Dixon, 2000). This approach is an improvement on that used to establish regional scale
thresholds, because landslide location is known. Forecasts are thus purely temporal,
relying on meteorological or seismic projections, but not susceptibility maps to situate

probable failure.

Critically site-specific approaches are limited by man-power requirements to
carry out repeat field surveys and the assumptions inherent to 2D stability models.
Direct instruments provide only point-based measurements that are further
generalised when input into calculations (Selby, 2005). Complex infiltration processes
are not properly accounted for, particularly since slope heterogeneity is poorly

considered; complexities such as differential geology (and permeability), micro-
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structures (cracking) and vegetation are not included. More complex models such as
the Combined Hydrology and Slope Stability Model (CHASM™) consider the coupling
between water and slope composition as a series of units within a Slices framework
(e.g. Anderson et al. (1988)). Although providing a better representation of hillslope
heterogeneity, such models still represent slopes in 2D, assuming shear stress parallel
to and normal stress at right angles to the slip-plane along an infinite length of slope,
rather than bounded by scarp and toe processes. Attempts to increase complexity with
a third dimension are often limited by computational power and available input data,
particularly given the sub-surface nature of key variables (Selby, 2005). Estimates of
friction and cohesion, used to calculate the effective shear strength, also pose
problems. Typically these are derived from laboratory stress tests or rock mass rating
schemes- such as Hoek and Brown’s Geological Strength Index (Hoek et al., 2002)-
providing values from intact samples which are difficult to relate to a fragmented
slope, or using expert judgement that naturally incurs high levels of subjectivity (Read,

2007).

Ultimately landslides are complex three-dimensional features that are difficult
to replicate in computer form (Brunsden, 1999). Stress-based methods of forecasting,
both over a global or regional- scale, and at a site-specific level, provide useful
estimates of landslide probability and timing, given a certain magnitude of trigger
event (typically rainstorm). However this technique assumes slopes fail when exposed
to a significant forcing event, such as high intensity rainfall. Importantly, the work of
Bjerrum (1967) and others has recognised the progressive nature of failure, whereby
damage is accumulated within the slope to a critical point before collapse is initiated;
this mechanism is particularly relevant to materials deforming in a brittle manner
(section 2.3.3.4). Stress-based methods do not account for the damage history of
slopes and the ability of small insignificant stress variations to trigger catastrophic
failure (Rosser, 2010). Strain-based techniques discussed in the following section utilise
patterns of pre-cursory movement- a manifestation of strain accumulation- to predict

failure timing, irrespective of hillslope stress-state.

46



Chapter 3- Landslide predictability and the Inverse-velocity method

3.4. Strain-based forecasting and prediction

Strain-based approaches to landslide forecasting utilise patterns of pre-cursory
movement to indicate the spatial extent and development of hillslope failure (Petley
2009). Although techniques are typically applied on a site-specific basis, regional-scale
assessments are used to probabilistically characterise the future landslide hazard
within a particular landscape (Guzzetti et al., 2007). The following section (3.4.1)
briefly addresses the use of event magnitude-frequency distributions to indicate
impending slope collapse over a regional-scale. Site-specific approaches utilise
patterns of pre-cursory rockfall (or small localised failures), seismicity and
displacement to predict hillslope shear-failure. Section 3.4.2 discusses forecasting
methods based on this phenomenon; focus is given to developments surrounding pre-
failure creep and the application of the Inverse-velocity Method to landslide prediction

(section 3.4.2.2).

3.4.1. Regional assessment

Landslide magnitude-frequency distributions derived from inventories (section
3.3.1) provide a useful approach for hazard managers attempting to forecast the
impact of significant environmental forcing events on the landscape (Malamud et al.,
2004). The approach is discussed under the umbrella of strain-based forecasting
because it focuses on the scale of slope-failure events (i.e. landslide area as an
expression of strain) rather than linking changing stress conditions to slope stability.
Distributions typically follow an inverse-power law over several orders of magnitude
when plotted in log-normal space (e.g. Dai and Lee (2001)). Importantly, data
frequently departs from the expected trend at small magnitudes (usually under
10,000m?), creating a rollover effect (Malamud et al., 2004). Following observations
that this effect also occurred at the other end of the magnitude spectrum, Guthrie et
al. (2007) argued patterns of landslide distribution were strongly related to
physiographic variables- slope, slope distance and the distribution of mass within the
landslide- rather than purely a function of data biasing during inventory assembling.
This physical constraint is still not fully understood (Corominas and Moya, 2008),
leading to uncertainties when ‘expected’ landslide magnitude-frequency distributions

are extrapolated from inverse-power law functions. Additional to this, the quality of
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forecasts rely on the completeness of inventory data determined by the spatial
resolution of imagery, temporal range of the dataset, the method of landslide
classification (manual/automated) and the experience of the assembler (Corominas
and Moya, 2008; Guthrie and Evans, 2007). Further uncertainties in defining landslide
magnitude and accounting for long-term changes in physiographic processes within
the local environment, add additional complexity to the utility of magnitude-frequency
relationships. Ultimately, forecasts are not spatially explicit, nor stand-alone from
meteorological or limited real-time earthquake warnings, relying on these to indicate
future environmental forcing events that are expected to generate significant landslide
activity. In this manner, magnitude-frequency distributions are commonly used

alongside stress-based susceptibility maps and event thresholds.

3.4.2. Site-specific assessment

In common with site-specific stress-based approaches, unstable slopes should
first be identified and delimited (where possible) in space, before appropriate
monitoring instrumentation is installed (Petley, 2009). Glastonbury and Fell (2000)
described the main pre-cursors to failure exhibited by slopes. In order of perceived
occurrence these are: (1) cracking, (2) localised failures and rockfalls, (3) an increased
level of micro-seismicity and (4) alterations in the hydrological regime surrounding the
slide. Each of these pre-cursors reflects the manifestation of accumulating strain in the
hillslope. The utility of site-specific patterns of localised detachments (or failures) and
micro-seismicity to forecasting are briefly discussion, leading to a more detailed
overview of the predictive tools derived from pre-failure surface displacement (section

3.4.2.2).

3.4.2.1. Localised failure and micro-seismicity

The occurrence of pre-cursory phenomena such as localised detachment
(rockfall) and seismicity increase as the lead time to a large landslide event decreases
(Suwa, 1991). Accelerations often follow a power-law (Amitrano et al., 2005) reflecting
the process of progressive failure as strain accumulates within the hillslope (Rosser,
2010; refer to section 2.3.3.2). Rockfall magnitude-frequency distributions provide an
estimate- in a similar manner to regional scale patterns- of the number of small events

expected to occur before a larger failure. Landslide forecasts are based on the
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increasing magnitude of events through time, reflecting the accumulation of strain and
irreversible damage to the rock (or soil) mass. Advances in terrestrial remote sensing
over the last decade have provided instrumentation capable of capturing three-
dimensional surface data to fine spatial resolutions (e.g. Hapke et al. (2005)).
Sequential Digital Terrain Models (DTMs) generated from raw field data, are compared
to calculate rockfall volumes and indicate areas of maximum relative strain (Rosser et
al., 2007). Currently instrumentation does not provide continuous coverage of a
rockface, relying on repeat site visits to collect data. This limits the capacity to forecast
the timing of large rockfall events; the temporal resolution of data collection may be

too sparse to capture signs of imminent failure and collapse.

Seismic networks have been used effectively to detect cracking and related
rockfall on cliffs, particularly in coastal regions (e.g. Helmstetter and Garabois (2010)).
The formation, growth and coalescence of cracks give rise to elastic waves (Amitrano
et al., 2010). Differentiating the frequency of seismicity have shown two major signals:
(1) steady-state energy release from fracture growth, and (2) high energy events
representative of material shedding (Got et al. 2010). Also known as a ‘seismic crisis’,
high level seismicity typically triggered by an environmental forcing event, provides a
precise record of localised failure (Helmstetter and Garabois 2010). Low-level
seismicity provides the better estimate of slope strain-state, reflecting the gradual
accumulation of damage within the rock mass, rather than rapid stress induced
fluctuations in short-term stability. Given this, the increase in magnitude of both
signals provides a basis on which to forecast the immanency of widespread slope

failure (Got et al. 2010).

Although promising, seismic- and rockfall-based forecasts are difficult to
implement. Very few active slopes are instrumented and installations of sensor
networks require heavy field maintenance, an unrealistic venture for long-term
monitoring or slopes with poor access (Helmstetter and Garambois, 2010). Monitoring
systems must be bespoke to the physiography of the site, specifically reflecting local
geology (Hardy, 2003). The magnitude of pre-failure seismicity and shedding (or
rockfall) is a product of the intact strength and resistance of the slope to local stress
factors (Rosser et al., 2007). In order to capture events (particularly seismically), it is

important to install equipment capable of detecting movements within the expected
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magnitude and in locations of lithological instability. Similar to regional scale
distributions, magnitude-frequency patterns of local rockfall (and seismicity) typically
contain a ‘rollover’ for smaller events; indicative of the limited resolution of
instrumentation (Helmstetter and Garambois 2010). This uncertainty, alongside the
expense and man-power required to install and operate monitoring, is the key
drawback of forecasting based on these pre-cursors, and one that should be addressed

with instrumentation development.

3.4.2.2. Accelerating strain

“Displacement rate is commonly considered the best indicator of the failure
process”

(Rose and Hungr 2007, p.308).

Hillslopes undergoing shear-failure typically exhibit pre-cursory creep reflectant
of material deformation within the slope (Ng, 2007) (refer to section 2.3.2 for a more
detailed explanation). Crosta and Agliardi (2003) outline three approaches to studying

pre-failure creep:

(1) The micro-mechanical approach
(2) The rheological-mechanical approach

(3) The empirical approach

The micro-mechanical method (Mitchell et al., 1968) aims to relate creep behaviour to
molecular scale processes (Crosta and Agliardi, 2003). The approach is typically
integrated within distinct element models, used to evaluate the stability of slopes
composed of granular materials, from parameters defining inter-particle friction and
particle stiffness (Calvetti and Nova, 2004). The technique, although useful for soil

slopes, has limited applicability to developing rockslides.

The rheological-mechanical approach fits idealised mathematical laws-
derived from laboratory testing- to estimate the motion of deforming hillslopes
(Hungr, 2009). Mechanical models consisting of springs, dashpots and sliding blocks
(figure 3.3) are used as analogues to represent elements of ‘ideal’ material behaviour:
elastic, viscous and plastic respectively (Selby, 2005). Combinations of these simple

models (e.g. visco-elastic) are used to describe the rheological response of stressed
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materials. Although this provides a good, albeit simple, representation of the micro-
scale deformation process, models are rarely used to give temporal prediction due to
the complexity and detail of data required (Crosta and Agliardi, 2003). Numerical
models utilise rheological laws to simulate slope failure under different stress
conditions, providing probabilistic forecasts of failure mode and thresholds on stability
(Hungr et al., 2005). In common with other modelling applications, landslide models
are limited by the availability of good quality data, often requiring inputs that are not
routinely measured (Stead et al., 2006). This may lead to reductionist approaches
when defining model structures and thus only a simple abstraction of reality is
processed (Wainwright and Mulligan, 2004); limiting the utility of computation

outputs.

The third approach holistically evaluates pre-failure slope movements using
empirically or semi-empirically derived models describing the expected performance of
the system (Hungr et al., 2005). Over the last 50 years, several authors have proposed
mathematical functions (linear, exponential or power law) for modelling displacement-
time relationships during the tertiary stage of pre-cursory creep (see section 2.3.3.2),
these include work by Saito (1965; 1969), Kennedy and Niermeyer (1970), Zavodni and
Broadbent (1980), Varnes (1983), Zvelebil , Cruden and Masoumzadeh (1987), Glawe
and Lotter (1996), and Zvelebil and Moser (2001). Most of these authors utilise
measures of strain or strain-rate to characterise slope behaviour; it is suggested this
parameter is more appropriate than displacement or velocity when comparing
movements of vastly differing magnitudes (Bonnard and Glastonbury, 2005). Strain
describes deformation in terms of relative displacement; expressed as dilation (volume
change) or distortion (shape change), or a combination of the two (Park, 2004) (see
section 2.3 for greater detail). The parameter is calculated from measurements of
slope displacement using either change in length of a reference line (extension) or
change in angle between two reference lines (shear strain) (ibid). The dimensionality of
the measurement (1D, 2D or 3D) will depend on the instrumentation and set-up from

which data is derived (discussed further in section 3.4.2.4).

Most mathematical models for creep use strain or strain-rate alert thresholds
to indicate imminent failure, extrapolating from records to predict collapse timing (e.g.

Zavodni and Broadbent (1980) or Cruden and Masoumzadeh (1987)). Fundamentally
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this approach assumes that slope deformation is accelerating to collapse. The concept
of progressive failure (discussed in section 2.3.3.2) substantiates this assumption for
hillslopes composed of brittle material that have entered the tertiary stage of the
Three-phase creep model (Main, 2000) (see section 2.3.3.2). Materials deforming in a
ductile manner respond to stress fluctuations in the final phase of failure more readily
than brittle materials (see section 2.3.3.3). This results in deviances from predicted
behaviour, whereby empirical models fail if slope stress-state is reduced, leading to an
episodic stick-slip creep behaviour (Bonzanigo et al.,, 2001) and higher incidence of
false positive predictions (for example Hiem (1932) at Kilchstock, Swiss Alps in Hungr et
al. (2005)). Glastonbury and Fell (2002) thus concluded that no single mathematical
function could adequately model all types of failure mechanism due to fundamental

differences in shear zone deformation.

3.4.2.2.1. The Inverse-Velocity Method

Although there is no universally accepted equation for accelerating creep rates
in geo-materials, a growing body of work has developed and applied Saito’s (1965,
1969) observations that hillslopes undergoing accelerating creep exhibit linearity in log

time- log strain-rate space (figure 3.3). Saito equated strain-rate (¢) to...

a
s =

= G-on [Equation 8; Saito (1969)]

... Where a is constant, t is time from the beginning of tertiary creep and t, is time of
failure. When n=1 data is modelled using a log function (“pure Saito”), however when
nz1 data is modelled using a power function (“generalised Saito”) (Glastonbury and
Fell, 2002). Saito (1965) was perhaps the first to attempt to predict time of slope
collapse from displacement data. This coincided with the work of Skempton (1964),
Bjerrum (1967) and Bishop (1967) who contributed to present understanding of the
progressive failure concept (see 2.3.3.2) for brittle materials. Saito’s (1965)
observations utilise the pattern of accelerating deformation during tertiary creep, as a
precursor to slope collapse (Petley et al., 2008a). Beyond critical strain crack growth
dominates under strain-softening mechanisms, leading to shear- surface formation
(see section 2.3.3.2). This process is reflected in the linearity observed by Saito (1965,
1969). Catastrophic hillslope collapse occurs when a failure plane fully forms (Petley et

al., 2005a), and may be predicted from Saito’s log time- log strain-rate model using a
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linear fit on data; extrapolating the trend to its y-intercept (figure 3.3) providing an
estimated time of slope failure. Predictions become more reliable as the lead time

between data and failure reduces (Saito, 1969).

Voight (1989) and Fukuzono (1990) developed Saito’s method, providing
significant improvements to predictive techniques founded on the concept of
accelerating creep. Fukuzono (1985) experimentally derived a time-dependent failure
relationship using measurements of inverse-velocity- time; moving from Saito’s strain-
rate parameterisation. Three functions were fitted to lab data (concave, convex and

linear; figure 3.4) defined using equation 9 and the constants A and a.

1 N1, i
V= =[A(a — D]a " (tf — t)a
[Equation 9; reproduced from Rose and Hungr, (2007)]

Here V™1 is inverse-velocity, tr is the time of failure and t is time. Both A and a are
constants representing material characteristics for constant boundary conditions
(Crosta and Agliardi, 2003). « is a dimensionless parameter controlling the sensitivity
of accelerating activity (figure 3.4) and A is a positive constant controlling the shape of
the curve; and is dependent on the value of a constant (Cornelius and Scott 1993). Of
the three models, Fukuzono (1985) concluded that the tertiary stage of creep is best
characterised by a linear trend in inverse-velocity-time space, where a=2. Final failure
(tf) reflects the point at which the linearity is extrapolated to cross the x-axis (figure
3.4), or where inverse-velocity equates to zero (Carey et al., 2007); since velocity
cannot be infinite, realistic predictions are made just before the point of inception

(Petley et al., 2005a).

Fukuzono’s (1985) approach was validated theoretically by Voight (1989), who
found values of a to range between 1.7 and 2.2, and corroborating earlier empirical
models. Cornelius and Scott (1993) demonstrated conclusively that a =2 is
characteristic of tertiary creep, using records from Mount St Helens (USA) and Vajont
(Italy) to link the empirical function to real-world observations. Following laboratory
work by McGuire and Kilburn (1997), Kilburn and Voight (1998) presented a differential
equation characterising crack growth in brittle materials (equation 6, section 2.3.3.2).

Differentiating this equation with respect to time (equation 10) and then
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Figure 3.3: Field measurement with an automatic strainmeter at Asamushi landslide
(reproduced from figure 1, Saito (1969; p.677))
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Figure 3.4: Inverse-velocity versus time relationships preceeding slope failure

(reproduced from figure 2.15, Ng (2007; p.34) after Fukuzono (1985))
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integrating it, provides a function (equation 11) describing patterns of accelerating
creep in inverse-velocity-time space mechanistically, giving consideration to the
physical basis of Fukuzono’s original model.

dzx_/ldx_l_ dx_,
dez T dt lpdt)

[Equation 10, adapted from Kilburn and Voight 1998; see section 2.3.3.2 for terms]

— dx -1
o = - t)

[Equation 11, adapted from Kilburn and Voight 1998; see section 2.3.3.2 for terms]

. . . 1. d .
Here inverse-velocity, previously V™1 is represented by the term d—: . Kilburn and

Voight's (1998) work marks a key development in the theory of accelerating creep.

The slow cracking model proposed by Kilburn and Voight (1998) was first
applied to landslides by Petley et al. (2002). This work verified linearity in inverse-
velocity-time space for hillslopes undergoing brittle shear failure (figure 3.5a), using
data from the Selborne slope- cutting experiment (for further details, see section 4.).
Several unsuccessful applications of Saito’s principles to unstable hillslopes (e.g. Hungr
et al., (2005); Angeli et al. (1989)), have raised questions on the validity of the
approach (Qin et al., 2001). Petley et al. (2002) noted differences in the trend
generated by inverse-velocity-time data, inferring that processes of deformation
within the basal shear zone, control patterns of pre-cursory creep. Kilburn and Voight’s
(1998) equation assumes that mean rates of pre-collapse movement are proportional
to rates of cracking (Kilburn and Petley, 2003). As discussed, linearity is attributed to
the stress transfer process during crack growth (Main et al., 1993), which leads to
patterns of accelerating deformation as rupture surfaces form (Petley et al., 2008a).
The process is associated with first time failure of soil or rock slopes composed of
cohesive materials (section 2.3.3.2). Shear zones deforming in a ductile manner, either
sliding on existing surfaces (reactivation) or purely under strain-hardening mechanisms
(crack nucleation), observe an asymptotic trend in inverse-velocity-time space (figure
3.5a; Petley et al., 2002). This trend is also evident during primary and secondary creep

in slopes that eventually fail under brittle mechanisms (Carey et al., 2007).
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Figure 3.5: (A) Inverse-velocity-time trend for hillslopes undergoing brittle shear failure
(Data from Inclinometer 8, Selborne landslide, reproduced from figure 2A, Petley et al.
(2002); p.720). (B) Inverse-velocity-time trend for hillslopes undergoing ductile
deformation in the shear zone (Data from Abbotsford landslide, New Zealand,
reproduced from figure 3B, Petley et al. (2002; p.721)).

