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Concentratable Entanglement
Steph Foulds

Abstract

Entanglement is a vital resource in quantum computation and information. In gen-

eral, the amount of entanglement in a state determines its usefulness. The stand-

ard methods for detecting and characterising quantum entanglement are either

resource intensive or require prior knowledge of the state in question. We extend

the two-qubit pure state entanglement measure concurrence to the multipartite en-

tanglement measure Concentratable Entanglement (CE) and provide two efficient

methods of experimentally estimating it, the Bell-basis test and the controlled

SWAP test, the output probabilities of which are related to the CE and purity

of the input ensemble state. We show these results are robust to small variations

in the input states and are therefore suitable for experimental estimation. The

Bell-basis test can be achieved experimentally on multipartite states with current

hardware with number of trials at maximum according to Hoeffding’s inequality,

and is particularly suited to larger (n > 3) multipartite states. Unlike many other

multipartite measures, Concentratable Entanglement (CE) has a simple form, can

be directly estimated from experiment, and can be used for mixed states; therefore,

we present CE as a standard entanglement measure for multipartite states.

Supervisors: Dr Nicholas Chancellor, Professor Stuart Adams, and Professor Viv Kendon
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Chapter 1

Introduction

Quantum entanglement is a phenomenon in quantum physics where measurements on

two or more quantum objects yield highly correlated results, regardless of separation

or lack of communication between the objects. Called “spooky action at a distance”

and derided by Einstein, today entanglement is considered essential in quantum fun-

damental theory. Since 1972, it has been used in Bell’s experiment [1, 2, 3] to disprove

local hidden variable theory and in 2021, an experiment was proposed using entangle-

ment to test quantum gravity [4].

There are innumerable applications for entanglement; it is present in almost all quantum

computation [5, 6, 7, 8] and is a requirement for quantum advantage in some quantum

algorithms [9]. In quantum information science – the study of communication, storage,

and learnability of quantum information – entanglement is an integral resource [10,

11, 12, 13]. For example, quantum teleportation [14] uses pre-shared entanglement to

transfer an unknown quantum state from one location to another using only classical

channels. It provides a fundamental primitive for quantum information processing.

Teleportation has been realised optically [15, 16] and with ion traps [17] as approaches

towards distributed quantum computation [18].

In general, the amount of entanglement in a state determines its usefulness. For ex-

ample, information can only be teleported perfectly by maximally entangled states

[19]. The standard methods for detecting and characterising quantum entanglement

1



1. Introduction

are either resource intensive (such as quantum state tomography [20]) or require prior

knowledge of the state in question (such as entanglement witnesses [21]).

The controlled SWAP (c-SWAP) test for entanglement is an alternative test for quantum

entanglement, first proposed by Tim Spiller et al. in [22] for the two-qubit pure state

case. It is a quantum gate circuit which when applied iteratively to a (potentially un-

known) ensemble of states can evidence entanglement. It was then used in [23] to prove

a series of computational complexity results. In my MPhys dissertation (supervised

by Tim Spiller) ‘The controlled SWAP test: a shortcut to determining quantum en-

tanglement’ (2019) we show that the c-SWAP test can estimate the two-qubit measure

of entanglement ‘concurrence’, extended the c-SWAP test to three-qubit pure states,

and investigated various state error cases for two- and three-qubit states. During my

PhD, I published Foulds et al. [24] with Tim Spiller and Viv Kendon which among

other results extends this analysis to n-qubit states and proposes a multipartite meas-

ure of entanglement, based on concurrence, related to the c-SWAP test’s probability

results. Jacob Beckey et al. [25] then used this to define a family of entanglement

measures called Concentratable Entanglements (CEs) which can be directly estimated

from c-SWAP test results. This in turn led to collaborations on the extension of the

c-SWAP test to higher dimensional states [26], to mixed states [26, 27], and a proposal

for experimentally estimating CEs via a Bell-basis test [27].

In this thesis, I aim to determine the practical usefulness of the new multipartite entan-

glement measure concentratable entanglement (CE). CE is a experimentally motivated

multipartite entanglement measure. It is derived directly from the controlled-SWAP

(c-SWAP) test for entanglement and therefore has both a physical meaning and can be

directly estimated from experiment. The c-SWAP test for entanglement, or its equival-

ent for two-level states the Bell-basis measurement test, is particularly suited to highly

entangled near-pure states, for which the greater the system size the fewer resources

required to estimate the CE.

I begin with the necessary background on various multipartite states: namely qubit,

qudit, and optical states. I then explain entanglement in terms of its mathematical

2



1. Introduction

formalism, previously introduced measures of entanglement, and known methods ex-

perimental detection and measurement of entanglement. To conclude the background

section I explain in full the c-SWAP test for equivalence and the c-SWAP test for en-

tanglement as presented in the previous work [22]. This leads to my original work

on the behaviour of the CE of bipartite and multipartite qubit states under various

state variations and errors, with the view to bound experimental results outputted by

the c-SWAP test. Further, this chapter discusses the information contained in the c-

SWAP test’s results on the entanglement structure of the input qubit states. Next, I

present work obtained in collaboration with Oliver Prove during his Level 4 project at

Durham whereby we extend the c-SWAP test, and therefore CE, to higher dimensional

states. In the final original work chapter, I present work completed in collaboration

with Jacob Beckey (PhD student at the Univeristy of Colorado), Gerard Pelegri, and

Natalie Pearson (postdocs at the University of Strathclyde). In this chapter, we pro-

pose the Bell-basis test as a more experimentally viable method of obtaining the results

of the c-SWAP test on qubit states, and detail how this test might be performed on the

neutral atom platform via Rydberg excitations. Finally, I conclude with an argument

for Concentratable Entanglement to be adopted as a the standard, all-encompassing

measure of entanglement, able to be efficiently estimated by experiment.

3



Chapter 2

Background

First, I will provide the required background to understand the work presented in this

thesis. The first section establishes the mathematical framework used to represent

the relevant quantum states and their operators. The second section introduces en-

tanglement, entanglement classes, and previously defined measures of entanglement;

the third section reviews established methods of evidencing and characterising entan-

glement. The fourth section describes the controlled SWAP (c-SWAP) test for equi-

valence, a method for distinguishing states and the precursor to the c-SWAP test for

entanglement, which is covered in the fifth section.

2.1 Qubit and qudit states

A quantum superposition state, prior to measurement, is in a superposition of D pos-

sible states, where D is the dimensionality of the available state space [28]. These states

are discrete and quantised, such as nuclear spin, spatial paths, and atomic energy levels

[28]. A pure quantum state is a linear superposition of D basis states, represented in

4



2.1. Qubit and qudit states

Dirac notation with state vector [28]

|ψ⟩ =
∑
k∈KD

Ak |k⟩ (2.1)

=



Ak0

Ak1

...

AkD−1


(2.2)

where KD = {k0, k1, . . . , kD−1} is the set of all possible states the superposition state

ψ could be in. The linear functional conjugate transpose of |k⟩ is denoted ⟨k|. The

probability of obtaining |k⟩ when measuring |ψ⟩ is P (|k⟩) = | ⟨k|ψ⟩ |2 = |Ak|2, and the

state vector is normalised such that ⟨ψ|ψ⟩ = ∑
k |Ak|2 = ∑

k P (|k⟩) = 1.

Much of this thesis uses the computational basis, where the basis states are denoted with

KD = {k ∈ Z, 0 ≤ k < D} and form an orthogonal basis (for a D-dimensional complex

vector Hilbert space) such that ⟨k′|k⟩ = δkk′ [28]. There are exceptions to this notation

to signify intermediary states outside the input state’s basis; for example, Rydberg

states |r⟩ are highly excited electronic states of an atom or molecule that therefore

exhibit highly tunable long-range interactions with electromagnetic fields [29].

‘Qubit’ denotes a state with two computational basis states whereas ‘qudit’ is an um-

brella term for states with D > 2 computational basis states [30, 31]. A pure ‘n-

qubit(qudit) state’ is the combined state of n pure qubit(qudit) substates in one system,

with state vector [28, 30, 31]

|ψ⟩ =
∑
q∈Qn

Aq |q⟩ (2.3)

where Qn = {0, 1, . . . , D − 1}n is the set of all possible bit/dit strings of length n,

with k denoting the qubit(qudit) label in the set S = {1, 2, ..., n}. The probability

of measuring |q⟩ is P (|q⟩) = |Aq|2. Again the state vector is normalised such that

⟨ψ|ψ⟩ = ∑
q∈Qn

|Aq|2 = 1. For example, a two-qubit (pure) state has a state vector of

5



2.1. Qubit and qudit states

the form

|ψ⟩ = A00 |00⟩ +A01 |01⟩ +A10 |10⟩ +A11 |11⟩ (2.4)

=



A00

A01

A10

A11


(2.5)

where |jj′⟩ ≡ |j⟩ ⊗ |j′⟩.

These states are called ‘pure’ states as they can be represented by state vectors, however

they are actually special cases. Most states are in fact ‘mixed’, meaning they are a

probabilistic mixture of pure states. Instead of a state vector these states must be

represented by density matrices of the form: [28]

ρ =
∑
k

pk |ψk⟩⟨ψk| (2.6)

=
∑
k

pk

[
A∗

0⊗n A∗
0⊗n−11 · · · A∗

1⊗n−10 A∗
1⊗n

]
k



A0⊗n

A0⊗n−11
...

A1⊗n−10

A1⊗n


k

(2.7)

where pk is the probability of the pure state |ψk⟩ in the ensemble ρ, ∑k pk = 1, and

therefore the matrix trace tr[ρ] = 1. A pure state is the special case ρ = |ψ⟩⟨ψ| where

|ψ⟩ is its state vector.

The ‘purity’, the opposite of mixedness, of any state is given by [32]

γ = tr[ρ2]. (2.8)

For pure states, ρ2 = |ψ⟩ ⟨ψ|ψ⟩ ⟨ψ| = |ψ⟩⟨ψ| = ρ and therefore γ = tr[ρ2] = tr[ρ] = 1.

A maximally mixed state of the form ρ = Id/d, where Id is an identity matrix of size

d = Dn, has purity γ = 1
d . The purity of a state characterises the available information

about the quantum system [33]. Werner states [19] are of the form

ρ = (1 − p) |Ψ⟩⟨Ψ| + p
Id
d

(2.9)

6



2.1. Qubit and qudit states

and therefore the purity of ρ is dependant on p, where ρ is pure when p = 0 and

maximally mixed when p = 1.

It is useful to be able to extract the density matrix of a substate or substates from

a larger composite state. The reduced density matrix of the na-qubit/qudit state A

within composite nt-qubit/qudit state AB is given by the partial trace [28]

ρA = trB(ρAB) =
∑
s∈QB

B⟨s| ρAB |s⟩B (2.10)

where QB is the set of all possible bit/dit strings of length nt − na.

In this thesis, computation on quantum states is modelled with circuits of quantum

logic gates. An operator A representing a quantum logic gate acts on a state vector

|ψ⟩ with A |ψ⟩ = |ψ′⟩ and on a density matrix ρ with AρA† = ρ′ [28]. The gates used

in this thesis are the Hadamard gate, CnNOT gates, and CnZ gates.

The Hadamard gate is a one qubit gate with matrix [28]

H = 1√
2

1 1

1 −1

 (2.11)

and therefore operates on qubit computational basis states such that H |0⟩ = 1√
2(|0⟩ +

|1⟩) and H |1⟩ = 1√
2(|0⟩ − |1⟩).

The two-qubit controlled-NOT gate, or CNOT gate, flips the target qubit if and only

if the control qubit is in state |1⟩ [34]. It is represented by the matrix

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(2.12)

where the first qubit is the control and the second is the target.

The Toffoli gate, otherwise known as the CCNOT gate, is a three-qubit gate that flips

the target qubit if and only if the two control qubits are both in state |1⟩. It has matrix

7



2.1. Qubit and qudit states

[28]

CCNOT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(2.13)

where the first two qubits are the control and the third is the target.

The controlled-Z gate or CZ gate is a two-qubit gate that flips the phase (|0⟩ → |0⟩,

|1⟩ → − |1⟩) of the target qubit if the control qubit is in the |1⟩ state with matrix [28]

CZ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


(2.14)

where the first qubit is the control.

The CCZ gate is then

CCZ =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1



(2.15)

flipping the phase of the third target qubit if the first two control qubits are both |1⟩.

8



2.2. Coherent states

2.2 Coherent states

The quantum harmonic oscillator is a model of quantised energy levels in an oscillating

quantum system such as modes of vibration in molecules, or spatial modes in elecro-

magnetic waves [28]. Coherent states are minimum uncertainty states of the quantum

harmonic oscillator [28]. In this thesis we refer to optical coherent states, which describe

laser light: electromagnetic radiation produced such that there is a high probability the

light is emitted into the coherent resonant mode [35].

We define the coherent state |α⟩ as the unique eigenstate of the annihilation operator

â in a quantum harmonic oscillator [35]:

â |α⟩ = α |α⟩ . (2.16)

where α is the coherent state amplitude [35]. Therefore coherent states minimise the

quadrature uncertainty principle such that [35]

⟨(∆X̂1)2⟩ ⟨(∆X̂2)2⟩ = 1
16 . (2.17)

where X̂1 = 1
2(â†+â), X̂2 = i

2(â†−â), and ⟨x⟩ is the average over the momentum/position

basis states.

Photon number states, or Fock states, are states of a well-defined number of photons

such that |n⟩ are energy eigenstates of the Hamiltonian H = ℏω
(
â†â+ 1

2

)
where n is

the number of photons (one quantum of energy) in this state, â |n⟩ =
√
n |n− 1⟩, and

â† |n⟩ =
√
n+ 1 |n+ 1⟩[35]. When represented in this basis, coherent states follow a

Poisson number distribution: [35]

|α⟩ = e− |α|2
2

∞∑
n=0

αn√
n!

|n⟩ (2.18)

where |α|2 = µ is the average number of photons. It follows that the probability of

measuring m photons is P (m|µ) = ⟨m|α∗α |m⟩ = µme−µ/m!.

9



2.2. Coherent states

A coherent state can also be thought of as the vacuum state |0⟩ displaced to a location

α in phase space, due to the action of a displacement operator D̂(α) such that [35]

|α⟩ = eαâ
†−α∗â |0⟩ = D̂(α) |0⟩ . (2.19)

In contrast to the photon number states, these states are not orthogonal, and form an

overcomplete basis. The inner product between coherent states |α⟩ and |β⟩ is given by

[35]

⟨α|β⟩ = e− 1
2 |α|2− 1

2 |β|2+β∗α. (2.20)

A squeezed coherent state is one that ‘squeezes’ the quadrature uncertainty principle in

equation (2.17) such that ⟨(∆X̂1)2⟩ < 1
4 or ⟨(∆X̂2)2⟩ < 1

4 [35]. A single mode squeezed

state is of the form [35]

|α, ξ⟩ = D̂(α)Ŝ(ξ) |0⟩ (2.21)

= Ŝ(ξ)D̂(α) |0⟩ (2.22)

where

Ŝ(ξ) = exp
[1

2(ξ∗â2 − ξâ†2)
]

(2.23)

and ξ = reiθ, where r is the squeeze parameter, squeezing in direction θ. The two mode

squeezing operator is [35]

Ŝ2(ξ) = exp(ξ∗âb̂− ξâ†b̂†). (2.24)

where b̂ |β⟩ = β |β⟩. Ŝ2(ξ) ̸= Ŝ(ξ)âŜ(ξ)b̂ and therefore entangles (see section 2.3) the

two modes |α⟩ and |β⟩. The entropy of entanglement (defined in section 2.3) increases

with the squeeze parameter r [35, 36].

