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Abstract

In this thesis we study the computational complexity of a number of graph
partitioning problems under a variety of input restrictions. Predominantly,
we research problems related to Colouring in the case where the input
is limited to hereditary graph classes, graphs of bounded diameter or some
combination of the two.

In Chapter 2 we demonstrate the dramatic e�ect that restricting our
input to hereditary graph classes can have on the complexity of a decision
problem. To do this, we show extreme jumps in the complexity of three
problems related to graph colouring between the class of all graphs and every
other hereditary graph class.

We then consider the problems Colouring and k-Colouring for H-
free graphs of bounded diameter in Chapter 3. A graph class is said to be
H-free for some graph H if it contains no induced subgraph isomorphic to
H. Similarly, G is said to be H-free for some set of graphs H, if it does not
contain any graph in H as an induced subgraph. Here, the set H consists
usually of a single cycle or tree but may also contain a number of cycles, for
example we give results for graphs of bounded diameter and girth.

Chapter 4 is dedicated to three variants of the Colouring problem,
Acyclic Colouring, Star Colouring, and Injective Colouring.
We give complete or almost complete dichotomies for each of these decision
problems restricted to H-free graphs.

In Chapter 5 we study these problems, along with three further variants of
3-Colouring, Independent Odd Cycle Transversal, Independent
Feedback Vertex Set and Near-Bipartiteness, for H-free graphs of
bounded diameter.

Finally, Chapter 6 deals with a di�erent variety of problems. We study
the problems Disjoint Paths and Disjoint Connected Subgraphs for
H-free graphs.
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Chapter 1

Introduction

A graph is a computational model encoding relationships between pairs of
objects. The `objects' in this model are known as vertices whilst the rela-
tionships between them are represented by edges.

In some applications these relationships indicate links between objects,
for example we may construct a graph with a vertex set consisting of users
in a social network such that two users are joined by an edge if they are
directly linked within the network. Alternatively, an edge may represent a
con�ict between two objects. For instance, consider a graph modelling a set
of tasks to be completed. Each task is represented by a vertex, with two
vertices joined by an edge if their corresponding tasks cannot be completed
simultaneously.

The problems considered in this thesis arise mainly in graphs modelling
situations of the second kind. We consider vertex partitioning problems
where the objective is to divide the vertices of a graph into disjoint sets in a
way which satis�es some particular properties.

The most famous of these problems is graph colouring, where the objective
is to partition the vertices of a graph into the fewest possible distinct classes,
known as colour classes, such that there is no edge between any two vertices
belonging to the same colour class. This problem arises in a number of
practical and theoretical settings but is said to have been �rst introduced by
Francis Guthrie in attempting to colour a map of the counties of England
[95].

Map colouring provides some of the most famous problems in graph
colouring, for example the Four Colour Theorem proved by Appel and Haken
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[7] which states that any planar graph can be coloured using only four colours.
Informally, this means that four colours are su�cient to colour the countries
of any realistic map such that no nations sharing a border receive the same
colour. Additionally, colouring and its variants are useful in a variety of other
settings such as scheduling, register allocation and frequency assignment.

In this thesis we study graph colouring alongside related variants such as
acyclic colouring, star colouring and injective colouring. These variants each
ask for a colouring of a graph whilst placing certain additional requirements
on the partition.

Our focus is on the computational complexity of these problems. Specif-
ically, each of the problems we study is known to be computationally hard
in the general case where any graph is allowed as an input. We consider
the e�ect of placing certain restrictions on the set of allowable input graphs,
determining conditions under which each problem either becomes e�ciently
solvable or remains computationally hard.

Before presenting our results, we introduce the necessary terminology and
notation.

1.1 Basic Graph Terminology

A graph is an ordered pair (V,E) where V is a set whose elements are called
the vertices of G and E is a set of unordered pairs uv of vertices in V known
as edges. We say that an edge e is incident to a vertex v if v belongs to e.
Given an edge uv, the vertices u and v are called the endpoints of e and
are said to be adjacent. Note that some de�nitions of E allow self loops,
where an edge consists of a single vertex whereas we consider only pairs of
distinct vertices. Similarly, in some settings graphs are directed, that is its
edges are ordered pairs, whilst the graphs considered here are undirected.
One variation which is occasionally used here allows the same edge to appear
multiple times in a graph. In other words E is a multi-set. For a graph
G = (V,E) we call V the vertex set of G and E the edge set. Additionally,
we let n = |V | be the number of vertices of G and m = |E| the number of
edges.

The degree of a vertex is the number of edges incident to it. We denote
the minimum degree of a vertex in G by δ(G) and the maximum degree by
∆(G). A vertex of degree 1 is called a pendant vertex or a leaf. If every
vertex of a graph G has degree p then G is said to be p-regular. The open
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neighbourhood N(v) of a vertex is the set of vertices to which it is adjacent.
The closed neighbourhood N [v] is the open neighbourhood together with v
itself. To identify two vertices u and v, we delete them both and add a new
vertex z with neighbourhood N(u)∪N(v). If u and v are adjacent then this
operation is known as edge contraction. To subdivide an edge uv, we delete
the edge uv and add a new vertex z adjacent to both u and v.

A graph H is said to be a subgraph of another graph G if H can be
obtained from G by deleting some combination of vertices and edges. A
subgraph H of G is induced if it can be obtained by deleting only vertices.
We write H ⊆ G to denote that H is a subgraph of G and H ⊆i G to denote
that H is an induced subgraph of G. For S ⊂ V (G) we let G[S] denote
the subgraph of G induced by the vertices in S and G − S the subgraph
of G induced by the vertices of V (G) \ S. Two graphs G and H are called
isomorphic if there exists a bijection f : V (G) → V (H) such that uv is an
edge of G if and only if f(u)f(v) is an edge of H.

A path Pn is a graph with vertex set V = {x1, . . . , xn} and edge set
E = {xixi+1 : 1 ≤ i ≤ n− 1} . The length of a path is the number of
its edges. A cycle is a graph with vertex set V = {x1, . . . , xn} and edge set
E = {x1xn}∪{xixi+1 : 1 ≤ i ≤ n− 1}. A graph G is a forest if it contains no
cycles. It is bipartite if it contains no cycles of odd length. In other words,
G is bipartite if it can be partitioned into two parts A and B such that
G[A] and G[B] are independent. The girth of G is the length of its shortest
cycle. The disjoint union of two vertex-disjoint graphs F and G is the graph
G + F = (V (F ) ∪ V (G), E(F ) ∪ E(G)). The disjoint union of s copies of a
graph G is denoted sG. A linear forest is the disjoint union of paths.

A graph G is connected if there exists a path between every pair of its
vertices. For a disconnected graph G, the maximal connected subgraphs of
G are called connected components. A connected forest is called a tree. The
distance between two vertices is the minimum length of a path between them.
The diameter of a graph G is the maximum, over all pairs uv, of the distance
between u and v.

The complement Ḡ = (V, Ē) of a graph G = (V,E) is a graph with the
same vertex set V and with edge set Ē such that, for u 6= v, uv ∈ Ē if and
only if uv /∈ E. A vertex u dominates G if uv ∈ E for every v ∈ V (G) \ u. A
matching in a graph G is a set of edges such that each vertex of G belongs
to at most one edge. A matching is perfect if every vertex belongs to exactly
one edge.

The graph Kn, known as the complete graph, is a graph on n vertices
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whose edge set consists of all possible edges. A set of vertices in a graph
G inducing a complete graph is called a clique. Conversely, the graph rP1

is a graph on r vertices whose edge set is empty. A set of vertices inducing
rP1 is called an independent set. The Ramsey number R(k, l) is the mini-
mum integer n such that any graph on at least n vertices contains either an
independent set of size k or a clique of size l.

The line graph L of a given graph G is a graph with one vertex for
each edge of G such that two vertices are adjacent in L if and only if the
corresponding edges in G share an endpoint. The complete bipartite graph,
or biclique, denoted Ki,j, is a bipartite graph where one part A has size i,
the other part B has size j and every vertex of A is adjacent to every vertex
of B. In particular the graph K1,3 is known as the claw whilst graphs of the
form K1,r for some integer r are called stars. These graphs are examples of
polyads, that is they are trees with exactly one vertex of degree at least 3.
Another important family of polyads consists of subdivided stars K l

1,r. These
are graphs formed from the star K1,r by subdividing one edge l times. For
example the graph K1

1,3 is known as the chair. One well known fact which is
used throughout this thesis is that line graphs do not contain claws as induced
subgraphs. To see this, note that if three edges each share an endpoint with
a fourth then at least two of them must also share an endpoint.

Figure 1.1: Left: The graph known as the claw. Right: The graph known as

the chair.

1.2 Graph Partitioning Problems

In this section we de�ne many of the decision problems studied in this thesis.
A (vertex) colouring of a graph G = (V,E) is a mapping c : V → {1, 2, . . .}

11



that assigns each vertex u ∈ V a colour c(u) in such a way that c(u) 6= c(v)
whenever uv ∈ E. The set of vertices for which c(v) = i is known as the
colour class i. If 1 ≤ c(u) ≤ k, then c is said to be a k-colouring of G and
G is said to be k-colourable. This leads to the following two NP-complete
decision problems [39].

colouring
Instance: A graph G, integer k
Question: Is G k-colourable?

If k is �xed, that is, k is not part of the input, we denote the problem by
k-Colouring.

k-colouring
Instance: A graph G
Question: Is G k-colourable?

The smallest integer k for which a graph G is k-colourable is known as the
chromatic number of G.

We now consider a well known generalisation of Colouring called List
Colouring. A list assignment of a graph G = (V,E) is a function L which
assigns to each vertex a list of available colours L(v). If L(v) ⊂ {1 . . . k} for
each v ∈ V then L is a k-list assignment. The size of a list assignment is the
maximum over all vertices of |L(v)|. The problem List Colouring is to
decide, given as input a graph G with a list assignment L, does there exist a
colouring c of G which respects L?

List Colouring
Instance: A graph G with a list assignment L
Question: Is there a colouring c of G such that c(v) ∈ L(v) for

every v ∈ V ?

For �xed k, we obtain the problem k-List Colouring problem.

k-list colouring
Instance: Graph G with a list assignment L of size k
Question: Is there a colouring c of G such that c(v) ∈ L(v) for

every v ∈ V ?

If L assigns every vertex a list from the set {1, 2 . . . k} we obtain the List-k
Colouring problem.
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List-k-Colouring
Instance: Graph G with a list assignment L such that L(v) ⊆

{1, 2 . . . k}
Question: Is there a colouring c of G such that c(v) ∈ L(v) for

every v ∈ V ?