The inverse-velocity method, quantified by Equation 11, is a valid tool for the
prediction of landslides deforming in a brittle manner (Petley and Rosser, 2006).
Although this and earlier formulations of Saito’s principle have only been applied to a
limited number of unstable hillslopes (Mufundirwa et al., 2010; Rose and Hungr, 2007;
Carey et al., 2007; Petley and Rosser, 2006; Kilburn and Petley 2003; Petley et al.,
2002; Zvelebil and Moser 2001; Hungr and Kent, 1995; Suwa, 1991; Zvelebil, 1984;
Kennedy and Niermeyer, 1970; Saito, 1969), mostly retrospectively, the technique has
proven robust for these examples. Founded on the concept of progressive damage
accumulation in slopes (section 2.3.3.2; Brideau et al., 2009), Saito’s observations are
supported by the time dependency of pre-cursory localised failures and rockfall
(section 3.4.2.1) (Rosser, 2010). The inverse-velocity method is the only predictive
technique- both strain-based or stress-based- to provide an estimate of failure timing
(Glastonbury and Fell 2000). Although instabilities must be identified, delineated and
monitored, application of the method does not require site-specific tailoring or rely on
an alert threshold- as is the case with other empirical functions (Petley et al., 2008a).
Since the majority of landslide related deaths are caused by sudden catastrophic first
time failures (Petley et al., 2005b) either rainfall or seismically triggered, the

contribution this technique could make to landslide science is significant.
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3.4.3. Methods of monitoring displacement

Monitoring instrumentation limits the accuracy of landslide predictions derived
from the Inverse-velocity Method, and other strain acceleration techniques. Precise
measurements of displacement are required to capture the sub-centimetre creep rates
of pre-failure hillslope deformation (Bhandari, 1988). Several instruments exist to
record slope movements, these may be grouped into the broad categories (1) type of
measurement (point/surface) and (2) location of the measurement (surface/ sub-

surface), and are reviewed in table 3.1.

The most long-standing and well-used methods involve simple point-based
direct instrumentation, such as inclinometers and extensometers. Point-based
instruments are capable of recording millimetre displacements to a high precision and
accuracy, however they provide only limited coverage of the hillslope (McHugh and
Girard, 2002). Many such techniques involve equipment that is directly installed onto
the slope. This requires careful planning and strategic placement of the device in a
location where motion is expected to occur, based on geological conditions (Angeli et
al., 2000). Differential GPS and total EDM surveying are two more advanced point-
based techniques, facilitating greater surface coverage dependent on the number of
reflectors or receivers deployed over the surface. However although both techniques
operate with an element of remoteness, their targets are subject to damage by

landslide activity.

Remote monitoring overcomes problems associated with manually installing
(and maintaining) direct instruments on steep unstable terrain (Lim, 2006). Including
both passive and active sensors mounted on satellite, airborne or terrestrial platforms,
remote techniques are diverse but commonly collect a number of points across the
slope surface, providing greater coverage for motion detection. Satellite techniques
such as Differential INSAR, may be limited by spatial and temporal resolution (Petley et
al., 2002), however terrestrial systems such as the laser scanner, provide high
resolution, high density data at temporal resolutions dependent from the frequency of
site-visit. Importantly data is not collected continuously, unless a system is
permanently installed. The majority of techniques reviewed in table 3.1 measure

surface displacements. Although these movements are easier to record (Petley, 2004),
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Type of Location of Instrument Description Typical Positives Negatives References
measurement | measurement resolution/
accuracy
Point Surface Extensomete | Measures linear movement Measurement e High measurement precision e Directional Angeli et al. 2000;
r/ strain- across two reference points (up | repeatability= e High temporal resolution (near- | e Limited spatial coverage (singular line | Husaini and
meter to ~30m apart) on the hillslope | 0.10mm continuous) of displacement measured) Ratnasamy (2001)
surface. If installed across and Display e Relatively easy installation e Intense movements can snap wires
perpendicular to existing resolution= e Rugged design and damage rods
tension cracks extensometers 0.01mm e Long installation life o Affected by temperatures below
can measure relative (e.g. CEP digital e Not affected by atmospheric freezing
movements between a stable | tape conditions * Distortions in measurement if tilting
and unstable area of slope. extensometer") e Low power consumption occurs
Type
Wire (tape)
Borehole (rod)
Point Surface Crack-gauge/ | Similar principle to Measurement e High measurement precision e Limited crack span (typically only a Chelli et al., (2006)
meter extensometer; measures the repeatability= e High temporal resolution (near- few centimetres)
(jointmeter) | linear movement across a crack. | 0.3mm continuous) e Directional
Type Resolution= e Low-cost e Limited spatial coverage (singular
Mechanical 0.15mm e Relatively easy installation profile of displacement measured)
Electrical (e.g. DGSI VW e Not affected by atmospheric e Damaged if twisted
crackmeter?) conditions e Affected by temperatures below
e Low power consumption freezing
Point Sub-surface Inclinometer | Measures changing angle (tilt) 3uradians e High measurement precision e Limited spatial coverage (singular Chelli et al., (2006)
(tiltmeter) with respect to an artificial (e.g. LCF-196 e High temporal resolution (near- profile of displacement measured)
vertical (or horizontal) start Dual Axis continuous) e Requires borehole installation
horizon. Installed below ground | Precision e Robust against shocks and e Damaged if significant movement in
to capture sub-surface Borehole vibration the shear zone
movements. Instrument inclinometer’) e Locate shear zone(s) e Relatively short installation life if
captures movement along a 5- e Determine whether a shear slope movements are significant (of
8m profile. zone is planar or rotational the magnitude of metres)
e Not affected by atmospheric e Casing set-up (i.e. length relative to
conditions or temperature instrument) can cause problems
change (unless extremely e Expensive
hostile)
e Low power consumption
Point Surface Total station | Measurements are made to and | Angular e Large spatial coverage e Temporal resolution may be limited if | Kalaugher et al.,

(EDM) survey

between survey markers (or
reflectors) spread across the
surface of the unstable slope.
Manual instruments require on-

resolution= 2"
RMSE distance
measurement
(prism mode)=

e Three dimensional movement
vectors

e Capable of recording a wide
range of movement magnitudes

manually operated EDM used

e Measurement precision decreases
with range

e Affected by atmospheric conditions

(2000);

e.g. Tessina
landslide (Petley et
al., 2005c¢)
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site operation by a field worker.
Automated systems seek and
record reflector locations.

2mm + 2ppm
(e.g. Trimble S3
Total Station®)

e Main EDM unit is remote from
landslide activity (capable of
measuring distances ~5000m)

e Records differential movements
between points across the slope

e Low power consumption

Chapter 3- Landslide predictability and the Inverse-velocity method

(reflector detection and measurement
accuracy)

e Reflectors may be damaged or hidden
by localised failures

e Coverage depends on number of
points included

Point Surface Differential A reference base station is Measurement e High measurement precision e Limited temporal resolution if GPS e.g. Super-Sauze
GPS located over a known point (i.e. | precision and (optimal at 24 hours, but isn’t permanently installed and earthflow (S.Alps,

Ordnance Survey benchmark) accuracy in degrades with time due to automatically recording. France) (Malet et
on stable ground. ‘Moving’ position and variations in satellite e Access issues for ‘moving’ station al., 2002; Tagliavini
stations are distributed over the | height constellations and multipath installation et al., 2007)
unstable slope. The changing dependent on effects) e Power supply required if permanently
positions of the ‘moving’ number of e Three-dimensional movement installed
stations are recorded in relation | factors. ~5mm vectors e Local geophysical conditions
to base station, which provides | horizontal, e Does not require direct line of (mountains or forest) may limit
a highly accurate stable ~10mm vertical sight between the ‘moving’ satellite detection and create
reference point. Movement accuracy stations and the base station multipath errors
vectors are calculated between | achievable with | o Base station may be situated up | e Complicated post-processing unless
‘moving’ points, and between post-processing to ~5km away automated
the reference station and (e.g. Leica e Measurements between e Expensive
‘moving’ points. GPS1200+’) ‘moving’ and reference stations e Different horizontal and vertical

are not weather or light resolutions

dependent

e Lower maintenance than other
point-based systems
Surface Surface Differential Satellite-based. Uses two SAR Imaging e Capable of detecting large and e Limited temporal resolution e.g. Frank slide,
InSAR images to create an resolution™~ 3m small movements e Can be expensive if data not released | Canada,

interferogram of the surface.
Images obtained using repeat
pass (one antenna, two
acquisitions) or single pass (two
antennas, one acquisition)
methods. Target to sensor
distance is calculated from
phase signals. Differential SAR
compares sequential
interferograms (captured at
different times); calculating
displacement from differences
in the phase component of each
image.

depending on
set-up (e.g.
RADARSAT-2°)

e Remote data capture

e Near global data available from
1994

e Two-dimensional surface
monitoring

e Three-dimensional movement
vectors

e Maintained by data providers

e Large spatial coverage

¢ Problems with geometrical
distortions/ view direction (i.e. areas
in shadow)

e Restricted by time lapse between
images (decorrelation occurs if surface
changes are too great)

e Volume decorrelation if two SAR
images capture from different
acquisition geometry

e Decorrelation if two SAR images
captured through different
atmospheric conditions

e Accuracy of time measurement

e Problems if surface changes between

Singhroy et al.
(2005);
Corsini et al. (2006)
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Satellites

ERS-1/2, JERS-1, Envisat ASAR,
Space shuttle (SIR-A/B, Shuttle
Radar Lab, Shuttle Topography
Mission), and RADARSAT-1/2

data collection e.g. vegetation change
e Complicated processing procedure
e Complex movement signals to
interpret
e Power supply required
e Limited capture parameters

Chapter 3- Landslide predictability and the Inverse-velocity method

Surface Surface Ground- Ground-based InSAR uses the Spatial ¢ High measurement precision; e Restricted by time lapse between Catani et al. (2005);
based INSAR | same technique as the former resolution capable of millimetre displacement images (decorrelation occurs if surface | Corsini et al.(2006);
satellite-based approach. The depends on detection between SAR images changes are too great) Antonello et al.
instrument employs a single distance e Instrument may be situated a e Some instruments (high frequency) (2004); Noferini et
pass method; two radar between the few metres to several kilometres are very sensitive to surface state al. (2007)
antennas are mounted on a radar and target from target slope change, resulting in loss of coherence
linear rail, horizontally sliding to | LISA system has e Operates independently of e Problems with atmospheric artefacts
form a synthetic aperture. an expected weather and light conditions e Limited range of velocity detectable,
Phase variations are directly precision lower e High temporal resolution up to a few decimetres per hour
related to ground displacement | than 0.3mm for (although not continuous) e Very expensive overhead costs
along the sight-line of the radar | distances e Flexible operation and capture e Problems if surface changes between
system. Spatial resolution is ~150m parameters (i.e. may be set upto |  data collection e.g. vegetation change
controlled by the aperture (Antonello et al., capture less frequent images for | ¢ Complicated processing procedure
spacing and target distance. 2004) slower moving slopes) o Power supply required
* High range (~3km) e Requires line-of-sight
e Large spatial coverage
® Remote data capture
e Two-dimensional surface
monitoring
e Three-dimensional movement
vectors
e More appropriate view-
direction than satellite systems
Surface Surface Terrestrial Photographs are taken from two | ~¥0.03m at ~“70m | e Two-dimensional surface e Limited temporal resolution, relies on | Bhandari (1988)
Photogramm | exposure stations to create a range (Lim et monitoring manual collection (non-continuous (e.g. Mussoorie-
- stereo pair. Stations are al., 2005) e Three-dimensional movement measurement) chamba bypass
-etry triangulated using an EDM, vectors e Undulating and/or steep slopes landslide Lim et al.

providing local coordinates.
Differential GPS relates local
units to a geographic coordinate
system. Sequential stereo pairs,
captured periodically of the site
provide a time series of surface
change. Features on deforming
sections of the surface are

® Remote data capture

e Cheaper than other surface
techniques

e Provides additional photographs
of the slope surface

® Processing may be automated

e More appropriate view-
direction than airborne systems

present difficult viewing angles for
photography

e Requires line-of-sight

e Changing light and weather conditions
(and cliff appearance) during single
acquisition may affect photograph
matching

e Complete surface evaluation is

(2005))
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tracked to calculate movement
vectors.
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unpractical, check points used across
the slope to overcome this. Point
location dictates DEM resolution

Surface Surface Terrestrial Operates in a similar manner to | 5mm precision, e Two-dimensional surface e Limited temporal resolution, relies on | e.g. Puigcercos
laser an EDM unit, however the laser | 3mm accuracy monitoring manual collection (non-continuous landslide,
scanning beam is directed across the at 100m range e Three-dimensional movement measurement) Catalonia, Spain
(LiDAR) slope surface using a (e.g. Riegl VZ- vectors e Errors generated by edge effects from | (Abellan, 2009)

horizontally rotating base unit | 4007) e High measurement precision laser footprint averaging
and vertically tilt mechanism. A e Remote data capture e Requires line-of-sight
systematic pattern of points are e High point sampling rate across e Expensive overhead costs
collected providing range surface e Point-precision dependent on surface
measurements between the e More appropriate view- characteristics (limited by wet or dark
scanning instrument and the direction than airborne systems surfaces), angle of incidence to the
target surface. Most systems e May be integrated with a surface, weather and dust.
are based on the time-of-flight camera to provide photography | e Surface reflectivity governs scanner
principle. Points are e Capable of detecting large and range
interpolated into a DEM and B [ e o Power supply required
sequential DEMs may be e Not prevented by light e Undulating slopes present difficult
compared. conditions (data may be viewing angles
collected in the dark) e Problems if surface changes between
e Data may be collected over data collection e.g. vegetation change
600m range (new systems)

Surface Surface Airborne Airborne LiDAR uses the same Mean horizontal | e Two-dimensional surface e Limited temporal resolution e.g. Gaspé
LiDAR (light instrument (and principles) asa | error~ +38.5cm, monitoring e Requires line-of-sight Peninsula, Canada
detection terrestrial application, however | mean relative e Three-dimensional movement (Xharde et al.,

and ranging)

! http://www.cep.com.sg/pdf/tapeextensometer.pdf
? http://www.slopeindicator.com/pdf/vw%20crackmeter%20datasheet.pdf
* http://www.leveldevelopments.com/PDF_Documents/LCF-196.pdf

4 http://trl.trimble.com/docushare/dsweb/Get/Document-469042/022543-492A_TrimbleS3_DS_0110_sec.pdf

is this is combined with a
differential GPS and IMU
(inertial measurement unit)
which relates data acquisition to
geographic coordinates,
adjusting for in-flight tilting.

vertical error~
1.8 +4.8cm (e.g.
Optech ALTM-
2050; Xharde et
al. (2006))

vectors

e Remote data capture

e Not prevented by light
conditions (data may be
collected in the dark)

e Large spatial coverage

e Spatial resolution perhaps too coarse
for fine creep movements

e Errors generated by vegetation

e Hugely expensive costs due to flight
chartering

e Point-precision dependent on surface
texture and weather.

e Steep slopes present difficult viewing
angles

e Complicated processing procedure

Table 3.1: Evaluation of instrumentation commonly used to monitor hillslope displacement.

5

2006)

http://www.servcol.com/Site/Instrument%20PDF's/GPS%20Systems/SmartRover%208&%20GPS1200/GPS1200 Technica

IData_en.pdf

6 http://www.radarsat2.info/about/features_benefits.asp
7 http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_VZz400_20-09-2010.pdf
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it is important to consider the sub-surface accumulation of strain in the landslide mass

and how accurately surface deformation represents this (Petley et al., 2002).

Monitoring is a powerful tool for landslide kinematic analysis if data is collected
in an effective, comparable manner (Angeli et al., 2000). Incorrect instrument choice or
installation may lead to inaccurate or false results (Abramson and Lee, 1996). Accuracy
and durability are important attributes to monitoring devices, often resulting in a
number of systems being installed to maintain coverage of the site beyond the damage
life of a single system (e.g. Chelli et al. 2006). Few recent complete reviews exist
evaluating the relative merits of landslide monitoring techniques. Most are confined
within key engineering geology textbooks such as Dunnicliff (1993), Kliche (1999) and
Hustrulid (2000), predominantly covering traditional point-based direct methods. Less
literature exists, comparing remote monitoring devices, although Delacout and others
review the state of landslide remote sensing in 2007 (Delacout et al. 2007). Over the
last 5 years- since this publication- a number of rapid technological developments
particularly in ground-based InSAR and terrestrial laser scanning have arisen to provide
the geological community with more accurate and precise slope surface
measurements. In the context of strain-based prediction and the Inverse-velocity
Method, new monitoring tools provide better quality data leading to improvements in
the prediction of landslide failure time. Although this review is by no means
comprehensive, it provides a good starting point when selecting slope
instrumentation, and will be returned to in the discussion of published deformation

data (chapter 5).

Instrumentation is the main limiting factor and source of error involved in the
Inverse-Velocity Method. However the technique also relies on several other

assumptions, that...

(1) the slope is deforming in a brittle manner

(2) deformation mechanisms operating in the shear zone manifest representative
patterns of measurable surface displacement

(3) the landslide accelerates continuously to failure (Borsetto et al. 1991),
exhibiting a linear trend in inverse-velocity-time space during the tertiary creep

phase.
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Fundamentally, the limited published applications of the Inverse-Velocity Method a-
priori to actively deforming brittle hillslopes highlights the epistemic uncertainty and
thus reduced confidence in applying this technique to determine landslide failure time.
Although stress-based threshold techniques indicate a higher probability of slope
collapse within a region or for a pre-identified unstable mass, strain-based site-specific
approaches- singularly the Inverse-Velocity Method- provide an estimate of failure
timing based on pre-failure strain accumulation. Understanding this technique better,
particularly in light of the complexities of different slopes and the aleatory uncertainty
this naturally entails, is an important frontier in landslide science. Failure timing is
arguable the most significant parameter when mitigating against landslide loss (Rosser
et al,. 2007), particularly when early warning systems are the only viable management

solution.

The following chapters address two key aspects of uncertainty surrounding the
Inverse-Velocity Method. Chapter 4 presents a database of tertiary creep examples
collated from a number of published pre-failure datasets; all of which derive from
unstable hillslopes that collapsed under brittle mechanisms. Importantly this chapter
discusses aleatory uncertainty generated by variations in tertiary creep parameters
(i.e. duration); further postulating from these results possible physical causes of
diverse behaviour and the impact this has on developing a monitoring technique
applicable to a wide range of different slopes. Chapter 5 discusses results in the
context of monitoring, recommending the most appropriate method of monitoring
deforming hillslopes in the context of feeding data into the Inverse-velocity method

leading to failure prediction.
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CHAPTER 4

Tertiary creep database
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4.1. Introduction

The Inverse-velocity method provides an estimate on failure timing based on
pre-failure strain accumulation (section 3.4.2.2.1). Although some studies have been
successful in applying the technique to unstable hillslopes, others have not, for reasons
that remain poorly understood. The ‘black box’ nature of this method, results
specifically from the lack of understanding surrounding the physical mechanisms that
control variations in the linear trend in inverse-velocity-time space. Developed from
the fundamental work of Bjerrum (1967) and Main (2000), Petley et al. (2005b)
presented a mechanics model for landslide systems (figure 2.7) to explain the physical
processes operating in-slope; manifesting as three-phase creep behaviour preceding
collapse (section 2.3.3.2). The model provides a good conceptual basis for slopes
undergoing brittle shear failure, however its generic form does not constrain slope
specific factors controlling the nature and shape of creep curves (Federico et al., 2002;
Fell et al., 2000; Hutchinson, 2001); and in turn the duration and linearity of inverse-

velocity-time data.

Recent work has focused on understanding the relationship between micro-
scale deformation processes and macro-scale strain development. Laboratory testing
of intact slope samples (section 2.3.1.1.) provides measurements of the strength and
behaviour of material under different stress conditions. Although this brings useful
insight into the mechanism (e.g. brittle) controlling material failure; as discussed in
chapter 2, it is an abstraction from reality that does not account for the discontinuous
heterogeneity of most hillslopes. Variations in inverse-velocity behaviour result from
the complexity of real landslide systems. Macro-scale displacement data from actively
failing slopes captures shear zone deformation within the context of slope
heterogeneity. A significant body of published deformation data is available, yet to
date there has been no attempt to collate a catalogue of landslide deformations from
a large number of sites to examine emergent behaviour; notably variations in and
controls on movement prior to failure. Collation of published data provides a platform
on which to examine different patterns of tertiary creep and consider the effect of

associated slope characteristics- such as geology- on basal shear zone mechanisms.
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4.1.1. Criteria

The inverse-velocity method is a valid tool for the prediction of landslides
deforming under brittle shear failure (Petley et al. 2008a; see section 3.4.2.2.1).
Criteria must be set in line with this when collating published landslide displacement
data. Although all pre-cursory behaviour to slope collapse is interesting, this study is
specifically focusing on landslides to which the inverse-velocity method may be applied

to data retrospectively. Examples must conform to the following criteria:

(1) Shear zones must be deforming under a predominantly brittle mechanism.
This is identified from descriptions of slope geology, damage history; whether
the event is a first-time failure with a clear shear surface; if the slope is shown
to accelerate to failure; additionally if crack growth is discussed as a mechanism
by the author of the source in which data is presented.