Cat states are linear superpositions of coherent states with phase differences. Their

name reflects the fact that one can macroscopically distinguish the states in the super-

position, similar to the states of the cat in Schrödinger’s thought experiment [37]. Cat

states are of particular interest due to their applicability in quantum computing [38]

10



2.3. Entanglement and its measures

and as the building blocks for entangled coherent states [39, 38]. A general cat state is

of the form [35]

|ψcat⟩ = N (|α⟩ + eiϕ |−α⟩) (2.25)

where N is a normalisation factor given by N = [2+2 exp(−2α2) cos(ϕ)]−1/2 for relative

phase angle 0 ≤ ϕ ≤ 2π. Coherent states |α⟩ and |−α⟩ are the macroscopically distin-

guishable states: the greater the value of α the smaller the overlap ⟨α|−α⟩ = e−2|α|2 .

Small valued α cat states can be produced with photon subtraction from a squeezed

vacuum state [40].

Entangled coherent states (ECS) exhibit entanglement between modes of the electro-

magnetic field and have applications across a range of fields such as quantum optics

[38], quantum information processing [39], and quantum metrology [41]. They can be

realised [39] by combining and operating on cat states of the form given in equation

(2.25). ECS are also fundamentally interesting as entangled macroscopic states with

minimised uncertainty. We will consider two-mode entangled coherent states of the

form

|ECSα2 ⟩ = Nα
2 (A++ |α⟩ |α⟩ +A+− |α⟩ |−α⟩ +

A−+ |−α⟩ |α⟩ +A−− |−α⟩ |−α⟩). (2.26)

2.3 Entanglement and its measures

Quantum entanglement is the quantum phenomenon where two or more quantum ob-

jects cannot be considered as separate systems, but must be thought of as one system.

Therefore, any measurement outcomes on these objects will be strongly correlated in a

way not explained by local classical descriptions [28].

For example, a general two-qubit pure state has state vector |ψ2⟩ = A00 |00⟩+A01 |01⟩+

A10 |10⟩ + A11 |11⟩. However, two separate one-qubit pure states have combined state

11



2.3. Entanglement and its measures

vector

|ψ1⟩ ⊗ |ϕ1⟩ = (A0 |0⟩ +A1 |1⟩) ⊗ (A′
0 |0⟩ +A′

1 |1⟩) (2.27)

= A0A
′
0 |00⟩ +A0A

′
1 |01⟩ +A1A

′
0 |10⟩ +A1A

′
1 |11⟩ (2.28)

which since it can be written as its composite substates product together, is a ‘product’

or ‘separable’ state. Any state |ψ2⟩ such that |ψ2⟩ ≠ |ψ1⟩ ⊗ |ϕ1⟩ is an entangled state.

‘Bell states’ are a class of maximally entangled two-qubit states. If one qubit is traced

out of a Bell state (see Equation 2.10), the remaining qubit will be a maximally mixed

state. The four Bell states are [28]

∣∣Φ±〉 = 1√
2

(|00⟩ ± |11⟩)

∣∣Ψ±〉 = 1√
2

(|01⟩ ± |10⟩). (2.29)

Under reversible LOCC – local operations and classical communication – Bell states can

be transformed into one another, but cannot be transformed into a state with less than

maximal entanglement. They are therefore considered one class of equivalent states.

Note that the basis used in this thesis so far are the state vectors |k ∈ Z, 0 ≤ k < D⟩,

however any state vectors |ki⟩ can be chosen as a basis such that

|ψ⟩ =
∑
i

ci |ki⟩ (2.30)

for pure states where ⟨ψ|ψ⟩ = 1. Relevant to this thesis is the Bell basis, a two-qubit

basis where |ki, 0 ≤ i ≤ 3⟩ are the four Bell states described in equation (2.29). This

basis is related to the {|0⟩ , |1⟩} ⊗ {|0⟩ , |1⟩} basis with

(H ⊗ I)CNOT{
∣∣∣Φ+

〉
,
∣∣∣Ψ+

〉
,
∣∣Φ−〉 , ∣∣Ψ−〉} = {|00⟩ , |01⟩ , |10⟩ , |11⟩}. (2.31)

Therefore, if a state cannot be measured in the Bell basis directly, one can simply apply

a Hadamard gate and a CNOT gate and measure each qubit in the {|0⟩ , |1⟩} basis to

12



2.3. Entanglement and its measures

recover the Bell basis. The Bell basis states are in fact eigenstates of the SWAP gate:

SWAP
∣∣∣Φ+

〉
=
∣∣∣Φ+

〉
(2.32)

SWAP
∣∣Φ−〉 =

∣∣Φ−〉 (2.33)

SWAP
∣∣∣Ψ+

〉
=
∣∣∣Ψ+

〉
(2.34)

SWAP
∣∣Ψ−〉 = −

∣∣Ψ−〉 . (2.35)

and therefore the |Ψ−⟩ state is called the singlet state, as opposed to a triplet state, as

it is the only Bell state with a negative eigenvalue.

The more entangled the composite state, the stronger the correlations in the measure-

ment outcomes, and the more mixed the individual qubits are when traced out. There

is a well-defined measure of entanglement for bipartite states called ‘concurrence’. For

pure states it is defined as [42, 43, 44]

c2(|ψ2⟩) =
√

2
(
1 − tr

[
ρ2

1
])

(2.36)

where ρ1 = Tr2[|ψ2⟩⟨ψ2|12]. If |ψ⟩ is a product state then c2 = 0; if it is a maximally

entangled state c2 = 1 [42]. In the case of two-qubit states of the form equation (2.4)

a more simple equation for concurrence is

c2(A00 |00⟩ +A01 |01⟩ +A10 |10⟩ +A11 |11⟩) = 2|A00A11 −A01A10|. (2.37)

There is also a convex roof extension to bound concurrence for mixed states: [45]

c2(ρ) ≥
√

2 tr [ρ2] − tr
[
ρ2

1
]

− tr
[
ρ2

2
]

= cl2(ρ) (2.38)

If ρ is a pure state, tr
[
ρ2] = 1 and tr

[
ρ2

1
]

= tr
[
ρ2

2
]
, therefore cl2(|ψ⟩⟨ψ|) = c2(|ψ⟩). If ρ is

a maximally mixed state cl2(ρ) = 1
2 – this measure therefore includes both entanglement

and mixedness. In fact, the two are inextricably linked.

In general, an entangled pure state is any |ψn⟩ that satisfies

|ψn⟩ ≠
n⊗
k=1

|ϕ1⟩k . (2.39)

The entangled classes used in this thesis are W states, GHZ states, and Line states.

13



2.3. Entanglement and its measures

True n-qubit W states have state vector [46, 47]

|Wn⟩ = 1√
n

n∑
k=1

|0...1k...0⟩n (2.40)

where |0...1k...0⟩n denotes a string of length n with a single qubit k in state |1⟩ in each

state in the superposition, e.g. |0...12...0⟩4 = |0010⟩. A strength of n > 2-qubit W

states is that if a qubit is lost, an n − 1-qubit W state remains. An n-qubit W-like

state has form

|ψn⟩ =
n∑
k=1

Ak |0...1k...0⟩n (2.41)

which exhibits the same properties of true W states with less total entanglement. Each

qubit in this state has purity γk = A4
k +

(∑n
j=1,j ̸=k A

2
j

)2
, which equals γ = 1

n2 ((n −

1)2 + 1) for true W states.

True n-qubit GHZ states are defined as [48, 47]

|GHZn⟩ = 1√
2

(|0⟩n + |1⟩n) (2.42)

where |0⟩n ≡
⊗n

k=1 |0⟩k. Each qubit in this state is a maximally mixed one-qubit

state. This class of state is often considered a stronger form of entanglement than

W states, however it is less robust as the measurement or other of one qubit will

destroy all entanglement in the state. We define an n-qubit GHZ-like state as |ψn⟩ =

α0 |0⟩n + α1 |1⟩n); each qubit has purity α4
0 + α4

1.

When n = 2, both W states and GHZ states reduce to Bell states. However, for n ≥ 3,

W states and GHZ states are two inequivalent classes of entangled states. Frequently

in this thesis Bell states are included in the analysis of GHZ and W states as the n = 2

case.

The final class discussed are line cluster states, with state vector [49]

|Ln⟩ =
∏

adjacent i,j
CZijH

n |0⟩n (2.43)

where CZ is a controlled-Z gate from equation (2.14) and H is a Hadamard gate from

equation (2.11). This creates a line of n qubits each entangled with their two nearest

14



2.3. Entanglement and its measures

neighbours. They are equivalent to a Bell state for n = 2 and equivalent to a GHZ

state for n = 3.

Measures for the entanglement of a multipartite (n > 2) state are plentiful and varied.

An entanglement measure has to satisfy certain properties, such as not increasing on

average under local operations and classical communication (LOCC) [28]. In essence,

it must be true that [50, 51]

ε(ρ) ≥
M∑
m=1

pm ε(ρ(m)) (2.44)

where ε is an entanglement measure, ρ(m) is the outcome of a local measurement on ρ,

and pm the probability of the outcome ρ(m). This equality must be true for any value of

M . Prominent examples of multipartite entanglement measures include the n-tangle,

which characterises the n-way entanglement in a state [52, 53]. Therefore W states,

which have only 2-way entanglement, have an n-tangle of zero and GHZ states for

which all entanglement is n-way have an n-tangle of one. In terms of the concurrence

the n-tangle is defined as

τ12...n = c2
1(2...n) − (c2

12 + · · · + c2
1n). (2.45)

The two-qubit entanglement measure concurrence has been extended to the n-partite

generalised concurrence [43]. Label each qubit in the n-partite state with S = {1, 2, ..., n}.

Then let the concurrence of any bipartition M|M̄ (where M̄ is the complementary set

of M) of set S be defined as

EM =
√

2(1 − tr[ρ2
M]). (2.46)

The generalised concurrence of the n-partite state is then

E =
∑

M|M̄∈P

EM (2.47)

where P is the set of possible bipartitions in S. For example, a four-partite state has

general concurrence E = E1 + E2 + E3 + E4 + E1,2 + E1,3 + E1,4, which for a true W

state corresponds to E = 2
√

5 + 3.
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Additionally there is the ‘entropy of entanglement’ which is the von Neumann entropy

of a subsystem defined as [51]

SA (ρA) = −tr [ρA log(ρA)] (2.48)

where ρA = TrB [ρAB]. This measure is therefore related to the mixedness of a subsys-

tem A, and therefore the entanglement between A and B for pure states.

2.4 Experimental detection of entanglement

The most general method for experimentally determining entanglement is quantum

state tomography (QST). QST involves performing a large number of measurements

on an ensemble of identical quantum states, using the results to reconstruct the system’s

density matrix entry by entry [21, 54]. The entanglement of the system can then be

quantified using a given entanglement measure. For n qudits, standard QST requires

at least D2n (the number of basis states |y⟩⟨x|) measurements and as many copies of

the state [21], an exponential scaling in n which renders the method impractical for

large numbers of qubits. There are many improvements to this method, among them

Haeffner et al. [55] which characterises the entanglement of the trapped ion W state

qubits with 100 ·3n measurements and Cramer et al. [56] for which QST on a 1-D chain

of pure qudits requires a linear number of measurements with system size n.

An alternative method uses entanglement witnesses. An entanglement witness W is an

observable such that Tr (Wρs) ≥ 0 for all separable ρs and Tr (Wρe) < 0 for selected

entangled state ρe. It can be shown that for any pure state there exists a witness that

requires only 2n − 1 measurements, far fewer than the number needed for QST [21].

Nevertheless, as suggested by the definition, entanglement witnesses must be optimised

for the state considered and are therefore not a general method.
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2.5. The controlled SWAP test for state comparison

2.5 The controlled SWAP test for state comparison

The SWAP test is a widely used procedure for state comparison [57], first experimentally

demonstrated in [58]. The name derives from the controlled SWAP (c-SWAP) gate used

to perform the test, which has input systems A and B controlled on a control qubit C.

If the control qubit is in state |1⟩C , the c-SWAP gate swaps the states of systems A

and B, and if in state |0⟩C , states A and B are unchanged.

SWAP
A: |ψ⟩

B: |ϕ⟩

C: |0⟩ H H

Figure 2.1: One round of the controlled SWAP test for comparison of states |ψ⟩ and
|ϕ⟩. H is a Hadamard gate. The SWAP gate performs the operation |ψ⟩A |ϕ⟩B |1⟩C →
|ϕ⟩A |ψ⟩B |1⟩C .

Three states are prepared in the initial composite state |Ψ⟩ = |ψ⟩A |ϕ⟩B |0⟩C where |ψ⟩

and |ϕ⟩ are pure qubit states to be compared [57]. First, a Hadamard gate (equation

(2.11)) is applied to the control qubit. A c-SWAP gate is then performed on |ψ⟩A and

|ϕ⟩B controlled on C, followed by a second Hadamard gate applied to the control qubit,

giving the composite state [59]

|Ψ⟩ = 1
2[(|ψ⟩A |ϕ⟩B + |ϕ⟩A |ψ⟩B) |0⟩C

+(|ψ⟩A |ϕ⟩B − |ϕ⟩A |ψ⟩B) |1⟩C ]. (2.49)

This sequence of gates is shown in Figure 2.1. From the above expression it can be

seen that the probability of measuring state |1⟩ in the control is zero if the two states

|ψ⟩A and |ϕ⟩B are identical. A measurement of |1⟩C therefore proves the two states

are different, while multiple measurements of |0⟩C are required to achieve confidence of

equivalence. It can be shown that in general the probability of measuring |1⟩C is given

by

P (|1⟩C) = 1
2 − 1

2 | ⟨ψ|ϕ⟩ |2 (2.50)
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2.6. The controlled SWAP test for entanglement

giving a maximum probability of 1
2 for orthogonal states. Further, the overlap can be

calculated from estimating the probability from repeat measurements on an ensemble

of |ψ⟩A and |ϕ⟩B [57].

Note that if systems A and/or B are mixed, the test will have a non-zero probability

of measuring |1⟩C regardless of whether the inputs are equivalent, i.e., ρA = ρB. Non-

unity purity implies some uncertainty in the actual state, allowing the two copies to be

different up to the limit allowed by the mixedness.

2.6 The controlled SWAP test for entanglement

The controlled SWAP test for entanglement is a modified version of the controlled

SWAP test for state comparison. The following is the test as as proposed in [22].

Two-qubit pure input states ρ = |ψ⟩⟨ψ| and ρ′ = |ϕ⟩⟨ϕ| and a two-qubit control ancilla

are subject to two controlled SWAP tests in parallel such that the first qubits in |ψ⟩ and

|ϕ⟩, ρ1 ≡ Tr2(ρ) and ρ′
1 ≡ Tr2(ρ′) respectively, are compared using the c-SWAP test for

state comparison and the second qubits in |ψ⟩ and |ϕ⟩, ρ2 ≡ Tr1(ρ) and ρ′
2 =≡ Tr1(ρ′)

respectively, are also compared, using one control qubit each. This and the universal

gate breakdown are shown in Figure 2.2.

The input to each round of the test is therefore |Ψin⟩ = |ψ⟩A ⊗ |ϕ⟩B ⊗ |00⟩C where the

subscript C denotes the control qubits. The final composite state before measurement

is then: [22]

|Ψout⟩ = HC1HC2CSWAPC1A1B1CSWAPC2A2B2HC1HC2 |ψ⟩A |ϕ⟩B |00⟩C (2.51)

= 1
4
∑
ijrs

|ij⟩A |rs⟩B (AijBrs +AisBrj +ArjBis +ArsBij) |00⟩C

+(AijBrs −AisBrj +ArjBis −ArsBij) |01⟩C

+(AijBrs +AisBrj −ArjBis −ArsBij) |10⟩C

+(AijBrs −AisBrj −ArjBis +ArsBij) |11⟩C ] (2.52)
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SWAP
k = 1, 2

A: ρk

B: ρ′
k

C: |0⟩⟨0| H H

ρ1

ρ2

ρ′
1

ρ′
2

|0⟩⟨0| H H

|0⟩⟨0| H H

Figure 2.2: One round of the c-SWAP test for entanglement on two-qubit states ρ ≈ ρ′

where the one-qubit states ρ1 ≡ Tr2(ρ) and so on. The lower plot shows the gate
decomposition for the SWAP gate where the two-qubit gates represent CNOT gates
from Equation (2.12) and the three-qubit gates represent Toffoli gates from Equation
(2.13).