Note that any instance of k-Colouring corresponds to an instance of
List k-Colouring where each vertex is assigned the list {1, 2, . . . k}. Simi-
larly, every instance of List k-Colouring is an instance of k-List Colour-
ing. Therefore, a polynomial-time result for k-List Colouring leads to
polynomial results for the �rst two problems whilst an NP-completeness re-
sult for k-Colouring guarantees hardness for the second two.

Next we consider three variants of the colouring problem. A colouring
c of a graph G is called acyclic if c assigns at least three di�erent colours
to every cycle in G. This leads to the following two decision problems, �rst
studied in [45]. These problems are shown to be NP-complete [61] and [2].

Acyclic Colouring
Instance: A graph G, Integer k
Question: Does there exist an acyclic k-colouring of G?

Acyclic k-colouring
Instance: A graph G
Question: Does there exist an acyclic k-colouring of G?

A colouring c is called a star colouring if additionally every path of length 3
is assigned at least three di�erent colours. This problem is �rst studied in
[27]. Again, this gives rise to two decision problems.

Star Colouring
Instance: A graph G, an integer k
Question: Does there exist a star k-colouring of G?

Star k-colouring
Instance: Graph G
Question: Does there exist a star k-colouring of G?

Finally, c is called injective if every path of length 2 is assigned at least three
di�erent colours. Note that this problem is also known in the literature as
distance 2 colouring or L(1, 1)-labelling. Once again we obtain two decision
problems which are known to be NP-complete [77].
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Injective Colouring
Instance: A graph G, an integer k
Question: Does there exist an injective k-colouring of G?

Injective k-colouring
Instance: A graph G
Question: Does there exist an injective k-colouring of G?

Another variant of the the colouring problem is the distance constrained
labelling framework. See [22] for a survey. An L(a1 . . . ap)-k-labelling of a
graph G is an assignment of the labels {1 . . . k} to the vertices of G such
that, for 1 ≤ i ≤ p, whenever there is a path of length i between two vertices
u and v, their labels di�er by at least ai. For example, as noted above,
injective colouring is equivalent to L(1, 1)-labelling. Just as for our previous
colouring variants, this leads to two decision problems.

L(a1 . . . ap)-labelling

Instance: A graph G, an integer k
Question: Does G have an L(a1 . . . ap)-labelling with k labels?

L(a1 . . . ap)-k-labelling

Instance: A graph G
Question: Does G have an L(a1 . . . ap)-labelling with k labels?

The �nal group of problems we consider can be seen as variants of the
3-colouring problem. A graph G is near-bipartite if it's vertex set can be
partitioned into an independent set I and a forest F . Observe that I together
with any 2-colouring of F gives a 3-colouring of G with the property that
some pair of its colour classes induce a forest. The set I is known as an
independent feedback vertex set. We now de�ne two decision problems which
are shown to be NP-complete in [18].

Near-Bipartiteness
Instance: A graph G
Question: Is G near-bipartite?

Independent Feedback Vertex Set
Instance: A graph G, an integer k
Question: Does G have an independent feedback vertex set of

size at most k?
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A subset S of V is an independent odd cycle transversal if S is an inde-
pendent set and G− S is bipartite. Note that a graph is 3-colourable if and
only if it has an independent odd cycle transversal. The problem Indepen-
dent Odd Cycle Transversal can then be viewed as the question of
whether a graph G has a 3-colouring where one of the colour classes has at
most some given size. See [76] for further information on this problem which
is also known as Stable Bipartization.

Independent Odd Cycle Transversal
Instance: A graph G, an integer k
Question: Does G have an independent odd cycle transversal

of size at most k?

1.3 Special Graph Classes

The problems described above are known to be in NP-complete in the gen-
eral case. The goal of this thesis is to investigate them in restricted set-
tings, enhancing our understanding of the reasons for computational hard-
ness by establishing possible boundaries between polynomial-time solvability
and NP-completeness.

To do this, we restrict our inputs to graphs belonging to particular classes.
Predominantly, we consider classes of H-free graphs. A graph G is said to
be H-free if it contains no induced subgraph isomorphic to H. Similarly, G
is H-free for some set of graphs H if it contains none of the graphs in H.
For example the class of graphs of girth at least g is equivalently the class
of (C3, . . . , Cg−1)-free graphs. We may also consider the case where H is an
in�nite set. For example bipartite graphs are the class of graphs which are
H-free where H is the set of all odd cycles.

A graph class is called hereditary if and only if it is closed under vertex
deletion. One reason for studying H-free graphs is the well known fact that
a graph class is hereditary if and only if it can be de�ned as the set of H-free
graphs for some, possibly in�nite, set H. In this case the set H is known
as the minimal set of forbidden induced subgraphs for the given graph class.
Here we focus mainly on the cases |H| = 1 and |H| = 2 but also consider
other classes such as graphs of high girth and bipartite graphs.

The main non-hereditary property considered in this thesis is diameter.
We often consider bounding the diameter in addition to restricting our inputs
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to H-free graphs, either because the problem remains NP-complete for H-free
graphs or because results for H-free graphs remain elusive.

1.4 Thesis Overview

In the remainder of this thesis we consider the colouring problem and its vari-
ants under various restrictions, considering H-free graphs, graphs of bounded
diameter or combinations of the two.

First, in Chapter 2, we illustrate our reasoning for studying hereditary
graph classes. We provide examples of extreme jumps in complexity when
the input is restricted from the class of all graphs to any other hereditary
graph class. The results in this chapter are taken from [75].

In Chapter 3 we consider the Colouring and k-Colouring prob-
lems for H-free graphs of bounded diameter. In particular, we present new
polynomial-time and NP-completeness results for graphs of bounded diame-
ter and girth as well as for polyad-free graphs of bounded diameter. We also
consider List 3-Colouring for H-free graphs where H consists of either
one or two short cycles. The results presented here are published in [73] and
[74].

Chapter 4 is dedicated to studying acyclic, star and injective colouring for
H-free graphs. In the case where k is �xed we provide a complete complexity
dichotomy for each problem. When k is part of the input we leave �nitely
many open cases for each problem. The results in this chapter are taken from
[11] which is a journal article based on two conference papers, [12] and [13].

In Chapter 5 we consider variants of the colouring problem for graphs of
bounded diameter. Polynomial-time results are obtained for chair-free graphs
for several variants of the 3-colouring problem. Meanwhile we provide NP-
completeness results for L(1, 2)-labelling graphs of diameter at most 2. The
results of this chapter are taken from [19] and [20].

Chapter 6 deals with a di�erent variety of problems, Disjoint Paths
and Disjoint Connected Subgraphs. The chapter begins by introduc-
ing the required de�nitions and terminology. We then completely classify
the complexity of k-Disjoint-connected subgraphs for H-free graphs.
We also determine the complexity of Disjoint Paths and Disjoint Con-
nected Subgraphs for all but three open cases. The results in this chapter
are published in [58].
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Chapter 2

The Power of Input Restrictions

Here we consider a number of problems related to Colouring, exhibiting
extreme jumps in complexity between the class of all graphs and any other
hereditary graph class. In Section 2.1 we introduce the Colouring-or-
Subgraph problem and show that it is NP-hard in general but constant-time
solvable in any hereditary class not equal to the class of all graphs. In Section
2.2 we present the problem Colour-Path-or-Subgraph and show that its
complexity jumps from PSPACE-completeness for the class of all graphs to
constant-time solvability for any other hereditary class. Finally, in Section
2.3, we introduce the problem Succinct Colouring-or-Subgraph and
show that, whilst it is NEXPTIME-complete in general, it is constant-time
solvable for any other hereditary graph class.

Before doing so, we introduce some further notions in computational com-
plexity. In Chapter 1 we introduced the complexity classes P and NP along
with the concept of NP-completeness. Expanding upon this, a computa-
tional problem Π is NP-hard if there is a polynomial-time reduction from
every problem in NP to Π.

The complexity class PSPACE is the class of all problems solvable using
a polynomial amount of space. PSPACE-completeness is de�ned analogously
to NP-completeness. Meanwhile, the class ΣP

2 consists of languages L such
that there exists a polynomial-time predicate P and a polynomial q such that
a string x belongs to L if and only if there exists a string y of length q(|x|)
such that for every string z of length q(|x|), P (x, y, z) = 1.

The complexity class EXPTIME is the class of all problems solvable in
exponential time, in other words in time 2n

O(1)
. The class NEXPTIME is then
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de�ned analogously to the class NP with NEXPTIME-completeness de�ned
analogously to NP-completeness.

2.1 NP-Hardness: Graph Colouring

We de�ne the following decision problem and then present our �rst result,
whose proof will serve as a basis for our other proofs.

Colouring-or-Subgraph
Instance: An n-vertex graph G
Question: Is G d

√
log ne-colourable or H-free for some graph

H with |V (H)| ≤ d
√

log ne?

Theorem 2.1. The Colouring-or-Subgraph problem is NP-hard, but

constant-time solvable for every hereditary graph class not equal to the class

of all graphs.

Proof. To prove NP-hardness we reduce from 3-Colouring, which we recall

is NP-complete [68]. Let G be an n-vertex graph. Set p = d
√

log 3ne. We

may assume without loss of generality that p ≥ 4. Add a clique on p − 3

vertices to G. Make the new vertices also adjacent to every vertex of G. We

denote the new graph by G∗. Let {H1, . . . , Hr} be the set of all graphs with
exactly p vertices. We now de�ne the graph G′ as the disjoint union of G∗

and the graphs H1, . . . , Hr; see also Figure 6.2. Note that the number of

vertices of the graph H1 + . . .+Hr is at most p2
p(p−1)

2 ≤ d
√

log 3ne ·
√

3n ≤ n

as p ≥ 4. This implies that the number of vertices in G′ is

|V (G′)| = |V (G)|+ p− 3 + |V (H1)|+ . . .+ |V (Hr)| ≤ n+ (p− 3) + n < 3n.

In particular, the above shows that the number of vertices in G′ is bounded

by a polynomial in n. We now add 3n− |V (G′)| isolated vertices to G′ such

that G′ has exactly 3n vertices.