(2) Slopes must have fully failed and collapsed. The tertiary stage of creep may
have an incredibly short duration, and it is important to capture the final pre-
failure movements of the landslide.

(3) Movement data must be present in the source (e.g. article) in graphical or

tabular form

Following a brief methodology (section 4.2) outlining how the database was
compiled, variations in the dataset are presented and discussed considering the: (1)
spread of slope characteristics (e.g. slope gradient) across the examples, (2) tertiary
creep variations and, (3) implications this has on measuring surface displacement and

applying inverse-velocity based predictions to real failing slopes.

4.2. Methodology

Landslide science has generated an increasing number of publications in recent
years, responding to growing numbers of fatal events, economic costs and
technological innovation facilitating greater understanding of mass wasting processes.
Slope displacement data is often included in studies focusing on specific localities.
Although results are presented in a number of locations including books, journal

articles, conference papers, blogs, professional research body websites, postgraduate
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theses (Masters and PhD) and commercial reports; this study initially focused on
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articles within ten peer-reviewed journals (table 4.1).

JOURNAL DATES WEB-LINK
Journal of Geol >ept 1973- http:/geol bs.org/
ournal of Geolo ://geology.gsapubs.or
gy Aug 2010 p://8 gy.gsap g
http://www.elsevier.com/wps/f
Journal of July 1987- ind/journaldescription.cws ho
Geomorphology Aug 2010 me/503334/description#descrip
tion
Earth Surface Process Jan 1976- http://onlinelibrary.wiley.com/|
d Landf Aug 2010 ournal/10.1002/(ISSN)1096-
and Landforms ue 9837/issues
. Jan 2008- http://www.nature.com/ngeo/i
Nature Geoscience
Aug 2010 ndex.html
http://www.elsevier.com/wps/f
. . Aug 1965- ind/journaldescription.cws ho
Engineering Geology - .
Aug 2010 me/503330/description#descrip
tion
. Mar 2004- http://www.springerlink.com/c
Landslides
Aug 2010 ontent/1612-510X
Mar 1988- http://www.springerlink.com/c
Natural Hazards
Aug 2010 ontent/0921-030X
International Journal http://www.elsevier.com/wps/f
. Jan 1997- ind/journaldescription.cws ho
of Rock Mechanics and — .
.. . Aug 2010 me/256/description#tdescriptio
Mining Sciences N
Quarterly Journal of
_ ) Sept 1967- _ ;
Engineering Geology F—- http://qjegh.lyellcollection.org/
u
and Hydrogeology 2
Environmental Jan 1975- http://www.springerlink.com
Geology Aug 2010 /content/0943-0105

Table 4.1: Journal information

The ten journals were chosen as a starting point to scope the availability of pre-

failure deformation data. They are all peer-reviewed, meaning that article publication
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is regulated by professionals working in the same or similar fields, indicating that it is a
quality and credible piece of research. Articles in each journal were searched online
(see table 4.1) using combinations of key words from box A ‘AND’ box B (figure 4.1).
Only papers available on the internet (i.e. within the dates specified in table 4.1) were
included in the search, however most journals now contain an archive from the date of
first issue release. This is useful in providing access to a broad spectrum of data,

collected using different methods and under different motivations.

Synonyms of the word
'movement’ and other
key words associated to

General geomorphic the brittle creep process

process or location

slide

landslide creep
?1?'55 movement >. displacement
ailure .
rockfall A single word from box dEfE.rlr.natmn
slope A is combined with each Et? II ity
collapse word in box B in turn rittle

. P movement
cliff motion

A mechanics
B

Figure 4.1: Keyword ‘search’ framework

The search method generated over 6,000 article returns, all of which were
exported into an Endnote database. The number of returns was reduced by removing
irrelevant studies (e.g. submarine landslides) then the remaining articles were visually
skimmed and kept if they contained any form of displacement data. 158 articles
contained landslide movement data. Of these 56 papers contained data from slopes
believed to be deforming under brittle shear-failure. Only 8 articles provided
displacement data that captured the moment of slope collapse. This disappointing
result- only 5% of articles that contained data were appropriate to the database
criteria- raises questions as to whether displacement data is simply not included in
publications, or if it is not readily collected from landslides deforming under the brittle-
shear mechanism. Importantly only 14% of slopes evolving in this manner were
recorded to collapse, indicating, perhaps, that the instability had been identified and

mitigated before failure (although this is not clear from the publications in question).
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The limited number of examples also questions the choice of ‘scoping’ journals. Given
that “samples are often considered small if their size is under 30” (Porkess, 2005)it
would benefit the database for the ‘net’ to be cast a little wider. A number of papers
referenced in chapters 2 and 3 contain landslide movement data that satisfies the
search criteria. Although many of these were from published texts that would have
encountered a peer-review, some are conference articles that have not necessarily
gone through this process. Nevertheless the research provides a further 10 examples

for the database.

Bonnard and Glastonbury (2005) presented time to collapse- strain rate data
for a number of excavated slopes, however the lack of information on slope length
restricted conversion to displacement and thus inclusion of the examples. The data
had originated from two published technical reports, (Glastonbury and Fell, 2000)and
(Glastonbury and Fell, 2002). These studies presented a database of just over 100
landslides. 13 of the examples fell within the search criteria specified in section 4.1.1;
although most slopes in the reports were first-time failures only a few had collapsed (it

is noted that others exhibited significant displacement without collapsing).

All 31 examples collected from the different sources were presented
graphically. Data was scanned in from hard copies or captured using the snapshot tool
in Adobe, then digitised within SigmaScan software. Associating the limits of graph
axes to the local grid within SigmaScan provides a reference on which to re-scale
‘picked’ data points from local coordinates (x, y) to original graphical values; thus
extracting data from the published graphs. To assess the accuracy of this technique,
the Vajont original raw data set was acquired (Kilburn, 2011), from which figure 4.2 (a)
was generated and published in Kilburn and Petley (2003; p.27). It is noted that this
paper is one of few which considers, linearity in an inverse-velocity-time plot of data.
The ‘time’ variable is presented on a ‘time to failure’ scale, where the last data point
(considered the point of failure) occurs at zero time; this conversion was used for all 31
examples. Comparing the original raw values to those digitised (figure 4.2, (b-c)), one
derives that data was extracted with high accuracy (R*=1). The maximum error on time
data is 0.1 days. The published data was deliberately plotted by the authors using
circles of a diameter (~2 days) to represent the <5% estimated error on measurement

rates (Kilourn and Petley, 2003; figure 6). This however results in the 0.1 day
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imprecision in the digitised data (figure 4.2(a));graphs containing ‘cross’ markers have

the least digitising error.
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Figure 4.2: (a) Inverse rates of horizontal slope movement before the
catastrophic collapse of Mt. Toc into the Vajont reservoir (reproduced from
Kilburn and Petley (2003); p.27, fig. 6). (b) Correlation of time-to-failure data.

(c) Correlation of inverse-velocity data.

Landslide displacement is presented in a variety of forms: (1) displacement-
time, (2) cumulative displacement-time, (3) velocity-time or (4) inverse-velocity-time;
and a number of units, i.e. hours, days, mm, cm etc. For this study units will be
converted to days (time), mm (displacement), mm/day (velocity), mm/day2
(acceleration) and days/mm (inverse-velocity); as used by Petley et al. (2002). When
data was presented in form (2) the displacement for each time step was calculated.
Velocity and inverse-velocity was derived for data in the form of (1) and (2) using
equation 12 (Box 4.1). For such examples velocity is associated to the mid-time
between each displacement measurement. Inverse-velocity is calculated using

equation 13 (Box 4.1). Where data is in form (4), velocity measurements are derived
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from 1/inverse-velocity. Displacement is calculated from data in the form (3) and (4)

using equation 14 (Box 4.1).

displacement

velocity = [Equation 12]

time

1
velocity

inverse — velocity = [Equation 13]

displacement = velocity X time [Equation 14]

Box 4.1 Conversion equation

Nine of the thirty-one data sets were digitised from inverse-velocity-time
graphs (form 4). It is assumed here- given the context of these specific papers- that all
values presented were within the tertiary creep range. Some authors have used R? as
an indicator of tertiary creep onset; Petley and Rosser (2009) employed a value of 0.9
to indicate a confident linear fit on data. Other examples, such as data from the
Selborne slope cutting (figure 3.5 (a)), are fitted with an R® value of 0.806 (table
4.2(b)). It must be assumed that the time duration of these graphs corresponds to the
full period of tertiary creep, where authors have identified the transition into self-
reinforcing crack development (section 2.3.3.2) using linearity in inverse-velocity-time
space. This assumption is verifiable for cases such as Vajont, where displacement
measurements are also published, but not for examples such as Barrick Gold’s Betze-
Post open pit mine (southwest slope) Rose and Hungr (2007) who have only included

measurements within their defined tertiary creep period.

For data digitised from displacement-time (forms 1 and 2) or velocity-time
(form 3) graphs, the onset of tertiary creep is identified using an R? value of greater
than or equal to 0.8, when points are plotted in inverse-velocity-time. This was chosen
to reflect the minimum fit value (0.806) derived from the nine examples published in
form 4 graphs (discussed briefly above). The remaining twenty-two examples were
plotted on inverse-velocity-time graphs, fitted with a linear regression which was re-
evaluated as points were removed; reducing the duration of data but increasing the R

value until it is above 0.8. Figure 4.3 provides a graphical example of this process.
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Figure 4.3: Ota Mura
landslide data plotted
in inverse-velocity-time
(from Petley and
Rosser (2009)) (a)
Complete data set. (b)
Data 10 days to failure.

(c) Final creep phase

The Ota Mura example highlights one of the challenges of working with ‘real-

world” measurements. The final period of rapid acceleration, characteristic of tertiary

creep is defined in this data by the clustering of points close to zero time and low

inverse-velocity values- circled in figure 4.3 (a). Although the linear fit for the final ~10

days of data has an R? value greater than 0.8, closer inspection of the points indicate

that the trend shifts ~4 days to failure (marked by the red line, figure 4.3 (b)). Possible

physical mechanisms controlling trend shifts in creep movements are discussed in

chapter 5 within the context of results from the wider database. For this study, only

data following the last significant change in behaviour (figure 4.3 (c)) will be kept from

examples containing gradient shifts between clear periods of linearity (as displayed in

figure 4.3 (b)).
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Linear trends in figure 4.3 were fitted to data without fixing the x-axis intercept

(in common to published examples). Although the database provides an opportunity to
evaluate the accuracy and precision of failure forecasting using the Inverse-velocity
method (this will be discussed with chapter 5), results are primarily focused on gaining
more insight into the variability of pre-failure creep to inform slope deformation
monitoring (section 4.1). Considering this, it seems more appropriate to fit a linear
trend whose intercept coincides (in time) with the last data point; i.e. fix the x —axis
intercept at zero, recognised as the point of landslide failure. Crucially this is based on
the assumption that the final measurement in published graphs, corresponds to the
point of slope failure, and not the last sampling interval before failure. Given though
that it is more likely to relate to the latter, based on the typical set up of slope
monitoring equipment (section 3.4.3), an error margin equivalent to the sampling
interval will be considered in discussions (chapter 5) when evaluating data fitted with a

fixed x-axis intercept.

No unstable slope is entirely alike in terms of material composition, geological
structure, geometry and physiographic setting. Differences in slope form and situation
are likely controls on tertiary creep variability; however this has not yet been explored
in past publications. For each example in this database, attributes including month of
failure, geology of slope, vegetation condition, failure size, pre-failure slope gradient,
failure trigger and whether a slope was formed natural or cut (i.e. mining) will be
recorded- where possible- and considered alongside tertiary creep parameters (e.g.
duration). Although a description of the landslide was included in most publications
used, it did not always include all details listed above. Where possible other papers
recording the same site were referred to. A lack of standard reporting of slide
geometry meant it was not possible to include a full spectrum of measurements (e.g.
length) in the database. The most commonly used descriptors were area and volume;
volume has been chosen to represent size in this study. For slides where volume is
unknown but area is given, volume is estimated using equation 15 and the scaling
exponents from Larsen et al. (2010).

V =aAY
[Equation 15, reproduced from Larsen et al. (2010)]
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Here V represents volume, A represents area which depends on scaling exponent y and
intercept a. Larsen et al. (2010) recently reviewed the scaling of this model presenting
values y= 1.1-1.3 for shallow soil slides and y= 1.3-1.6 for bedrock failures. To ease
analysis, volume was classified by magnitude (see below) to give a broad idea of

relative landslide size.

VOLUME (WP) LANDSLIDE SIZE

1<x<1,000

1,000 < x < 100,000

100,000 < x < 1000,000

1,000,000 < x < 10,000,000

| | W N

10,000,000 < x < 1,000,000,000

Table 4.2: Landslide size classification

Detailed geology is summarised under the categories soft rock, hard rock or
clay (soil) using typical mean uniaxial compressive strength (UCS) values for the
predominant slope material (Look, 2007). Hard rocks are those with a UCS value over
100 MPa (Singh and Goel, 1999). This is a very basic method of classifying slope
geology and material strength, and does not account for slope heterogeneity,
structural features or accumulated damage (i.e. under physiographic mechanisms,
section 2.3.3.4). However, publications typically contained only minimal descriptions of
slope pre-failure condition and this simplistic classification provides a clear method of
broadly differentiating slopes by geology with limited information. Glastonbury and
Fell (2000) and Glastonbury and Fell (2002) were able to more fully investigate
material properties of the slope failures contained in their databases, by visiting each
site and testing samples in the laboratory. Unfortunately this was not possible here,
and is unlikely to be an option for most researchers drawing on vast amounts of

secondary data derived from different global locations.

The slope attributes and tertiary creep parameters are listed for each example
in tables 4.3(a) and 4.3(b). Methods of monitoring and total monitoring period are also

included where disclosed in the original publication.
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4.3. Results

This section presents data from thirty-one examples of tertiary creep, digitised
from published pre-failure slope deformation data (see section 4.2). The database is
summarised in tables 4.3(a) and 4.3(b). This includes slope characteristics (e.g. pre-
failure gradient), factors preparing collapse (e.g. causes), failure timing (e.g. month),
tertiary creep parameters (e.g. duration), and monitoring methods. Clear from these
tables is the diversity of failures contained within the database. The distribution of
examples under different slope characteristics is presented in section 4.3.1 and
discussed in chapter 5. This initial overview focuses on common pre-condition,
preparatory and triggering factors that have led to instability and collapse of slopes in

the database.

Pre-failure tertiary creep variations are presented in section 4.3.2. Each
movement parameter is addressed beginning with cumulative displacement-time
curves, leading to velocity-time curves and finally the inverse-velocity-time projection
of data. Results are considered alongside slope and failure characteristics, with the aim
of relating these to variations in tertiary creep. The accuracy and precision of the
Inverse-velocity method is considered by fitting linear trends to data, from different
time periods before failure (section 4.3.3). Results are discussed in chapter 5 under the

following framework:
Discussion points

Consistencies and differences in
patterns of pre-failure tertiary
creep

Propose physical mechanics models
based on Petley et al. (2005a, 2005b,
figure 2.7) to explain variation in tertiary
creep behaviour, accounting for slope and
failure characteristics

Slope and failure characteristics
and tertiary creep parameters

Accuracy and precision of the Evaluate the Inverse-velocity method
Inverse-velocity method for using linear trends projected to include
slope failure forecasting different durations of data recorded

during the monitoring period; considering
the failure from an a priori perspective

Tertiary creep parameters and
monitoring requirements

Recommendations for monitoring based

Limitations of database and on tertiary creep parameters e.g.
recommendations magnitude of pre-failure deformation
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BACKGROUND GEOLOGY GEOMETRY
ID NAME Reference Location Failure Failure General Material Mechanism | Vegetated Volume Size Average Pre-
Month Year Geology Strength Comments (m?) Rating failure Slope
(material) Gradient (deg)
1 Selbourne (Petley et al., 2002) England 7 1989 Soil Clay Roto- No 18413 2 49
slope cutting translational
2 Liberty Pit (Rose and Hungr, 2007) USA Rock Hard No 7000000 4 33
mine
3 Barrick Gold’s (Rose and Hungr, 2007) USA 8 2001 Rock Hard Compound No 18000000 5 27
Betze-Post
open mine
4 Un-named (Rose and Hungr, 2007) USA Rock Soft Toppling No 1000000 4 45
slope
5 Barrick Gold’s (Rose and Hungr, 2007) USA 6 2005 Rock Hard No 2000000 4 38
Betze-Post
open pit mine
(southwest)
6 Vajont (Belloni and Stefani, 1987; Italy 10 1963 Rock Hard Roto- Yes 270000000 5 25
landslide Kilburn and Petley, 2003) translational
7 | New Tredegar (Carey et al., 2007) Wales 4 1930 Rock Soft Roto- No 1935574 4
translational
8 Ota Mura (Petley and Rosser, 2006) Japan 8 2004 Rock Soft Translational Yes 65000 2 35
9 Lijiaxia (Bai et al., 2008) China 10 1998 Rock Soft Translational Yes 1530000 4 26
landslide
10 Xintan (Kegiang and Sijing, 2006) China 6 1985 Rock Soft Translational Yes 30000000 5 23
landslide
11 Bomba (Picarelli et al., 2005b) Italy Soil Clay No
landslide
12 Roesgrenda (Okamoto et al., 2004) Norway 3 2000 Soil Clay Roto- Yes 2000 2 40
slide A translational
13 Saleshan (Siging and Sijing, 2000) China 3 1986 Rock Soft Roto- No 200000 3 20
landslide translational
14 | Eskihisar coal (Ulusay and Aksoy, 1994) Turkey 9 1989 Rock Soft Roto- No 45017 2 60
mine wall translation
15 Randa (Bonnard et al., 1995) Switzerland 5 1991 Rock Soft Translational Yes 7000000 4 50
rockslide
16 Asamushi (Saito, 1969) Japan 7 1966 Rock Soft Yes 100000 3
landslide
17 Un-named (Mufundirwa et al., 2010) Japan Rock Soft No 500 1
rockmass
18 | Excavation A Unpublished reports * Australia 6 1950 Rock Soft Translational No 150000 3 35
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19 Teifer Mine (Thompson and Cierlitza, Australia 10 1992 Rock Soft Translational No 86000 2 50
1993)*
20 | Tuckabianna (Thompson, 1993)* Australia Rock Soft Translational No 125000 3 32
West
21 | Chugquicamata (Kennedy and Niermeye, Chile Rock Soft Compound No 600000 3 45
Mine- East 1970)*
Wall
22 Smoky River (Martin, 1993)* Canada Rock Soft Compound No 314000 3 65
Mine
23 Delabole (Boyd et al., 1973)* England Rock Soft Toppling No 50000 2 67.5
Quarry
24 Afton Mine (Reid and Stewart, 1986)* Canada 6 1986 Rock Hard Toppling No 2800000 4 40
25 Hogarth Pit (Brawner and Stacey, 1979)* Canada 6 1975 Rock Hard Toppling No 200000 3 44
26 | Luscar Mine- (Wylie and Munn, 1978)* Canada Rock Soft Toppling No 5600000 2 30
50A2 Pit
27 Roberts Pit (Coates et al., 1979)* Canada 9 . Rock Soft Rotation No 1200000 4 45
28 Nevis Bluff (Brown et al., 1980)* New 6 1975 Rock Soft Rotation No 32000 2 66
Zealand
29 | Ryanand Call (Ryan and Call, 1992" Mexico 7 Rock Translational No 75
slide 2
30 | Kennecott#l (Zavodni and Broadbent, USA Rock Translational No 4800000 4 33
1980)*
31 | Labe Canyon (Zvelebil and Moser, 2001) Germany 1 1984 Rock Soft Toppling Yes 1360 2 85

Table 4.3 (a): Tertiary creep database: slope history and deformation behaviour. When information is unavailable cell is marked with a dot (.)