If the two input states are identical such that |ϕ⟩ = |ψ⟩ this reduces to

|Ψout⟩ =1
2
∑
ijrs

|ij⟩A |rs⟩B [(AijArs +AisArj) |00⟩C + (AijArs −AisArj) |11⟩C ] (2.53)

=1
2
∑
ijrs

|ij⟩A |rs⟩B (AijArs +AisArj) |00⟩C (2.54)

+ 1
2(|00⟩ |11⟩ − |01⟩ |10⟩ − |10⟩ |01⟩ + |11⟩ |00⟩)AB(A00A11 −A01A10) |11⟩C .

Recall the equation for concurrence from Equation (2.37), c2 = 2|A00A11 − A01A10|,

therefore:

⟨11|C |Ψout⟩ = 1
4(|00⟩ |11⟩ − |01⟩ |10⟩ − |10⟩ |01⟩ + |11⟩ |00⟩)AB c2. (2.55)

Given a resource of many copies of |ψ⟩, which we will refer to as the resource ensemble,

the test can be be repeated many times and the control state measured to estimate the

probability

P (|11⟩C) = 1
4c

2
2 (2.56)
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and therefore the concurrence of |ψ⟩ can be obtained.

The c-SWAP test for entanglement can be extended to pure or mixed n-party states,

the performance of which is the subject of this thesis. The test requires a resource

ensemble of 2M near copies of an n-party test state ρ and Mn control qubits. For

each round of the test m ∈ {1, 2, . . . ,M}, two states are selected from the resource

ensemble and denoted ρ and ρ′ respectively such that the intital composite state is

ρinitial = ρAρ
′
B |0⟩⟨0|⊗nC . The c-SWAP test for equivalence is applied to ρk ⊗ ρ′

k ⊗ |0⟩⟨0|

for each k ∈ {1, 2, . . . , n} in parallel such that

ρout = UρAρ
′
B |0⟩⟨0|⊗nC U † (2.57)

where U = ∏n
k=1HCk

CSWAPCkAkBk
HCk

which is shown in Figure 2.3. The control

state is then measured. After M rounds of the test the probability distribution of

the n-qubit control state is estimated. In this thesis the exact probability results are

obtained with P (|q⟩C) = ⟨q|C ρout |q⟩C for q ∈ {0, 1, . . . , D − 1}n.

SWAP
⊗n

A: ρk

B: ρ′
k

C: |0⟩⟨0| H H

Figure 2.3: One round m of the c-SWAP test for entanglement on state ρ. H is a
Hadamard gate from Equation (2.11) and the SWAP gate performs (ρk)A(ρ′

k)B →
(ρ′

k)A(ρk)B controlled on C.

2.7 Measurement statistics

Hoeffding’s inequality [60] states that an experimentally calculated value X̂ = 1
M

∑M
m=1Xm

where X1...XM are independent random variables such that 0 ≤ Xm ≤ 1, is ϵ-close to

X = limM→∞ X̂ with probability

P (|X̂ −X| < ϵ) ≥ 1 − δ (2.58)
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when the total number of measurements M is of the order

M = Θ
( ln(1/δ)

ϵ2

)
(2.59)

where Θ(g(δ, ϵ)) is the set bounded both above and below by g asymptotically.

Similarly let there be M measurements with outcomes X1...XM where X ∈ {0, 1} such

that the probability of measuring X = 1 K times is the binomial distribution

P ({X = 1} ⊗K) =

M
K

 pK(1 − p)M−K (2.60)

where p = P (X = 1). If p is unknown it can be estimated from X1...XM by the

Maximum Likelihood Estimation (MLE) with

p̂ = K

M
. (2.61)

The Clopper-Pearson confidence intervals provide bounds for the accuracy of p̂ with

upper and lower bounds pU and pL: [61]

K∑
j=0

M
K

 pjU (1 − pU )M−j = δ

2 (2.62)

M∑
j=K

M
j

 pjL(1 − pL)M−j = δ

2 (2.63)

with a confidence interval of 100(1 − δ)%, where

n
k

 = n!
k!(n−k)! is are the binomial

coefficients.

2.8 Neutral atom platform

Neutral atoms are a versatile experimental platform, supporting analogue and digital

operation [62] and combinations of atomic species [63]. It is the only quantum plat-

form with a programmable qubit layout [62, 64, 65], allowing for arbitrary 1-3D arrays

using holographic traps [65, 66], optical addressing [67], and atom shuttling [68]. The

21



2.8. Neutral atom platform

technique is highly scalable, with current hardware demonstrating <1000 qubits [69].

Neutral atoms exhibit all-to-all connectivity [70], with high-fidelity multi-qubit gate

operations using strong Rydberg atom interactions [67].

Recent experiments have realised a Toffoli gate with 87.0(4)% fidelity [71], program-

mable generation of entangled graph states such as cluster states [67], two-qubit en-

tangling gates with 99.5% fidelity on up to 60 atoms in parallel [70], controlling quantum

many-body scars [68], maximum independent set optimization [65], and non-destructive,

state-selective fluorescence detection, demonstrated with ≤5 qubits and 99% detection

fidelity [72].
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Chapter 3

The concentratable entanglement

for qubit states

In this chapter, I will investigate the entanglement measure ‘concentratable entan-

glement’ (CE) for multipartite qubit states and how it relates to the outputs of the

c-SWAP test for entanglement (from now on referred to as simply the c-SWAP test)

described in Section 2.6. This includes the pure state definition from Equation (3.1),

a mixed state extension, and a modified version taking into account variations in the

resource ensemble. Results for n = 2 and n = 3 were calculated analytically and results

where n > 3 were calculated numerically. The full probability results for pure states of

varying number of qubits n can be found in the Appendix.

Higher dimensional states will be similarly explored in Chapter 4. I have focused on

the suitability of CE as a measure able to be calculated from experimental results and

so I have also detailed the effect of input state errors on CE. Further sources of error

are considered in Chapter 5. All results are my own unless otherwise stated.

3.1 Identical pure states

In this section we consider the given ensemble of states to be identical pure n-qubit

states: therefore the input states are described by ρ = ρ′ = |ψ⟩ ⟨ψ|.
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Following the publication of Foulds et al. [73], the paper Beckey et al. [25] introduces

the family of entanglement measures ‘concentratable entanglements’ which extends

concurrence, and therefore the formalism of the c-SWAP test results, to n-qubit pure

states. For input state |ψ⟩, denote the set of labels for each qubit as S = {1, 2, ..., n}

with P(S) as its power set. For any set of qubit labels s ∈ P(S)\{∅}, the concentratable

entanglement (CE) is [25]

C|ψ⟩(s) = 1 − 1
2c(s)

∑
α∈P(s)

tr
[
ρ2
α

]
(3.1)

where c(s) is the cardinality (the number of elements) of the set s and ρα is the joint

reduced state of the subsystems labeled by the elements in α where tr
[
ρ2

∅

]
= 1.

Local purities tr[ρ2
α] (in any possible partition) cannot decrease, on average, under

local or separable operations [25]. Therefore pure state concentratable entanglement in

equation (3.1) is also non-increasing, on average, under LOCC, since LOCC operations

are a subset of separable operations. Therefore the requirement of equation (2.44) for

CE to be a valid entanglement measure is satisfied.

The concentratable entanglement is related to the outputs of the c-SWAP test as de-

scribed in Section 2.6 by

C|ψ⟩(s) = 1 − P (|0⟩C on all in s) (3.2)

= P (non-zero even no. of |1⟩C s on s). (3.3)

This is true for all pure n-qubit input states ρ = ρ′ = |ψ⟩ ⟨ψ|, the proof of which is as

follows [25]: The operation of the c-SWAP test UCSWAP is

UCSWAP |0n⟩C |ψ⟩ |ψ⟩ = HnCSWAPnHn |0n⟩C |ψ⟩ |ψ⟩ (3.4)

= 1
2n

n∏
k=1

1∑
z=0

|zk⟩C (Ik + (−1)zkSWAPk) |ψ⟩ |ψ⟩ (3.5)

where SWAP |k⟩ |k′⟩ = |k′⟩ |k⟩. Tracing out the test states we find

P (|z⟩C) = ⟨ψ| ⟨ψ| 1
2n

n∏
k=1

(Ik + (−1)zkSWAPk) |ψ⟩ |ψ⟩ (3.6)
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3.1. Identical pure states

where z = ∏n
k=1 zk. Therefore

1 − P (|0⟩C on all in s) = 1 −
∑

z∈Z0(s)
⟨ψ| ⟨ψ| 1

2n
n∏
k=1

(Ik + (−1)zkSWAPk) |ψ⟩ |ψ⟩

= 1 − 1
2c(s)

Tr
[
ρs ⊗ ρs

n∏
k=1

(Ik + SWAPk)
]

(3.7)

= 1 − 1
2c(s)

∑
α∈P(s)

tr
[
ρ2
α

]
(3.8)

= C|ψ⟩(s) (3.9)

as required, where Z0(s) is the set of all n bits with |0⟩C on all in s, and we have used

Tr[SWAP (ρ⊗ ρ)] ≡ Tr[ρ2].

Therefore any instance of an non-zero even no. of |1⟩C s, where even in any round m of

the c-SWAP test evidences entanglement, and the probability estimated over M rounds

gives the CE. Note that in this case P (odd no. of |1⟩C s) = 0. In the rest of this thesis,

‘even’ refers to ‘non-zero even’ numbers, such that P (|0⟩n) + P (odd no. of |1⟩C s) +

P (even no. of |1⟩C s) = 1. In Sections 3.1-3.4 we refer exclusively to the total CE,

Cρ(s = S), which we write as Cρ for easy of notation.

Any Bell state |ψ⟩ from Equation (2.29) gives C|ψ⟩ = 1
4 . This is therefore the upper

bound for pure two-qubit states. For a general two-qubit pure state |ψ⟩ = A00 |00⟩ +

A01 |01⟩ +A10 |10⟩ +A11 |11⟩:

C|ψ⟩ = P (|11⟩C) (3.10)

= (A00A11 −A01A10)2 (3.11)

= c2
2
4 (3.12)

where c2 is the concurrence from equation 2.36. Therefore the well established two-

qubit entanglement measure concurrence is recovered from two-qubit concentratable

entanglement.

A similarly general three-qubit state |ψ⟩ = ∑
ijk Aijk |ijk⟩ results in non-zero probab-
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3.1. Identical pure states

ilities

P (|011⟩C) = 1
2[2(A000A011 −A001A010)2 + 2(A100A111 −A101A110)2

+ (A000A111 −A001A110 −A010A101 +A011A100)2], (3.13)

P (|101⟩C) = 1
2[2(A000A101 −A001A100)2 + 2(A010A111 −A011A110)2

+ (A000A111 −A001A110 +A010A101 −A011A100)2], (3.14)

P (|110⟩C) = 1
2[2(A000A110 −A010A100)2 + 2(A001A111 −A011A101)2

+ (A000A111 +A001A110 −A010A101 −A011A100)2], (3.15)

P (|000⟩C) = 1 − P (|011⟩C) − P (|101⟩C) − P (|110⟩C) (3.16)

From this CE of |ψ⟩ can be calculated as C|ψ⟩ = P (|011⟩C) + P (|101⟩C) + P (|110⟩C).

Further, which qubits are entangled with one another can be identified. In the partially

separable case |ψ⟩ = (α0 |0⟩+α1 |1⟩)1 ⊗(A00 |00⟩+A01 |01⟩+A10 |10⟩+A11 |11⟩)23 these

probabilities become

P (|011⟩C) = (A00A11 −A01A10)2 (3.17)

= c2
2
4 (3.18)

P (|101⟩C) = 0, (3.19)

P (|110⟩C) = 0, (3.20)

P (|000⟩C) = 1 − P (|011⟩C) (3.21)

where c2 is the concurrence of qubits 2 and 3. If the separable qubit was instead qubits

2 or 3, then the non-zero probability becomes P (|101⟩C) and P (|110⟩C) respectively.

We can see therefore that P (|1j1k⟩C) is non-zero iff qubits j and k are entangled, and

so it follows that a non-zero P (|1j1k⟩C) evidences entanglement between qubits j and

k.

Three-qubit states have two distinct ways of being entangled, GHZ state entanglement

and W state entanglement [47]. These are the classes of states I will focus on.

A maximally entangled n-qubit true GHZ state |GHZn⟩ = 1√
2(|0⟩n + |1⟩n) has CE

C|GHZ⟩ = 1
2 − 1

2n , whereas a true W state |Wn⟩ = 1√
n

∑
k |0...1k...0⟩ has CE C|W⟩ = 1

2 − 1
2n .
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3.1. Identical pure states

Both are shown in Figure 3.1 for comparison. The CE of each tends to 1
2 as n increases,

however for all n > 2, C|GHZ⟩ > C|W⟩.

2 3 4 5 6 7 8
n

0.25

0.30

0.35

0.40

0.45

0.50

C |
ψ
>

|ψ>
|Wn >

|GHZn >

Figure 3.1: The CE of true GHZ and W states for various numbers of qubits n.

For n-qubit W-like states which are defined by |ψ⟩ = |Wn⟩ = ∑n
i=1 ai |0...1i...0⟩, the

non-zero probabilities given by the c-SWAP test are

P (|0⟩nC) =
n∑
i=1

a4
i +

n∑
j>i

a2
i a

2
j

 (3.22)

P (|0...1i...1j ...0⟩C) = a2
i a

2
j (3.23)

and therefore its CE is

C|Wn⟩ = P (exactly two |1⟩C s) (3.24)

=
n∑
i

n∑
j>i

a2
i a

2
j (3.25)

=
∑

all pairs
C|W2⟩ (3.26)

Provided each ai and aj are both non-zero, entanglement is present between every pair.

However, strings with greater than two |1⟩Cs have a probability of zero; therefore in the

W state case, no more than one pair of qubits are evidenced as entangled simultaneously

(i.e. during one round m). This is equivalent to the fact that W states have an n-tangle

of zero.
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3.1. Identical pure states

Alternatively, n-qubit GHZ-like states defined as |ψ⟩ = |GHZn⟩ = α0 |0⟩n+α1 |1⟩n give:

P (|0⟩nC) = α4
0 + α4

1 + 4
2nα

2
0α

2
1 (3.27)

P (each string with even no. |1⟩C s) = 4
2nα

2
0α

2
1 (3.28)

This tells us that there is entanglement between any given pair of qubits in the input

state, so long as both amplitudes are non-zero. Further, GHZ states with n ≥ 4 result

in a non-zero probability of measuring even numbers of |1⟩Cs greater than two, meaning

that more than two qubits can be identified as entangled simultaneously.

Note that the c-SWAP test cannot identify odd-way entanglement during one round

m, therefore odd-way entanglement is not explicitly represented in the total CE.

The CEs of GHZ states are

C|GHZn⟩ = P (even no. |1⟩C s) (3.29)

=
(
2n−1 − 1

) 4
2nα

2
0α

2
1 (3.30)

= 2n+1 − 4
2n α2

0α
2
1 (3.31)

shown in Figure 3.2. Compare this with its n-tangle calculated equation (2.45), τ(|GHZn⟩) =

4α2
0α

2
1, which has the same form, but a coefficient independent of n [52]. Further con-

sider generalised concurrence (Equation 2.47) of the same states, E|GHZn⟩ = (2n −

2)α0α1; therefore for GHZ-like states

C|GHZn⟩ =
2E|GHZn⟩

2

2n(2n − 2) . (3.32)

Note that if these values are treated as fractions of ‘maximal’ entanglement they relate

more straight-fowardly with[
E|GHZn⟩

max(E|GHZn⟩)

]2

=
C|GHZn⟩

max(C|GHZn⟩)
. (3.33)

This relation suggests that the lack of odd-way entanglement directly represented in

the total CE does not result in an underestimation of the degree of entanglement in

GHZ states, as the n-tangle explicitly includes odd-way entanglement.
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3.1. Identical pure states
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Figure 3.2: The CE of GHZ-like states |GHZn⟩ = α0 |0⟩n +
√

1 − α2
0 |1⟩n for various

numbers of qubits n.