We claim that G is 3-colourable if and only if G′ is a is a yes-instance

of Colouring-or-Subgraph. First suppose that G is 3-colourable. We
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give each of the p − 3 vertices of G∗ that is not in G a unique colour from

{4, . . . , p}. As G is 3-colourable, we �nd that G∗ is p-colourable. As G′ is the

disjoint union of G∗ and the graphs H1, . . . , Hr (and some isolated vertices,

which we give colour 1), we must now consider the graphs H1, . . . , Hr. By

construction, each Hi has p vertices, so we can give each vertex of each Hi

a colour from {1, . . . , p} that is not used on any other vertex of Hi. Hence,

we �nd that G′ is p-colourable. As p = d
√

log 3ne = d
√

log |V (G′)|e, this
implies that G′ is a yes-instance of Colouring-or-Subgraph.

Now suppose that G′ is a yes-instance of Colouring-or-Subgraph.

Recall that G′ is the disjoint union of the graph G∗, the graphs H1, . . . , Hr

and some isolated vertices, and recall also that the graphs H1, . . . , Hr are

all the graphs on exactly p vertices. Hence, G′ contains every graph on at

most p vertices as an induced subgraph. In other words, G′ is not H-free

for some graph H with |V (H)| ≤ p. As G′ is a yes-instance of Colouring-

or-Subgraph and p = d
√

log 3ne = d
√

log |V (G′)|e, this means that G′

must be p-colourable. As the p − 3 vertices of V (G∗) \ V (G) form a clique,

we may assume without loss of generality that they are coloured 4, . . . , p,

respectively. All these p− 3 vertices are adjacent to every vertex of G in G∗.

Consequently, every vertex of V (G) must have received a colour from the set

{1, 2, 3}. Hence, G is 3-colourable.

We now prove the second part of the theorem. Let G be a hereditary graph

class that is not the class of all graphs. Then there exists at least one graph

H such that every graph G ∈ G is H-free. Let ` = |V (H)|. We claim that

Colouring-or-Subgraph is constant-time solvable for G. Let G ∈ G be

an n-vertex graph. If n ≤ 2`
2
, then G has constant size and the problem is

constant-time solvable. If n > 2`
2
, then

|V (H)| = ` <
√

log n ≤ d
√

log ne.

Hence G is a yes-instance of Colouring-or-Subgraph, as G is H-free and

H has at most d
√

log ne vertices.
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G H1 H2 . . . Hr

Figure 2.1: An example of a graph G′,where p = 6. The graph G∗ is the

connected component on the left. Not all vertices of the subgraph G of G∗

are drawn and not all graphs Hi on p vertices are displayed.

We do not know if Colouring-or-Subgraph is in NP = ΣP
1 . The problem

arises when we try to check if an input G is H-free for some particular H, of
size (say) d

√
log ne, which takes time nd

√
logne by brute force. Note that it is

crucial for our proof that the size of H depends on a function of n. We can
however show that the problem belongs to the class ΣP

2 .

Theorem 2.2. Colouring-or-Subgraph is in ΣP
2 .

Proof. We can verify whether an input G is d
√

log ne-colourable in NP.

Let us explain how to verify if G is H-free for some graph H such that

|V (H)| ≤ d
√

log ne. Plainly, we can guess existentially the graph H whose

vertices are ordered u1, . . . , u|V (H)|. Now we guess universally |V (H)| ver-
tices v1, . . . , v|V (H)| in G. Finally, we test whether the respective map of

u1, . . . , u|V (H)| to v1, . . . , v|V (H)| has the property that uiuj is an edge in H if

and only if vivj is an edge in G. The latter can be accomplished in polynomial

time and we are done.

2.2 PSPACE: Graph Colouring Recon�guration

Let G = (V,E) be a graph. A clique is a set of pairwise adjacent vertices in G.
The set of neighbours of a vertex v ∈ V is denoted by NG(v) = {u | uv ∈ E}.
The k-colouring recon�guration graph Rk(G) of G is the graph whose vertices
are k-colourings of G and two vertices are adjacent if and only if the two
corresponding k-colourings di�er on exactly one vertex of G. In the following
problem, k is a �xed constant, that is, k is not part of the input.
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k-Colour-Path
Instance: A graph G with two k-colourings α and β.
Question: Does Rk(G) contain a path from α to β?

Bonsma and Cereceda [17] proved that 3-Colour-Path is polynomial-
time solvable, but for k ≥ 4 they showed the following result, which holds
even for bipartite graphs and which we will need in the next section.

Theorem 2.3 ([17]). For every integer k ≥ 4, the k-Colour-Path problem

is PSPACE-complete.

We de�ne the following problem.

Colour-Path-or-Subgraph
Instance: an n-vertex graph G with two p-colourings α and β

for p = d
√

log ne.
Question: Does Rp(G) contain a path from α to β, or does

there exist a graph H with |V (H)| ≤ p such that G
is H-free ?

Theorem 2.4. Colour-Path-or-Subgraph is PSPACE-complete, but

constant-time solvable for every hereditary graph class not equal to the class

of all graphs.

Proof. Let (G,α, β) be an instance of Colour-Path-or-Subgraph, where

G is a graph on n vertices. Set p = d
√

log ne. We can check if Rp(G)

contains a path from α to β using a polynomial amount of space using the

same proof as used in Theorem 2.3 for 4-Colour-Path [17]. So we �rst

prove membership to NPSPACE. As a certi�cate we can take a sequence of p-

colourings of G and check in polynomial space if this sequence is an α−β path

in Rp(G): check if the �rst p-colouring is α; then check if the next p-colouring

di�ers exactly at one place from the previous p-colouring and if so continue;

�nally check if the last p-colouring is β. Now, as PSPACE=NPSPACE due

to Savitch's Theorem [86], this part of the problem belongs to PSPACE.

Moreover, it also takes a polynomial amount of space to enumerate all graphs
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H with |V (H)| ≤ d
√

log ne and check if G is H-free by brute force. We

conclude that Colour-Path-or-Subgraph belongs to PSPACE.

To prove PSPACE-hardness, we reduce from 4-Colour-Path, which is

PSPACE-complete by Theorem 2.3. Let (G,α, β) be an instance of 4-Colour-

Path, where G is an n-vertex graph and α and β are 4-colourings of G. We

now set p = d
√

log 3ne. We may assume without loss of generality that p ≥ 5.

From (G,α, β) we construct an instance (G′, α′, β′) of Colour-Path-or-

Subgraph. We �rst de�ne a graph G∗ as follows (see also Figure 2.2):

� take G;

� add a clique K of p− 4 vertices x1, . . . , xp−4;

� make each vertex of K adjacent to every vertex of G;

� add a clique L of four vertices y1, . . . , y4;

� make each vertex of L adjacent to every vertex of K (so K ∪ L is a

p-vertex clique and no vertex of L is adjacent to a vertex of G);

Let {H1, . . . , Hr} be the set of all graphs with exactly p vertices and note that

the number of vertices ofH1+. . .+Hr is at most p2
p(p−1)

2 ≤ d
√

log 3ne·
√

3n ≤
n as p ≥ 5. We now de�ne the graph G′ as the disjoint union of G∗ and the

graphs H1, . . . , Hr; see also Figure 2.2. Note that:

|V (G′)| = |V (G)|+|K|+|L|+|V (H1)|+. . .+|V (Hr)| ≤ n+p−4+4+n < 3n.

By adding isolated vertices we may assume that |V (G′)| = 3n.

We now de�ne α′ and β′ as p-colourings of G′:

� let α′ = α and β′ = β on G;

� for h ∈ {1, . . . , 4}, let α′(yh) = β′(yh) = h;

� for i ∈ {1, . . . , p− 4}, let α′(xi) = β′(xi) = i+ 4;
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. . .

x1 . . . xp−4

y1 y2 y3 y4

α′ ≡ β′

α′ ≡ β′

α′ ≡ β′

G H1 H2 . . . Hr

Figure 2.2: The graph G′. The graph G∗ is the connected component on the

left. By construction, it holds that α′ ≡ β′ on V (G′) \ V (G).

� for j ∈ {1, . . . , r}, let V (Hj) = {zj1, . . . , zjs} and let for q ∈ {1, . . . , p},
α′(zjq) = β′(zjq) = q.

We set α′(u) = β′(u) = 1 for each isolated vertex u of G′ that we have not

yet coloured. By construction, α′ and β′ are p-colourings of G′, in particular

because every Hj has p vertices. We claim that (G,α, β) is a yes-instance

of 4-Colour-Path if and only if (G′, α′, β′) is a yes-instance of Colour-

Path-or-Subgraph.

First suppose that (G,α, β) is a yes-instance of 4-Colour-Path. Then

there exists a path from α to β in R4(G). We mimic this path in Rp(G
′), as

we can keep the colour α′(u) = β′(u) of each vertex u of G′ that does not

belong to G the same. Hence, (G′, α′, β′) is a yes-instance of Colour-Path-

or-Subgraph.

Now suppose that (G′, α′, β′) is a yes-instance of Colour-Path-or-

Subgraph. By construction, G′ contains every graph on p vertices, and thus

every graph on at most p vertices, as an induced subgraph. As (G′, α′, β′)

is a yes-instance of Colour-Path-or-Subgraph and p = d
√

log 3ne =
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d
√

log |V (G′)|e, this means that Rp(G
′) contains a path α′γ′1 · · · γ′tβ′ from

α′ to β′. As α′ coincides with β′ on every Hj, we may assume without

loss of generality that for every i ∈ {1, . . . , t} and every vertex z of ev-

ery graph Hj, γ′i(z) = α′(z) = β′(z). Moreover, for every vertex v of the

clique K ∪ L, the set of colours used by both α′ and β′ on the vertices of

N(v)∪{v} = {1, . . . , p}. Hence, these vertices are �frozen�, that is, we cannot
change their colour, so for every i ∈ {1, . . . , t} and every v ∈ K ∪ L we have

that γ′i(v) = α′(v) = β′(v). Let γi be the restriction of γ′i to V (G). Then,

from the above, we conclude that αγ1 · · · γtβ corresponds to a path from α

to β in R4(G). Hence, (G,α, β) is a yes-instance of 4-Colour-Path.

We now prove the second part of the theorem. Let G be a hereditary graph

class that is not the class of all graphs. Then there exists at least one graph

H such that every graph G ∈ G is H-free. Let ` = |V (H)|. We claim that

Colour-Path-or-Subgraph is constant-time solvable for G. Let G ∈ G be

an n-vertex graph and let α and β be two p-colourings of G. If n ≤ 2`
2
, then

G has constant size and the problem is constant-time solvable. If n > 2`
2
,

then

|V (H)| = ` <
√

log n ≤ d
√

log ne.

Hence, (G,α, β) is a yes-instance of Colour-Path-or-Subgraph, as G is

H-free and H has at most d
√

log ne vertices.