Yin Glastonbury and Fell (2002)
Zin Glastonbury and Fell (2000)
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ID NAME Natural or Cause Trigger Type of Monitoring Tertiary Phase
man-made Monitoring Duration (days) | Total Displacement | Duration | Maximum Rate R? 1 gradient
slope (mm) (days) (mm/day) v
1 Selbourne Man-made Groundwater Groundwater Inclinometer 400 32 150.36 2.19 0.806 -0.1063
slope cutting
2 Liberty Pit Man-made | Slope redesign Blasting 1502 101.85 155.67 0.857 -0.0064
mine
3 Barrick Gold’s | Man-made | Slope redesign, Groundwater Inclinometer 1100 2895 43.54 295 0.990 -0.0011
Betze-Post rainfall,
open mine groundwater
4 Un-named Man-made | Slope structure, | Groundwater Extensometer 10 3080 8.23 1021.98 0.918 -0.0008
slope slope redesign,
groundwater
5 Barrick Gold’s | Man-made Groundwater, Loading (other | Surface survey 5 527 4.5 488.33 0.903 -0.0046
Betze-Post slope structure slide)
open pit mine
(southwest)
6 Vajont Natural Groundwater, Groundwater Surface 1185 1372 63.35 130.67 0.986 -0.0035
landslide reservoir, rainfall monument
7 | New Tredegar | Man-made Groundwater, Groundwater Peg network 70 376 15.49 81.75 0.941 -0.0082
slope redesign,
blasting
8 Ota Mura Natural Groundwater, Rainfall Extensometer 222 259 7.99 81.75 0.816 -0.0383
rainfall
9 Lijiaxia Man-made Groundwater, Groundwater Surface 113 92 14.25 7.38 0.810 -0.0383
landslide slope redesign, monument
reservoir
10 Xintan Man-made Groundwater, Rainfall Survey lines 3085 32146 357.91 858.72 0.889 -0.0007
landslide loading
11 Bomba Man-made 51195 8.43 99670.06 0.807 -0.0001
landslide
12 Roesgrenda Natural Groundwater Groundwater Extensometer 852 1429 0.29 31.23 0.81 -1.7635
slide A
13 Saleshan Natural Groundwater Rainfall, 662 1358 144.5 16269.55 0.937 -3.00e™
landslide groundwater
14 | Eskihisar coal | Man-made Groundwater, Groundwater Tension crack 10 33133 433.8 429.36 0.935 -0.0002
mine wall slope redesign, meters
slope structure
15 Randa Natural Earthquake, Loading (other | Surface survey 21 7966 10 9642.86 0.808 -0.0005
rockslide snowmelt, slide)
temperature
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16 Asamushi Natural 7 1562 1.36 7922.41 0.804 -0.0041
landslide
17 Un-named Man-made Rainfall, Structural Extensometer 185 50 0.016 13882.58 0.912 -0.1156
rockmass excavation, complexity
slope structure
18 | Excavation A | Man-made Pipe ruptures, Rainfall Surface survey 21 721 13.63 104.08 0.8079 -0.0402
excavation,
rainfall
19 Teifer Mine Man-made Excavation Excavation Surface survey 250 10233 144.65 657.21 0.8054 -0.0129
20 | Tuckabianna Man-made Excavation Excavation Surface survey 38 167 46.21 256.59 0.8835 -0.2535
West
21 | Chuquicamata | Man-made Earthquake, Excavation Surface survey 145 51393 109.75 3885.24 0.8314 -0.0006
Mine- East excavation,
Wall blasting
22 Smoky River Man-made Snowmelt, Mining Surface survey 270 2742 84.68 128.08 0.8245 -0.0147
Mine mining
23 Delabole Man-made Excavation Excavation Tension crack 7700 8276 3171.45 3.99 0.8104 -0.0165
Quarry meters
24 Afton Mine Man-made Excavation, Excavation Surface survey 62 47877 9.82 134164.56 0.8294 -0.0018
blasting
25 Hogarth Pit Man-made Excavation, Rainfall Extensometer 290 82297 243.28 7098.55 0.8447 -0.0019
blasting, rainfall,
snowmelt
26 | Luscar Mine- | Man-made | Excavation, high Mining, Extensometer 375 97825 338.71 897.62 0.897 -0.0014
50A2 Pit seasonal Loading (other
piezometric slide)
pressures
27 Roberts Pit Man-made Excavation rainfall Surface survey 147 63 126.17 8.03 0.8157 -1.0405
28 Nevis Bluff Natural Road excavation Surface survey 300 5890 26.76 2619.88 0.8149 -0.0379
construction,
freeze-thaw
cycles, rainfall
29 | RyanandCall | Man-made Surface survey 80 12353 65.14 2617.08 0.8064 -0.0195
slide 2
30 Kennecott#1 Man-made Tension crack 696 4591 24.97 1999.8 0.815 -0.0193
meters
31 | Labe Canyon Natural Road Rod dilometer 758 1150 102.03 109.675 0.8137 -0.1599

Yin Glastonbury and Fell (2002) .7 in Glastonbury and Fell (2000)

construction

Table 4.3 (b): Tertiary creep database: slope history and deformation behaviour. When information is unavailable cell is marked with a dot (.)
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4.3.1. Slope characteristics

This section overviews the distribution of examples under the context of
specific slope characteristics, e.g. pre-failure slope gradient, to provide a sense of data
provenance. Understanding preferential settings for brittle shear plane deformation
(i.e. features common to slopes in this database), or turning this on its head and using
slope characteristics to indicate when tertiary creep has been successfully captured in
the past, gives useful insight into the type of slope on which to focus future

monitoring.

The majority of slopes in the database were man-made (figure 4.4), rather than
natural. Such slopes were cut during mining, quarrying or construction work. The
average pre-failure gradient of man-made examples, ~40 degrees, was similar to
natural sites, ~42 degrees. All landslides (for which pre-failure gradient was known)
occurred on slopes greater than 20 degrees (figure 4.5); nearly half the examples
(~44%) occurred on slopes greater than 45 degrees. It is noted that for 4 cases, the

pre-failure slope gradient was unknown.

Over 85% of landslides in the database occurred on rock slopes (figure 4.6
(inset)). Of these 65% were classified as soft rock, 19%, hard rock and 6% unclassified
(due to lack of information in the publication) (figure 4.6). Failures occurring on soil
slopes were all composed of clay dominated material; only one of the four slopes was
natural. All hard rock slopes were natural; however the majority (three out of every
four) soft rock slopes were man-made. None of the hard rock failures originated from
slopes with gradients over 44 degrees (figure 4.7). Landslides derived from soft rock
slopes showed the greatest distribution of slope gradients (ranging from 20 to 85
degrees), whilst all failures occurring in clay (soil) came from steep slopes of 40
degrees or above (figure 4.7). Six examples were not included in this comparison due

to the absence of either material strength or pre-failure gradient information.

Factors preparing slopes for failure (figure 4.9) and triggering collapse (figure
4.8) were derived from descriptions of landslide development in publications and
broadly put into categories such as “groundwater” with reference to table 2.1 and 2.2.
It is noted that two landslides had several triggers and eighteen examples developed

under multiple preparatory factors, highlighting the complexity of
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Natural,
26%

Man-made,
74%

Figure 4.4: Slope type (man-made or natural)
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Figure 4.5: Distribution of pre-failure slope gradients
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Clay, 10%

Soft rock, 65%

Figure 4.6: Slope material strength. [Inset] General hillslope geology

Clay

Soft rock

Material strength

Hard rock

Figure 4.7: Distribution of pre-failure slope gradient sub-divided by material strength
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Excavation/
blasting

30% Groundwater

37%

Loading (from
another
landslide)
70
% Rainfall
26%

Figure 4.8: Factors triggering slope collapse

B Groundwater

M Blasting

@ Slope redesign/ excavation
O Slope morphology

I Reservoir

[J Rainfall

[J Loading (from another landslide)

0 Snowmelt

@ Temperature fluctuation

M Earthquake

W Anthropogenic (e.g. Residences located on the slide)

Figure 4.9: Preparatory factors to slope failure. Pie chart labels represent number of
slopes within each category
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Figure 4.10: Month during which slopes collapsed
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Figure 4.11: Slope vegetation
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physiographic processes acting to damage and destabilise slopes, just within the
twenty-seven examples presented here (no information was available for 4 of the

failures).

Figure 4.8 shows that 63% of landslides were triggered by some sort of water
action. No failures in this database were triggered by an earthquake. Only 30% of
examples were triggered by excavation or blasting, even though 74% of slopes were
man-made (figure 4.4). Saleshan landslide (id 13) was triggered by both groundwater
and rainfall, whilst at Luscar Mine- 50A2 pit (id 26) the slope collapsed from mining

activity and loading (from another slide or block of material) (table 4.1 (b)).

Two-thirds of the landslides developed under multiple preparatory factors. It is
noted that this information was not available for four of the examples. Sixteen slopes
were affected by slope redesign/ excavation, whilst twenty-four slopes were affected
by some form of water stress (i.e. groundwater, rainfall, reservoir levels or snowmelt)
(figure 4.9). Twenty-two of the examples were affected by anthropogenic activity (i.e.
blasting, slope redesign, reservoir, anthropogenic), which correlates closely to the
number of man-made slopes (totalling twenty-three). The Selborne slope cutting (id 1)
is the only man-made slope not destabilised by anthropogenic activity; this
experimental slope was brought to failure by controlled pore-pressure recharge
(Cooper et al., 1998). Interestingly, two slopes survived earthquakes, but final failure
was reported to be triggered by loading from another landslide (Randa rockslide, id 15)
and excavation (Chuquicamata Mine- East Wall, id 21). Only 25% of landslides
triggered by groundwater, involved preparatory rainfall, although all failures triggered
in this way recognised the role of groundwater in destabilising the slope over long
timescales. Reservoirs were the main cause of 25% of failures triggered by fluctuating
groundwater levels. The failure involving snow melt was triggered by loading from
another slide, rather than groundwater. 50% of rainfall triggered landslides involved
groundwater, the other 50% developed under antecedent rainfall; note that Ota Mura

(id 8) involved a combination of both preparatory factors.

Most slopes collapsed in June (figure 4.10), broadly though the majority of
failures occurred between June and September inclusive (thirteen of the twenty-one

examples for which failure month is known). Rainfall was the most common trigger for
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failures occurring in June; 50% were triggered in this way. Ten of the eleven failures
occurring between June and September (where preparatory and/or triggering factors
were known) developed under the influence of some form of water action. The other
slope (Teifer Mine, id 19) failed under of excavation and blasting. Surprisingly, the
examples whose failure month was unknown (but causal and trigger factors are
described) involved slope excavations; sites which are usually heavily monitored and

documented due to health and safety.

As expected given the number of man-made sites, 74% of landslides originated
from un-vegetated slopes (figure 4.11); all failures triggered by excavation occurred
from un-vegetated hillslopes. Two man-made slopes were vegetated before failure
(Lijiaxia landslide, id 9 and Xintan landslide, id 10); both failed under groundwater
stress. Only one hard rock slope was vegetated (Vajont landslide, id 6); the majority of

soft rock slopes were un-vegetated (fourteen of twenty).

This section has summarised common slope characteristics within the database

and how they interrelate. Results are discussed in chapter 5.

4.3.2. Tertiary creep variations

Thirty-one examples of pre-failure tertiary creep were collated in the database
(table 4.3). Patterns of slope deformation are compared in the following section. Data
is presented in three formats: (1) cumulative displacement-time (figures 4.12 to 4.28),
(2) velocity-time (figures 4.29 to 4.38) and (3) inverse-velocity-time (figures 4.39 to
4.42). Projecting the different derivatives of the measured movement provides a broad
set of results on which to assess variations in pre-failure slope behaviour. Visualised on
composite graphs (all landslide examples; figures 4.12(a), 4.29(a) and 4.39), the
numerical range of key creep parameters such as duration, total displacement and
maximum velocity define the design and requirements of instrumentation used to
monitor unstable slopes. Although data from individual sites is referred to when
illustrating the minimum and maximum bounds of creep parameters (figures 4.13,
4.14, 4.17, 4.18, 4.30, 4.31), results focus on characterising general patterns of
deformation, relating these to slope composition and setting (introduced in section

4.3.1).
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Figure 4.12(a) presents the cumulative displacement of each slope through

time. Immediately it is clear that that the process of tertiary creep is operating over
very different time scales; the inset (figure 4.12(a)) depicts the cluster of examples that
lie close to zero time. The unstable slope at Delabole quarry (id=23; figure 4.13) has
crept over a duration of 3,171.45 days whilst the rockmass discussed in Mufundirwa et
al., (2010) (id=17; figure 4.14) deformed over only ~37 minutes (0.026 days). Figure
4.15 presents the distribution of tertiary creep duration across all thirty-one examples.
Results are plotted on a kernel density graph, which accurately smoothes the
distribution of data using kernel density estimation- in this case derived from the
Epanechnikov kernel. Most landslides occurred within 500 days of tertiary creep; mean
duration equates to 156.88 days and data is distributed with a large standard deviation
of 566.92 days. Although the data is positively skewed, the duration of deformation at
Delabole quarry (id=23; figure 4.13) gives the distribution a long tail; 97% of data is
contained within the first ~14% of the maximum creep period in the database.
Removing this example, the mean tertiary creep duration falls to 56.39 days, with a
standard deviation of 93.09 days. The inset graph (figure 4.15) presents creep duration
on a log scale for each slope failure. Most failures occurred after 1 to 100 days- 2

orders of magnitude- of tertiary deformation (20 failures).

The magnitude of creep leading to slope collapse ranges from 32 mm (id=1;
figure 4.18) to 95.21m (id=26; figure 4.17). Figure 4.16 presents a kernel density graph
for total displacements recorded within the database. Similarly to the duration data,
results show a positive skew towards smaller displacement values; ~52% of failures
occurred after less than 15m of deformation. The mean total displacement is 12.64m,
around which a standard deviation of 22.63m describes the spread of data. The inset
on figure 4.16 shows that only 8 slopes deformed more than 10m before failure.
Considering just those examples which failed within three magnitudes of displacement

(23 in total), the mean and standard deviation reduce to 2.4m and 2.9m respectively.

Comparing the patterns of displacement accumulation is difficult given the
large ranges of creep duration and total displacement exhibited within the database.
Normalising data (rescaling the duration and total displacement of each example to
start at 0 and end at +1) provides a projection from which to analyse the shape of the

cumulative displacement-time plots (figure 4.12(b)). It is clear that unstable slopes
87



Chapter 4: Tertiary creep database
deform differently in the tertiary creep phase. Some of the examples show exponential
increases in slope displacement (e.g. Luscar Mine 50A2 pit; id=26), whilst others
accumulate displacement more steadily (near linear form) (e.g. Ryan and Call slide 2;
id=29). The hypsometric integral- ratio of area beneath the curve to total graph area-
was calculated for each example to better characterise patterns of slope displacement
through time. Results are presented on a kernel density graph (figure 4.19), showing
the range (0.131 to 0.56) and distribution of calculated values. A value under 0.425
indicates a concave cumulative displacement-time plot, where 0 is maximum concavity
(Allison and Higgitt, 1998). Hypsometric integrals greater than 0.575 are used to
describe convex curves; 1 is the maximum convexity. Although the value 0.5
represents a linear accumulation of displacement through time, the definition is
buffered within the range 0.425 to 0.575 (Allison and Higgit, 1998); examples with this

hypsometric integral are considered concavo-convex.

The majority of examples (~¥71%) have concave cumulative displacement-time
graphs (figure 4.19). This is reflected by the mean hypsometric integral value of 0.347,
and standard deviation, 0.127. Concavity suggests that the rate of displacement is
increasing with time. This behaviour is depicted in all four individual cumulative
displacement-time graphs (figures 4.13, 4.14, 4.17, 4.18); Luscar Mine 50A2 pit (id=26)
is the most convex example with a hypsometric integral of 0.131, whilst Delabole
Quarry (id= 23) tends more to concavo-convex form with an integral value of 0.319.
Although data is skewed towards smaller hypsometric integral values, the low kurtosis
measure of 0.049 does not indicate a strong leptokurtic distribution. The remaining
nine examples are spread evenly across the concavo-convex range, with a slight peak
around 0.514 (figure 4.19). Given that tertiary creep by definition is a period of
accelerating displacement (section 2.3.3.2) the proportion of examples showing signs
of steady-rate deformation is perhaps surprising and will be discussed further in

chapter 5.

Correlation between total displacement and tertiary creep duration is very
weak (figure 4.20). The fit is not described well by linear (R*= 0.002) or logarithmic (R%=
0.009) regressions. Although analysis of the complete database shows little correlation
between these attributes, linear regressions carried out on a sub-set of examples,

defined by specific slope characteristics, have produced greater r-squared estimates
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(table 1, appendix). Where the mode of failure is known (26 examples; figure 4.21), the
coefficient of determination between total displacement and duration ranges from
0.647 (translational) to 0.835 (roto-translational) for slopes involving rotational or
translational movements (19 examples). This suggests that longer creep periods result
in greater amounts of displacement before slope failure. There was no significant
correlation between total displacement and duration, within the toppling failure

subset.

The triggering conditions of twenty-one of the thirty-one failures are known
(section 4.3.1). 58% of these examples were triggered by either rainfall or
groundwater, and show a strong correlation between total displacement and tertiary
creep duration; rainfall correlates with an r-squared value of 0.929 and groundwater,
0.859 (table 1, appendix). The amount of displacement leading to the collapse of
slopes by water stress is highly likely to relate to the duration of creep. All failures
triggered by groundwater or rainfall involved one or both of these factors during the
pre-failure destabilisation period (section 4.3.1). This implies that slope’s previously
deforming in response to fluctuating groundwater or rainfall conditions during the
primary and secondary stages of pre-failure creep (section 2.3.3.2), may display
different patterns of tertiary phase displacement in comparison to those sites with no

past history of deformation induced by water stress.

High coefficients of determination are derived from the linear regression of
total displacement- duration for larger failures in the database (table 1, appendix). The
distribution of landslide volumes- across the twenty-nine examples where information
is known- is positively skewed with a long tail resulting from the exceptionally large
Vajont landslide (figure 4.22), during which 270Mm? of material was mobilised. 90% of
the landslide volumes included in the kernel density estimation were under 10Mm?>.
The mean failure volume including all examples, 12,042,113m> is an order of
magnitude larger than that calculated excluding all failures above 10Mm?
(1,200,819m>). The standard deviation also reflects the distortion particularly large
landslide volumes have on resultant descriptive statistics describing the general
distribution of data; 50,021,575m3 for all twenty-nine examples, compared to

2,042,490m? for those below 1Mm?.
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To ease analysis of such a broad range of volumes, landslide size was classified

by magnitude (table 4.2). The inset of figure 4.22 highlights the distribution of data
across these classes, showing bi-modal groups, size 2 (1.0 <x<1.0e®> m®) and size 4
(1.0e® <x<1.0e’ m3), containing 62% of all known examples. The correlation between
total displacement and tertiary creep duration for landslides classified in size 2 is weak
(R’= 0.014), however those in size 4 show a stronger attribute relationship (R’=0.715).
Those landslides greater than 10Mm? produced an r-squared value of 0.848, although
it is noted that only three data points were involved in the regression. Overlooking
this, the strength of linear correlation between total displacement- duration appears
to depreciate with landslide size (table 1, appendix), suggesting that the volume of
unstable material is dominant in controlling the rate of pre-failure slope displacement.
This is unsurprising, given that landslides of greater mass involve larger driving forces

(figure 2.1) acting to destabilise material downslope.

The linear and log regressions of total displacement- volume (figure 4.23) and
duration-volume (figure 4.24) derived coefficients of determination, ranging from
0.002 to 0.0174. Independently the parameters total displacement and duration do
not correlate with landslide volume. Given that the smaller landslides (size 2)
presented a very low r-squared (0.014) from the regression of total displacement-
duration, but larger landslides (size 4 and 5) showed improved correlation values of
0.715 and 0.845 respectively (as discussed above), it is interesting to isolate the larger
volumes from the correlations presented in figure 4.23 and 4.24. The linear regression
of total displacement- volume>1,000,000m* and duration-volume>1,000,000m?,
however did not show significant improvements on the coefficient of determination:
0.0106 and 0.1164, respectively. This suggests that for larger landslides the duration of
tertiary creep is likely to indicate the amount of relative total displacement, i.e. longer
time periods leading to greater amounts of deformation. It does not however suggest
that larger landslides will generate greater amounts displacement over a given

duration than smaller failures.