The above formalism tells us more about the structure of GHZ and W states respect-

ively. For W states, the total CE is merely the sum of the CE of each possible pair in

the state. However, the CE of GHZ-like states is that of each possible pair and any

possible pairs of pairs. While W state entanglement can be thought of as a connected

graph, GHZ state entanglement is a more like a single vertex of size n (see Figure 3.3).

(a) W state (b) GHZ state (c) Line cluster state

Figure 3.3: Pictographic representations of a four-partite system entangled in differ-
ent ways. The dots represent a single partite states and the circles/ellipses represent
entanglement between the states within them. If each of these entangled states are max-
imally entangled with respect to their entanglement class, then the CEs are C|W⟩ = 3

8 ,
C|GHZ⟩ = 7

16 , C|Line⟩ = 1
2 .

The above states are n-entangled, as in all qubits are entangled with all other qubits.
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3.1. Identical pure states

Consider instead a partially separable four-qubit state

|ψ⟩ = |χ4⟩ = (cos θ |00⟩ + sin θ |11⟩)12 ⊗ (cosϕ |00⟩ + sinϕ |11⟩)34 . (3.34)

which has the c-SWAP results

P (|0000⟩C) = (1 − 1
4 sin2(2θ))(1 − 1

4 sin2(2ϕ)) (3.35)

P (|0011⟩C) = 1
4 sin2(2ϕ)(1 − 1

4 sin2(2θ)) (3.36)

P (|1100⟩C) = 1
4 sin2(2θ)(1 − 1

4 sin2(2ϕ)) (3.37)

P (|1111⟩C) = 1
16 sin2(2θ) sin2(2ϕ). (3.38)

It is straightforward to see that there is no entanglement between qubits 1 and 2, and

between qubits 3 and 4, since P (|0101⟩C) = P (|0110⟩C) = P (|1001⟩C) = P (|1010⟩C) =

0. However, as long as each pair is entangled, P (1111) is non-zero; therefore even

numbers of |1⟩Cs greater than two do not necessarily evidence GHZ-like entanglement.

n qubit GHZ-like states are n-entangled, evidenced by P (|. . . k . . . k′ . . . ⟩c) > 0 for all

k ∈ S and k′ ∈ S where k ̸= k′ and S = {1, 2, ..., n}.

A final class to consider are line cluster states, as they demonstrate that C|ψ⟩ = 1
2 is

not a global maximum. If |ψ⟩ = |Ln⟩ from Equation (2.43) then

C|ψ⟩ = 1 − 1
2nFibn+2

∏
i,j

(3.39)

where Fib is the Fibonarchi series, calculated by Jacob Beckey [27]. This suggests that

unity is the upper bound of CE. For n > 3 the CE of n-qubit line cluster states is

greater than that of n-qubit GHZ states. We currently do not have intuition on why

the CE of line states is so much greater and leave this to further work.

The next investigation is the robustness of pure state CE to variations in the in-

puts states. I first look at maximally entangled states with their amplitudes off-

set. Consider a GHZ-like state with the variable δ to parameterise its amplitudes:

|ψ(δ)⟩ = sin
(
π
4 + δ

)
|0⟩n + cos

(
π
4 + δ

)
|1⟩n, therefore |ψ(δ = 0)⟩ is a true n-qubit GHZ

state and
∣∣ψ(δ = π

4 )
〉

is a product state. This state’s fidelity with a true GHZ state is
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3.1. Identical pure states

F = | ⟨ψ(δ = 0)| |ψ(δ)⟩ |2 = cos2 δ. The CE of |ψ(δ)⟩ is

C|ψ(δ)⟩ =
(1

2 − 1
2n
)

cos2(2δ) (3.40)

= 1
2 − 1

2n − 4
(1

2 − 1
2n
)
F (1 − F ) (3.41)

This is simply a reparameterisation of Equation (3.29) and Figure 3.2. Denote the

effect of δ on the CE as ∆ = C|ψ(δ)⟩ −C|ψ(δ=0)⟩. Let δ be small such that the small angle

approximation is valid. In this case, ∆ = ( 4
2n − 2)δ2.

Similarly for the W case, let

|ψ(δ)⟩ =
√

1
n

cos δ |00...01⟩ +
√

1
n− 1 − 1

n(n− 1) cos2 δ
n∑
j=2

|0...1j ...0⟩ (3.42)

such that |ψ(δ = 0)⟩ is a true n-qubit W state and
∣∣ψ(δ = π

2 )
〉

is a true (n − 1)-qubit

W state. Therefore

C|ψ(δ)⟩ = 1
2 − 1

2n − 1
2n2(n− 1) sin2 δ (4(n− 1) + (n− 2) sin2 δ) (3.43)

in Figure 3.4. When δ is small, F = | ⟨ψ(δ = 0)| |ψ(δ)⟩ |2 = 1 − δ2/n, and therefore

∆ = 2
n2 δ

2 = 2
n(1 − F ). Like the GHZ case, an amplitude offset gives a second order

error, meaning that a small error in the input state gives an even smaller error in the

CE.

A second error to consider is an additional non-zero amplitude. Let |ψ(δ)⟩ = cos δ |GHZn⟩+

sin δ |0...1⟩ with fidelity F = | ⟨ψ(δ = 0)| |ψ(δ)⟩ |2 = cos2 δ:

C|ψ(δ)⟩ = 1
2 − 1

2n − sin2 δ

( 2
2n +

(1
2 − 3

2n
)

sin2 δ

)
(3.44)

= 1
2 − 1

2n − (1 − F )
(1

2 − 1
2n −

(1
2 − 3

2n
)
F

)
(3.45)

shown in Figure 3.5. For small δ, ∆ = − 2
2n δ2. Similarly if |ψ⟩ = cos δ |Wn⟩ + sin δ |0⟩n,

F = | ⟨ψ(δ = 0)| |ψ(δ)⟩ |2 = n cos2 δ, and

C|ψ(δ)⟩ = 1
2 − 1

2n − n− 1
2n sin2 δ (2 − sin2 δ) (3.46)

= 1
2 − 1

2n − n− 1
2n

(
1 − F 2

n2

)
(3.47)

31
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Figure 3.4: The CE of a W-like state equation (3.42) for various numbers of qubits n.
δ denotes difference from a true W state such that fidelity F ≈ 1 − δ2/n.
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Figure 3.5: The CE of a GHZ state with error proportional to δ such that |ψ(δ)⟩ =
cos δ |GHZn⟩ + sin δ |0...1⟩ for various number of qubits n.

shown in Figure 3.6. For small δ, ∆ = (1 − 1
n)δ2. The W state case has a much sharper

peak and a quicker drop-off than the GHZ state case, suggesting that the GHZ state

case is more robust to this kind of error.

The continuation of the second order error for amplitude errors in both GHZ and W
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3.2. Identical mixed states
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Figure 3.6: The CE of a W state with error proportional to δ such that |ψ⟩ =
cos δ |Wn⟩ + sin δ |0⟩n for various number of qubits n.

states suggests that this is true for all input state amplitude errors. This suggest that

errors, even ones present prior to gates being applied, are squared by the calculation of

the CE. This can be seen as a positive of a negative: the relative error on the estimation

of the CE will be reduced but any errors in the test state will be obscured.

3.2 Identical mixed states

Now that the pure state case has been characterised, I now move on to mixed states,

starting with an identical ensemble such that ρ = ρ′.

Total concentratable entanglement (CE) as defined in [25] is

C = 1 − 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]
(3.48)

= 1 − P (|0⟩nC) (3.49)

which in the case of a mixed ρ equals

C = P (even no. of |1⟩C s) + P (odd no. of |1⟩C s). (3.50)
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3.2. Identical mixed states

To investigate how this value behaves when the input state is mixed, consider the 2-

qubit Werner state ρ = ρ′ = (1−p) |ψ2⟩ ⟨ψ2|+p I4
4 where |ψ2⟩ = α |00⟩+β |11⟩. Therefore

ρ has purity γ = 1 − 3
4p(2 − p) and the resulting probabilities from the c-SWAP test I

have calculated are

P (|00⟩C) = 1 − α2β2 −
( 7

16 − α2β2
)
p(2 − p) (3.51)

= 1
3

(5
4 + α2β2

)
+ 4

3

( 7
16 − α2β2

)
γ (3.52)

P (|01⟩C) = P (|01⟩C) = 3
16p(2 − p) (3.53)

= 1
4(1 − γ) (3.54)

P (|11⟩C) = α2β2 −
(
α2β2 − 1

16

)
p(2 − p) (3.55)

= 1
3

(1
4 − α2β2

)
+ 4

3

(
α2β2 − 1

16

)
γ. (3.56)

It can be seen therefore that as p increases and the purity of ρ decreases,

P (|even no. of s⟩C) increases, and that a non-zero P (|even no. of 1s⟩C) evidences non-

unity purity. Further, as p increases/γ decreases, P (|00⟩C) decreases, and so it follows

that 1 − P (|00⟩C) increases. However, an ideal entanglement measure would correlate

with the level of useful entanglement associated with ρ, and so we would expect said

measure to decrease with decreased purity. Note that P (even no. of |1⟩C s) itself fulfills

this requirement.

We obtain a lower bound on concentratable entanglement for mixed states by combining

the mixed state extension for the 2-qubit concurrence in Equation 2.38 with the fact

that the pure state CE can be written as a sum over all pairs in S:

C|ψ⟩ = 1
2n+1

∑
α

c2
α(|ψ⟩) (3.57)

which gives

Clρ = 1
2n +

(
1 − 1

2n
)

tr
[
ρ2
]

− 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]
(3.58)

which I have calculated to equal

Clρ = P (even no. of |1⟩C s) −
(

1 − 2
2n
)
P (odd no. of |1⟩C s). (3.59)
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3.2. Identical mixed states

I will now explore this value, the original CE value 1 − P (|0⟩nC), and the even and odd

probabilties to attempt to construct bounds for the mixed state case.

An n-qubit maximally mixed state ρ = ρ′ = I2n

2n gives results

P (|odd no. of 1s⟩C) = 1
2 − 1

2n+1 (3.60)

P (|even no. of 1s⟩C) = 4n + 2n − 2 · 3n
22n+1 (3.61)

1 − P (|0⟩nC) = 1 − 3n
22n (3.62)

Clρ = −1 − 2n+1 + 3n
22n . (3.63)

shown in Figure 3.7. A negative CE we take to be zero. We would expect an en-

tanglement measure to give zero for a maximally mixed state; zero is bounded by

P (|even no. of 1s⟩C) and Clρ.
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Figure 3.7: Probability results for a maximally mixed state of n qubits. The red
line is 1 − P (|0⟩nC), the blue circles are P (|odd no. of 1s⟩C), the green dots represent
P (|even no. of 1s⟩C), and the yellow crosses are Clρ.

The relevant expressions (with regards to entanglement) for the above state ρ = ρ′ =
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3.2. Identical mixed states

(1 − p) |ψ2⟩ ⟨ψ2| + p I4
4 , |ψ2⟩ = α |00⟩ + β |11⟩, therefore are

1 − P (|00⟩C) = α2β2 + 1
16
(
7 − α2β2

)
p(2 − p) (3.64)

P (|11⟩C) = α2β2 −
(
α2β2 − 1

16

)
p(2 − p) (3.65)

Clρ = α2β2 −
(
α2β2 + 1

8

)
p(2 − p) (3.66)

C|ψ2⟩ = α2β2 (3.67)

shown in Figure 3.8. The last expression would be an obvious candidate for an upper

bound for Cρ but, at least for all examples found in this thesis and related papers, is

not calculable from c-SWAP test results.

We now have a conundrum: P (|even no. of 1s⟩C) feels like a good candidate for the

upper bound of (c)ρ since it is > 0 for a maximally mixed state. However, for

P (|even no. of 1s⟩C)(p) ≤ P (|even no. of 1s⟩C)(p = 0), where the right hand side is

a natural upper bound. We cannot know for certain whether P (|even no. of 1s⟩C)(p)

is a faithful entanglement measure for mixed states.

However, the value 1 − P (|0⟩nC)(p) ≥ 1 − P (|0⟩nC)(p = 0) for all p, and therefore we

can be assured that this is strict upper bound, even though it is not a very tight one.

Therefore let

Cuρ = P (even no. of |1⟩C s) + P (odd no. of |1⟩C s) (3.68)

Clρ = P (even no. of |1⟩C s) −
(

1 − 2
2n
)
P (odd no. of |1⟩C s) (3.69)

with P (even no. of |1⟩C s) as a good estimator for ρ, which may be useful for states

that result in a large range Cuρ − Clρ.

Now I investigate these values for various n-qubit mixed states.

Let ρ = ρ′ = (1 − p) |ψn⟩ ⟨ψn| + p IN
N where |ψn⟩ = α |0⟩n + β |1⟩n is a GHZ-like state.
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Figure 3.8: Probability results for input state ρ = ρ′ = (1 − p) |ψ2⟩ ⟨ψ2| + p I4
4 where

|ψ2⟩ = α |00⟩+β |11⟩. Unbroken lines represent 1−P (|0⟩nC), dotted lines P (even |1⟩C s),
and dashed lines Clρ.

The purity of ρ is γ = 1 − 2n−1
2n p(2 − p). This state results in

P (odd no. |1⟩C s) = 2n − 1
2n+1 p(2 − p) (3.70)

P (even no. |1⟩C s) = 2(2n − 2)
2n

[
α2β2 −

(
α2β2 − 4n + 2n − 2 · 3n

2n+2(2n − 2)

)
p(2 − p)

]
(3.71)

Cuρ = 2(2n − 2)
2n

[
α2β2 +

( 16n − 2 · 3n
2n+2(2n − 2) − α2β2

)
p(2 − p)

]
(3.72)

Clρ = 2(2n − 2)
2n

[
α2β2 −

(2n(2 · 3n + 4 − 5 · 2n)
2(2n − 2)(2n − 1) + α2β2

)
p(2 − p)

]
(3.73)

shown in Figure 3.9 for α = 1√
2 . Similarly construct a mixed W state ρ = ρ′ =

(1 − p) |Wn⟩ ⟨Wn| + p IN
N , where |Wn⟩ = ∑n

k=1 |0...1k...0⟩. Therefore the purity of ρ is

γ = 1 − 2n−1
2n p(2 − p), giving:

P (odd no. |1⟩C s) = 2n − 1
2n+1 p(2 − p) (3.74)

P (even no. |1⟩C s) = 1
2 − 1

2n −
(2n − 1

2n+1 − 1
2 − 1

2n +
(3

4

)n)
p(2 − p) (3.75)

Cuρ = 1
2 − 1

2n +
(1

2 + 1
2n −

(3
4

)n)
p(2 − p) (3.76)

Clρ = 1
2 − 1

2n −
(

(2n − 1)2

22n − 1
2 − 1

2n +
(3

4

)n)
p(2 − p) (3.77)
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3.2. Identical mixed states

shown in Figure 3.10. Although for p ≈ 0, CρW < CρGHZ , for large p the two are

practically identical.
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Figure 3.9: Probability results for input state ρ = ρ′ = (1 − p) |ψn⟩ ⟨ψn| + p IN
N

where |ψn⟩ = 1√
2(|0⟩n + |1⟩n). Unbroken lines represent 1 − P (|0⟩nC), dotted lines

P (even |1⟩C s), and dashed lines Clρ.
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Figure 3.10: Probability results for input state ρ = ρ′ = (1 − p) |Wn⟩ ⟨Wn| + p IN
N ,

where |Wn⟩ = ∑n
k=1 |0...1k...0⟩. Unbroken lines represent 1 − P (|0⟩nC), dotted lines

P (even |1⟩C s), and dashed lines Clρ.