2.3 NEXPTIME: Succinct Graph Colouring

A Boolean circuit φ(x1, . . . , xm, y1, . . . , ym) with 2m variables de�nes a graph
G on 2m vertices, represented by vectors (x1, . . . , xm) of length m, according
to the rule that there is an edge (x1, . . . , xm)(y1, . . . , ym) between two vertices
(x1, . . . , xm) and (y1, . . . , ym) if and only if φ(x1, . . . , xm, y1, . . . , ym) is true.
This allows that some graph families with an exponential number of vertices
2m can be expressed by circuits of size polynomial in m. Plainly, this can
not be the case in general and indeed graphs whose vertex set is not of size a
power of 2 can only be expressed up to the addition of extra isolated vertices.
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Let us note how any graph on n vertices can be expressed by a circuit with
2n variables that has size at most 2n3 in what we call the (naive) longhand
method. We will apply this method in the proof of the result in this section.
The n vertices are represented by vectors of length n, namely as

(1, 0, . . . , 0, 0), (0, 1, . . . , 0, 0), . . . , (0, 0, . . . , 0, 1),

and all of the remaining 2n − n vertices are isolated. If we have an edge ij,
then this adds a new disjunction to the circuit of the form

xi ∧ yj ∧
∧

i 6=`∈[n]

¬x` ∧
∧

j 6=`∈[n]

¬y`.

Thus, the circuit is in fact in disjunctive normal form.
Suppose we have a graph G represented by a Boolean circuit denoted

φ(x1, . . . , xm, y1, . . . , ym). We can add k vertices to it, again in a longhand
way, by expanding the number of variables from 2m to 2(m + k). In line
with our previous longhand method, all vertices other than those of the form
(x1, . . . , xm, 0, . . . 0) (the original vertices of G) and the k new vertices of the
form

(

m times︷ ︸︸ ︷
0, . . . , 0 ,

k times︷ ︸︸ ︷
1, 0, . . . , 0, 0)
...

(

m times︷ ︸︸ ︷
0, . . . , 0 ,

k times︷ ︸︸ ︷
0, 0, . . . , 0, 1)

are isolated. It is known that the problem Succinct 3-Colouring, which
takes as input a Boolean circuit φ(x1, . . . , xm, y1, . . . , ym) de�ning a graph G
on 2m vertices, and has yes-instances precisely those such that G is properly
3-colourable, is NEXPTIME-complete. For a proof of this result together
with a discussion on succinctly encoded problems we refer to [83]. We wish
to consider the following variant of the problem.

Succinct Colouring-or-Subgraph
Instance: a Boolean circuit φ(x1, . . . , xm, y1, . . . , ym) de�ning

a graph G on 2m vertices
Question: is G d

√
logme-colourable or H-free for some graph

H with |V (H)| ≤ d
√

logme?
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Note that, relative to Colouring-or-Subgraph, the number of vertices of
the graph was mapped to half the number of variables in the circuit.

Theorem 2.5. The Succinct Colouring-or-Subgraph problem is

NEXPTIME-complete, but constant-time solvable for every hereditary graph

class not equal to the class of all graphs.

Proof. We �rst argue for NEXPTIME membership. Let G = (V,E) be a

succinct graph on 2m vertices that is de�ned by the following Boolean circuit

φ(x1, . . . , xm, y1, . . . , ym). Let p = d
√

logme. The question as to whether

G is p-colourable can be solved in NEXPTIME by guessing the colouring

and checking whether adjacent vertices are coloured distinctly. For checking

whether G is H-free for some graph H with |V (H)| ≤ p, it su�ces to consider

only graphsH on exactly p vertices. This can be answered, even in EXPTIME,

by the following naive algorithm that checks all possibilities of choosing such

a graph H one by one. To analyze the running time of this algorithm we

observe the following:

1. the number of graphs on p vertices is at most 2
p(p−1)

2 ≤ m; and

2. checking if a graph H with p vertices is isomorphic to an induced sub-

graph of G takes O(p2|V |p) = O(logm · 2md
√

logme = O(2m
2
) time (we

can consider all mappings from H to G by brute force and for each of

them we check if edges of H map to edges of G).

Hence, the total running time of the naive algorithm for checking if G has

no graph H on p vertices is O(m2m
2
).

To prove NEXPTIME-hardness we reduce from the problem Succinct

3-Colouring. Let G be a succinct graph de�ned by a Boolean circuit

φ(x1, . . . , xm, y1, . . . , ym). We now set p = d
√

log 3me. Add p − 3 pairwise

adjacent vertices to G in the longhand manner discussed above, so the in-

crease in size is at most 2(p − 3)3 ≤ 2 log 3m
√

log 3m. We will make the
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new vertices also adjacent to every vertex of G. We can specify the latter

by adding to φ a series of disjuncts for each j ∈ {1, . . . , p − 3}, each with

2(p− 3) variables, encoding the conjunctions∧
1≤i≤p−3

¬xm+i ∧ ¬
∧

i 6=j∈{1,...,p−3}

¬ym+i ∧ ym+j,

of total size at most 2(p− 3)2 ≤ 2 log 3m.

We now consider the disjoint union G′ of the new graph and all possible

graphs on p vertices. Again we do this long hand, so for each graph on p

vertices we also add 2p − p isolated vertices to G′. This will require the

addition of at most 2p ·2
p(p−1)

2 ≤ 2m variables, for su�ciently large m, giving

a size increase of at most 16m3 as we work in longhand.

The circuit φ′ specifying G′ has at most 2m+2(p−3)+2m < 6m variables,

let us make it up to precisely 6m, half of which is 3m. Furthermore, it

is of size at most the size of φ plus O(m3). By construction, G′ contains

every graph on p vertices, and thus every graph on at most p vertices, as

an induced subgraph. Hence, we deduce in exactly the same way as in the

proof of Theorem 2.1 that G′ is a yes-instance of Succinct Colouring-

or-Subgraph if and only if G′ is p-colourable, and that the latter holds if

and only if G is 3-colourable.

We now prove the second part of the theorem. We do this in the same way as

before. Let G be a hereditary graph class that is not the class of all graphs.

Then there exists at least one graph H such that every graph G ∈ G is H-

free. Let ` = |V (H)|. We claim that Succinct Colouring-or-Subgraph

is constant-time solvable for G. Let G ∈ G be a graph given by a Boolean

circuit φ(x1, . . . , xm, y1, . . . , ym) which has 2m vertices. If m ≤ 2`
2
, then G

has constant size and the problem is constant-time solvable. If m > 2`
2
, then

|V (H)| = ` <
√

logm ≤ d
√

logme.

Hence G is a yes-instance of Succinct Colouring-or-Subgraph, as G

is H-free and H has at most d
√

logme vertices.
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Chapter 3

Colouring H-free Graphs of

Bounded Diameter

In this chapter we consider both the Colouring and k-Colouring prob-
lems for H-free graphs of bounded diameter. We �rst survey known results.
In Section 3.3 we examine the e�ect of bounding both the diameter and girth
of the input graph. In Section 3.4 we present both NP-completeness and
polynomial-time results for polyad-free graphs of bounded diameter. Finally,
in Section 3.5 we give both polynomial-time and NP-completeness results for
graphs avoiding one or two short cycles.

3.1 Known Results

The computational complexity of Colouring has been fully classi�ed for
H-free graphs in the following theorem of Kral et al.

Theorem 3.1 ([62]). If H is an induced subgraph of P1 + P3 or of P4, then

Colouring for H-free graphs is polynomial-time solvable, otherwise it is

NP-complete.

In contrast, the complexity classi�cation for k-Colouring restricted to
H-free graphs is still incomplete. It is known that for every k ≥ 3, k-
Colouring for H-free graphs is NP-complete if H contains a cycle [34] or
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an induced claw [50, 65]. However, the remaining case where H is a linear
forest has not been settled yet, even if H consists of a single path. For Pt-
free graphs, the cases k ≤ 2, t ≥ 1 (trivial), k ≥ 3, t ≤ 5 [48], k = 3,
6 ≤ t ≤ 7 [16] and k = 4, t = 6 [25] are polynomial-time solvable and the
cases k = 4, t ≥ 7 [52] and k ≥ 5, t ≥ 6 [52] are NP-complete. The cases
where k = 3 and t ≥ 8 are still open. For further details, including for linear
forests H of more than one connected component, see the survey paper [41]
or [24, 44, 60].

We remark that, unlike the class of H-free graphs, the class of H-free
graphs of diameter at most d for some integer d is not hereditary. We also
note that, by a straightforward reduction from 3-Colouring, one can show
that k-Colouring is NP-complete for graphs of diameter d for all pairs (k, d)
with k ≥ 3 and d ≥ 2 except for two cases, namely (k, d) ∈ {(3, 2), (3, 3)}.
Whilst the case (k, d) = (3, 2) is still open, Mertzios and Spirakis settled the
case (k, d) = (3, 3) by proving the following theorem:

Theorem 3.2 ([78]). 3-Colouring is NP-complete even for C3-free graphs

of diameter 3.

Regarding graphs of bounded diameter and girth, we also make use of the
following result. It includes the Ho�man-Singleton Theorem which provides
a description of regular graphs of diameter 2 and girth 5.

Theorem 3.3 ([31] [49] [91]). For every d ≥ 1, every graph of diameter d

and girth 2d+1 is p-regular for some integer p. Moreover, if d = 2, there are

only four possible values of p (2,3,7 and 57) and if d ≥ 3 then such graphs

are odd cycles of length 2d+ 1.

Finally, the polynomial-time results in this section are obtained using
the strategy of reducing an instance of List 3-Colouring to a polynomial
number of instances of 2-List Colouring which can be solved in linear
time due to the following well known theorem.

Theorem 3.4 ([33]). 2-List Colouring is linear-time solvable.

29



3.2 Our Results

We complement the bounded diameter results of Mertzios and Spirakis [78] by
presenting a set of new results for Colouring and k-Colouring for H-free
graphs of bounded diameter when H contains a claw or a cycle. Results for
the case where H has a cycle usually follow from stronger results for graphs
of girth at least g for some �xed integer g. In particular, Emden-Weinert,
Hougardy and Kreuter proved the following theorem.

Theorem 3.5 ([34]). For all integers k ≥ 3 and g ≥ 3, k-Colouring is

NP-complete for graphs with girth at least g and with maximum degree at

most 6k13.

First, in Section 3.3 we perform a similar study for graphs of bounded di-
ameter and girth. We provide new polynomial-time and NP-hardness results
for k-Colouring, identifying and narrowing the gap between tractability
and intractability, in particular for the case where k = 3 (see also Figure 3.2).