The magnitude of shear stress (figure 2.2) is derived not only from the mass of
unstable material, but also the angle of slope. All failures- for which gradient
information is known (27 examples) - in the database occurred on slopes greater than

20 degrees (figure 4.5). Considering the linear regression of total displacement-
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duration sub-set by slope angle (table 1, appendix) highlights that for all failures except
those occurring on 30 < x < 40 degrees the coefficient of determination is weak,
ranging from 0.006 to 0.121. The seven landslides derived from slopes between 30 < x
< 40 degrees showed good correlation between total displacement and tertiary creep
duration; r-squared value of 0.829. Figures 4.25 and 4.26 isolate each tertiary creep
parameter (duration and total displacement), regressing these against pre-failure slope
angle. Table 4.4 includes the complete and stepped- where gradient is grouped into 10
degree intervals- r-squared values derived from total displacement-pre-failure slope

gradient and duration-pre-failure slope gradient regressions.

Pre-failure slope gradient (degrees)

all 20<x<30 | 30<x<40 | 40<x<50 | 60<x<70

Number of 27 5 7 7 4
landslides
Total

displacement-

0.0089 | 0.0505 0.418 0.0534 0.7721
slope

gradient

Duration-
slope 0.0758 | 0.8664 0.561 0.3308 0.2311

gradient

Table 4.4: R-squared values for the linear regressions of total displacement-
slope gradient and duration-slope gradient. 50 < x <60, 70 < x< 80, 80 < x< 90

(degrees) were omitted from this table because the groups contained 2 or less failures.

The results from the regressions displayed in table 4.4 show the opposite
pattern to those generated for the equivalent analysis sub-setting examples by
volume. Here data has shown a weak coefficient of determination for the linear
correlation of total displacement-duration, total displacement-slope gradient and
duration-slope gradient. However sub-sets of the latter two regressions present better
fits; specifically total displacement- slope gradient for those failures derived from 60 <
X < 70 degree (0.7721) and duration- slope gradient for those failures derived from 20
< x < 30 degree (0.8664). Given the isolated and unrelated nature of these stronger r-

squared values it is difficult to draw conclusions from them.
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Figure 4.12: (a) Cumulative displacement- time data from the tertiary stage of creep.

[Inset] Cumulative displacement-time data for failures whose total displacement is less

than 10,000 mm; also excluding landslide ID 23. (b) Normalised cumulative

displacement- normalised time data from the tertiary stage of creep
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Figure 4.14: ID= 17 Cumulative displacement-time data from the tertiary stage of creep
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Figure 4.17: ID=26 Cumulative displacement time data from the tertiary stage of creep
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Figure 4.27(a) presents the velocity of displacement on each slope through

time. As discussed earlier with reference to figure 4.12(a), tertiary creep operates over
a large spread of time scales (figure 4.15); duration ranges from ~37 minutes (0.026
days; figure 4.14) to 3,171.45 days (figure 4.13). It is clear from the plot of Saleshan
landslide (id=13) data in figure 4.27(a) and Eskihisar coal mine wall data (id=14) in the
inset of figure 4.27(a) that some of the examples do not terminate at zero time. This is
due to the conversion method between cumulative displacement-time and velocity-
time used for digitised examples in the form of (1) and (2) (see section 4.2 for
explanation); whereby the mid-time between each displacement measurement is
related to calculate velocity. The highest ‘maximum velocity’ recorded before failure
was 1341.65 m/day (134,165 mm/day) from the Afton mine collapse (id=24, figure
4.28). This was measured after ~9.79 days of creep, during which the average velocity
of displacement equated to 154.65 m/day (15,465.25 mm/day). The Selborne slope
cutting failure presented the lowest ‘maximum velocity’: 2.19 mm/day (figure 4.29).
Deformation occurred at an average velocity of ~0.49 mm/day over a period of 143.89

days.

The distribution of ‘maximum velocity’ across all thirty-one examples in the
database (figure 4.30) shows that most failures (27 examples) did not travel faster than
10 m/day (10,000 mm/day) during the period of tertiary creep (inset figure 4.30).
Although the mean ‘maximum velocity’, 9.8 m/day (9,828.26 mm/day) falls within the
first four magnitudes of the distribution, in common with the majority of the data, the
standard deviation is large, 29.22 m/day (29,218.91 mm/day), reflecting the highest
and lowest recorded velocity values (figures 4.28 and 4.29, respectively). Removing the
long tail on data by recalculating statistics to consider the 27 examples below 10
m/day reduces the mean to 1.55 m/day (1,545.41 mm/day) and standard deviation to
3.38 m/day (3,382.15 m/day). However this mean is still somewhat greater than the
median of the entire dataset, 0.49 m/day (488.33 mm/day), reflecting the positive

skew that remains in the distribution even when outlying values are removed.

Figure 4.31 depicts the relationship between duration and maximum creep
velocity (by id). There is no significant correlation between variables; r-squared values
resulting from linear and log regressions of the data equate to 0.07 and 0.1148

respectively. Values from the regression of total displacement- maximum velocity
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(figure 4.32) are equally low (linear r-squared= 0.114, log r-squared= 0.12). Linear
regressions were carried out on sub-sets of data grouped by slope and failure
characteristics (as before with cumulative displacement-time) for the two maximum
velocity based relationships depicted in figures 4.31 and 4.32. Table 1 (appendix)
contains the r-squared values resulting from all correlations. Although the coefficient
of determination between maximum velocity and duration remained insignificant for
all but two sub-sets (size 5 landslides = 0.716 and pre-failure slope gradients 20 < x <
30 degrees = 0.636), the values derived from the regression of maximum velocity-total
displacement indicated some significant correlations that stood out from otherwise
weak relationships. Slopes composed of clay (3 examples) showed a strong correlation
between maximum velocity and total displacement; r-squared value of 0.967. Failures
that occurred in a compound manner (3 examples; table 2.3, section 2.3.4, p.) also
presented a high coefficient of determination, 0.972; as did large ‘size 5’ landslides (3
examples), 0.974. It is noted that the three sub-sets contained different examples; the
only data overlap is Barrick Gold’s Betze-Post open mine (id=3), that is both a
compound and large (1.E+07 < x < 1.E+09). Although the specific correlations
mentioned above are strong, they are between small groups of examples, i.e. three
data points, suggesting that the high coefficients of determination are a result of small

sample size rather than a strong maximum velocity-total displacement correlation.

Assessing the strength of relationship between the median and maximum
velocity of each example provides a general insight into the uniformity of creep
acceleration behaviour broadly across the database. Figure 4.33 presents this data.
The median is used instead of mean velocity here, because it is robust in characterising
the rate of creep at the same relative position in time (50th percentile) irrespective of
extremely large (outlying) values, common to the final data points of rapidly
accelerating unstable slopes. The coefficient of determination resulting from the linear
regression of median velocity- maximum velocity was low, 0.368, indicating only a very
weak correlation between these parameters. The lack of uniform connectivity between
velocity during the middle and end of creep indicates that slopes across the database

are exhibiting different patterns and rates of acceleration.

Patterns of acceleration during the tertiary stage of creep may be characterised

using Voight’s (1989) model parameters (equation 4, section 2.3.3.2), a and A. These
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constants represent material characteristics for time invariant external conditions (i.e.
load and temperature) (Crosta and Agliardi, 2003) (discussed in section 3.4.2.2.1 in the
context of Fukuzono’s (1985) inverse-velocity- time relationships). Given that the
duration and velocity of tertiary creep spans several orders of magnitude when
considering the entire database of examples, data has been normalised (figure
4.27(b)). Hyperbolic curves were fitted to the rescaled data using equation 16 in

Matlab’s curve fitting toolbox.

y=[Ax(1—-a)x(x) +y}‘“]ﬁ

[Equation 16; adapted from equation 9 for Matlab Curve fitting]

The term (tst) is simplified here with x (or time to failure) because the time of failure in
every case is zero. Velocity ( %), is represented by y in this equation where yr is the

velocity at zero time (or failure). Importantly this equation is valid under the condition
a > 1; A and yr boundaries are set at zero and infinity (lower and upper) for the curve
fitting procedure, and a is restricted between 1.001 and infinity (lower and upper).
Curves were fitted to data using a robust regression, which considers the absolute
distance between data and is most robust against outlying values. Table2 (appendix)
contains the output a@ mean, a range, A mean, A range, yr mean, yrrange and r-squared

value for each hyperbolic fit.

It is noted that the a range for the curves fitted to several creep examples were
‘fixed at bound’. This indicates that the best hyperbolic fit for certain sets of data was
found when a=1.001, or the lower bound defined for the fitting procedure. When a=1,
data shows an exponential relationship, based on Voight’s (1989) parameters (figure
3.4, section 3.4.2.2.1). Exponential curves were fitted to all creep examples using
equation 17, where the constants A and yr were calculated within the bounds zero and

infinity.

y =exp(4 X x) X yr
[Equation 17 for Matlab Curve fitting]

The r-squared value for each exponential fit, as well as the mean and range of

constants A and yrare summarised in table 3 (appendix).
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The hyperbolic and exponential best fit curves for each creep example are
collated and presented in figures 4.34 (a) and (b). Fitted under either model, results
highlight the different acceleration trends exhibited by failing slopes during tertiary
creep. The shape of each hyperbolic curve is defined by constants a, A and yy. Drawing
on specific examples, the failure with greatest maximum velocity, Afton mine (id = 24;
figure 4.28) is fitted with an a value of 1.859 whilst the Selborne Slope Cutting failure
(id = 1; figure 4.29) whose maximum velocity was the lowest at 2.19mm/day, was
given a a value of 1.001 (or the lower bound value). Although the latter of these
examples has been described with the a value expected to indicate exponential
patterns of acceleration, the relatively low final velocity of 0.1344 within the
normalised period of 0 to 1, results in a shallow curve gradient (figure 4.34(a)).
Roesgrenda slide A (id = 12) also shows this pattern under the a value of 1.001. The
Selborne Slope Cutting data is also fitted with a shallow exponential curve, and low
final velocity value (0.1343), in common with four other examples (id = 15, 19, 24 and
31). The Roesgrenda slide A final velocity derived from the exponential fit is slightly
higher (on normalised scale), 0.4072. One explanation for the appearance of these
specific curves may be a sudden jump in the magnitude of velocity over a short period
of time within the last few data points. This seems to be the case for the exponential
examples, where accelerations during the final 0.1 units of time of tertiary creep range

16.19 mm/day’ to 67.78 mm/day’.

Figure 4.35 shows the mean and potential range of values of a used for each
hyperbolic best fit. The Bomba landslide (id = 11) has the greatest a value, 2.969,
whilst the Chuquicamata Mine- East Wall failure (id = 21) showed the greatest
potential range of a, -7.561 to 19.68, from which a hyperbolic curve may be fitted. This
example was one of seven whose potential range for the a constant was greater than
1. The distribution of a values is depicted in figure 4.36 by the kernel density plot. The
distribution is positively skewed with a mean of 1.402, standard deviation of 0.410 and
range between 1.001 and 2.969. Six examples (id = 1, 2, 4, 5, 12 and 13) were best fit
with an a value of 1.001 indicating that the slope was likely to be accelerating in at an
exponential rather than hyperbolic rate. Given that ~“65% of examples were best fit
with an a value less than 1.5, the tendency towards this exponential rate of

acceleration was common within the overall database.
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Figure 4.27: (a) Velocity-time data from the tertiary stage of creep. [Inset] Velocity-

time data for failures whose maximum velocity is less than 5,000 mm/day; also

excluding landslide ID 23. (b) Normalised velocity- normalised time data from the

tertiary stage of creep

104



Velocity (mm/day)

Chapter 4: Tertiary creep database

2.E+05

1.E+05

8.E+04

4.E+04 A

0.E+00 . . T
-10 -8 -6 -4 -2 0

Time to failure (days)

Figure 4.28: ID= 24 Velocity-time data from the tertiary stage of creep
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on a displacement rate- time plot (Crosta and Agliardi, 2003, p.179)

The a constant controls the sensitivity of accelerating activity (Crosta and
Agliardi, 2003), illustrated in figure 4.37(a) by the changing general steepness in
curvature. Most curves (20 examples) were fitted with an a value between 1 and 2
(figure 4.38(b)). Nine examples were best fit with exponential curves (figure 4.39 (a)),
whilst only two examples presented with a values greater than 2 (figure 4.39(c)); Labe
Canyon (id=31) was fitted with the largest a constant of 2.969. Although examples are
grouped by similar patterns of acceleration (whether exponential or hyperbolic (1 < a <
2 or a £ 2)), there are clear differences in the change in acceleration rate as creep

progresses. The constant A controls the shape of the curve (Crosta and Agliardi, 2003),
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where greater values of A result in greater increases in the acceleration as time
progress, leading to larger differences in curve gradient between -1 and zero time

(figure 4.37(b)).

Figure 4.39 shows the mean and potential range of values of A used for each
hyperbolic and exponential best fit. The linear regression between the exponential and
hyperbolic values of A results in an r-squared of 0.5022. This value suggests that only a
weak correlation exists between the constant A used for each of the two types of fit.
Given that the dimensions of A depend on the value of a (Cornelius and Scott, 1993), it
is not surprising that examples for which the best fit curve is exponential (i.e. a = 1.001
in the hyperbolic model), the values of A show better correlation, 0.753. The
connectivity between these two constants is also shown by the value of A for the
hyperbolic fit of Bomba landslide data (id = 11), 399.1; this example used the largest a
and A constants of all curve definitions. The value for A in the exponential fit is
significantly smaller at 38.51. The largest A constant used for an exponential curve is
418.7 (for Tukabianna West, id = 20). Although the A constant for the hyperbolic fit is
similar, 403.8, the a value is not close to 1.001; it was best fit with a value of 1.613.
This suggests that there is also correlation between the values A beyond curves fitted

with an exponential (or 1.001 a value).

The distribution of hyperbolic and exponential A constants is different (figure
4.40). The mean hyperbolic value is 59.85, whilst the mean exponential is 26.80.
Although the range of values is similar, the standard deviation of hyperbolic A
constants is greater (119.80) than the exponential A constants (78.56). This is reflected
in the broader peak of the hyperbolic data (density maximum of ~0.3), compared to
the narrow peak of exponential values (~1.05 density). It is noted too that the
potential range of A for each fit is smaller for exponential curves than hyperbolic
(figure 4.40), reflective that the value of A for hyperbolic fits has the added complexity

of a association (and the potential range of this constant).

Although the last velocity point for each example equated to 1 when the data
was rescaled onto normalised axes, most of the curves predicted lower values of final
creep rate (yg figure 4.41; 4.42). When the velocity at failure was less than 1, curves

indicated generally lower rates of acceleration (figure 4.34); this was discussed earlier
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in the context of the Selborne Slope Cutting (id = 1) example and others. The
correlation between values of ys for hyperbolic and exponential fits is weak, 0.3335,
when all examples are included in the regression. The linear regression of data which
correlate with the exponential model (or a = 1.001), showed stronger correlation
between yrvalues, with an r-squared value of 0.7941. As is the case with values of A, it
is expected that the predicted velocity at failure (ys) will be similar between models

because both use exponential (or approximate exponential) fits on the data.

Figure 4.42 shows the difference in range between the hyperbolic and
exponential yr distributions. Although the predicted velocity at failure for hyperbolic
curves spans a greater range (0.116 to 3.107), the standard deviation of 0.506 around
mean 0.964 is smaller than for exponential data. Values for yf spanned a smaller range
(0.134 to 1.143), but are not so tightly distributed around the mean (0.793), where the
density of values peaks at ~1.5 compared to peak density of 4 for hyperbolic data.
Considering the distribution of values before the mean, it is noted that for five
hyperbolic curves and seven exponential examples, the predicted failure velocity is less
than 0.5 (normalised scale). This returns to earlier discussion on initial observations
from figure 4.34, which suggested that sudden jumps in the magnitude of velocity over
a short period of time within the last few data points may not be properly captured by
the curves fitted to consider the entire dataset. Following from figure 4.37(b), it might
be inferred that using a different value of A within the modelled range or choosing an
alternative method of fitting data may predict higher ys values better in line with raw
measurements. Although this would be interesting to model, the value of a used for
each ‘best’ fit curve, provides greater insight into the physical mechanisms driving
creep (e.g. crack growth) (Kilburn, 2003). This is based on the different patterns of
acceleration (exponential and hyperbolic) represented by values of a in the Voight
model, and will be discussed further in the context of figure 2.8 (section 2.3.3.2) and

slope characteristics, in chapter 5.

Characterising tertiary creep using Voight’'s model assumes that slope
displacements are accelerating to failure (section 2.3.3.2). Returning to the normalised
projection of velocity-time data (figure 4.27(b)), it is clear that several examples
decelerate between measurement intervals (i.e. negative gradient in plot). These

examples are discriminated in figure 4.43; twenty-one failures show acceleration to
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collapse (figure 4.43(a)), but ten examples (id =1, 2, 4, 5, 7, 12, 14, 17, 18, 23) display
deceleration (figure 4.43(b)) of varying magnitudes. The most prominent of these
(visually) is Roesgrenda slide A (id = 12), which exhibited a sharp deceleration of
994.57 mm/day’ just before failure (figure 4.43(b)). Figure 4.44 shows the spread and
range of acceleration and deceleration for the entire database. The largest recorded
deceleration, 1.45¢ % mm/dayz, occurred at ~-0.2 normalised time during creep on the
hillslope monitored by Mufundirwa et al. (2010) (id = 17). The deceleration involved a
change of 12.845 m/day (12845.4 mm/day) in velocity over a short period of ~29

seconds, compared to 13.91 mm/day over the period of ~20 minutes.

There were 61 points of deceleration recorded in the database (and shown on
figure 4.44), 11 points of steady velocity and 403 accelerating intervals recorded,
highlighting that ~13% of intervals involved deceleration, whilst the majority ~85%
involved acceleration. Accelerations ranged from 2.98¢ % mm/day? to 6.87e% mm/day’
and show a general increasing trend to failure (zero time). Given that the thirty-one
examples in the database showed different magnitudes of displacement, velocity and
thus acceleration/deceleration, it is useful to rescale the second derivatives of each
example between 0 and 1 relative to the maximum rate of velocity change exhibited
by each creeping slope. Figure 4.45 shows the relative acceleration and deceleration of
each example as creep evolves to final failure. There is a clear increase in the
magnitude of deceleration as time progresses to zero. The magnitude of acceleration
also increases to failure; however for certain slopes the greatest rate of acceleration
did not occur in the final moments of creep, but earlier in the tertiary phase. Although
only clearly apparent for four examples (where acceleration = 1 before -0.2 time),
other minor pulses of acceleration are seen across the database as slopes approach
zero time. The slope data (id=17) presented in Mufundirwa et al. (2010) shows a
fluctuating decelerating-accelerating pattern of creep with a gradual increase in the
magnitude of velocity as time progresses. This behaviour is unexpected for the tertiary
phase of failure and will be discussed further in the context of the physical

mechanisms controlling slope deformation in chapter 5.

113



Chapter 4- Tertiary creep database

(@)

08

06T

Normalised velocity

047

027

0 E == 7 L N ,
-1 -0.8 -0.6 -0.4 -0.2 0
Normalised time to failure

08

0.6
(b)

Normalised velocity

04r

027

0 ==
-1 -0.8 -0.6 -0.4 -0.2 0
Normalised time to failure

08

0.6

Normalised velocity

04r

027

0 T N . .
-1 -0.8 -0.6 -0.4 -0.2 0
Normalised time to failure

(©)

Figure 4.38: Best fit hyperbolic curves, separated by (a) a=1, (b) 1< a<2 and (c) a=2

114



Chapter 4- Tertiary creep database

A value

1200 - Hyperbolic
— MeanA
1000 L — Maximum A
Minimum A
800 r Exponential
— Mean A
600 — Maximum A
Minimum A
400
200
0 -
-200
_400 L L L L L L J
0 5 10 15 20 25 30 35

Landslide ID

Figure 4.39: Mean, minimum and maximum A values, displayed by landslide ID. Note

that data is discrete.