As with the errors/variations explored in Chapter 3, all examples have second order
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3.3. Non-identical pure states

error: any p gives p2 − 2p scaled error/effect in the results. Further, mixedness is

evidenced with non-zero P (odd no. |1⟩C s) which also scales quadratically with p. For all

the Werner states described above, purity γ = 1− 2n−1
2n p(2−p) and P (odd no. |1⟩C s) =

2n−1
2n+1 p(2−p) = 1

2(1−γ). For all input states ρ′ = ρ in fact, P (odd no. |1⟩C s) = 1
2(1−γ).

In conclusion, we have defined upper and lower bounds of CE for the identical mixed

state case. However, these bounds, although strict, are not tight and for low purities

have a large range. However, the value P ((even no. of |1⟩C s) behaves as expected for

a entanglement measure and so can be regarded as a rough estimate of the CE.

3.3 Non-identical pure states

Now we consider the case where the twin input states ρ and ρ′ are not identical. This

is expected in an ensemble which we denote ρM = {ρ(m) : m ∈ 1, 2, . . . ,M}. I model

this with M copies of state ρ and M copies of states ρ′ such that each round of the

experiment has one input ρ and its twin input ρ′, i.e. ρMmodel = {ρ, ρ′}M . This therefore

models an ensemble with variations around ρ and ρ′ – let U(ρ(k)) = U(ρ)+δk, therefore
1
M

∑M
k=1 U(ρ(k)) ≈ U(ρ) if 1

M

∑M
k=1 δk ≈ 0.

First we stick to pure states, therefore for this section let ρ = |ψ⟩ ⟨ψ| and ρ′ = |ϕ⟩ ⟨ϕ|.

If |ψ⟩ = |GHZn⟩ and

|ϕ⟩ = sin
(
π

4 + δ

)
|0⟩n + cos

(
π

4 + δ

)
|1⟩n , (3.78)

then the fidelity of the two is F = | ⟨ψ|ϕ⟩ |2 = cos2 δ. The c-SWAP test probability

results are then

P (|odd no. of 1s⟩C) = 1
2(1 − F ), (3.79)

P (|even no. of 1s⟩C) = 1
2 − 1

2n −
(1

2 − 1
2n
)

(1 − F ). (3.80)

Despite the input state being pure, if the fidelity is non-unity then P (|odd no. of 1s⟩C)

is non-zero. Therefore a measurement of |odd no. of 1s⟩C evidences either a mixed

input state and/or non-identical states in the ensemble.
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3.3. Non-identical pure states

Therefore, I define the CE upper and lower bounds as:

Cu|ψ⟩,|ϕ⟩ = P (even no. of |1⟩C s) + P (odd no. of |1⟩C s) (3.81)

Cl|ψ⟩,|ϕ⟩ = P (even no. of |1⟩C s) −
(

1 − 2
2n
)
P (odd no. of |1⟩C s) (3.82)

from the definitions in section 3.2. These are the (calculable) upper and lower bounds

for the identical mixed state case and therefore are not rigorously derived bounds for

the non-identical case. However, these expressions only require measurable probabilities

from the CE test and so we will investigate their relevance to the non-identical case.

The following are my own results.

If the two input states are different GHZ-like state such that

|ψ⟩ = sin
(
π

4 + θ

)
|0⟩n + cos

(
π

4 + θ

)
|1⟩n (3.83)

and |ϕ⟩ = sin
(
π

4 + θ + δ

)
|0⟩n + cos

(
π

4 + θ + δ

)
|1⟩n (3.84)

then F = cos2 δ and

P (|odd no. of 1s⟩C) = 1
2 sin2(δ), (3.85)

= 1
2(1 − F ) (3.86)

P (|even no. of 1s⟩C) = 1
2 − 1

2n −
(1

2 + 1
2n
)

sin2(2θ + δ), (3.87)

= 1
2 − 1

2n −
(1

2 + 1
2n
)(√

F sin(2θ) +
√

1 − F cos(2θ)
)2
, (3.88)

Cu|ψ⟩,|ϕ⟩ = 1
2 − 1

2n −
(1

2 + 1
2n
)

sin2(2θ + δ) + 1
2 sin2 δ, (3.89)

Cl|ψ⟩,|ϕ⟩ = 1
2 − 1

2n −
(1

2 + 1
2n
)

sin2(2θ + δ) −
(1

2 − 1
2n
)

sin2 δ. (3.90)

Shown in Figure 3.11. For small δ, ∆odd = 1
2δ

2, ∆even = (1
2 − 1

2n )δ2. Similarly for W

states, if |ψ⟩ = |Wn⟩ = 1√
n

∑
|0...1k...0⟩ and

|ϕ⟩ =
√

1
n

cos δ |00...01⟩ +
√

1
n− 1 − 1

n(n− 1) cos2 δ
n∑
j=2

|0...1j ...0⟩ (3.91)
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3.3. Non-identical pure states

then F = 1
n2

(
cos δ +

√
n− 1

√
n− cos2 δ

)2
and

P (|exactly one 1s⟩C) = 1
2(1 − F ) (3.92)

P (|exactly two 1s⟩C) = 1
2 − 1

2n − 1
4(1 − F ) (3.93)

Cu|ψ⟩,|ϕ⟩ = 1
2 − 1

2n + 1
4(1 − F ) (3.94)

Cl|ψ⟩,|ϕ⟩ = 1
2 − 1

2n −
(3

4 − 1
2n
)

(1 − F ) (3.95)

shown in Figure 3.12. For small δ, 1 − F = 1
4(n−1)δ

4.The coefficients of 1 − F for

P (|even no. of 1s⟩C) and Cu|ψ⟩,|ϕ⟩ are n-independent, which is not true of the GHZ-like

case. Therefore GHZ-like states are more robust to this kind of error than W-like states.
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Figure 3.11: Probability results for two different GHZ-like input state in terms of fidelity
F . The continuous line is Cuρ = 1 − P (|0⟩⊗n

C ), the dotted line P (even |1⟩C s), and the
dashed line Clρ.

The c-SWAP test results in terms of fidelity when purity is one is of the same form in

terms of purity when fidelity is one, with P (odd no. |1⟩C s) = 1
2(1 − F )

and P (odd no. |1⟩C s) = 1
2(1 − γ) respectively. In the next section, I look at how

mixedness and non-unity fidelity combine.
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3.4. Non-identical mixed states
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Figure 3.12: Probability results for two different W-like input state in terms of fidelity
F . The continuous line is Cuρ = 1 − P (|0⟩⊗n

C ), the dotted line P (even |1⟩C s), and the
dashed line Clρ.

3.4 Non-identical mixed states

We combine the previous two sections to now consider non-identical mixed states, the

experimental reality undoubtedly. We assume the twin input states are similar, and

model this with commuting density matrices.

Let the two input states be two different mixed GHZ-like states such that ρ = (1 −

p) |GHZn⟩ ⟨GHZn|+p I2n

2n and ρ′ = (1−q) |GHZn⟩ ⟨GHZn|+q I2n

2n . Using the definitions

in Section 3.2, these states give results:

P (odd no. |1⟩C s) = 2n − 1
2n+1 (p+ q − pq) (3.96)

P (even no. |1⟩C s) = 1
2 − 1

2n −
[(3

4

)n
− 3

2n+1

]
(p+ q − pq) (3.97)

Cuρ,ρ′ = 1
2 − 1

2n +
[

1
2 + 1

2n −
(3

4

)n ]
(p+ q − pq) (3.98)

Clρ,ρ′ = 1
2 − 1

2n −
[

1
2 + 1

4n − 3
2n +

(3
4

)n ]
(p+ q − pq) (3.99)

where the purity of ρ is γ = 1− 2n−1
2n p(2−p) and the purity of ρ′ is γ′ = 1− 2n−1

2n q(2−q),
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3.4. Non-identical mixed states

and the fidelity of the two is F = [tr
√
ρρ′]2 = (

√
1 − p

√
1 − q + √

pq)2. The n = 2 case

is shown in Figure 3.13. As expected, the range Cuρ,ρ′ − Clρ,ρ′ increases with p, q, and

|p− q|.
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Figure 3.13: Probability results for two different GHZ-like mixed input states in terms of
Werner parameters p and q respectively. The continuous line is Cuρ = Cρ = 1−P (|0⟩⊗n

C ),
the dotted line P (even |1⟩C s), and the dashed line Clρ.

In terms of purities, the p- and q-dependant expression is

p+ q − pq ≡ 1
2[p(2 − q) + q(2 − p)] (3.100)

= 2n
2n − 1

(
1 − 1

2(γ + γ′)
)

− 1
2(p− q)2 (3.101)

i.e. the mean of the two purities minus some ideally small value. Therefore

P (odd no. |1⟩C s) = 1
2

(
1 − 1

2(γ + γ′)
)

− 1
4

2n − 1
2n (p− q)2 (3.102)

which is reminiscent of the identical mixed state case P (odd no. |1⟩C s) = 1
2(1 − γ).

Let us assume that p and q are close, such that δ = |p − q|. Therefore p + q − pq =

p(2 − p) ∓ (1 − p)δ and

P (odd no. |1⟩C s) = 1
2(1 − γ) ∓ 1

2
2n − 1

2n (1 − p)δ. (3.103)

Let us then define an estimated value of the purity of the input state as

γestimated = 1 − 2P (odd no. |1⟩C s) (3.104)
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3.5. Sub-system concentratable entanglement

which in the above case is

γestimated = γ ± 2n − 1
2n (1 − p)δ (3.105)

= γ′ ± 2n − 1
2n (1 − q)δ (3.106)

overestimating/underestimating γ and γ′ by a value proportional to δ = |p − q|. I

conjecture that this is true for W-like states as well due to the equivalence of equation

(3.70) and equation (3.70).

In conclusion, mixed non-identical input states – the norm for experimental setups –

are signified by non-zero P (odd no. |1⟩C s). The purity of the input states can be

estimated with γestimated = 1 − 2P (odd no. |1⟩C s) which is ϵ ≈ (1 − p)|p− q| close to

the actual purity γ. The more mixed and the less identical the input states the greater

the range Cuρ,ρ′ − Clρ,ρ′ , which is proportional to X = 2n

2n−1

(
1 − 1

2(γ + γ′)
)

− 1
2(p −

q)2. P (even no. |1⟩C s) is a good estimate of Cρ,ρ′ as it decreases from the maximally

entangled value proportional to X.

3.5 Sub-system concentratable entanglement

A further investigation of entanglement structure can be made with sub-system con-

centratable entanglement, defined in [25]. For any subset s ∈ S where S = {1, 2, ..., n}

is the set of labels for each qubit in |ψ⟩, the sub-system CE is

C|ψ⟩(s) = 1 − 1
2|s|

∑
α∈P(s)

tr
[
ρ2
α

]
(3.107)

= 1 − P (|0⟩ on all in s) (3.108)

defined as ‘the average of the entanglement between the subsets of qubits with labels

in s and the rest of the system’. This can of course be calculated from a complete n-

qubit control c-SWAP test applied to the full state or an |s|-qubit control c-SWAP test

applied to just the qubits in s. Note that that when |ψ⟩ = |ϕ⟩, 1 −P (|0⟩ on all in s) =

P (|1⟩C on at least one in s), and that the CE used in previous chapters is more spe-

cifically the total concentratable entanglement Cρ(S). The following are my own results.
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3.5. Sub-system concentratable entanglement

W-like input states, |Wn⟩ = ∑
ak |0...1k...0⟩, have sub-system CEs:

C|Wn⟩(s) =
∑
i∈s

a2
i

 ∑
(j>i)∈s

a2
j +

∑
k∈S\s

a2
k

 (3.109)

= C|W|s|⟩(s) +
∑
i∈s

∑
k∈S\s

C|W2⟩({i, k}) (3.110)

which is the total CE of the qubits in s on their own, plus the bipartite entanglement

between each qubit in s and each qubit not in s.

Compare this with GHZ-like input states |GHZn⟩ = α |0⟩n + β |1⟩n. Any s with car-

dinality |s| < n− 1 has CE

C|GHZn⟩(s) = 2|s|+1 − 1
2|s| α2

0α
2
1 (3.111)

= C|GHZ|s|⟩(s) (3.112)

and when |s| = n − 1, C|GHZn⟩(s) = C|GHZn⟩(S). Since GHZ states have equally dis-

tributed entanglement among each qubit, the CE is not dependant on which qubits

are included in the set s. This also means that the CE of a subset with cardinality

|s| = m is equivalent to the total CE of an m-qubit GHZ-like state. Imagining again

that GHZ-like entanglement is a single vertex of size n, an m sized cutout of an n sized

circle is indistinguishable from an m sized circle.

If the qubit set being subject to the entanglement test is part of a larger entangled

state, however, this will be reflected in the probabilities P (odd no. |1⟩C s), since the

sub-state will be mixed.

These GHZ-like and W-like states (in general) are n-entangled, as in all qubits are

entangled with all other qubits. Consider instead a partially separable four-qubit state

|ψ⟩ = |χ4⟩ = (cos θ |00⟩ + sin θ |11⟩)12 ⊗ (cosϕ |00⟩ + sinϕ |11⟩)34 . (3.113)
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3.5. Sub-system concentratable entanglement

with CEs

C|χ4⟩({1, 2}) = 1
4 sin2(2θ) (3.114)

= C|χ4⟩({1}) = C|χ4⟩({2}) (3.115)

C|χ4⟩({3, 4}) = 1
4 sin2(2ϕ) (3.116)

= C|χ4⟩({3}) = C|χ4⟩({4}) (3.117)

C|χ4⟩(all other s) = 1
4

(
sin2(2θ) + sin2(2ϕ) − 1

4 sin2(2θ) sin2(2ϕ)
)

(3.118)

= C|χ4⟩({1, 2}) + C|χ4⟩({3, 4}) − C|χ4⟩({1, 2})C|χ4⟩({3, 4}). (3.119)

Firstly, we have the result C|ψ⟩(S = s1 ∪ s2) = C|ψ⟩(s1) + C|ψ⟩(s2) − C|ψ⟩(s1)C|ψ⟩(s2),

exemplifying the sub-additivity of CE (see [25]). Secondly, it is not simple to see that

this state is partially seperable, from these results, as C|χ4⟩({1, 3}) ̸= 0 etc. This is

because while P (|1010⟩C) = 0, P (|1111⟩C) ≥ 0. The individual probabilities, not the

sub-system CE, must be used to construct the entanglement structure.

There is a second way to recover this information: let us instead consider a modified

version of the c-SWAP test applied to grouped qubits within the input state. For

example, let us apply a c-SWAP test with a two-qubit control state, such that the first

control qubit controls the qubits in set s1 and the second controls the qubits in s2,

where s1 ∪ s2 = S.

Applying this version of the test to

|ψ⟩ = |ϕ⟩12 ⊗ |ϕ⟩34 (3.120)

=
(

cos
(
π

4 + δ

)
|00⟩ + sin

(
π

4 + δ

)
|11⟩

)
12

(3.121)

⊗
(

cos
(
π

4 + δ

)
|00⟩ + sin

(
π

4 + δ

)
|11⟩

)
34

(3.122)

where the total CE of the bipartite system is C|ϕ⟩(S) = C|ϕ⟩ = cos2 θ sin2 θ. The total CE

of |ψ⟩ is then C|ψ⟩(S) = 2C|ϕ⟩ − C2
|ϕ⟩. The subsystem CEs of all possible subsets s1 and

s2 using both methods are shown in Table 3.1. As expected, the CE between the two

different pairs is zero. The other results are explained by CE being subadditive. This
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3.6. Summary

formalism more straightforwardly describes the entanglement structure of the input

state.

s C|ψ⟩(s) C|ψ⟩(s, s̄)
{1} C|ϕ⟩ C|ϕ⟩

{1, 2} C|ϕ⟩ 0
{1, 3} 2C|ϕ⟩ − C2

|ϕ⟩ 2C|ϕ⟩ − 2C2
|ϕ⟩

Table 3.1: CE across a bipartite cut C|ψ⟩(s, s̄) and sub-system CE C|ψ⟩(s) for |ψ⟩ =
|ϕ⟩12 ⊗ |ϕ⟩34 where C|ϕ⟩ = cos2 θ sin2 θ.