Second, in Section 3.4 we research the e�ect of bounding the diameter of
k-Colouring and Colouring restricted to polyad-free graphs for various
polyads. Our �rst result, which formed together with the result of [78] the
starting point of our investigation, is that k-Colouring is constant-time
solvable for K1,r-free graphs of diameter d for any �xed integers d ≥ 1, k ≥ 1
and r ≥ 1. We also show that this does not hold for Colouring (when k
is part of the input). We then extend these results for larger polyads; see
also Figure 3.1. We then focus on 3-Colouring for Cs-free or (Cs, Ct)-free
graphs of diameter 2 for small values of s and t; in particular for the case
where s = 4. In fact we prove our results for the more general problem
List 3-Colouring, whose complexity for diameter 2 is also still open. We
complement these results with an NP-completeness result for diameter 4.

3.3 Bounded Diameter and Girth

We now examine the trade-o�s for k-Colouring between diameter and
girth. Recall that Mertzios and Spirakis proved that 3-Colouring is NP-
complete for graphs of diameter at most 3 and girth at least 4 in Theorem
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Colours Diameter H-free Complexity Theorem

�xed k d K1,r P 3.7

input k d K1,4 NP-c 3.8

3 d K1
1,3 P 3.10(1)

3 2 K2
1,r P 3.10(2)

3 4 K3
1,4 NP-c 3.10(3)

4 2 K1
1,3 NP-c 3.10(4)

3 2 S1,2,2 P 3.11

Table 3.1: Our polynomial-time (P) and NP-complete (NP-c) results for

polyad-free graphs.

3.2. We extend this result in our next theorem. Note that there are still a
number of open cases where the complexity of 3-Colouring remains open
for graphs of diameter d and girth at least g.

Theorem 3.6. Let d, g, k be three integers with d ≥ 2, g ≥ 3 and k ≥ 3.

Then k-Colouring for graphs of diameter at most d and girth at least g is

1. Polynomial-time solvable if g ≥ 2d+ 1

2. NP-complete if d = 3 and g ≤ 4 and k = 3

3. NP-complete if 4p ≤ d ≤ 4p+ 3 and g ≤ 4p+ 2 for some integer p ≥ 1

and k = 3.

Proof. 1. This case follows from Theorem 3.3. 2. This case is Theorem 3.2.

3. We reduce 3-Colouring for graphs of girth at least 8p − 3, which is

NP-complete by Theorem 3.5, to 3-Colouring for graphs of diameter at

most 4p and girth at least 4p + 2. Construct the graph G′ as follows (see

Figure 3.1 for an example):

� label the vertices of G v1 to vn;
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PPPPPPPPPPP
diameter

girth
≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 10 ≥ 11 ≥ 12

≤ 1 P P P P P P P P P P

≤ 2 ? ? P P P P P P P P

≤ 3 NP-c NP-c ? ? P P P P P P

≤ 4 NP-c NP-c NP-c NP-c ? ? P P P P

≤ 5 NP-c NP-c NP-c NP-c ? ? ? ? ? P

Table 3.2: The complexity of 3-Colouring for graphs of diameter at most d

and girth at least g.

� for each vertex of G, add a new neighbour vi,1;

� for every two vertices vi and vj such that dist(vi, vj) > l = 2p− 1 add

new vertices to form the path vi,1vi,2,j...vi,p+1,jvj,p,i...vj,1.

First we show thatG′ has diameter at most 4p. For any two vertices vi and

vj of G either dist(vi, vj) ≤ l or we have the path vi,1vi,2,j...vi,p+1,jvj,p,i...vj,1

and dist(vi, vj) ≤ 2p+ 2. Similarly, dist(vi, vj,1) ≤ 2p+ 1 and dist(vi,1, vj,1) ≤
2p+ 1. Now consider two vertices va,r,b and vc,q,d for 2 ≤ r ≤ p+ 1, 2 ≤ q ≤
p + 1. If dist(va, vc) ≤ l then dist(va,r,b, vc,q,d) ≤ r + q + l ≤ (p + 1) + (p +

1) + (2p− 1) ≤ 4p+ 1.

Otherwise we have the path va,r,b..va,1va,2,c...va,p+1,cvc,p,a...vc,1vc,2,d...vc,q,d. This

gives dist(va,r,b, vc,q,d) ≤ (r − 1) + p+ p+ (q − 1) ≤ 4p.

In fact, if dist(va,r,b, vc,q,d) = 4p + 1, then we must have r = q = p + 1 and

dist(va, vc) = dist(va, vd) = dist(vb, vc) = dist(vb, vd) = 2p−1. In this case we

have two paths of length at most 4p−2 between va and vb, one containing vc
and the other containing vd. These paths must be distinct since the existence

of the vertex vc,p+1,d implies that dist(vc, vd) > 2p − 1. Therefore we have a

cycle in G of length at most 8p− 4 which contradicts the assumption that G

has girth at least 8p− 3. This implies that the diameter of G′ is at most 4p.

Since G has girth at least 8p − 3, every cycle in G′ of length less than

32



4p+2 must contain at least one vertex of V (G′)\V (G). Since all the vertices

of V (G′)\V (G) except the vertices vi,1 have degree 2, any such cycle C must

contain the path vi,1..vi,p+1,j...vj for some vi, vj at distance greater than

l. This path has length 2p + 1. If C contains vi,2,m for some m di�erent

from j then it contains the path vi,2,m...vm,1 and has length at least 4p + 2.

Similarly, this is the case if C contains vj,2,m form di�erent from i. Otherwise

C contains vi and vj which are at distance at least l and has length at least

(2p+ 1) + 2 + (2p− 1) = 4p+ 2.

Finally, we show that G is 3-colourable if and only if G′ is 3-colourable.

The latter holds if and only if the subgraph G′′ of G′ induced by V (G) ∪
{vi,1 | 1 ≤ i ≤ n} is 3-colourable, since every other vertex of G′ has degree 2.

The graph G is 3-colourable if and only if G′′ is 3-colourable, since G is

an induced subgraph of G′′ and each vertex of V (G′′) \ V (G) has degree 1.

Therefore, G is 3-colourable if and only if G′ is 3-colourable.

v1 v2 v3 v4

v1,1 v2,1 v3,1 v4,1

v1,2,4v1,2,3 v2,2,4

Figure 3.1: An example of a graph G′, constructed in the proof of Theo-

rem 3.6(3), for p = 1.
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3.4 Polyad-Free Graphs of Bounded Diameter

We �rst make an observation required for several of the proofs that follow.

Lemma 3.1. If G is a graph of diameter d that is not a tree, then G contains

an induced cycle of length at most 2d+ 1.

Proof. As G is not a tree and G is connected, G must contain a cycle C.

Suppose that C has length at least 2d + 2. Since G has diameter d, there

exists a path of length at most d in G between any two vertices u and v at

distance d + 1 in C. The vertices of this path, together with the vertices of

the path of length d+ 1 between u and v on C, induce a subgraph of G that

contains an induced cycle C ′ of length at most 2d+ 1.

We prove a second Lemma which we will use later.

Lemma 3.2. Let G be a non-bipartite graph of diameter 2. Then G contains

a C3 or induced C5.

Proof. As G is non-bipartite, G has an odd cycle. Let C be an odd cycle in

G of minimum length. Then C is induced; otherwise we would �nd a shorter

odd cycle. For contradiction, suppose that C has length at least 7. Consider

two vertices u and v at distance 3 in C. Then C contains a 4-vertex path

uxyv for some x, y ∈ V (C). As C is induced, u and v are non-adjacent.

Hence, there exists a vertex w not on C that is adjacent to u and v (as G

has diameter 2). Then the subgraph of G induced by {u, v, w, x, y} contains
a C3 or an induced C5, contradicting the minimality of C.

We now state our �rst result.

Theorem 3.7. For all integers d, k, r ≥ 1, k-Colouring is constant-time

solvable for K1,r-free graphs of diameter d.

Proof. Let G = (V,E) be a K1,r-free graph of diameter d. We prove that

if G has size larger than some constant β(k, r), which we determine below,
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then G is not k-colourable. If |V (G)| ≤ β(k, r), we can solve k-Colouring

in constant time.

As G is K1,r-free, Ramsey's Theorem tells us that the neighbourhood of

every vertex u ∈ V with degree at least R(k, r) contains a clique of size k.

In that case N(u) ∪ {u} is a clique of size k + 1. Hence, to be k-colourable,

every vertex of G must have degree less than R(k, r), so G must have at most

β(k, r) = 1 +R(k, r) +R(k, r)2 + . . .+R(k, r)d vertices.

The following theorem demonstrates that this result no longer holds if k
is part of the input. Note that we exclude graphs H ⊆i P1 +P3 and H ⊆i P4

since Colouring is polynomial-time solvable for H-free graphs of this form.
Also note that the only graph H whose complexity is not classi�ed for any
diameter d in this theorem is H = K1,3.

Theorem 3.8. Let H be a graph with H 6⊆i P1 + P3 and H 6⊆i P4 and d be

an integer. Then Colouring for H-free graphs of diameter at most d is

1. NP-complete if H has no dominating vertex u such that H−u ⊆i P1+P3

or H − u ⊆i P4 and d ≥ 2;

2. NP-complete if H 6= K1,3 and H has a dominating vertex u such that

H − u ⊆i P1 + P3 or H − u ⊆i P4 and d ≥ 3.

Proof. 1. Let H have no dominating vertex u such that H − u ⊆i P1 + P3

or H − u ⊆i P4. We de�ne H ′ as H − u if H has a dominating vertex u and

as H itself otherwise. By construction, H ′ 6⊆i P1 + P3 and H ′ 6⊆i P4. Hence,

Colouring is NP-complete for H ′-free graphs due to Theorem 3.1. Let G

be an H ′-free graph. Add a dominating vertex to G. The new graph G′ has

diameter 2 and is H-free. Moreover, G is k-colourable if and only if G′ is

(k + 1)-colourable.

2. Let H 6= K1,3 have a dominating vertex u such that H − u ⊆i P1 + P3

or H − u ⊆i P4. Then H cannot be a forest, as in that case H would be

in {P1, P2, P3, K1,3}. Hence, H has an induced cycle Cr for some r ≥ 3. If

r = 3, then 3-Colouring is NP-complete for H-free graphs of diameter 3,
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as it is so for C3-free graphs of diameter 3 due to Theorem 3.2. If r ≥ 4,

then Colouring is NP-complete even for H-free graphs of diameter 2, as

this is the case for Cr-free graphs of diameter 2 due to 1.