0.1+
0.08 -
=
@ 0.06 -
)
(m)
0.04 -
0.02 -
0 L T T /\ T T T /
0 100 200 300 400
'A' value
’ —— hyperbolic exponential

kernel = epanechnikov, bandwidth = 7.5846

Figure 4.40: Kernel density estimate for values of A derived from hyperbolic and

exponential fits

115



Chapter 4- Tertiary creep database

Hyperbolic
35 — MeanA
— Maximum A
3r Minimum A
251 Exponential
— MeanA
2 - — Maximum A
g Minimum A
S 15
=S
1 -
051
0 -
_0 5 L L L L L L J
0 5 10 15 20 25 30 35

Landslide ID

Figure 4.41: Mean, minimum and maximum ys values, displayed by landslide ID. Note

that data is discrete.

4
3
Py
2 24
)
o
1 4
04
T T T T
0 1 2 3
'yf' value
— hyperbolic exponential

kernel = epanechnikov, bandwidth = 0.0536

Figure 4.42: Kernel density estimate for values of ysderived from hyperbolic and

exponential fits

116



Chapter 4- Tertiary creep database

(@)
2>
‘©
Re!
(0]
>
©
(O]
0
©
£
o
b4
I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 0
Normalised time to failure
2>
©
0
(O]
>
©
Q
R
©
£
[e]
b
I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 0
Normalised time to failure (b)
1 2 3 4 5 6 —7 ——8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
— 25— 26 27 28— 29— 30 31
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Figure 4.46 compares the fits derived from the normal linear regression of
inverse-velocity-time using a fixed x-axis intercept of zero (as discussed in section 4.2).
Tertiary creep operates over different time periods and at different rates, ranging
several orders of magnitude (figure 4.12 and 4.27). Coefficients of the linear fits range
from -3e® (Saleshan landslide, id=13) to -1.76 (Roesgrenda slide A), and are
distributed around a mean of -8e® with a standard deviation of 0.31. Figure 4.47
shows that most hillslopes are creeping at a rate close to 1 days/mm; however the
distribution has slight bi-modality, distinguishing a second group of slopes accelerating

at significantly greater rates, centred around ~-0.78 days/mm.

Although the criteria for the onset of tertiary creep is based on an r-squared
value above 0.8, from the normal linear regression of inverse-velocity-time; the
goodness of fit within the 31 database examples ranges from 0.81 (Selbourne slope
cutting, id = 1) to 0.99 (Eskihisar coal mine wall, id = 19). This is best visualised when
data is presented on normalised inverse-velocity- normalised time axes (figure 4.48).
The differences in linear regression gradient (inset, figure 4.48) and distribution of data
points around each fit indicate not only different rates but also different styles of
tertiary creep. This transcends from observations of data projected in velocity-time
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Figure 4.46: Inverse-velocity-time data from the tertiary creep stage. [Inset] Inverse-
velocity- time data for failures whose maximum inverse- velocity is less than 1

days/mm; also excluding landslide ID 23.
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Figure 4.48: Normalised inverse-velocity- normalised time data from the tertiary creep

stage. [Inset] Data displayed without normalised linear regression for clarity

space which presented a spread of acceleration trends (figure 4.38), characterised

using Voight’s parameters.

Normal linear regression of the coefficient and r-squared values resulting from
the linear fits of inverse-velocity-time and the normal linear regression of creep
duration and r-squared value, result in no significant correlation (0.148, 0.109
respectively). This suggests that the goodness of linear fit on inverse-velocity-time data
does not relate to the rate of acceleration during or duration of, tertiary creep. Figure
4.9 presents the spread of residual values associated to the normal linear regression of

inverse-velocity-time. 65% of residual values are negative, and show a clustering (48%
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Figure 4.49: Residuals from the linear fit (normalised inverse-velocity- normalised time)

plotted against normalised time.

of these) and decreasing trend in magnitude from -0.2 normalised time to the point of
final failure. The negative residual values close to zero time indicate that the normal
linear fit on data is over-estimating the time of final failure, whilst the positive
residuals at this stage of creep suggest an underestimate. It is interesting that positive
residual values cluster early in the creep phase between -1 and -0.8 normalised time.
54% of all positive residuals are located within this time frame, and average 0.064
ranging between 0.0024 to 0.2315. Examples, such as the ‘unnamed slope’ from Rose
and Hungr (2009) (id=4), present clusters of positive residual values between -1 and -
0.8, and clusters of negative residual values between -0.2 and 0. This indicates that a

hyperbolic rather than a linear trend may best fit data.

Voight’s (1989) model parameters were applied to characterise patterns of
acceleration for data projected in normalised velocity- normalised time space (figure

4.34) using equations 16 and 17. An inverse of the hyperbolic function (equation 17) is
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used to fit curves in Matlab’s curve fitting toolbox to normalised inverse-velocity-

normalised time projections of data

y=[Ax (1 —a)x (x) + yle]@D

[Equation 18; adapted from equation 9 for Matlab Curve fitting]

This equation is valid under the condition a>1; A and yf boundaries are set at zero and
infinity (lower and upper) for the curve fitting procedure, and a is restricted between
1.001 and infinity (lower and upper). In common with the previous fitting procedure
(16), curves were fitted to data using a robust regression, which considers the absolute
distance between points and is most robust against outlying values. Table4 (appendix)
contains the output a mean, a range, A mean, A range, yr mean, ysrange and r-squared

value for each hyperbolic fit.

Considering all 31 examples, the best fit o« parameter (or mean a) ranges
between 1.149 and 2.23. This indicates that all curves fall within a hyperbolically
refined trend, rather than requiring exponential fitting. Figure 4.50 illustrates the
resultant curves from the modelling procedure. The results are grouped by
Generalised Saito (1 < a < 2) and Saito (a = 2) to Pure Saito (o > 2), as outlined in figure
3.4. Only two examples fall within this latter grouping (figure 4.51(c)): Ota Mura
landslide (id = 8), which is characterised by a Saito curve (@ = 2.03), and Randa
rockslide (id = 15), best modelled using a Pure Saito curve (o = 2.23). The spread of
Generalised Saito fits (figure 4.51(b)) is predominantly a = 1.7 (86% of generalised
examples), corroborating with Voight’s (1989) values for o which ranged between 1.7

and 2.2.

A series of normal linear regressions were carried out between the mean a
coefficient, and slope and failure characteristics such as landslide volume; this was
undertaken in a similar manner to earlier assessment of the cumulative displacement-
time data. Twelve different variables were considered (failure month, slope material
and geology, failure mechanism, pre-failure gradient, vegetation condition, volume
(and size), natural / man-made, creep duration, maximum rate, and total
displacement), however no significant relationship between any attribute was derived

from the analysis; r-squared values were not greater than 0.1 in all cases. This indicates
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that similar tertiary creep behaviour may be observed on very different slope
conditions and landslide scales. The Ota Mura landslide and Randa rockslide provide a
useful example here. Creep behaviour at both sites was characterised by a mean «
coefficient greater than 2 and the slides are similar in terms of pre-failure slope
condition (i.e. both derived from un-vegetated soft rock slopes and failed in a
translational manner over periods of time within one order of magnitude of each other
(4.58 days and 10 days respectively). Despite some similarities, clear differences exist
between the scale of landslide (65,000 m*> and 7M m?, respectively), maximum rate
(273 mm/day and 9,643 mm/day, respectively) and total displacement (137 mm and

7,967 mm, respectively).

Figure 4.51 compares the goodness of fit r-squared values derived for each
example from the normal linear regression and hyperbolic curve model. The coefficient
of determination between the normal linear regression of these two parameters
equates to 0.667, indicating that inverse-velocity-time data presenting a high r-
squared value from the normal linear regression will tend to also have a good relative
fit in the hyperbolic model. Where this is not the case, for example the outlier at
approximately (0.86, 0.99) - Delabole Quarry (id = 23) - the hyperbolic model has a
significantly better fit to data, indicating an a coefficient closer to 1; in this instance
1.566. There is a general tendency across the database for Voight's parameters to
better model data than the normal linear regression. This is highlighted by the
distribution of residual values (from all datasets) in figure 4.52. As expected, based on
the method of model fitting, both sets of residual values are approximately normally
distributed about the mean: 0.15 for the linear model and 0.002 for the hyperbolic
curve. A greater number of residual values are between -0.1 and 0.1 for fits derived
from Voight’s parameters concurring with the higher coefficients of determination for
hyperbolic fits observed in figure 4.51. In addition the spread of residuals over the
duration of tertiary creep is different to those resulting from the normalised linear
regression model. Although there is a clustering of residuals close to zero normalised-
time, they are positive and of low value. Their presence indicates an under-prediction
of failure time caused by a number of possible factors: (1) a poor fit of the hyperbolic

curve over the entire creep duration, (2) an unexpected physical change in slope

124



Chapter 4- Tertiary creep database

1.2 ¢
>
'S
o 1
S (a)
>
3 08}
(0]
>
£
o 0.6 -
[0]
Y
© L
§ 04
2
0.2 +
0 I L N ) N —
-1 -0.8 -0.6 -0.4 -0.2 0
Normalised time to failure
1.2 -
>
8 1t}
©
>
N
w 08 ¢L
o (b)
>
£
S 06}
(0]
2
©
g 04 ¢
2
0.2 ¢+
0 ) X X N N — 7\n
-1 -0.8 -0.6 -04 -0.2 0
Normalised time to failure
12 ¢
>
g8 1t
(0]
>
B 08|
o
>
£
5 0.6 |
(0]
0
© L
E 0.4
2
0.2 t
0 -1 -0.8 -0.6 -0.4 -0.2 0
Normalised time to failure ()
1 2 3 4 5 6 —7 ——8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 —— 29 —— 30 31

Figure 4.50: (a) Best fit hyperbolic curves of normalised inverse-velocity- normalised

time data for the tertiary creep stage. (b) a<2.(c)a =2

125



Chapter 4- Tertiary creep database

1 + T kW
_ + + 7t
2 +
[0]
2 +
0 +
£ 0.957 +
o
@
s +
—w +
e
2 0.9 +
(@]
2 +
©
o
S
2 0.85 N
(nd

i
0.8_I T T T T
0.8 0.85 0.9 0.95 1

R-squared (normal linear fit)

Figure 4.51: R-squared values from normalised inverse-normalised velocity-time data,
corresponding to goodness of fit using Voight’s parameters and goodness of fit using

normal linear regression model.

20
15+
>
2
O 107
o
5_
O_ T T T T T
-04 -0.2 0 0.2 04

Residual value

Voight’'s parameters

normal linear fit

kernel = epanechnikov, bandwidth = 0.0109

Figure 4.52: Kernel density estimates of the distribution of residual values resulting
from the normal linear and Voight models fits for normalised inverse-velocity-

normalised time data

126



Chapter 4- Tertiary creep database

0.3-
2 024
bl
: i |
_g 0 || | ‘ *)rﬂl “l‘ fi ‘J.'l ||' l, ll}‘ l‘ " | ||, M}rl |'||’ "]‘N i l“‘h‘h |J,’ U{H“Nﬁ\l'
‘: 0.1+
S
é 0.2 -
-0.3
I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 0
Normalised time to failure
-1 —2 3 —4 —5 6 —7 —8
9 10 11 12 13 14 ——15 —— 16
17 18 19 20 21 22 23 24
—25 —— 26 27 28 ——29 ——30 31
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velocity- normalised time) plotted against normalised time. Residual values from the
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comparison.

behaviour that results in a deviation from the general deformation trend or (3)

measurement error.

Inverse-velocity-time data is analysed retrospectively here to consider the
variance in tertiary creep parameters and style, however if it is used to forecast failure
then the point of slope collapse is unknown. The quality of fit and how it extrapolates
from available movement records will affect the precision and accuracy of the forecast.
The practical application of the Inverse-velocity method (normalised linear regression

model) to forecast final collapse is considered in the following section (4.3.3)
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4.3.3. Forecasting final failure

A normalised linear regression with ‘no fixed x-intercept’ was iteratively
calculated by incrementally increasing the number of data points (minimum of three)
included in the fit; simulating the growing acquisition of data through time common to
monitoring an actively failing slope. Results are presented in figure 4.54 for each slope
example. A normalised linear regression with ‘fixed” x-intercept of zero was also
calculated using the same procedure to provide a comparison between a priori and

retrospective data analysis.

It is useful to visualise all thirty-one examples in this manner, which allows the
overall evolution of forecast to be assessed. 61% of failures exclusively predicted the
point of collapse before ‘real’ slope failure, providing a false positive early warning.
24% of examples however over-estimated creep duration. The minimum temporal
range over which failure was predicted is 1.7 minutes (0.00118 days); ‘un-named
rockmass’, Mufundirwa et al. (2010) (id = 17). This period corresponds to 8.32% of the
total creep duration. In comparison, Delabole Quarry (id = 23) presented the broadest
range for predicted final failure, 661.88 days. Although this is large in comparison to
the minimum result, the duration of pre-failure creep on this landslide was the longest
in the database at 3174.45 days. Thus the prediction period represents 21.77% of total
creep duration. The temporal range over which failure is modelled for the ‘unnamed
slope’ (id = 4) (Rose and Hungr, 2007) represents 573.1% of total creep duration. This is
the greatest percentage gain from creep duration, accounting for 46.83 days range of
prediction timings but only 8.23 days of tertiary creep. There is a significant
relationship between creep duration and total temporal forecast range, but not creep
duration and forecast range as a percentage of total tertiary creep period. The
coefficient of determination from the normal linear regression of these variables
results in an r-squared value of 0.974 and 0.004 respectively. This indicates that
although long periods of tertiary creep are likely to result in a greater range of failure
predictions, no relationship drawing together the proportionality of this period to

creep duration exists.

The coefficient of determination of the normalised linear regression (no ‘fixed’ x-

intercept) of inverse-velocity-time improves as the time to ‘real’ slope failure reduces
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(figure 5.5). All examples reach a goodness of fit of 0.6 (r-squared) by -0.35 normalised
time to failure; all but four examples (id = 1, 12, 15 and 20) have an r-squared value of
0.8 or above by -0.75 normalised time to failure. If the criteria for onset of tertiary
creep (r-squared = 0.8) used to define this database, was applied in the forecasting
context, 87% of slopes would be identified as entering tertiary creep within the first
25% of this phase (from its retrospective delineation). One critical point to draw on is
the example (Tuckabianna West, id = 20), which presents an r-squared value of 0.81 at
~-0.5 normalised time, but this then drops to 0.6. Although the goodness of fit from
this point improves to failure, it is important to recognise that fluctuations in the r-
squared statistic may result in incorrect empirical interpretations; in this case it may be
implied that tertiary creep had not in fact onset at ~-0.5 normalised time. Fluctuations
in the r-squared parameter result from the inclusion of data with significant residual
from the previous linear fit. The minimum range of r-squared values calculated from a
single creep example, equated to 0.0018 (Ota Mura landslide, id = 8); r-squared ranged
between 0.982 and 0.984, displaying a consistently good fit on data. Interestingly the
alpha value derived for this example from the hyperbolic model (figure 4.50) is the
highest within the database (a = 2.23), corresponding to a convex fit with data. Given
that a = 2 is linear (Pure Saito), it would be expected that creep patterns tending to an
a value close to 2 will perform better when normal linear regression is applied to
forecast failure. However there is no relationship between the modelled a value (from
Voight’s parameters) and the range of r-squared values derived as the fitting iteratively

progresses in time.
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Figure 5.55: Summary of changes to the r-squared statistic through normalised time
resulting from the normal linear regression of inverse-velocity-time data. All 31
examples are accounted for on this plot.

This section presented data from thirty-one examples of tertiary creep,
digitised from published pre-failure slope deformation data. Results presented
considered the variation in slope characteristics (section 4.3.1), patterns of
deformation within this tertiary phase (section 4.3.2) and the accuracy of a priori

applications of the Inverse-velocity method to forecasting. Results will be discussed in

chapter 5
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5.1. Introduction

This chapter returns broadly to the main aim and objectives of the thesis
(chapter 1). Sections 5.2 discuss key results from the tertiary creep database presented
in chapter 4. Following from this, section 5.3 evaluates the uncertainties involved in
applying the Inverse-velocity method to forecasting and early warning. These findings
inform section 5.4, which considers ground-based monitoring procedures potentially
capable of detecting pre-failure deformation. Within this section a case study is used
to preliminarily highlight research challenges involved in applying the proposed
instrumentation within the field of small movement detection. Section 5.5 briefly
reviews the limitations of records within the tertiary creep database. Discussions will

be concluded in chapter 6.

5.2. Variations in tertiary creep

The collation of published data provides a platform on which to examine different
patterns of tertiary creep and consider the effect of associated slope characteristics-
such as geology- on basal shear zone mechanisms. Key observations were made from

the tertiary creep database, each of which are listed and then discussed below.

(1) The duration of tertiary creep examples range between ~37 minutes (0.026
days) and 3,171.45 days

(2) During this period, slopes displaced between 32 mm and 95.21 m (95,211 mm)

(3) Rates of deformation range between 2.19 mm/day and 1341.65 m/day
(134,165 mm/day)

(4) Slopes exhibited different styles of acceleration which may be characterised by
the parameters of Voight’s (1989) model.

(5) There are no significant relationships between patterns of tertiary creep and

pre-failure slope attributes

Although the duration of tertiary creep ranged from tens of minutes to thousands
of days, most landslides occurred following less than 500 days of pre-failure final phase
deformation. The duration of tertiary creep highlights the timescales over which slopes
accumulate strain. Given that the final phase of creep is a period of acceleration and

the primary and secondary stages of the model are considered transient and steady-
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state periods of deformation (figure 2.7), creep durations of 3,171.45 days (for
example) infer years worth of pre-failure movement before reaching critical strain,

particularly if local physiographic mechanisms are relatively steady (section 2.3.3.4).

Petley et al. (2005a) suggest that the period of development of progressive failure
depends on the material involved and the size of the landslide. Typically 85% of the
failures in the database occurred from rock slopes, however no significant correlations
were found relating creep duration to geological strength (section 4.3.1). Slopes
composed of clay showed a high coefficient of determination between maximum
velocity and total displacement (r-squared = 0.967), indicating that sub-grouping
slopes by characteristic identifies specific patterns of behaviour from the wider
database of examples. Whilst these relationships are interesting, it is important to be
critical about the basic method of classifying slopes in the database within the bounds
of hard rock, soft rock and clay descriptors. Importantly publications typically only
contained minimal information on the pre-failure condition of slope (section 4.2).
Aleatory uncertainty is introduced both on the grounds of source information and
classification within simplistic geological bounds. Classifications of geological strength
or rock mass ratings (RMR) do not capture the uniqueness and complexity of slopes in
which destabilising forces act anisotropically to reflect the frictional strength and
structure of the mass (section 2.3.1). In common to this thesis, Glastonbury and Fell
(2002) found no apparent relationship between strain and their choice of rock mass
rating. Given that intact material properties have a strong bearing on deformation
parameters in laboratory testing (section 2.3.1), it may be suggested that slope
structures supersede observed empirical relationships between material strength, and

creep duration, maximum velocity and total displacement.

Although Petley et al. (2005a) detail landslide size as a key contribute to creep
duration, results from this database suggest that the mode of failure has more
significance to total displacement-duration creep parameters. Glastonbury and Fell
(2000) indicated that toppling failures exhibited the greatest relative strain prior to
collapse and translational failures the least. The higher coefficients of determination
between the normalised linear regression of total displacement-duration for
translational and roto-translational slides (section 4.3.2), suggest that acceleration

patterns during creep are less erratic than for toppling examples. The complexity of
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toppling movements, which may involve a degree of flexure (Duncan, 2004),
potentially explaining the large differences in maximum displacement rate, 8.03
mm/day and 2619.88 mm/day, observed between the toppling failures in the

database.