3.6 Summary

Let M rounds of the c-SWAP entanglement test as described in Section 2.6, with error-

less operations, be applied to an ensemble of state ρ. If all three output qubits were to

be measured, not just the control state, the resulting probabilities correlate with

P
(
|1⟩Ck

)
= P

(∣∣Ψ−〉
AkBk

)
(3.123)

P
(
|1⟩Cj

⊗ |1⟩Ck

)
= P

(∣∣Ψ−〉
AjBj

⊗
∣∣Ψ−〉

AkBk

)
. (3.124)

If |1⟩C is measured at the k-th qubit, this corresponds to a Bell state between ρk

and ρ′
k after the c-SWAP test. In essence, the entanglement within ρ and within ρ′ is

transformed into pairwise entanglement between ρ and ρ′ by the c-SWAP test. However,

as we will see in the next section, one |1⟩C alone does not evidence entanglement in the

initial ρ. Only even numbers of |1⟩Cs, which corresponds to pairs of singlet Bell states

between states A and B, evidence entanglement.

Labelling each qubit in ρ with S = {1, 2, ..., n}, the control state output probabilities

are

P (odd no. of |1⟩C s) ≈ 1
2
(
1 − tr

[
ρ2
])

(3.125)

which for pure ρ equals zero, and

P (non-zero even no. of |1⟩C s) ≈ 1
2
(
1 + tr

[
ρ2
])

− 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]
(3.126)
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3.6. Summary

where P(S) is the power set of S, ρα = TrS/α[ρ], and tr
[
ρ2

∅

]
= 1. The approximates

become equalities if all elements of the ensemble are identical to one another.

We have defined the concentratable entanglement (CE) as

Ĉρ = 1
2
(
1 + tr

[
ρ2
])

− 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]
(3.127)

≈ P (non-zero even no. of |1⟩C s) (3.128)

which therefore increases with increased purity of the whole state and decreased purity

of the subsystem states. If the ensemble elements are not all identical to one another

and the state ρ is mixed then the CE is rigorously bounded by

Cuρ = 1 − 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]
(3.129)

≈ P (even no. of |1⟩C s) + P (odd no. of |1⟩C s) (3.130)

Clρ = 1
2n +

(
1 − 1

2n
)

tr
[
ρ2
]

− 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]
(3.131)

≈ P (even no. of |1⟩C s) −
(

1 − 2
2n
)
P (odd no. of |1⟩C s) (3.132)

and the purity of ρ is

γ ≈ 1 − 2P (odd no. |1⟩C s) (3.133)

where P are the probability results from the c-SWAP test on an ensemble described by

ρ.

To conclude: previously presented entanglement measures the generalised concurrence

and the n-tangle can be recovered from Concentratable Entanglement (CE), but CE has

a simpler form and is directly derived from experiment. Individual output probabilities

describe the entanglement structure of the input state. Variations of order δ in the

input states give variations of order δ2 in the probability outputs and therefore the

CE, suggesting the test is robust to these kinds of errors and can be reliably used in

experimental settings. This squaring of variations obscures errors, which decreases the

relative error on the CE but reduces the likelihood of identifying error in the test state.
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Chapter 4

The concentratable entanglement

test for higher dimensional states

We are interested in extending both the c-SWAP test and concentratable entanglement

to higher dimensional states, specifically qudit states and coherent states. Therefore we

repeat much of the analysis in Chapter 3 with these states. Specifically, we expect the

CE to behave in ways found by previous entanglement measures. Work in this chapter

was produced with Oliver Prove (OP).

4.1 Qudit states

Higher dimensions allow the possibility for richer simulation of multi-level systems [74],

reducing gate number in quantum circuits [75, 76], and reduction of fractional phase

rotations from CkNOT gates [76].

Let ρ = ρ′ = |ψ⟩ ⟨ψ| where |ψ⟩ is a D > 2 dimensional qudit state. Although the

twin input states are qudits, the control state remains a qubit (D = 2); therefore

the entanglement test’s operation is unchanged, although the composite gate structure

must be modified to achieve a SWAP operation on qudit states [77]. The following is

my own work unless otherwise specified.

Recall the concurrence of a pure 2-qubit state |ψ⟩AB is c2(|ψ⟩) =
√

2(1 − Trρ2
A) from
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4.1. Qudit states

equation (2.36), and that this gives C|ψ⟩AB
= 1

4c
2
2 shown in equation (3.10). Concurrence

can be extended to generalized concurrence [43], which for bipartite pure states is

EA(|ψ⟩AB) =
√

2(1 − Trρ2
A). Therefore:

C|ψ⟩ = P (|11⟩C) (4.1)

= 1 − 1
4
(
2 + 2 tr[ρ2

A]
)

(4.2)

= 1
2
(
1 − tr[ρ2

A]
)

(4.3)

= 1
4E

2
A (4.4)

where we have used the definition in equation (3.127) where n = 2, tr[ρ2
AB] = 1, and

tr[ρ2
A] = tr[ρ2

B].

Let us define a GHZ-like n-qudit state |ψ⟩ = ∑D−1
j=0 Aj |j⟩n, which gives

C|ψ⟩ = P (even no. of |1⟩ s) = 4
(1

2 − 1
2n
)D−1∑
j=0

D−1∑
k>j

|A2
jA

2
k| (4.5)

Figure 4.1 shows the CE for maximally entangled 2-qudit states of dimension D (C|ψ⟩ =

2 4 6 8 10 12 14 16 18 20
dimension of qudit, D

0.25

0.30

0.35

0.40

0.45

0.50

C |
ψ
>

2 4 6 8 10 12 14 16 18 20
number of qubits, n

Figure 4.1: The total CE, C|ψ⟩, given by the test for entanglement in maximally en-
tangled 2-qudit input states |ψ⟩ = 1√

D

∑D−1
k=0 |k⟩n for various dimensions D (black

crosses). For comparison, the CE for maximally entangled n-qubit GHZ states are
shown in orange squares. The horizontal purple lines show that the 2-qudit CE is re-
lated to the n-qubit CE with C|ψ⟩(n = n′, D = 2) = C|ψ⟩(n = 2, D = 2n′−1).

1
2 − 1

2D ) along with those for maximally GHZ-entangled n-qubit states (C|ψ⟩ = 1
2 − 1

2n )

50



4.1. Qudit states

for comparison. Both increase with D and n respectively and tend to 1
2 ; increasing

n however has a greater effect on CE than increasing D. Increasing n however has a

greater effect on CE than increasing D, and in fact they are related by C|ψ⟩(n = n′, D =

2) = C|ψ⟩(n = 2, D = 2n′−1).

Now let the input states be different to represent variations in the ensemble as described

in section 3.4, such that ρ = |ψ⟩ ⟨ψ| and ρ′ = |ϕ⟩ ⟨ϕ|. I therefore make use of the

expressions found in section 3.5:

Cu|ψ⟩,|ϕ⟩ = P (even no. of |1⟩C s) + P (odd no. of |1⟩C s) (4.6)

Cl|ψ⟩,|ϕ⟩ = P (even no. of |1⟩C s) −
(

1 − 2
2n
)
P (odd no. of |1⟩C s). (4.7)

Let one input state be the maximally GHZ-entangled n-qudit state |ψ⟩ = 1√
D

∑D−1
k=0 |k⟩n,

and the other input state be some similar state |ϕ⟩ = ∑D−1
k=0 Ak |k⟩n. When D is even

we define

|Φeven(δ)⟩ =
√

2
D

[
cos(π4 + δ)

D
2 −1∑
j=0

|j⟩n + sin(π4 + δ)
D−1∑
j= D

2

|j⟩n
]

(4.8)

so that all amplitudes are governed by δ, and |Φeven(δ = 0)⟩ = 1√
D

∑D−1
k=0 |k⟩n. Using

|ψ⟩ = |Φeven(δ = 0)⟩ and |ϕ⟩ = |Φeven(δ)⟩, fidelity F = cos2 δ and:

P (odd no. of |1⟩C s) =1
2 sin2 δ (4.9)

P (even no. of |1⟩C s) =4
(1

2 − 1
2n
)(1

2 − 1
2D

)
−
(1

2 − 1
2n
)

sin2 δ (4.10)

therefore

Cu|ψ⟩,|ϕ⟩ =4
(1

2 − 1
2n
)(1

2 − 1
2D

)
+ 1

2n sin2 δ (4.11)

Cl|ψ⟩,|ϕ⟩ =4
(1

2 − 1
2n
)(1

2 − 1
2D

)
−
(

1 − 2
2n
)

sin2 δ. (4.12)

Here, the δ-dependant terms are not dependant on D. Consider instead that D is odd

and define similarly

∣∣∣Φodd(δ)
〉

=
√

2
D

[
cos(π4 + δ)

D−1
2 −1∑
j=0

|j⟩n + 1√
2

∣∣∣∣D − 1
2

〉n

+ sin(π4 + δ)
D−1∑

j= D−1
2 +1

|j⟩n
]

(4.13)
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4.2. Entangled coherent states

where |ψ⟩ =
∣∣∣Φodd(δ = 0)

〉
and |ϕ⟩ =

∣∣∣Φodd(δ)
〉
, and again fidelity F = cos2 δ:

P (odd no. of |1⟩C s) =1
2
D − 1
D

sin2 δ (4.14)

P (even no. of |1⟩C s) =4
(1

2 − 1
2n
)(1

2 − 1
2D

)
−
(1

2 − 1
2n
)D − 1

D
sin2 δ (4.15)

As always, non-identical input states can be evidenced and tolerance-bounded by

measurements of odd no. of |1⟩C s, the difference being that the greater D the greater

P (odd no. of |1⟩C s). Since the even version had no such dependence, this suggests that

the dependence on D is related to how many amplitudes are divergent between |ψ⟩ and

|ϕ⟩.

It also follows

Cu|ψ⟩,|ϕ⟩ =4
(1

2 − 1
2n
)(1

2 − 1
2D

)
+ 1

2n
D − 1
D

sin2 δ (4.16)

Cl|ψ⟩,|ϕ⟩ =4
(1

2 − 1
2n
)(1

2 − 1
2D

)
−
(

1 − 2
2n
)
D − 1
D

sin2 δ (4.17)

which has a slightly tighter bound range than the even-D version since one of the basis

state’s amplitudes does not vary, but otherwise behaves the same. The results for both

even and odd D-dimensional non-identical states are shown in Figure 4.2.

It can be seen therefore that qudit state CE behaves similarly to qubit state CE, with

the addition that the greater D the greater the CE and the bound range for non-

identical states. This follows from the idea that there is a higher level of possible

entanglement as the qudit dimension increases [30].

4.2 Entangled coherent states

We now consider how the c-SWAP test and concentratable entanglement can be applied

to coherent states. Let ρ = ρ′ = |ψ⟩ ⟨ψ| and therefore P (|11⟩C) = 1 − P (|00⟩C). Our

(OP, VK, SF) proposed optical set up to perfom the c-SWAP test is shown in Figure

4.3. The circuit is applied to the k-th mode in each of the input states ρ and ρ′. This

pair enters the circuit on spatial paths A and B respectively, and the control state is
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Figure 4.2: C-SWAP test probability results against fidelity F for input states
|ψ⟩ = |Φ(δ = 0)⟩ and |ϕ⟩ = |Φ(δ)⟩ where n = 2. The effect of δ on |ϕ⟩ is slightly
different for even and odd D. The continuous lines are Cu|ψ⟩,|ϕ⟩, the dotted lines are
P (even no. of |1⟩C s), and the dashed lines are Cl|ψ⟩,|ϕ⟩.

encoded in their polarisations. As with the qubit/qudit state test, the circuit is applied

to each of the n modes in ρ, M times (in parallel).

B
→INPUT →

A

C

PBS2

PBS1

SWAP

Figure 4.3: A proposed circuit, to be applied to each k-th mode, for implementing the
c-SWAP test on optical states. The k-th mode of the input states |ψ⟩ and |ϕ⟩ each enter
the circuit on a different spatial path A (blue) and B (orange). PBS1 and PBS2 are
polarizing beam splitters, with the transmitted polarization corresponding to control
state |0⟩C and the reflected polarization to |1⟩C . The SWAP operation crosses the two
paths, such that |ψ⟩A |ϕ⟩B → |ϕ⟩A |ψ⟩B. A detector is placed at C.

In this set-up, the individual modes must be able to be swapped; therefore we restrict
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4.2. Entangled coherent states

our investigation to coherent state superpositions of the form

|ψ⟩ = N
∑
o∈On

Ao |o⟩ (4.18)

where On = {α, β}n is the set of all configurations of two coherent states α and β from

equation (2.16) on modes {1, 2, . . . , n}, N is a normalisation constant, and P (|o⟩) =

|NAo|2. Some states of this form can be implemented through parametric amplification

and photodetection [39].

First, we compare the CE and entropy of entanglement of one such state. For ease we

choose a 2-mode entangled coherent state |ψ⟩ = (|αα⟩ + |ββ⟩) /
√

1 + ⟨α|β⟩2, the CE of

which is

C|ψ⟩ = P (|11⟩C) = 1
4

(1 − ⟨α|β⟩2)2

(1 + ⟨α|β⟩2)2
(4.19)

and the entropy of entanglement from equation (2.48) [51] is

SA(ρA) = log(2) + log
(
1 + ⟨α|β⟩2

)
(4.20)

− (1 − ⟨α|β⟩)2

1 + ⟨α|β⟩2 log (1 − ⟨α|β⟩) (4.21)

− (1 + ⟨α|β⟩)2

1 + ⟨α|β⟩2 log (1 + ⟨α|β⟩) . (4.22)

Figure 4.4 shows C|ψ⟩ and SA(ρA)/4 log 2 (so that the two agree when ⟨α|β⟩ = 0) as

a function of ⟨α|β⟩. The shape of the two functions are very similar however C|ψ⟩ <

SV (ρA)/4 log 2 for all ⟨α|β⟩.

Let us consider the more general 2-mode entangled coherent state

|ψ⟩ = N (Aαα |α⟩ |α⟩ +Aαβ |α⟩ |β⟩ +Aβα |β⟩ |α⟩ +Aββ |β⟩ |β⟩). (4.23)

The CE of this state is

C|ψ⟩ = P (|11⟩C) = 1
4C

′
2

2
(
1 − ⟨α|β⟩2

)2
(4.24)

where

C ′
2 = 2N 2|AααAββ −AαβAβα| (4.25)
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Figure 4.4: Graph showing the C.E. (blue solid line) and the normalised en-
tanglement entropy (orange dotted line) of entangled coherent state |ψ⟩ =
(|αα⟩ + |ββ⟩) /

√
1 + ⟨α|β⟩2 for various ⟨α|β⟩.

as an analogue to pure qubit state concurrence in equation (2.37). Note that unlike

this value is not invariant under linear optics. The specific case |β⟩ = |−α⟩ is shown in

shown in Figure 4.5. The C.E. increases with α until 0.75 < α < 1.5 where it plateaus

to the qubit state CE. The α at which C.E. plateaus increases with C ′
2.