We may then ask whether the result of Theorem 3.7 can be extended
from H-free graphs where H is a star to the case where H is a larger tree.
For instance, we �rst consider the case where H is an l-subdivided star K l

1,r

with r ≥ 3, l ≥ 1. We now prove a result on C5-free graphs of diameter 2
which is necessary in the proofs to follow.

Theorem 3.9. 3-Colouring can be solved in polynomial time for C5-free

graphs of diameter at most 2.

Proof. If G is bipartite, then G is 3-colourable. If G contains a K4, then G

is not 3-colourable. We check these properties in polynomial time, and from

now on we assume that G is K4-free and non-bipartite. The latter implies

that G must have an odd induced cycle Cr for some odd integer r. As G has

diameter 2, we �nd that r ≤ 5 due to Lemma 3.2. As G is C5-free, it follows

that r = 3.

Let C be a triangle in G. We write N0 = V (C) = {x1, x2, x3}, N1 =

N(V (C)) and N2 = V (G) \ (N0 ∪ N1). As G has diameter 2, for every

i ∈ {1, 2, 3}, it holds that every vertex in N2 has a neighbour in N1 that is

adjacent to xi.

We let T consist of all vertices of N2 that have a neighbour in N1 that

is adjacent to exactly two vertices of N0. We claim that N2 = T . In order

to see this, let u ∈ N2. If u has a neighbour y ∈ N1 adjacent to every xi,

then G contains a K4, a contradiction. Hence, u must have three distinct

neighbours y1, y2, y3, such that for i ∈ {1, 2, 3}, it holds that N(yi) ∩ N0 =

{xi}. If {y1, y2, y3} is a clique, then G has a K4 on vertices u, y1, y2, y3,

a contradiction. Hence, we may assume without loss of generality that y1

and y2 are non-adjacent. However, then {u, y1, x1, x2, y2} induces a C5 in G,

another contradiction. We conclude that N2 = T .
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If G has a 3-colouring c, then we may assume without loss of generality

that c(xi) = i for i ∈ {1, 2, 3}. Hence, our algorithm assigns colours 1,

2, 3 to x1, x2, x3, respectively. This reduces the list of admissible colours

of the vertices of N1 by at least one colour. In particular, vertices in N1

that have two neighbours in N0 can be coloured with only one colour. Our

algorithm assigns this colour to such vertices. This means that any of their

neighbours in T = N2 can be coloured with at most two colours. So, after

propagation, we have obtained either two adjacent vertices that are coloured

alike, in which case G is not 3-colourable, or we have constructed an instance

of 2-List Colouring. We can solve such an instance in linear time due to

Theorem 3.4.

We are now ready to state our results for K l
1,r-free graphs of diameter

at most d. Note that we exclude the cases which are tractable in general,
namely d = 1, k ≤ 2 or r ≤ 2.

Theorem 3.10. Let d, k, `, r be four integers with d ≥ 2, k ≥ 3, ` ≥ 1 and

r ≥ 3. Then k-Colouring for K`
1,r-free graphs of diameter at most d is:

1. Polynomial-time solvable if d ≥ 2, k = 3, ` = 1 and r = 3

2. Polynomial-time solvable if d = 2, k = 3, ` = 2 and r ≥ 3

3. NP-complete if d ≥ 4, k = 3, ` ≥ 3 and r ≥ 4

4. NP-complete if d ≥ 2, k ≥ 4, ` ≥ 1 and r ≥ 3.

Proof. 1. Recall that K1
1,3 is the chair S1,1,2. Let G be a chair-free graph of

diameter d. If G is a tree, then G is even 2-colourable. We check in O(n4)

time if G has a K4. If so, then G is not 3-colourable. From now on we

assume that G is not a tree and that G is K4-free. As G is not a tree and

G is connected, G contains an induced cycle of length at most 2d + 1 by

Lemma 3.2. We can �nd a largest induced cycle C of length at most 2d+ 1

in O(n2d+1) time. Let |V (C)| = p. We write N0 = V (C) = {x1, x2, . . . , xp}
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and for i ≥ 1, Ni = N(Ni−1) \Ni−2. So the sets Ni partition V (G), and the

distance of a vertex u ∈ Ni to N0 is i. Case 1. 4 ≤ p ≤ 2d+ 1.

x1 x2 x3 x4 x5

y

z

w1 w2

N0

N1

N2

N3

Figure 3.2: An example of a decomposition of a chair-free graph of diameter 3

into sets N0, . . . , N3 where p = 5 and y ∈ N1 has two �descendants� in N3.

To prevent an induced chair, y must be adjacent to exactly two (adjacent)

vertices of N0, and w1 and w2 must be adjacent to each other.

This case is illustrated in Figure 3.2. We consider every possible 3-colouring

of C. Let c be such a 3-colouring. Every vertex with two di�erently coloured

neighbours can only be coloured with one remaining colour. We assign this

unique colour to such a vertex and apply this rule as long as possible. This

takes polynomial time. The remaining vertices have a list of admissible

colours that either consists of two or three colours, and vertices in the latter

case belong to V (G) \ (N0 ∪N1) (as N(N0) = N1).

If N2 = ∅, then V (G) = N0∪N1. Then, we obtained an instance of 2-List

Colouring, which we can solve in linear time due to Theorem 3.4. Now

assume that N2 6= ∅. Let z ∈ N2. Then z has a neighbour y ∈ N1, which in

turn has a neighbour x ∈ N0. If y is adjacent to neither neighbour of x in N0,
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then z, y, x and these two neighbours induce a chair in G, a contradiction.

Hence, y must be adjacent to at least one neighbour of x on N0, meaning

that y must have received a colour by our algorithm. Consequently, z must

have a list of admissible colours of size at most 2.

From the above we deduce that every vertex in N2 has only two available

colours in its list. We now consider the vertices of N3. Let z′ ∈ N3. Then z′

has a neighbour z ∈ N2, which in turn has a neighbour y ∈ N1, which in turn

has a neighbour x ∈ N0, say x = x1. If y has two non-adjacent neighbours in

N0, then z′, z, y and these two non-adjacent neighbours of y induce a chair

in G, a contradiction. Combined with the fact deduced above, we conclude

that y must have exactly two neighbours in N0 and these two neighbours

must be adjacent, say x2 is the other neighbour of y in N0.

Suppose x1 and x2 are both adjacent to a vertex y′ ∈ N1 \ {y} that is

adjacent to a vertex in N2 that has a neighbour in N3. Then, just as in the

case of vertex y, the two vertices x1 and x2 are the only two neighbours of

y′ in N0. If y and y′ are not adjacent, this means that x2, x3, x4, y, y
′ induce

a chair in G, a contradiction. Hence y and y′ must be adjacent. However,

then x1, x2, y, y
′ form a K4, a contradiction. This means that every pair of

adjacent vertices of N0 can have at most one common neighbour in N1 that is

adjacent to a vertex in N2 with a neighbour in N3. We already deduced that

every vertex of N1 with a �descendant� in N3 has exactly two neighbours in

N0, which are adjacent. Hence, we conclude that the number of such vertices

of N1 is at most p.

We now observe that for i ≥ 2, every vertex in Ni has at most two

neighbours in Ni+1. This can be seen as follows. If v ∈ Ni has two non-

adjacent neighbours w1, w2 in Ni+1, then we pick a neighbour u of v in Ni−1,

which has a neighbour t in Ni−2. Then v, u, t, w1, w2 induce a chair in G,

a contradiction. Hence, the Ni+1 neighbourhood of every vertex in Ni is

a clique, which must have size at most 2 due to the K4-freeness of G. As

the number of vertices in N1 with a `descendant' in N3 is at most p, this
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means that there are at most 2i−1p vertices in Ni with a neighbour in Ni+1.

Therefore the total number of vertices not belonging to any of the sets N0, N1

or N2 is at most
∑d

i=3 2i−1p.

This means the total number of vertices not belonging to N1 or N2 is at

most β(d) =
∑d

i=3 2i−1p + p ≤
∑d

i=3 2i−1(2d+ 1) + 2d + 1. Let Tc be this

set. We consider every possible 3-colouring of G[Tc]. As we already deduced

that the vertices in N1 ∪ N2 have a list of size at most 2, for each case we

obtain an instance of 2-List Colouring, which we can solve in linear time

due to Theorem 3.4. As the total number of instances we need to consider

is at most 3p × 3β(d) ≤ 32d+1 × 3β(d), our algorithm runs in polynomial time.

Case 2. p = 3.

As p was the size of a largest induced cycle of length at most 2d + 1 and

2d + 1 ≥ 5, we �nd that G is C4-free. As G is K4-free, each vertex of N1

is adjacent to at most two vertices of N0. We call a vertex of N1 which is

adjacent to exactly one N0 vertex a private neighbour of this vertex.

If a vertex x ∈ N0 has two independent private neighbours u and v

in N1 with respect to N0, then every neighbour w of u in N2 must also

be a neighbour of v and vice versa, since G is chair-free. However, this is

not possible, as x, u, w, v induce a C4. We conclude that u and v must be

adjacent. Therefore, as G is K4-free, every vertex of N0 has at most two

private neighbours in N1, with respect to N0, that have a neighbour in N2.

By the same arguments as above we deduce that every two vertices of N0

have at most one common neighbour in N1 that is adjacent to a vertex in

N2. Combined with the above, we �nd that there at most 6 + 3 = 9 vertices

in N1 that have a neighbour in N2. If a vertex in N1 has two independent

neighbours in N2, then G contains an induced chair, which is not possible.

Hence the neighbourhood of a vertex in N1 in N2 is a clique, which has size

at most 2 due to the K4-freeness of G. We conclude that |N2| ≤ 9× 2 = 18.

Similarly, every vertex in Ni for i ≥ 3 has at most two neighbours in Ni+1.

Therefore the number of vertices in Ni for i ≥ 3 is at most 18 × 2i−2. This
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means that the total number of vertices outside N0 ∪ N1 ∪ N2 is at most

β(d) =
∑d

i=3 18 × 2i−2. Let T be this set. We consider every possible 3-

colouring of G[T ] and every possible 3-colouring of C. For each case we

obtain an instance of 2-List Colouring, which we can solve in linear time

due to Theorem 3.4. As the total number of instances we need to consider

is at most 3d × 3β(d), our algorithm runs in polynomial time.

2. Let G be a K2
1,r-free graph of diameter at most 2. We �rst check in

O(n4) time if G is K4-free. If not, then G is not 3-colourable. We then

check in O(n5) time if G has an induced C5. If G is C5-free, then we use

Theorem 3.9. From now on, suppose that G is K4-free and that G contains

an induced cycle C of length 5, say on vertices x1, . . . , x5 in that order. We

write N0 = V (C) = {x1, . . . , x5}, N1 = N(V (C)) and N2 = V (G)\(N0∪N1).