Pre-failure slope movements are dependent on basal deformation processes
(Petley et al., 2002). The thirty-one database examples exhibited a range of different
patterns of displacement through time (e.g. figure 4.12). This was initially evaluated
using the hypsometric integral of each normalised cumulative displacement-
normalised time plot. Results were distributed around a mean value of 0.347 with a
standard deviation of 0.127 (figure 4.19) reflecting that ~71% of examples presented
with a concave cumulative displacement-time curve, characteristic of accelerating
displacement. Acceleration curves were derived from velocity-time data using
equations 16 and 17, which calculated the best hyperbolic and exponential fit
following from the work of Fukuzono (1985), validated by Voight (1989). Curves were
also derived using equation 18 from the inverse-velocity-time projection of data.
Importantly there are striking differences between the a coefficient from fits on the
same series of data (but in different projections). This constant controls the sensitivity
of accelerating activity (Crosta and Agliardi, 2003) by the changing general steepness in
curvature and should remain the same in this instance. There is a poor correlation (r-
square of 0.0079) between the velocity-time and inverse-velocity-time constants used
for each curve suggesting the former parameterisation of data is not reflective of the
latter. There are several possible reasons for this: (1) decimal precision errors from the
conversion of data into inverse-velocity and subsequently onto a normalised scale or
(2) the treatment of strong fluctuations in data close to zero time (i.e. it was
commented that strong location fluctuations in points may not have been properly
modelled by the velocity-time curve, section 4.3.2); together these potential errors
contribute to computational problems similar to those noted by Borsetto et al. (1991).
Exploring these further is beyond the scope of this thesis, however results from the
inverse-velocity-time series present a good fit to all datasets and values of a are
predominantly within the range anticipated (1.7 to 2.2) in light of Voight’'s (1989)

validation work.

138



Chapter 5: Discussion

Constants defining curves represent the material characteristics for time invariant
external conditions (i.e. load and temperature) (Crosta and Agliardi, 2003), and provide
insight into physical mechanisms driving creep (Kilburn, 2003). Cracking dominated by
crack growth is characterised by an a=2, representing linearity (Pure Saito) in inverse-
velocity-time data (Voight, 1989; Crosta and Agliardi, 2003). The transition from
exponential (a<1) to hyperbolic (a=1 to 2) patterns of deformation indicates a shift
from creep dominated by crack nucleation to uncontrolled fracture propagation
(Kilburn, 2003). Although Petley et al. (2005a) characterise tertiary creep as the point
at which micro-fracture density becomes sufficiently high that neighbouring cracks
begin to interact (section 2.3.3.2), landslides in this database are characterised by a
values ranging from 1.15 to 2.23, indicating that the failure of some slopes is in part
controlled by fracture density rather than purely coalesce and propagation.
Importantly it is recognised that slopes are characterised on a sliding scale between
crack nucleation (essentially ductile) and growth (brittle), and that processes are
operating at different spatial scales from sub-microscopic to macro-fractures (Kilburn,
2003). Although generalised physical controls on patterns of creep may be postulated,
the finer mechanics of individual basal shear zones is difficult to elucidate; particularly
given the epistemic uncertainty around basal- surface landslide interactions and the

provenance of most slope data.

5.3. Accuracy and precision of the Inverse-velocity method for
slope forecasting

In the context of landslide forecasting it is critical to understand the effect
deviation from linearity in inverse-velocity-time has on the accuracy of applying the
Inverse-velocity method. 86% of examples in the database were modelled with an a
constant greater than 1.7. Although residual values (figure 4.9) indicated that Voight’s
(1989) parameters rather than a linear fit better models data (figure 4.5.1, section
4.3.3), the Inverse-velocity method based on normalised linear regression, is easier to
extrapolate to failure (Rose and Hungr, 2007). Preferentially, the effect of forcing
linearity typically results in pre-failure warnings of collapse; 61% of failures would
produce false-positive early warnings if considered a priori to collapse. This is common
to observations by Mufundirwa et al. (2010) who indicate that the initial convex nature

of most inverse-velocity-time plots results pre-emptive “unsafe predictions”.
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In terms of early warning, problems are most acute when models produce false
negative forecasts (i.e. over-estimate creep duration), or generate large shifts in
predictions, reflecting either (1) changes in slope behaviour (Ota Mura landslide,
Petley and Rosser, 2009) or (2) instrumental error (Crosta and Agliardi, 2003). Tertiary
creep for the database of examples was defined by an r-squared threshold of 0.8, from
the normal linear regression of inverse-velocity-time using a fixed x-intercept through
the point of final slope collapse. Delimiting this phase during a priori forecasting
produces different creep durations than when data is considered retrospectively
(figure 4.53). The r-squared threshold was chosen as criteria for tertiary creep in the
database following the precedent of past published examples (e.g. Petley et al., 2002).
When considered a priori- whereby incremental data points were included in the
regression to simulate ‘real-time’ forecasting- tertiary creep was identified on 87% of
slopes within 25% of the ‘actual’ retrospectively defined creep duration (figure 5.55).
Four examples did not reach the 0.8 r-squared threshold until just before slope

collapse.

Considering this, a more relaxed threshold of 0.6 r-squared is proposed for a
priori assessment to capture the onset of self-reinforcing crack development. This
would also reduce confusion associated with sudden changes in deformation
behaviour, within the tertiary phase; Tuckabianna West (id = 20) for example showed a
significant reduction in goodness of fit halfway through the creep period. Problems
arise however if this threshold is relaxed and used to interpret deformation when the
physical mechanisms operating in the basal shear zone are unclear. Ductile
deformation at the shear zone displays an asymptotic trend (figure 3.5 (a)) which
cannot be modelled in the same manner as brittle failure, because it is not controlled
by strain localisation and crack growth (section 2.3.3.3). Weakening the r-squared

threshold may result in an un-meaningful forecast of non-brittle slopes.

Monitoring of unstable slopes to supply data for the Inverse-velocity method
needs to be initiated as soon as a potential failure is identified. As tertiary creep
progresses the estimate of failure time improves (Saito, 1969). Importantly monitoring
must be adaptable and increase measurement rate as the slope accelerates. This is
crucial in order to update predictions of failure in line with significant changes in

deformation behaviour (Rose and Hungr, 2007). Calculating the appropriate degree of
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uncertainty associated to failure forecasts addresses statistical errors associated to
normal linear regression and the quality of monitoring data. The former have been
discussed briefly in chapter 4 and earlier in section 5.2, section 5.3 discusses
monitoring considerations and challenges in the context of applications of the Inverse-

velocity method.

5.4. Monitoring challenges

Although the Inverse-velocity method has been successfully applied to a
number of different sized brittle failures derived from an array of settings (chapter 4);
challenges are faced identifying, delineating and monitoring instabilities to provide
representative data for the forecasting of slope collapse (Petley et al., 2008a).
Informed from the analysis of 31 examples of tertiary creep and in consideration of
variations in pre-failure slope characteristic the following requirements are proposed
ranked in order of importance, for monitoring instrumentation used to detect final

phase movements:
(1) Spatial accuracy to ~10mm

For soil slopes, the minimum total displacement within the database during tertiary
creep was identified as 32 mm (Selborne slope cutting, id = 1). Taking ‘three’, as the
minimum number of points on which to calculate a normal linear regression, this value
of displacement is divided to produce a minimum magnitude for spatial instrument
accuracy of ~10mm. For rock slopes, the minimum total displacement is 39mm (un-
named slope in Japan, id = 17), and thus indicates a value of similar magnitude,

~13mm, for monitoring spatial accuracy.

(2) Continuous measurement (high repeat rate ~10 minutes)

The minimum creep duration within the database was ~37 minutes (0.026 days) (id = -
17). Following the same approach as used to recommend spatial accuracy, this value is
divided by three to produce a maximum repeat rate of ~10 minutes. More importantly,
instrumentation should have flexibility in acquisition rate to gradually increase
measurements in response to accelerating activity. This is an important reflection on
the nature of pre-failure creep which follows an exponential or hyperbolic acceleration

curve (section 5.2).
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The first two monitoring recommendations result from the minimum observed

values of total displacement and total duration, in the database of 31 failures. The
conditions proposed here are for a universal instrument capable of monitoring any of
the landslides in this database, however it is recognised that these are not definitive
limits for pre-failure slope deformation. Identifying slope conditions resulting in higher
rates of pre-failure deformation will refine judgement on the necessary spatial
accuracy and measurement repeat rate of instrumentation. Although relationships
between slope characteristics and movement parameters were not evident in the

database some assumptions may be made based on published literature.

Landslides composed of bedrock are likely to have a larger volume than soil
slides covering the same surface area because their scar geometry is defined by
hillslope structure (section 2.3.1.2) rather than soil availability (Larsen et al., 2010).
This leads to shallow soil slides and deeper bedrock failures. Referring to figure 2.1, an
object (or landslide) of greater volume will move faster than an object of smaller
volume on the same slope, when the density and shape of the two object are the
same. At a simple level increasing landslide volume is likely to increase slope
deformation rate. Landslide geometry is also a key player here, primarily controlling
the amount of tertiary displacement. Considering two landslides of identical surface
area and material, but of different depths; the deeper shear-surface would take longer
to form because more material has to be deformed for micro-fractures to coalesce as a
failure plane (section 2.3.3.2). This suggests that increasing the size of the shear
surface increases the duration of tertiary creep, and also the total slope displacement
dependent on sub-surface landslide geometry. Furthermore, steepening the slope
gradient (and associated failure plane) is likely to increase deformation rate by

increasing the driving force destabilising the hillslope (box 2.1).

Considering geometrical landslide characteristics separately provides a
simplistic theoretical expectation for relative rates of pre-failure creep. However
progressive hillslope failure is a function of a multitude of different interacting
conditions (i.e. physiographic setting, slope material, and the sequence, dynamics and
intensity of environmental forcings; see section 2.3.3.4). Until the intricacies of
different controls on slope stability are better understood, it is difficult to propose

instrument parameters for spatial accuracy and repeat rate, specific to certain slope
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attributes (such as mode of failure). For this reason a conservative approach is taken
and the minimum values for total displacement, and duration within the database are

recommended.
(3) Surface-based capture

The Selborne slope cutting experiment (Cooper et al., 1998) highlighted that different
parts of a slope undergo different amounts and patterns of deformation; in this case
cracks propagated outwards from the centre of the shear plane, resulting in a
mechanical lag in deformation at the backscarp. The kinematic variability and
complexity of landslides is best captured using surface based measurement (Angeli et

al., 2000).
(4) Ground-based view angle

The majority of failures within the database occurred from gradients over 45 degrees.
Greater spatial coverage on steep slopes such as these is gained using ground-based
data capture (Rosser et al., 2008). Positioning instruments to overcome the effects of
ground cover (e.g. vegetation) and occlusion when dealing with complex surface
geometry, is challenging and may require multiple perspectives to fully capture a scene
(Petrie and Toth, 2008a). Slopes with gentler gradients may require elevated
monitoring positions, and benefit from view angles closer to a bird’s eye perspective.
Importantly ground-based measurements are easily repeated, compared to satellite or

aerial capture which does not permanently monitor a site.

(5) Long duration fixture

The longest duration of tertiary creep within the database was 3,171.45 days (Delabole
Quarry, id = 23). As discussed in section 5.2, this indicates significantly long periods of
deformation, particularly if the instability is detected before entering the tertiary
phase. Long duration fixtures must be robust against long resident times. Remote
monitoring overcomes the problems associated with manual installation and
maintenance on unstable terrain (Lim, 2006), particularly in the context of permanent

instruments.

143



Chapter 5: Discussion

Section 3.4.3 reviews methods of monitoring movement on hillslopes. Table 3.1
provides a useful guide on which to select instrumentation that satisfies as many of the
desired monitoring requirements- outlined above- as possible. Importantly there is
currently no ‘magic’ instrument that automatically fulfils everything required.
Terrestrial laser scanners, terrestrial photogrammetry and ground-based InSAR all
provide surface-based data from a ground-based set-up. Of these instruments,
terrestrial laser scanning (TLS) is the most promising technology for permanent
landslide monitoring; processing may be automated for a ‘batch’ of data (unlike

terrestrial photogrammetry) and it is lower cost than a ground-based InSAR system.

Although applications of this instrument to unstable slopes are far reaching, few
publications (Abellan, 2009; Araiba, 2006; Monserrat and Crosetto, 2008; Schwalbe et
al., 2008; Teza et al.,, 2007; Tsakiri et al., 2006) have attempted to extract 3D
displacement vectors from TLS data. Achieving high precision measurement hinges on
having a good understanding of data acquisition, processing and propagating errors
resulting from each methodological step. Typically acquiring data based on time-of-
flight (Frohlich and Mettenleiter, 2004; Staiger, 2003), medium to long range (distance
<200m) terrestrial laser scanners capture surface information in dense three-
dimensional point clouds (x,y,z) with an additional reflex intensity value (Feng and
Roshoff, 2004). Table 5.1 outlines a processing framework for point cloud data from
acquisition to analysis, providing a useful summary on which to discuss and
recommend further work to develop methods of monitoring pre-failure slope creep
that recognise the scale of behaviour (based on observations in chapter 4) and result in

appropriate data on which to apply the Inverse-velocity method.

Exploring each element of table 5.1 further is beyond the scope of this thesis;

its presentation here is to highlight three key points:

(1) The complex and numerous sources of potential error within a processed
TLS data set
(2) Currently no automated method exists to derive 3D movement vectors

from surface data
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References

(1) ACQUISITION

TLS instrument

Consistency of optical
transmission efficiency
(laser power)

(Hofle and Pfeifer, 2007;
Pfeifer et al., 2007)

Laser wavelength

(Petrie and Toth,
2008bb)

Accuracy of system to
detect return signal from
laser pulse

Size of receiving lens

(Petrie and Toth, 2008a)

Geometrical factors

Instrument position in
relation to slope (range,
incidence angle)

(Hofle and Pfeifer, 2007;
Korpela, 2008; Rosser et
al., 2007)

Slope surface texture
(lithology, wetness,
vegetation)

(Lichti and Harvey, 2002;
Rosser et al., 2007;
Rosser et al., 2005)

Environmental
factors

Ambient light (Starek et al., 2006)
Airborne particles (Rosser et al., 2007)
Temperature (Baltsavias, 1999)

Geodectic network

Differential GPS accuracy

(Field, 2004)

Instrument and target
height measurement

(Petrie and Toth, 2008a)

(2) PROCESSING

Georeferencing data
within geodectic
network

Point accuracy of target
scan

(Habib, 2008)

Differential GPS accuracy

(Field, 2004)

Scan co-registration

Stability of benchmarks

(Borghuis et al., 2007)

Robustness of statistical
method (e.g. ICP)

(Teza et al., 2007)

Data filtering to
remove
topographically
irrelevant features
(non-ground points)

If manual: human
interpretation of scene

(Lim, 2006)

If automated: robustness
of surface fitting procedure

(Prokop and Panholzer,
2009)

Interpolation of point
cloud

Method (e.g. kriging)

(Martha et al., 2010)

Density of point cloud

(Lichti and Jamtsho,
2006)

(3) ANALYSIS

Dimensionality of
measurement

The benchmark method,
cloud-to-cloud comparison
method and shaded relief
image correlation method
only produce 2D
movement vectors but are
automated

(Travelletti et al., 2008)

Least squares method
calculates 3D displacement
vectors but requires
manual point selection

(Monserrat and
Crosetto, 2008)

Failure geometry

Surface expression of basal
strain

(Rosser et al., 2008)

Mode of failure (see table
2.3)

(Jaboyedoff et al., 2009)

Small slope fragments
superseding wide scale
slope movements

(Hungr et al., 2005)

Table 5.1: A framework for acquiring, processing and analysing terrestrial laser scanning data
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(1) Measurements of surface velocity are difficult to interpret in the context of
the inverse-velocity method because of the lack of epistemic understanding

of surface expressions of basal strain

In order to achieve continuous (or near-continuous) measurement, a permanent TLS
system should be installed to monitor slope deformation. This has not yet been
attempted and the first two key points above highlight research hurdles for
establishing a permanent set-up. Interaction of the laser pulse with the local
environment and target object affect the precision of the distance measurement.
Monitoring environmental variables at site that affect measurements and adjusting TLS
data to account for changing conditions (Tsakiri et al., 2006) will improve data
precision. Importantly understanding the magnitude of error resulting from variance in
different elements (i.e. ambient light) using laboratory and field calibration tests, may
reduce the degree of data correction required if resulting errors are within a tolerable
limit. Critically calibrating data does not overcome the fundamental problem that
some slopes may deform faster than the sampling resolution of the TLS; this can only
be overcome with technical improvements to instruments to increase the speed of

data capture.

Although TLS is not strictly a continuous measurement system because it
requires a period of time (dependent on: instrument, point density, point averaging,
scanning range and scan area) to capture data it has the capability to generate
hundreds of point clouds per day of the same deforming surface if permanently
installed. Working with such vast data sets requires automation however, as noted in
table 5.1, deriving 3D movement vectors from surfaces currently requires an operator
to manually delimit failure geometry (Montserrat and Crossetto, 2008). Further

research is required to develop a practical method that automates this process.

Figure 5.1 highlights the spread of instrumentation used to collect data
included in the deformation database (chapter 4). Only 29% (total survey, surface
monuments and peg networks) of landslides were monitored by a surface-based
measurement method, and the point density of these surveys was sparse compared
with TLS capabilities. Importantly point-based instruments are installed relative to an

area of stability (i.e. extensometer positioned over back scarp of slope failure) allowing
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movement to be tracked in a discrete location, and plotted in simple displacement-
time graphs (section 3.4.3). Resulting data sets from surface-based remote
measurements are complex and difficult to interpret, particularly given the need to
delimit the geometry of moving parts on a hillslope. Developing numerical and physical
models to investigate slip-plane surface interactions in different types (failure
geometry, mode and lithology) of deforming slope will better facilitate the application

of the Inverse-velocity method to surface-based measurements.

Inclinometer,
3%

Total survey, 5%

Crack gauges,

26% Extensometer,
()

8%

Surface
monument, 11%

Peg network,

13%
Distometers,

18%

Survey lines, 16%

Figure 5.1: Monitoring method

Monitoring requires careful planning (Angeli et al., 2000); the most appropriate
instrument for the situation, correct installation and the ability to use measurements
to forecast future slope collapse, and provide early warning to vulnerable populations.
TLS is a promising instrument for slope monitoring if further research is invested in
developing data acquisition and processing, as discussed above. One of the main
disadvantages however of this approach is cost. The majority of failures in the

database (table 4.3) occurred in countries with a ‘very high’ level of human
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development3, indicating that they have capacity to invest in slope monitoring.
Consistently Asia accounts for ~80% of annual global landslide fatalities (Petley,
2008b). Further analysis of the Asia-Pacific region between 2006 and 2008 (Ho, 2004)
indicates that countries with a particularly acute number of fatal events are classified
with ‘low’ or ‘medium’ levels of human development’. The HDI* measure only
encompasses one direct economic indicator (GNIpc®) but it gives a sense of available
national investment for landslide monitoring infrastructure. Cheaper simple solutions
are likely to be more achievable in lesser developed regions, and based on this
recognition, research is recommended to extend findings from complex technical
monitoring installations (such as TLS) to inform effective affordable slope set-ups that
generate data appropriate to forecasting models (such as the Inverse-velocity

method).

5.5. Limitations of tertiary creep database

Although collations of secondary data provide useful tools to assess generalised
behaviour in a system, it is important also to appreciate data limitations and the
constraints this has on associated findings. Critically there are distinct limitations tied
up with using secondary sources. Inconsistencies in reporting, particularly of slope
attributes, such as detailed geology, limited the assessment relating patterns of
tertiary deformation to failure characteristics. Returning to the slope factor of safety
model, figure 2.1, it is noted that key parameters such as the angle of internal friction,
ordinarily collected in lab-based tests when assessing a single site, are not present in
the database. Field verification of large numbers of sites would be a costly and time
intensive venture. Conflicting this, authors typically reported in great detail
physiographic mechanisms initiating failure. This type of qualitative data was difficult
to encompass into a numerically based database, leading to groupings and loss of

information

Reporting bias can propagate through results (Guzzetti et al., 2008) and

inconsistencies in terms caused problems when identifying brittle failures from ductily

* http://hdr.undp.org/en/countries/
* HDI: Human development index
> GNIpc: Gross national income at purchasing power parity per capita
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deforming slopes. A lack of published examples fulfilling the database criteria indicates
that either: (1) data of this nature isn’t published (i.e. most slopes were man-made
indicating industry rather than academic interests) or (2) monitoring rarely captures
pre-failure deformations. Although the number of journals included in the initial
‘search’ may have been extended and other sources looked into (section 4.2), the
return rate on useful articles from the search procedure was low, 0.1%. The limited
number of examples made it difficult to compare with significance, patterns of tertiary

creep from similar magnitude (for example) landslides.