Finally consider n-mode entangled coherent states such as the GHZ-like ECS |ψ⟩ =

N (Anα |α⟩n +Anβ |β⟩n), which gives CE

C|ψ⟩ = N 4
(
1 − ⟨α|β⟩2

)n (1
2 − 1

2n
)

4|A2
nαA

2
nβ| (4.26)

and W-like ECSs |ψ⟩ = N
∑n
i=1Ai |β⟩i−1 |αi⟩ |β⟩n−i which give

C|ψ⟩ = N 4
(
1 − ⟨α|β⟩2

)2 n∑
i=1

n∑
j>i

|A2
iA

2
j |. (4.27)

From results (4.19), (4.24), (7.6), and (4.27) we conjecture that the CE of an entangled

coherent state of the form equation (4.18) can be obtained from the corresponding n-

qubit results – i.e. let ⟨α|β⟩ = 0 then renormalise – multiplied by N 4(1 − ⟨α|β⟩2)x≤n,

where x is the number of qubit swaps the state has undergone during the c-SWAP test

to give the amplitude in the final expression.
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Figure 4.5: Graph showing the probability of observing the entanglement signa-
ture |11⟩C after the c-SWAP test applied to state |ψ⟩ = |ECS⟩ = N (A++ |α⟩ |α⟩ +
A+− |α⟩ |−α⟩ + A−+ |−α⟩ |α⟩ + A−− |−α⟩ |−α⟩), plotted against coherent state amp-
litude α for various values of C ′

2 as defined in equation (4.25).

Further work is needed to discoverer how this extends to entangled coherent states

(ECS) with more than two distinct coherent states, and therefore D > 2 dimensions in

the corresponding n-qudit state.

4.3 Coherent states as high dimensional qudits

As seen from the set-up in section 4.2, the c-SWAP test requires swapable modes.

An alternative method for other coherent states is to approximate them with high

dimensional qudits, with the D-dimensional approximation:

|αqudit⟩ = e− |α|2
2

D−1∑
j=0

αj√
j! |j⟩ . (4.28)

First, to test the accuracy of this approximation for the c-SWAP test and concentratable

entanglement, we recall an entangled coherent state from section 4.2 that the c-SWAP

test can directly be applied to for comparison.

Consider the simple entangled coherent state (ECS)

|ψα⟩ = N (|α⟩ |α⟩ + |−α⟩ |−α⟩) (4.29)
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4.3. Coherent states as high dimensional qudits

which can be approximated by

|ψqudit⟩ = e−|α|2
14∑

j,k=0
(1 + (−1)j+k) α

j

√
j!
αk√
k!

|j⟩ |k⟩ (4.30)

where we have chosen D = 15 so that |ψqudit⟩ is approximately normalised in the range

0 < α < 3 – see Figure 4.6. The c-SWAP test output probabilities against α for this

state are shown in Figure 4.7, calculated by OP. In the same plot are the results for

|ψα⟩ for comparison.
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Figure 4.6: The norm of the qudit approximated ECS, equation (4.30), as a heatmap
across different qudit dimensions and coherent state amplitudes. This was used to
determine a value of D for which the qudit state accurately models the ECS, equation
(4.29), across the coherent state amplitude α range considered.

The behaviour of P (|11⟩C) for each state are very similar, tending to the same value,

but the qudit approximation overestimates in the region of 0 < α < 1.8.

Now consider a coherent state that the c-SWAP test cannot be trivally applied to:

the two-mode squeezed vacuum state |TMSVα⟩ = S2(ξ) |0, 0⟩, where S2(ξ) is the two-

mode squeeze operator defined in equation (2.24). These states have been used to

demonstrate the EPR paradox experiment with continuous position and momentum
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Figure 4.7: A comparison of P (|11⟩C) for ECS equation (4.29) and a qudit approxim-
ation ECS equation (4.30) against coherent state amplitude α.

variables [78]. The qudit approximation of a TMSV state is [79]

|TMSVqudit⟩ = N
cosh r

14∑
j=0

(−eiθ tanh r)j |jj⟩ . (4.31)

The c-SWAP probability result is then

P (|11⟩C) = N 4

2 cosh4 r

14∑
j=0

14∑
k=0,k ̸=j

(tanh r)2(j+k). (4.32)

This is shown in Figure 4.8, alongside the normalised entanglement entropy 7
15

SA(ρA)(r)
SA(ρA)(r=2.5)

where SA(ρA)(r) = cosh2 r log cosh2 r−sinh2 r log sinh2 r [36]. Unfortunately, C|TMSVqudit⟩
does not seem to be a good estimation of C|TMSVα⟩. The entanglement entropy increases

with r linearly and indefinitely, however the C.E. of the qudit approximation has a max-

imum at r ≈ 2.5 where it plateaus with C|ψ⟩ = 7
15 . It is unclear whether the c-SWAP

test cannot be applied to squeezed states or simply that the qudit approximation cannot

be used for states with indefinitely increasing CE.

4.4 Summary

The c-SWAP test and therefore Concentratable Entanglements can be trivially applied

to higher dimensional states so long as the substates are swappable in an experimental
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Figure 4.8: The probability results for a two mode squeezed vacuum (TMSV) state
approximated by a D = 15 qudit state from equation 4.31 (solid blue line) alongside
frac715 SA(ρA)(r)

SA(ρA)(r=2.5) of the TMSV state (dotted orange line).

setting. CE increases with dimension D, coherent amplitude α, and squeeze parameter

r strengthening it as a multidimensional entanglement measure.
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Chapter 5

Experimental implementation

Once we are convinced that Concentratable Entanglement (CE) is a good measure of

entanglement, we turn to how it might be estimated in experiment. First, we present

a second CE test, then we compare the two by numerically simulating each with a

Rydberg setting. Work presented in sections 5.1 and 5.2 was produced with Jacob

Beckey (JB), Gerard Pelegrí (GP), and Natalie L. Pearson (NP). Finally in section 5.3

I review the less resource intensive case of evidencing non-zero CE.

5.1 Bell-basis measurement test for entanglement

The Bell-basis test is an alternative method for obtaining c-SWAP test measurement

data, proposed in [27] by JB, GP, SF, and NP. As with the c-SWAP test, the Bell-

basis test requires 2M copies of the n-qubit input state ρ. The c-SWAP test applies

M ·n one-qubit measurements whereas the Bell-basis test applies 2M ·n. However, the

Bell-basis test does not require ancilla qubits or three-qubit gates.

k ∈ {1, 2, . . . , n
A: ρk H

B: ρ′
k

Figure 5.1: One round m of the Bell-basis test for entanglement on input states ρ and
ρ′. H is a Hadamard gate and the two-qubit gate is a CNOT gate.
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5.1. Bell-basis measurement test for entanglement

During each roundm ∈ {1, . . . ,M}, the circuit in Figure.5.1 is applied to the k-th qubits

in ρ and its pair ρ′, for each qubit k ∈ {1, . . . , n}. Then all qubits are measured, in order

to calculate the probability of measuring each possible 2n-state output (ρρ′)1 . . . (ρρ′)n.

During any one round, a measurement of an even number of |11⟩ks evidences entan-

glement. Therefore, for example, any non-zero P (|. . . (11)i . . . (11)j . . . ⟩) evidences en-

tanglement in ρ. Additionally, an odd number of |11⟩ks in one round evidences that ρ

and ρ′ are not equivalent. This sounds very familiar! If you map |11⟩ to |1⟩C , these

statements hold for the c-SWAP test outputs.

Consider a one-qubit pure state |ψ⟩ = A0 |0⟩ +A1 |1⟩ and its pair |ϕ⟩ = B0 |0⟩ +B1 |1⟩.

Applying the c-SWAP test for equivalence from Chapter 2 to these states gives

P (|0⟩C) = 1
2 + 1

2 | ⟨ψ|ϕ⟩ |2 (5.1)

P (|1⟩C) = 1
2 − 1

2 | ⟨ψ|ϕ⟩ |2 (5.2)

Applying the Bell-basis test as described above gives

P (|00⟩) = 1
2 − 1

2(A0B1 −A1B0)2 (5.3)

P (|01⟩) = 1
2 − 1

2(A0B0 −A1B1)2 (5.4)

P (|10⟩) = 1
2 − 1

2(A0B1 +A1B0)2 (5.5)

P (|11⟩) = 1
2 − 1

2(A0B0 +A1B1)2 (5.6)

= 1
2 − 1

2 | ⟨ψ|ϕ⟩ |2 (5.7)

therefore P (|1⟩C)c-SWAP test = P (|11⟩)Bell-basis test. As seen from a broader proof in [27],

this is true for mixed states of any n. The Bell-basis test results correspond to

C|ψ⟩ = 1 − 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]
(5.8)

= P (even no. of |11⟩ s) (5.9)

Cuρ = 1 − 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]
(5.10)

= P (even no. of |11⟩ s) + P (odd no. of |11⟩ s) (5.11)
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and so any results from the c-SWAP test can be exactly recovered by the Bell basis

test.

To explain the link between these two circuits, recall the Bell basis states in Equation

(2.31). The triplet states
∣∣Φ+〉 , ∣∣Ψ+〉 , |Φ−⟩ are evidenced after a Bell-basis measure-

ment of |00⟩ , |01⟩ , |10⟩ respectively, and the singlet state |Ψ−⟩ corresponds to |11⟩.

Therefore the Bell basis test is in fact detecting singlet states between qubits in ρ and

qubits in ρ′. This is very similar in concept to the c-SWAP test, which is redistributing

the entanglement in the input states into singlet states across ρ and ρ′.

5.2 Concentratable entanglement tests on a neutral

atom platform

To compare the c-SWAP test and Bell basis test we numerically simulate each with noisy

gates [27]. We chose the neutral atom platform as single species atoms are inherently

identical, and to spotlight its programmable layout and non-local interactions.

In this setting CNOT gates and CCNOT gates are replaced by CZ and CCZ gates

respectively with the addition of a Hadamard gate on the target qubit before and after

the CZ/CCZ gate. The gate circuits in this formalism are shown in Figure 5.2 for the

c-SWAP test and Figure 5.3 for the Bell-basis test. For the c-SWAP tests, each trio of

atomic qubits {ρk, ρ′
k, Ck} in one round m are arranged in an equilateral triangle such

that each atom i is separated from atom j by dij . Similarly for the Bell-basis test each

pair of atomic qubits {ρk, ρ′
k} are nearest-neighbours with separation dij .

As seen in GP et al. [80, 27], CZ and CCZ gates can be realised using adiabatic rapid

passage (ARP) techniques to control population dynamics [81]. States |0⟩ and |1⟩ are

encoded in two long-lived hyperfine ground states. The required atom groups ({ρk, ρ′
k}

for CZ and {ρk, ρ′
k, Ck} for CCZ) are globally illuminated with laser pulses such that

each state |1⟩ is coupled to a Rydberg state |r⟩ with Rabi frequency ΩR and detuning

δR, via a two-photon transition through an far-detuned intermediate excited state |e⟩
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⊗n

A: ρk H Z

B: ρ′
k H Z H

C: |0⟩⟨0| H H

Figure 5.2: Gate circuit for one round m of the c-SWAP test suitable for the ARP
technique. The two-qubit gate is a CZ gate from equation (2.14) and the three-qubit
gate is a CCZ gate from equation (2.15).

⊗n
A: ρk H

B: ρ′
k H Z H

Figure 5.3: Gate circuit for one round m of the Bell-basis test suitable for the ARP
technique. The two-qubit gate is a CZ gate from equation (2.14).

[80, 27]. The Rydberg blockade effect is such that when |V ij
rr ≪ ΩR| where the pairwise

Rydberg interaction strength V ij
rr is determined by separation dij , only one qubit can

be in state |r⟩. The laser pulses therefore drive the transitions [80]

(|0⟩) |01⟩ ↔ (|0⟩) |0r⟩ (5.12)

(|0⟩) |11⟩ ↔ 1√
2

(|0⟩) (|1r⟩ + |r1⟩) (5.13)

|111⟩ ↔ 1√
3

(|11r⟩ + |1r1⟩ + |r11⟩) (5.14)

with detuning δR(t) and Rabi frequencies ΩR,
√

2ΩR, and
√

3ΩR respectively. To

achieve a CZ or CCZ gate two consecutive ARP pulses are applied, such that δR(t) > 0

during the first pulse and δR(t) < 0 during the second, resulting in the required phase

flip [81].

A numerical simulation of each test was performed by GP, modelled with the above

architecture, Cs atoms, and currently available laser specifications [27]. CZ and CCZ

gates are simulated with non-unitary matrices; this simulates loss of population outside

of the computational basis during the excitation process due to the finite linewidths Γe

and Γr of the states |e⟩ and |r⟩. The noise associated with the one-qubit Hadamard

gates is considered negligible. The effective matrices for the CZ and CCZ gates are
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5.2. Concentratable entanglement tests on a neutral atom platform

therefore

UCZ = |00⟩ ⟨00| + 0.9990ei0.9906π(|01⟩ ⟨01| + |10⟩ ⟨10|)

+ 0.9986ei1.000π |11⟩ ⟨11| (5.15)

UCCZ = |000⟩ ⟨000| + 0.9981ei0.9845π(|001⟩ ⟨001| + |010⟩ ⟨010| + |100⟩ ⟨100|)

+ 0.9973ei0.9934π(|110⟩ ⟨110| + |101⟩ ⟨101| + |011⟩ ⟨011|)

+ 0.9963ei0.9911π |111⟩ ⟨111| . (5.16)

Since population leakage can be detected in experiment [82] and therefore discarded in

post-processing, after the effective matrices are applied we re-normalize the system’s

state. The loss of norm during numerical simulation is recorded and used to estimate

the number of rounds M required to estimate the CE within ϵ. A comparison of the

recorded loss of norm for the c-SWAP test and Bell basis test for n-qubit GHZ states

is shown in Figure 5.4(b), calculated by JB.
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Figure 5.4: Image taken from [27]. a) Atom architecture for the c-SWAP test and the
Bell-basis test respectively. b) Comparison of c-SWAP and Bell basis tests on n-qubit
GHZ state |GHZn⟩ = 1√

2 (|0⟩n + |1⟩n). The top panel shows the loss of norm due to
noisy Rydberg pulses. The bottom panel shows the error that this results in in the
estimation of the CE. For both we see the Bell-basis test outperforms the c-SWAP test.
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5.3. Evidencing non-zero Concentratable Entanglement

The loss of norm is less for the Bell-basis test than for the c-SWAP test for all n

considered (2 ≤ n ≥ 8). Therefore the required experimental data can be obtained

with fewer copies of ρ and fewer total gates with the Bell basis method. Since the

implementation of three-qubit gates on other platforms have achieved worse or similar

fidelities to those on Rydberg platforms [83], we conclude that on current and near-

term platforms the Bell basis test is the more viable method to estimate concentratable

entanglements.

Let us investigate the effects of loss of norm during the estimation of CE of other

entangled states. Figure 5.5(a) shows the total CE C(S) of pure n-qubit Line, GHZ,

and W states as calculated by the noisy numerical simulation as well as the error

between this and the analytical results found in Chapter 3. For 3 ≤ n ≤ 15 the

error ϵC(S) < 2 × 10−3 for all states. Unlike GHZ and W states, the error on the CE

of Line states decreases with larger n with ϵC(S) < 0.5 × 10−3. Figure 5.5(b) shows

the number of rounds M of the Bell-basis test on an n-qubit Line state required to

achieve a 95% confidence interval (CI) of size K, calculated from the Clopper-Pearson

(CP) method and Hoeffding’s equality from Equations (2.58) and (2.59) by JB. The

CP method predicts less required measurements than Hoeffding’s equality even for

n = 12. We consider the CP method to be more accurate since it exploits the underlying

binomial probability distribution of pure CE. A 95% CI of size 10−2 can be achieved

with M = Θ(103) rounds.

Also shown in Figure 5.5(b) is the loss of norm calculated by the numerical simulation,

which for n ≤ 15 is 1 − | ⟨ψ|ψ⟩ |2 < 0.03 and increases linearly with n. Therefore a

correction to the number of measurements M is at most 1.03M .