Let N ′2 be the set of vertices in N2 that are adjacent to some vertex in

N1 that is a private neighbour of some vertex in N0 with respect to N0.

As G is K4-free, the private neighbourhood P (xi) of each vertex xi ∈ N0

with respect to N0 does not contain a clique of size 3. Moreover, if P (xi)

contains an independent set I of size r − 1 for some i ∈ {1, . . . , 5}, then
I ∪ {xi, xi+1, xi+2, xi+3} induces a K2

1,r, which is not possible. Now let v ∈
P (xi) for some i ∈ {1, . . . 5}, say i = 1. As G is K4-free, the set N(v) ∩ N2

does not contain a clique of size 3. Moreover, if N(v) ∩ N2 contains an

independent set I ′ of size r−1, then I ′∪{v, x1, x2, x3, } induces a K2
1,r, which

is not possible. Hence, |N(v)∩N2| ≤ R(3, r− 1) by Ramsey's Theorem. We

conclude that |N ′2| ≤ 5R(3, r − 1)2.

We now consider all possible 3-colourings of C. Let c be such a 3-

colouring. We assume without loss of generality that c(x1) = c(x3) = 1,

c(x2) = c(x4) = 2 and c(x5) = 3. Moreover, every vertex that has two di�er-

ently coloured neighbours can only be coloured with one remaining colour.

We assign this unique colour to such a vertex and apply this rule as far as

possible. This takes polynomial time. The remaining vertices have a list of

admissible colours that either consists of two or three colours, and vertices
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in the latter case must belong to N2 (as N(N0) = N1).

Let Tc be the set of vertices in N2 that still have a list of size 3. We will

prove that Tc ⊆ N ′2. Let u ∈ Tc. As G has diameter 2, we �nd that u has a

neighbour v adjacent to x5. Then v cannot be adjacent to any of x1, . . . , x4,

as otherwise v would have a unique colour and u would not be in Tc. Hence, v

is a private neighbour of x5 with respect to N0. We conclude that all vertices

in Tc belong to N ′2, which implies that |Tc| ≤ |N ′2| ≤ 5R(3, r − 1)2.

We now consider every possible 3-colouring of G[Tc]. Then all uncoloured

vertices have a list of size at most 2. In other words, we created an instance

of 2-List Colouring, which we solve in linear time by theorem3.4 . As the

number of 3-colourings of C is at most 35 and for each 3-colouring c of C the

number of 3-colourings of G[Tc] is at most 35R(3,r−1)2 , the total running time

of our algorithm is polynomial.

3. We consider the standard reduction from the NP-complete problem NAE

3-SAT [87], where each variable appears in at most three clauses and each

literal appears in at most two. Given a CNF formula φ, we construct the

graph G as follows:

� Add a vertex vxi for each literal xi.

� Add an edge between each literal and its negation.

� Add a vertex z adjacent to every literal vertex.

� For each clause Ci add a triangle Ti with vertices ci1 , ci2 , ci3 .

� Fix an arbitrary order of the literals of Ci, xi1 , xi2 , xi3 and add an edge

vxij cij .

Given a 3-colouring of G, assume z is assigned colour 1. Then each literal

vertex is assigned either colour 2 or colour 3. If, for some clause Ci, the

vertices xi1 , xi2 and xi,3 are all assigned the same colour, then Ti cannot be

coloured. Therefore, if we set literals whose vertices are coloured with colour

42



2 to be true and those coloured with colour 3 to be false, each clause must

contain at least one true literal and at least one false literal.

If φ is satis�able then we can colour vertex z with colour 1, each true

literal with colour 2 and each false literal with colour 3. Then, since each

clause has at least one true literal and at least one false literal, each triangle

has neighbours in two di�erent colours. This implies that each triangle is

3-colourable. Therefore G is 3-colourable if and only if φ is satis�able.

We next show that G has diameter at most 4. First note that any literal

vertex is adjacent to z and any clause vertex is adjacent to some literal vertex

so any vertex is at distance at most 2 from z. Therefore any two vertices are

at distance at most 4.

Finally we show that G is K3
1,4-free. Any literal vertex has degree at

most 4 since it appears in at most two clauses. However it has at most

3 independent neighbours since its negation is adjacent to z. Each clause

vertex has at most 3 neighbours so the only vertex with four independent

neighbours is d. The longest induced path including z has length at most 4

since any such path contains at most one literal and at most two vertices of

any triangle. Therefore G is K3
1,4-free.

4. This follows from the NP-completeness of k-colouring for claw-free graphs

[50]. Let k∗ ≥ 3. We take a claw-free graph G and add a dominating

vertex to it. The new graph G′ has diameter at most 2 and is K1
1,3-free. Let

k = k∗+ 1 ≥ 4. Then G is k∗-colourable if and only if G′ is k-colourable.

The next interesting case is the graph S1,2,2 obtained by subdividing two
edges of the claw. For k ≥ 4, Theorem 3.10 implies that k-Colouring is
NP-complete. For k = 3 we prove that the case d = 2 is polynomial-time
solvable. This leaves open the cases k = 3, d ≥ 2.

Theorem 3.11. 3-Colouring can be solved in polynomial time for S1,2,2-

free graphs of diameter at most 2.

Proof. Let G be an S1,2,2-free graph of diameter at most 2. We �rst check in

O(n5) time if G has an induced C5. If G is C5-free, then we use Theorem 3.9.
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Suppose G contains an induced cycle C of length 5, say on vertices x1, . . . , x5

in that order. We write N0 = V (C) = {x1, . . . , x5}, N1 = N(V (C)) and

N2 = V (G) \ (N0 ∪ N1). As G has diameter 2, for every i ∈ {1, 2, 3}, every
vertex in N2 has a neighbour in N1 that is adjacent to xi.

We let T consist of all vertices of N2 that have a neighbour in N1 that

is adjacent to two adjacent vertices of N0. So the colour of any vertex of T

will be �xed in any 3-colouring after colouring the �ve vertices of N0. We

claim that N2 = T . In order to see this, let u ∈ N2. As G has diameter 2,

we �nd that u must have a neighbour v ∈ N1 adjacent to a vertex of N0, say

x1. Then v is not adjacent to x5 or x2. If v is not adjacent to x3 either, then

the vertices x1, x5, x2, x3, v, u induce a S1,2,2 with center x1, a contradiction.

So v must be adjacent to x3, meaning v is not adjacent to x4. However, now

x3, x2, x4, x5, v, u induce a S1,2,2 with center x3, another contradiction.

We now �guess� the 3-colouring of C by considering all 35 possibilities

if necessary. We then proceed as in the proof of Theorem 3.9. That is,

we observe that every vertex of N1 can only be coloured with two possible

colours and that after propagation, every uncoloured vertex of N2 can only

be coloured with two possible colours as well (as T = N2). Then it remains

to solve an instance of 2-List Colouring, which takes linear time by The-

orem 3.4. As we need to do this at most 35 times, the total running time of

our algorithm is polynomial.

3.5 Graphs Avoiding Short Cycles

In the previous sections our results for 3-colouring graphs of diameter 2
focussed largely on graph classes characterised by some forbidden induced
subdivided star. However, we also obtained results for C5-free graphs and for
graphs of girth at least 5, ((C3, C4)-free graphs). Here we continue our study
for (Cs, Ct)-free graphs of diameter 2 where s and t are small. In particular,
we focus on the case s = 4. The results in this section are proved for the more
general problem List 3-colouring whose complexity also remains open for
graphs of diameter 2.
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3.5.1 The Propagation Algorithm and Three Results

We now present our propagation algorithm, based on a number of (well-
known) rules, before using it to prove our �rst three polynomial-time results.
The purpose of the propagation algorithm is to minimise the number of
colours in the list of available colours for each vertex by exhaustively applying
these rules to a given instance of List 3-Colouring.

Rule 1. (no empty lists) If L(u) = ∅ for some u ∈ V , then return no.

Rule 2. (not only lists of size 2) If |L(u)| ≤ 2 for every u ∈ V , then
apply Theorem 3.4.

Rule 3. (single colour propagation) If u and v are adjacent, |L(u)| = 1,
and L(u) ⊆ L(v), then set L(v) := L(v) \ L(u).

Rule 4. (diamond colour propagation) If u and v are adjacent and
share two common non-adjacent neighbours x and y such that
|L(x)| = |L(y)| = 2 and L(x) 6= L(y), then set L(x) := L(x)∩L(y)
and L(y) := L(x)∩L(y) (so L(x) and L(y) get size 1). See �gure 3.3.

Rule 5. (bull colour propagation) If u and v are the two vertices of an
induced bull B of G having degree 1 and L(u) = L(v) = {i} for
some i ∈ {1, 2, 3} and moreover L(w) 6= {i} for the degree-2 vertex
w of B, then set L(w) := L(w) ∩ {i}. Displayed in �gure 3.4.

u v

x

y

{i, j}

{i, k}

u v

x

y

{i, j} ∩ {i, k} = {i}

{i, k} ∩ {i, j} = {i}

Figure 3.3: Left: A diamond graph before applying Rule 4. Right: After

applying Rule 4.
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w

u v{i} {i}

L(w)

w

u v{i} {i}

L(w) ∩ {i} (so L(w) := {i} or L(w) := ∅)

Figure 3.4: Left: A bull graph before applying Rule 5. Right: After applying

Rule 5.

We say that a propagation rule is safe if the new instance is a yes-instance
of List 3-Colouring if and only if the original instance is so. We make the
following observation, which is straightforward (see also [60]).

Lemma 3.3. Each of the Rules 1�5 is safe and can be applied in polynomial

time.

Consider again an instance (G,L). Let N0 be a subset of V (G) that has size
at most some constant. Assume that G[N0] has a colouring c that respects
the restriction of L to N0. We say that c is an L-promising N0-precolouring
of G.

In our algorithms we �rst determine a set N0 of constant size and consider
every L-promising N0-precolouring of G. That is, we modify L into a list
assignment Lc with Lc(u) = {c(u)} (where c(u) ∈ L(u)) for every u ∈ N0

and Lc(u) = L(u) for every u ∈ V (G) \ N0). We then apply Rules 1�5 on
(G,Lc) exhaustively, that is, until none of the rules can be applied anymore.
This is the propagation algorithm and we say that it did a full c-propagation.
The propagation algorithm may output yes and no (when applying Rules 1
or 2); else it will output unknown.