Inconsistencies between monitoring approaches, notably coverage and
resolution raise questions about the comparability of results. Importantly the onset of
tertiary creep is may have been missed from records, leading to questions on creep
duration, particularly in the context of those examples published in inverse-velocity-
time. Both the process of digitising and conversion (between displacement- velocity)
result in small precision errors (~0.1 day, section 4.2) which propagate through data.
The full impact of these errors, particularly on curve modelling has not been fully

investigated within this thesis.

Sections 5.2 to 5.5 discussed results presented in chapter 4 within the context
of landslide monitoring and failure forecasting. Chapter 6 concludes the thesis

summarising findings critical to each objective and the overall project aim.
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CHAPTER 6

Conclusion
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The results of this study will be summarised by revisiting the research

objectives outlined in chapter 1. Recommendations for future research will be included

in the evaluation of each directive.

Objective 1: To build a database of pre-failure deformations for collapsed slopes, to

assess variables contributing to and controlling the nature of pre-failure strain

accumulation

Using past precedent and current understanding of patterns of pre-failure

deformation, a database of thirty-one examples of tertiary creep was assembled from

a literature search of over 6,000 papers.

Key findings and contribution to knowledge:

Extending previous publications which compared only a limited number of
deforming slopes, the database is the first of its kind to collate a statistically
significant number of tertiary creep examples to compare and contrast patterns
of behaviour. Critically this provides validation data for empirical models
describing brittle deformation driven by crack growth (Voight, 1989; Kilburn
and Petley, 2003).
Tertiary creep delineated using the criteria outlined in section 4.2 ranged
between ~37 minutes and 3,171.45 days. Two key points arise from this:
(1) Tertiary creep occurs at very different temporal scales
(2) Long periods of tertiary creep, as observed in this database, indicate that
slopes may destabilise and deform for many years before final collapse.
Only very weak correlations exist between tertiary creep parameters and slope
characteristics, although the limitations of attribute data, namely the
secondary provenance, are discussed as bringing bias into the assessment.
Collating data from different sources highlighted the lack of standard reporting
of key site characteristics, this was particularly evident between industry-based

reports and scientific papers.

Recommendations for future research:

Extend the database to include more examples (if available) of pre-failure

deformation data
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Carry out ‘site-based’ verification visits to better constrain slope characteristics,
particularly local detailed geology of more recent failures
To carry out primary data collection of similar unstable slopes using the same
method of collection, to provide comparative data on which to consider

relationships between patterns of deformation and characteristics of failure

Objective 2: To identify patterns of tertiary creep which may reflect physical

deformation mechanisms

The ‘inverse-velocity method’ utilises the normal linear regression of inverse-

velocity-time to extrapolate to the point of slope collapse. Alternative models (Voight,

1989) have been proposed to describe the transition from critical strain to slope

collapse. Hyperbolic curves based on Voight’s parameters were fit to data using the

least-squares method in Matlab.

Key findings and contribution to knowledge:

Applied to inverse-velocity-time data, the model a parameter varied between
1.15 and 2.23. Most examples (86%) fell within the bounds of 1.7 < a < 2.2 for
brittle creep (as validated by Voight (1989).

Relating results to physical mechanisms proposed by Kilburn (2003) it is shown
that too differing degrees pre-failure deformations are dominated by either
crack nucleation (a = 1) or crack growth (a = 2). Although the former is often
discussed in the context of ductile shear zones (Petley et al., 2002), some
examples within the database that fulfilled the ‘tertiary creep criteria’ for

brittle deforming slopes, were characterised with a values closer to 1.

There are no significant relationships between patterns of tertiary creep and
pre-failure slope attributes. This is based on the limited slope attribute data

reported in publications (refer above to objective 1).

Hyperbolic parameters calculated for the velocity-time projection of data did
not corroborate with those derived from inverse-velocity-time projections.
Observations by Borsetto et al. (1991) suggest computational errors may exist

in the fitting procedure. Although this means results from this section of work
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must be treated with consideration of this potential error, it also shows that
inverse-velocity-time rather than velocity-time is the best projection for data

when assessing patterns of accelerating creep behaviour.

Recommendations for future research

e Some serious questions remain about the detailed mechanisms of failure
development and their manifestation in terms of strain.

e Sensitivity analysis of the different Voight (1989) parameters is needed using
‘real landslide data’ to assess the extent to which model predictions are a
reflection of measurement interval and ‘chaotic’ behaviour possibly derived
from instrumental error

e Consideration of the differences between velocity-time and inverse-velocity
time fits should be undertaken to gain a better understanding of computational
errors intrinsically tied into the empirical model

e To assess relationships between movement attributes and slope characteristics
using more sophisticated statistical models, particularly if the database is

extended

Objective 3: To assess the application of the inverse velocity method to brittle failing
rock slopes for purposes of forecasting and early warning

The ‘inverse-velocity method’ was applied to database records in an a priori
manner, to simulate forecast of slope collapse. Defined retrospectively examples
provided a useful test case to assess the reliability of predictions extrapolated from

normal linear regressions of inverse-velocity-time data.

Key findings and contribution to knowledge:

o Slopes deforming in a brittle manner are more likely to predict slope collapse
‘too soon’ as a false positive prediction, than overestimating the duration of
tertiary creep; based on results from the database.

e The onset of tertiary creep is harder to delimit when considering data a priori
to failure; although this final phase of acceleration was identifiable in 87% of

failure, within the first 25% of their ‘retrospectively defined’ creep duration.
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e The inverse-velocity method has proven robust across a broad range of failures,

pre-failure conditions and with data derived from a variety of instrumentation.

Recommendations for future research

e The transition from secondary to tertiary creep requires a more robust
definition, reflective of the different physical mechanisms operating in the
shear zone.

e The observed preferentiality towards false-positive forecast requires further

investigation drawing on a greater number of examples.

Objective 4: To consider the constraints on ground-based remote sensing for
monitoring pre-failure movements
Results from the database were considered in the context of available

instrumentation. Five key recommendations were made for pre-failure deformation
detection and monitoring. Measurements would benefit from instrumentation capable
of:

(1) Spatial accuracy to ~10 mm

(2) Surface-based capture

(3) Continuous measurement (high repeat rate ~10 minutes)

(4) Ground-based view angle

(5) Long duration fixture

Terrestrial laser scanning is discussed as the most promising method of capturing
pre-failure deformation. Reviewing the steps involved in acquiring, processing and
interpreting data however highlight key areas for further research and development

before TLS can be employed to permanently monitor slope failure.

Key research challenges:

e To calibrate errors in TLS measurement with different environmental and
geometrical conditions using lab and field testing, with the aim of correcting
data to improve its precision.

e To increase the capture rate of data by installing a permanent TLS system to

monitor an unstable slope. To additionally instrument this slope to directly
154



Chapter 6: Conclusion
measure deformation of high resolution but limited spatial extent, to provide a
comparative dataset on which to compare the ‘gain’ in precision through point-
cloud processing.

e To establish an automated processing procedure capable of delimiting the
extent and mode of movement across a slope- this should also account for
multiple points of differential movement

e To model shear-zone to surface interactions, in order to establish the
representativeness of surface measurements in the context of physical
mechanisms operating within the slope.

e To extend findings from future TLS monitoring installations to develop simple
slope instrumentation, that is an affordable and generates data appropriate for

forecasting and early warning.

The overall aim of this thesis was to (1) build a database on the nature of pre-failure
acceleration from published examples of monitored failing slopes; and (2) using
observations from this database, to consider the methodological constraints on
detecting movement in the context of applying the inverse-velocity method for

failure prediction.

The collation of a tertiary creep database has provided interesting insight into
the range of scales pre-failure deformation operates over. It has generated
guantitative data to instruct monitoring practise and evaluated the evolving accuracy
of landslide forecast derived using the inverse-velocity method. Given the limited
number of examples in the study, it has been difficult to relate slope characteristics to
patterns of pre-failure deformation, however observed trends in acceleration conform
well with cited literature (Voight, 1989). It is recommended in conclusion that
database work using secondary sources should be extended and site validation of
specific recent examples be undertaken. The contribution improved monitoring and
early warning could make based on insight gained through retrospective failure

analysis is significant.
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Material strength Failure type Natural/man- Triggers Size
made
All Loading '
Clay Is(c));c( ::zzi traniloa;c'?i(-)nal Compound | Toppling | Translational | Rotational | Natural n“f:g(;_ Groundwater | Rainfall ;ch\r:r EX;;\;‘:?::/ 2 3 4 5
landslides
Total
displacement | 0.0016 | 0.1980 | 0.0034 | 0.2966 0.8346 0.7165 0.0514 0.6473 0.0706 | 0.0000 0.8591 0.9285 0.0148 0.0136 | 0.3029 | 0.7153 | 0.8479
v duration
Max velocity
v duration 0.0070 | 0.1362 | 0.0241 | 0.1762 0.0026 0.5550 0.0782 0.0365 0.3538 | 0.0104 0.0232 0.1923 0.0260 0.1166 | 0.4278 | 0.0263 | 0.7164
Max velocity
v total 0.1144 | 0.9665 | 0.0197 | 0.1112 0.0260 0.9716 0.0083 0.0198 0.0746 | 0.1076 0.0083 0.2851 0.5777 0.2872 | 0.0198 | 0.0527 | 0.9743
displacement
Pre-failure slope gradient Vegetation
20<=x<30 | 30<=x<40 | 40<=x<50 50<=x<60deg 60<=x<70 | 70<=x<80 | 80<=x<90 No Ves
deg deg deg deg deg deg
Total
displacement | 0.1046 0.8285 0.1208 0.0061 0.0001 | 0.5718
v duration
Maxvelocity | o cac0 | 0.0016 | 0.0574 0.2299 0.0113 | 0.1045
v duration
Max velocity
v total 0.0438 0.0498 0.0965 0.0251 0.1042 | 0.0059
displacement

Appendix table 1: R-squared values from the linear regression of different movement attributes (total displacement, max velocity and duration)
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ID a (mean) a (min) a(max) | a(mean) o (min) o (max) yr (mean) yr (min) yr (max) R?

1 2.465 -2.114 7.043 1.001 1.001 1.001 0.1344 0.03007 0.2387 0.9498
2 6.357 3.694 9.02 1.001 1.001 1.001 0.6157 0.4578 0.7736 0.8847
3 6.057 5.547 6.567 1.153 1.083 1.223 0.8404 0.8161 0.8648 0.9968
4 3.888 3.682 4.094 1.001 1.001 1.001 1.032 0.9935 1.07 0.9712
5 3.227 2.617 3.836 1.001 1.001 1.001 0.7278 0.6452 0.8104 0.9307
6 12.62 10.94 14.29 1.397 1.286 1.508 0.9997 0.9802 1.019 0.9993
7 4.561 3.468 5.654 1.072 0.8265 1.318 1.011 0.9346 1.088 0.9346
8 21.3 -15.31 57.92 1.614 0.6072 2.62 1 0.9452 1.055 0.9996
9 4.225 1.272 7.177 1.075 0.3386 1.812 0.9946 0.8172 1.172 0.974
10 11.7 8.043 15.37 1.428 1.143 1.714 0.9998 0.9621 1.037 0.9994
11 399.1 -241.8 1040 2.969 1.622 4.317 0.9998 0.8588 1.141 0.9691
12 1.794 -7.977 11.57 1.001 1.001 1.001 0.1157 -0.2852 0.5167 0.7095
13 2.818 1.399 4.238 1.001 1.001 1.001 1.004 0.7518 1.257 0.9691
14 11.19 5.239 17.14 1.405 0.7893 2.021 0.9892 0.8368 1.142 0.9686
15 98.84 51.68 146 2.156 1.852 2.46 0.9999 0.9686 1.031 0.9983
16 10.31 2.003 18.62 1.639 0.7601 2.519 1.011 0.83 1.193 0.9698
17 9.88 -1.835 21.59 1.554 0.231 2.876 0.9835 0.703 1.264 0.8899
18 5.607 4,61 6.603 1.097 0.7234 1.47 1.652 1.569 1.736 0.9969
19 28.2 24.96 31.45 1.504 1.426 1.583 0.5929 0.5823 0.6035 0.9997
20 403.8 318.3 489.3 1.613 1.483 1.743 0.4154 0.4052 0.4256 0.9995
21 6.061 -7.561 19.68 1.101 -0.7922 2.994 1 0.8432 1.157 0.9998
22 19.46 15.84 23.09 1.523 1.376 1.67 0.9998 0.9799 1.02 0.9995
23 12.84 11.77 13.9 1.229 1.14 1.318 1.332 1.304 1.361 0.9972
24 306.7 290.8 322.7 1.859 1.82 1.897 1 0.9964 1.004 1

25 329.7 326.1 333.3 1.729 1.719 1.738 0.9999 0.9979 1.002 1

26 47.1 45.96 48.23 1.323 1.256 1.391 3.107 3.08 3.134 0.9972
27 21.66 17.59 25.73 1.572 1.404 1.741 0.9997 0.9764 1.023 0.9995
28 9.522 7.692 11.35 1.368 1.191 1.545 0.9993 0.9675 1.031 0.9987
29 8.093 6.401 9.784 1.324 1.126 1.522 0.9991 0.9613 1.037 0.9986
30 13.16 8.96 17.36 1.39 1.171 1.608 0.9999 0.9759 1.024 0.9995
31 33.05 30.63 35.47 1.365 1.332 1.398 0.3195 0.316 0.3231 0.9999

Appendix: Table 2: Coefficients for hyperbolic curves fitted to velocity-time data

References
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ID | a(mean) | a(min) | a(max) | y;(mean) ys (min) | yr(max) R?

1 2.457 -1.087 6 0.1343 0.05332 | 0.2152 | 0.9697
2 8.253 6.77 9.736 1.024 0.9088 1.138 | 0.9478
3 4.716 4.492 4.94 0.7702 0.7444 0.796 | 0.9946
4 3.879 3.686 4.071 1.03 0.9947 1.066 0.9747
5 3.241 2.659 3.823 0.7305 0.6516 0.8094 | 0.937
6 4.861 4.359 5.364 0.5036 0.473 0.5343 | 0.9979
7 4.235 3.847 4.623 1.005 0.9489 1.061 0.989
8 9.259 5.796 12.72 0.9996 0.9119 1.087 | 0.9969
9 3.917 2.957 4.878 0.9879 0.8688 1.107 0.9821
10 7.852 5.696 10.01 0.9942 0.8828 1.106 | 0.9911
11 38.51 22.76 54.26 1.001 0.8296 1.172 0.94

12 4.048 -2.079 10.18 0.4072 0.05929 | 0.7552 | 0.8183
13 2.828 1.429 4.227 1.005 0.7564 1.253 0.9702
14 7.725 5.872 9.579 0.9526 0.8409 1.064 | 0.9746
15 3.635 1.859 5.411 0.1648 0.1221 0.2075 | 0.994
16 6.262 3.082 9.443 0.9703 0.7533 1.187 0.9313
17 5.525 2.984 8.065 0.9126 0.691 1.134 | 0.8909
18 3.83 3.274 4.386 1.006 0.9235 1.089 | 0.9945
19 4.507 2.907 6.107 0.1524 0.1259 0.1789 | 0.9968
20 418.7 386.4 450.9 0.9415 0.9121 0.9708 | 0.9959
21 5.423 4.502 6.344 0.9998 0.952 1.048 0.9996
22 11.68 9.06 14.3 0.9953 0.9131 1.078 | 0.9898
23 8.91 8.46 9.36 0.9988 0.9637 1.034 0.9952
24 20.37 12.45 28.3 0.1438 0.1186 0.169 0.998
25 168 164.2 171.8 0.987 0.9732 1.001 0.9978
26 29.57 28.77 30.37 1.43 1.399 1.46 0.9961
27 13.2 10.05 16.35 0.9937 0.8997 1.088 0.989
28 4.293 3.779 4.807 0.5665 0.5272 0.6059 | 0.9974
29 4.102 3.576 4.629 0.6291 0.5854 0.6727 | 0.9974
30 8.37 6.672 10.07 0.9985 0.9378 1.059 | 0.9955
31 8.697 7.517 9.876 0.1399 0.1268 0.1529 | 0.9972

Appendix: Table 3: Coefficients for exponential curves fitted to velocity-time data
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ID a (mean) a (min) a(max) | a(mean) o (min) o (max) yf (mean) yr (min) yr (max) R?

1 0.2383 -0.9004 1.377 341 -3.666 10.49 1.499 -2.35 5.348 0.8429
2 0.8512 0.09032 1.612 2.279 1.461 3.098 4097 -4.02E+07 4.02E+07 0.8831
3 0.8341 0.7559 0.9123 2.174 2.093 2.256 25.03 -9.697 59.76 0.9979
4 0.6445 0.4256 0.8634 243 21 2.759 5.509 -1.728 12.75 0.9621
5 0.5343 0.06914 0.9995 2.52 1.556 3.483 4.957 -10.54 20.45 0.9228
6 0.7317 0.5567 0.9067 2.318 2.098 2.537 19.3 -51.21 89.8 0.9978
7 0.7284 0.168 1.289 2.347 1.61 3.084 24.62 -389.3 438.6 0.9558
8 1.173 0.5484 1.798 1.813 1.304 2.321 2877 -2.05E+05 2.11E+05 0.9892
9 0.7404 -0.043 1.524 2.359 1.371 3.346 1645 -1.10E+07 1.10E+07 0.9836
10 0.7205 0.5891 0.8519 2.344 2.174 2.513 13.71 -12.27 39.69 0.9997
11 0.4596 0.2015 0.7177 2.785 2.113 3.457 2.616 0.2826 4.95 0.992
12 0.8114 -0.7577 2.381 2.097 0.429 3.765 15.98 -237.6 269.5 0.8139
13 0.6217 -2.502 3.745 2.617 -2.475 7.71 16.06 -1848 1880 0.9759
14 0.4296 0.08539 0.7737 3.005 1.938 4.071 3.066 -2.657 8.79 0.9855
15 0.7712 -0.0243 1.567 1.971 0.9017 3.04 49.58 -811.9 911 0.8182
16 0.05041 -0.4747 0.5756 7.601 -28.94 44.14 1.063 0.3077 1.819 0.9569
17 0.8152 -0.3382 1.969 2.292 0.9982 3.586 2285 -1.86E+07 1.86E+07 0.9293
18 0.6952 0.2822 1.108 2.443 1.883 3.002 451 -4.62E+05 4.63E+05 0.9991
19 0.8187 0.7665 0.8709 2.191 2.134 2.249 25.98 0.07514 51.88 0.9996
20 0.8618 0.5327 1.191 2.054 1.636 2.473 8564 -1.16E+07 1.16E+07 0.9061
21 0.6612 -1.064 2.386 2.451 -0.04453 4.947 9.799 -203.6 223.2 0.9992
22 0.8168 0.675 0.9586 2.181 2.028 2.334 33.02 -80.98 147 0.9987
23 0.5703 0.4476 0.693 2.758 2.503 3.013 1126 -1.17E+07 1.17E+07 0.9979
24 0.7753 0.7399 0.8106 2.28 2.234 2.327 34.07 -3.943 72.07 0.9998
25 0.8835 0.8381 0.9288 2.12 2.069 2.171 7687 -2.27E+06 2.29E+06 0.9973
26 0.8034 0.6976 0.9091 2.224 2.085 2.363 4106 -3.27E+06 3.28E+06 0.9953
27 0.7451 0.6598 0.8304 2.297 2.188 2.406 15.49 -3.684 34.66 0.9996
28 0.7877 0.6861 0.8894 2.225 2.109 2.34 19.86 -13.03 52.74 0.9994
29 0.7524 0.6539 0.8509 2.284 2.165 2.403 15.55 -6.959 38.05 0.9995
30 0.5857 0.4063 0.7651 2.591 2.279 2.902 5.385 -1.927 12.7 0.9989
31 0.8532 0.7705 0.9358 2.164 2.076 2.252 4801 -2.44E+06 2.45E+06 0.997

Appendix: Table 4: Coefficients for hyperbolic curves fitted to inverse-velocity-time data
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