5.3 Evidencing non-zero Concentratable Entanglement

The last two sections calculate CE in its entirety – however one function of the Bell-

basis test is that non-zero values of CE can be evidenced with just one measurement
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5.3. Evidencing non-zero Concentratable Entanglement
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<latexit sha1_base64="FxV/r7wfjEBWtZ2ZMLXFawMy6LI=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBTiJexKUI8BLx4jmAcmS5iddJIhs7PLTK8YlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6mfrNR9BGROoexzH4IRso0RecoZUeOghPmJaC80m3UHTL7gx0mXgZKZIMtW7hq9OLeBKCQi6ZMW3PjdFPmUbBJUzyncRAzPiIDaBtqWIhGD+dXTyhZ1bp0X6kbSmkM/X3RMpCY8ZhYDtDhkOz6E3F/7x2gv1rPxUqThAUny/qJ5JiRKfv057QwFGOLWFcC3sr5UOmGUcbUt6G4C2+vEwaF2Xvsly5qxSrp1kcOXJMTkiJeOSKVMktqZE64USRZ/JK3hzjvDjvzse8dcXJZo7IHzifP0oqkJU=</latexit>

(b)

<latexit sha1_base64="bPYgqALb3yWW/hxb+BoSSTZtXCQ=">AAACFHicbZDLSgMxFIYzXmu9jbp0E6yCIJaZUtRlwY3LCvYCnbFk0tM2NJMZkoxQhj6EG1/FjQtF3Lpw59uYTmehrQcCf77/HJLzBzFnSjvOt7W0vLK6tl7YKG5ube/s2nv7TRUlkkKDRjyS7YAo4ExAQzPNoR1LIGHAoRWMrqd+6wGkYpG40+MY/JAMBOszSrRBXfvMPfeMr7HHiRhwwF5dsYxkQmYwu99XunbJKTtZ4UXh5qKE8qp37S+vF9EkBKEpJ0p1XCfWfkqkZpTDpOglCmJCR2QAHSMFCUH5abbUBJ8Y0sP9SJojNM7o74mUhEqNw8B0hkQP1bw3hf95nUT3r/yUiTjRIOjsoX7CsY7wNCHcYxKo5mMjCJXM/BXTIZGEapNj0YTgzq+8KJqVsntRrt5WS7XjPI4COkRH6BS56BLV0A2qowai6BE9o1f0Zj1ZL9a79TFrXbLymQP0p6zPH5vCnn0=</latexit> 1
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Figure 5.5: Image taken from [27]. a) The bottom panel shows the total CE of pure
n-qubit Line, GHZ, and W states as calculated by a noisy numerical simulation (dots)
alongside the analytical results (solid lines), and the upper plot shows the error ϵC
between the two. b) the number of rounds M of the Bell-basis test on an n-qubit Line
state required to achieve a 95% CI of size K, calculated using Clopper-Pearson (CP)
or Hoeffding’s equality. The inset shows the loss of norm.

of P (even no. of |11⟩ s). I investigate how many iterations of the test, and therefore

number of copies of ρ are required to evidence non-zero CE.

I model the expected number of copies with simply

E(no. of copies) = 2
P (even no. of |11⟩ s) (5.17)

= 2
Cestimate
ρ

(5.18)

since two copies are required per iteration. The more entangled the state, the fewer

number of copies required. Therefore, the less entangled the state, the lower the entan-

glement signature probability, and the higher the number of measurements required.

Shown in Figure 5.6 is this scaling relation. Vertical line segments indicate results for

various GHZ-like pure states, and then for comparison these same states with the min-

imun expected number of copies required for quantum state tomography (QST) found
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5.4. Summary

in [55]. For n ≥ 3 pure states of CE C > 0.05 the Bell-basis test evidences entangle-

ment with less copy states than QST. This highlights the Bell-basis test’s suitability

for larger multipartite states.
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Figure 5.6: The expected number of copies against CE to evidence non-zero CE. The
vertical line segments and crosses show the results for GHZ-like states from equation
(3.29) with α0 = 1√

2 ,
1

2
√

2 ,
1

3
√

2 from right to left. The vertical lines and continuous
thick black line show the scaling for the Bell-basis test and the crosses and thin grey
lines show the scaling for quantum state tomography (QST).

5.4 Summary

Complement to equations (6.1) and (3.133), for any subset s ∈ S where S = {1, 2, ..., n}

is the set of labels for each qubit in ρ, the CE of ρ is

Cestimate
ρ (s) = P (even no. of |11⟩ s on s) (5.19)

Cuρ (s) = P (even no. of |11⟩ s on s) + P (odd no. of |11⟩ s) (5.20)

Clρ(s) = P (even no. of |11⟩ s on s) −
(

1 − 2
2n
)
P (odd no. of |11⟩ on s) (5.21)

and the purity of ρ is

γestimate
ρ = 1 − 2P (odd no. of |11⟩AB s) (5.22)

where P are the probability results from the Bell-basis test as described in section 5.1

on state ρ.
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5.4. Summary

As these results are directly equivalent to those obtained by the c-SWAP test, all state

error and entanglement structure analysis from Chapter 3 holds also for the Bell-basis

test.

The Bell-basis test can be efficiently performed on Rydberg atom hardware with an

order of Θ(103) rounds on a n ≤ 12-qubit pure state, achieving a 95% confidence

interval of size Θ(10−2). The Bell-basis test therefore outperforms the c-SWAP test

on this platform and so we consider the Bell-basis test more suited to experimental

estimation of CE. The Bell-basis test is particularly suited to larger multipartite states

of n > 3 due to its favourable scaling in n.
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Chapter 6

Conclusions and Further Work

While the c-SWAP test for entanglement can be used on any n-party state, we conclude

that the Bell-basis measurement test for entanglement (as described in Chapter 5)

is more efficient at estimating the multipartite entanglement measure Concentratable

Entanglement (CE) of a qubit state as well as requiring fewer resources.

For the set of labels S = {1, 2, ..., n} for each subsystem in input state ρ, the Concen-

tratable Entanglement (CE) is

Ĉρ = 1
2
(
1 + tr

[
ρ2
])

− 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]

≈ P (Zeven
1 ) (6.1)

Cuρ = 1 − 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]

≈ P (Zeven
1 ) + P (Zodd

1 ) (6.2)

Clρ = 1
2n +

(
1 − 1

2n
)

tr
[
ρ2
]

− 1
2n

∑
α∈P(S)

tr
[
ρ2
α

]

≈ P (Zeven
1 ) −

(
1 − 2

2n
)
P (Zodd

1 ) (6.3)

and purity

γ = tr
[
ρ2
]

(6.4)

≈ 1 − 2P (Zodd
1 ) (6.5)
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6. Conclusions and Further Work

where Zeven(odd)
1 is the set of all bit strings with an even(odd) number of 1’s or 11’s out-

putted by one round of the c-SWAP test and Bell-basis measurement test respectively

(where even does not include zero). The probability P is obtained with M repeats of

the test on an ensemble of state ρ of size 2M . P(s) is the power set of s, ρα = Trs\α[ρ],

and tr [ρ∅] = 1. These values of Ĉρ, Cuρ, and Clρ converge when ρ is pure and the

ensemble elements are identical. These results are robust to small variations in the

input states.

The Bell-basis test can be achieved experimentally with current hardware. It requires

2M copies of ρ, M · n two-partite operations, and 2M · n measurements. For pure

states, M is at maximum of the order

M = Θ
( ln(1/δ)

ϵ2

)
(6.6)

where 1 − δ ≤ P (|Ĉ|ψ⟩ − C|ψ⟩| < ϵ) and Θ(g(δ, ϵ)) is the set bounded both above and

below by g asymptotically.

Unlike many other multipartite measures, concentratable entanglement (CE) has a

simple analytical form, can be directly estimated from experiment on arbitrary n-

partite state ρ, and has favourable resource scaling in n. It is simpler to understand

than generalised concurrence, easier to calculate than entropy of entanglement, and

more encompassing than the n-tangle. Therefore, I argue that CE should be adopted

as a standard entanglement measure for multipartite states.

Since the c-SWAP test for entanglement is composed of the c-SWAP test for state

comparison applied to each subsystem, it is of interest to explore other tests for state

comparison applied to each subsystem as a test for entanglement. Candidates include

Barnett et al. and extensions [84, 85] which finds that the overlap between two states

is given by the difference in probabilities between finding the systems in the symmetric

and antisymmetric subspaces. A second avenue for further work it to increase the

number of copies used in each round of the c-SWAP test [86], which may be more

resource efficient.
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Chapter 7

Appendices

Let ρ = |ψ⟩ ⟨ψ| and ρ′ = |ϕ⟩ ⟨ϕ|.

7.1 Two-qubit probability results

Let |ψ⟩ = A00 |00⟩ + A01 |01⟩ + A01 |01⟩ + A11 |11⟩ and |ϕ⟩ = B00 |00⟩ + B01 |01⟩ +

B01 |01⟩ +B11 |11⟩:

P (|00⟩C) = 1
4[4(A00

2B00
2 +A01

2B01
2 +A10

2B10
2 +A11

2B11
2)

+ 2(A00B01 +A01B00)2 + 2(A00B10 +A10B00)2

+ 2(A01B11 +A11B01)2 + 2(A10B11 +A11B10)2

+ (A00B11 +A01B10 +A10B01 +A11B00)2],

P (|01⟩C) = 1
4[2(A00B01 −A01B00)2 + 2(A10B11 −A11B10)2

+ (A00B11 −A01B10 +A10B01 −A11B00)2],

P (|10⟩C) = 1
4[2(A00B10 −A10B00)2 + 2(A01B11 −A11B01)2

+ (A00B11 +A01B10 −A10B01 −A11B00)2],

P (|11⟩C) = 1
4(A00B11 −A01B10 −A10B01 +A11B00)2 (7.1)
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7.2. Three-qubit probability results

If |ψ⟩ = |ϕ⟩ = A00 |00⟩ +A01 |01⟩ +A01 |01⟩ +A11 |11⟩:

P (|00⟩C) = 1 − (A00A11 −A01A10)2

= 1 − 1
4c

2
2,

P (|01⟩C) = 0,

P (|10⟩C) = 0,

P (|11⟩C) = (A00A11 −A01A10)2

= 1
4c

2
2 (7.2)

where c2 is the concurrence.

7.2 Three-qubit probability results

Let |ψ⟩ = |ϕ⟩ = ∑
Aijk |ijk⟩:

P (|000⟩C) = 1
2[2(A000

4 +A001
4 +A010

4 +A011
4

+A100
4 +A101

4 +A110
4 +A111

4)

+ 4A000
2(A001

2 +A010
2 +A100

2)

+ 4A011
2(A001

2 +A010
2 +A111

2)

+ 4A101
2(A001

2 +A100
2 +A111

2)

+ 4A110
2(A010

2 +A100
2 +A111

2)

+ 2(A000A011 +A001A010)2

+ 2(A000A101 +A001A100)2

+ 2(A000A110 +A010A100)2

+ 2(A001A111 +A011A101)2

+ 2(A010A111 +A011A110)2

+ 2(A100A111 +A101A110)2

+ (A000A111 +A001A110 +A010A101 +A011A100)2],
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7.2. Three-qubit probability results

P (|001⟩C) = 0,

P (|010⟩C) = 0,

P (|011⟩C) = 1
2[2(A000A011 −A001A010)2

+ 2(A100A111 −A101A110)2

+ (A000A111 −A001A110 −A010A101 +A011A100)2],

P (|100⟩C) = 0,

P (|101⟩C) = 1
2[2(A000A101 −A001A100)2

+ 2(A010A111 −A011A110)2

+ (A000A111 −A001A110 +A010A101 −A011A100)2],

P (|110⟩C) = 1
2[2(A000A110 −A010A100)2

+ 2(A001A111 −A011A101)2

+ (A000A111 +A001A110 −A010A101 −A011A100)2],

P (|111⟩C) = 0 (7.3)

For 3-qubit GHZ-like test states where |ψ⟩ = A000 |000⟩+A111 |111⟩ and |ϕ⟩ = B000 |000⟩+

|111⟩B111:

P (|000⟩C) = A000
2B000

2 +A111
2B111

2

+ 1
8(A000B111 +A111B000)2,

P (|001⟩C) = 1
8(A000B111 −A111B000)2

= P (|010⟩C) = P (|100⟩C) = P (|111⟩C),

P (|011⟩C) = 1
8(A000B111 +A111B000)2

= P (|101⟩C) = P (|110⟩C) (7.4)
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7.3. n-qubit probability results

For 3-qubit W-like test states where |ψ⟩ = A001 |001⟩ + A010 |010⟩ + A100 |100⟩ and

|ϕ⟩ = B001 |001⟩ +B010 |010⟩ +B100 |100⟩:

P (|000⟩C) = A001
2B001

2 +A010
2B010

2 +A100
2B100

2

+ 1
4[(A001B010 +A010B001)2 + (A001B100 +A100B001)2

+ (A010B100 +A100B010)2],

P (|001⟩C) = 1
4[(A001B010 −A010B001)2

+ (A001B100 −A100B001)2],

P (|010⟩C) = 1
4[(A001B010 −A010B001)2

+ (A010B100 −A100B010)2],

P (|011⟩C) = 1
4(A001B010 +A010B001)2,

P (|100⟩C) = 1
4[(A001B100 −A100B001)2

+ (A010B100 −A100B010)2],

P (|101⟩C) = 1
4(A001B100 +A100B001)2,

P (|110⟩C) = 1
4(A010B100 +A100B010)2,

P (|111⟩C) = 0. (7.5)

7.3 n-qubit probability results

For n-qubit identical GHZ-like cases |ψ⟩ = |ϕ⟩ = α0 |0⟩n + α1 |1⟩n:

P (|0⟩nC) = 1 − 2n−1 − 1
2n−2 α2

0α
2
1,

= 1 − 2n−1 − 1
2n−2 α2

0(1 − α2
0),

P (|even no. of 1s⟩C) = 2n−1 − 1
2n−2 α2

0α
2
1 (7.6)

= 2n−1 − 1
2n−2 α2

0(1 − α2
0). (7.7)
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7.3. n-qubit probability results

For n-qubit identical W-like cases |ψ⟩ = |ϕ⟩ = a1 |00...1⟩ + a2
∑n
j=2 |0...1j ...0⟩:

P (|0⟩nC) = 1 − (n− 1)a2
2

(
a2

1 + n− 1
2 a2

2

)
,

P (|exactly two 1s⟩C) = (n− 1)a2
2

(
a2

1 + n− 1
2 a2

2

)
. (7.8)

For n-qubit identical W-like states where |ψ⟩ = |ϕ⟩ = ∑n
i=1 ai |0...1i...0⟩:

P (|0⟩nC) =
n∑
i=1

a2
i

a2
i +

n∑
j>i

a2
j

 , (7.9)

P (|exactly two 1s⟩C) =
n∑
i=1

n∑
j>i

a2
i a

2
j (7.10)

(7.11)

For n-qubit GHZ-like states where |ψ⟩ ≠ |ϕ⟩, |ψ⟩ = α0 |0⟩n+α1 |1⟩n and |ϕ⟩ = β0 |0⟩n+

β1 |1⟩n:

P (|0⟩nC) = α2
0β

2
0 + α2

1β
2
1 + 1

2n (α0β1 + α1β0)2,

P (|odd no. of 1s⟩C) = 1
2 − 1

2(α0β0 + α1β1)2,

P (|even no. of 1s⟩C) = 2n−1 − 1
2n (α0β1 + α1β0)2. (7.12)

For n-qubit W-like states where |ψ⟩ = ∑n
i=1 ai |0...1i...0⟩, |ϕ⟩ = ∑n

j=1 bj |0...1j ...0⟩:

P (|0⟩nC) =
n∑
i=1

a2
i b

2
i + 1

4

n∑
j>i

(aibj + ajbi)2

 (7.13)

P (|0...1i...0⟩C) = 1
2
∑
j

(aibj − ajbi)2 (7.14)

P (|0...1i...1j ...0⟩C) = 1
4(aibj + ajbi)2 (7.15)

which total to

P (|exactly one 1⟩C) = 1
2

n∑
i=1

n∑
j>i

(aibj − ajbi)2

P (|exactly two 1s⟩C) = 1
4

n∑
i=1

n∑
j>i

(aibj + ajbi)2.
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