If the algorithm returns yes, then (G,L) is a yes-instance of List 3-
Colouring by Lemma 3.3. If it returns no, then (G,L) has no L-respecting
colouring coinciding with c on N0, again by Lemma 3.3. If the algorithm
returns unknown, then (G,L) may still have an L-respecting colouring that
coincides with c on N0. In that case the propagation algorithm did not apply
Rule 1 or 2. Hence, it modi�ed Lc into a list assignment L′c of G such that
L′c(u) 6= ∅ for every u ∈ V (G) and at least one vertex v of G still has a list
L′c(v) of size 3, that is, L′c(v) = {1, 2, 3}. We say that L′c (if it exists) is the
c-propagated list assignment of G.
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After performing a full c-propagation for every N0-precolouring c of G
which is L-promising we say that we performed a full N0-propagation. We
say that (G,L) is N0-terminal if after the full N0-propagation one of the
following cases hold:

1. for some L-promising N0-precolouring, the propagation algorithm
returned yes;

2. for every L-promising N0-precolouring, the propagation algorithm
returned no.

Note that if (G,L) is N0-terminal for some set N0, then we have solved List
3-Colouring on instance (G,L). The next lemma formalizes our approach.

Lemma 3.4. Let (G,L) be an instance of List 3-Colouring. Let N0 be

a subset of V (G) of constant size. Performing a full N0-propagation takes

polynomial time. Moreover, if (G,L) is N0-terminal, then we have solved

List 3-Colouring on instance (G,L).

Proof. The �rst part of the lemma follows from the facts that (i) each appli-

cation of each rule is safe and takes polynomial time by Lemma 3.3; (ii) if

a rule does not return yes or no, then it reduces the list size of at least one

vertex and the latter can happen at most 3|V | times; and (iii) the number of

L-promising N0-precolourings of G is at most 3|N0|, which is a constant as N0

has constant size. The second part of the lemma follows from the de�nition

of a full N0-propagation and Lemma 3.3.

We now prove our �rst three results on List 3-Colouring for diameter-2
graphs. The �rst result generalizes Theorem 3.9.

Theorem 3.12. List 3-Colouring can be solved in polynomial time for

C5-free graphs of diameter at most 2.

Proof. Let G = (V,E) be a C5-free graph of diameter 2 with a list 3-

assignment L. We �rst check in polynomial time if G is bipartite. Suppose

that we �nd that G is bipartite, say with partition classes A and B. As G
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has diameter 2, we �nd that G must be complete bipartite. This implies

that either A or B must be monochromatic. For each i ∈
⋂
u∈A L(u) (which

might be empty) we set L(u) = {i} for every u ∈ A and L(v) := L(v) \ {i}
for every i ∈ B and solve the resulting instance of 2-List Colouring. If

we do not �nd a colouring respecting L, then we reverse the role of A and B

and perform the same step.

Now suppose that we �nd that G is not bipartite. If G contains a K4,

then G is not 3-colourable, and hence (G,L) is a no-instance of List 3-

Colouring. We can check this in O(|V |4) time. From now on we assume

that G is K4-free and non-bipartite. The latter implies that G must have a

triangle or an induced C5, due to Lemma 3.2. As G is C5-free, it follows that

G has at least one triangle.

x1 x2 x3N0

N1

N2

y1 y2 y3

u

x1 x2 x3

y1 y2

u

Figure 3.5: Left: Examining the situation in the proof of Theorem 3.12

where a vertex u ∈ N2 does not belong to T ; we show that y1, y2, y3 and u

either form a K4 or we would �nd an induced C5 (both of these cases are not

possible). Right: A situation where u ∈ T .

Let C be a triangle in G. We write N0 = V (C) = {x1, x2, x3}, N1 =

N(V (C)) and N2 = V (G) \ (N0 ∪ N1). As N0 has size 3, we can apply a

full N0-propagation in polynomial time by Lemma 3.4. By the same lemma

we are done if we can prove that (G,L) is N0-terminal. We prove this claim

below after �rst showing a structural result.

As G has diameter 2, for every i ∈ {1, 2, 3}, it holds that every vertex

in N2 has a neighbour in N1 that is adjacent to xi. Now let T consist of all
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vertices of N2 that have a neighbour in N1 that is adjacent to exactly two

vertices of N0.

Claim 1. N2 = T .

We prove Claim 1 as follows. Let u ∈ N2. For contradiction, assume u /∈ T .
If u has a neighbour y ∈ N1 adjacent to every xi, then G contains a K4,

a contradiction. Hence, as u /∈ T , we �nd that u must have three distinct

neighbours y1, y2, y3, such that for i ∈ {1, 2, 3}, it holds that N(yi) ∩ N0 =

{xi}. If {y1, y2, y3} is a clique, then G has a K4 on vertices u, y1, y2, y3,

a contradiction. Hence, we may assume without loss of generality that y1

and y2 are non-adjacent. However, then {u, y1, x1, x2, y2} induces a C5 in G,

another contradiction. See also Figure 3.5. We conclude that T = N2. This

proves Claim 1.

Now, for contradiction, assume that (G,L) is not N0-terminal. Then there

must exist an L-promising N0-precolouring c for which we obtain the c-

propagated list assignment L′c. By de�nition of L′c we �nd that G contains

a vertex u with L′c(u) = {1, 2, 3}. Then u /∈ N0, as every v ∈ N0 has

L′c(v) = {c(v)}. Moreover, u /∈ N1, as vertices in N1 have a list of size at

most 2 after applying Rule 3. Hence, we �nd that u ∈ N2. As N2 = T by

Claim 1, we �nd that u ∈ T . From the de�nition of T it follows that u has

a neighbour v ∈ N1 with two neighbours in N0. By Rule 3, we �nd that

|Lc(v)| = 1. By the same rule, this implies that |L′c(u)| ≤ 2, a contradiction.

We conclude that (G,L) is N0-terminal.

Theorem 3.13. List 3-Colouring can be solved in polynomial time for

C6-free graphs of diameter at most 2.

Proof. Let G = (V,E) be a C6-free graph of diameter 2 with a list 3-

assignment L. If G is C5-free, then we apply Theorem 3.12. If G contains

a K4, then G is not 3-colourable and hence, (G,L) is a no-instance of List

3-Colouring. We check these properties in polynomial time. So, from now
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x1 x2 x3 x4 x5N0

N1

N2

y z

v

w

Figure 3.6: The situation in the proof of Theorem 3.13, which is similar to

the situation in the proof of Theorem 3.14.

on, we assume that G is a K4-free graph that contains an induced 5-vertex

cycle C, say with vertex set N0 = {x1, . . . , x5} in this order. Let N1 be the

set of vertices that do not belong to C but that are adjacent to at least one

vertex of C. Let N2 = V \ (N0 ∪N1) be the set of remaining vertices.

As N0 has size 5, we can apply a full N0-propagation in polynomial time

by Lemma 3.4. By the same lemma we are done if we can prove that (G,L)

is N0-terminal. We prove this claim below.

For contradiction, assume that (G,L) is not N0-terminal. Then there

must exist an L-promising N0-precolouring c for which we obtain the c-

propagated list assignment L′c. By de�nition of L′c we �nd that G contains

a vertex v with L′c(v) = {1, 2, 3}. Then v /∈ N0, as every u ∈ N0 has

L′c(u) = {c(u)}. Moreover, v /∈ N1, as vertices in N1 have a list of size at

most 2 after applying Rule 3. Hence, we �nd that v ∈ N2.

We �rst note that some colour of {1, 2, 3} appears exactly once on N0, as

|N0| = 5. Hence, we may assume without loss of generality that c(x1) = 1

and that c(xi) ∈ {2, 3} for every i ∈ {2, 3, 4, 5}.
As G has diameter 2, there exists a vertex y ∈ N1 that is adjacent to

x1 and v. As L′c(v) = {1, 2, 3} and c(x1) = 1, we �nd that L′c(y) = {2, 3}.
As c(xi) ∈ {2, 3} for every i ∈ {2, 3, 4, 5}, the latter means that y is not
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adjacent to any xi with i ∈ {2, 3, 4, 5}. Hence, as G has diameter 2, there

exists a vertex z ∈ N1 with z 6= y, such that z is adjacent to x3 and v. We

assume without loss of generality that c(x3) = 3 and thus c(x2) = c(x4) = 2

and thus c(x5) = 3. As L′c(v) = {1, 2, 3} and c(x3) = 3, we �nd that

L′c(z) = {1, 2}. Hence, z is not adjacent to any vertex of {x1, x2, x4}. Now

the set {x1, x2, x3, z, v, y} forms a cycle on six vertices. As G is C6-free, this

cycle cannot be induced. Hence, the above implies that y and z must be

adjacent; see also Figure 3.6.

As G has diameter 2, there exists a vertex w ∈ N1 that is adjacent to x4

and v. As both y and z are not adjacent to x4, we �nd that w /∈ {y, z}. As
L′c(v) = {1, 2, 3} and c(x4) = 2, we �nd that L′c(w) = {1, 3}. As c(x1) = 1

and c(x3) = c(x5) = 3, the latter implies that w is not adjacent to any ver-

tex of {x1, x3, x5}. Consequently, w must be adjacent to y, as otherwise the

6-vertex cycle with vertex set {x1, x5, x4, w, v, y} would be induced, contra-

dicting the C6-freeness of G. We refer again to Figure 3.6 for a display of the

situation.

If w and z are adjacent, then {v, w, y, z} induces a K4, contradicting the

K4-freeness of G. Hence, w and z are not adjacent. Then {v, w, y, z} induces
a diamond, in which w and z are the two non-adjacent vertices. However,

as L′c(w) = {1, 3} and L′c(z) = {1, 2}, our algorithm would have applied

Rule 4. This would have resulted in lists of w and z that are both equal to

{1, 3} ∩ {1, 2} = {1}. Hence, we obtained a contradiction and conclude that

(G,L) is N0-terminal.

Theorem 3.14 is proven in a similar way to Theorem 3.13.

Theorem 3.14. List 3-Colouring can be solved in polynomial time for

(C4, C7)-free graphs of diameter 2.

Proof. Let G = (V,E) be a C4-free graph of diameter 2 with a list 3-

assignment L. If G is C5-free, then we apply Theorem 3.12. Hence we

may assume that G contains an induced 5-vertex cycle C, say with vertex
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set N0 = {x1, . . . , x5} in this order. As before, we let N1 be the set of vertices

that do not belong to C but that are adjacent to at least one vertex of C.

We also let N2 = V \ (N0 ∪N1) denote the set of remaining vertices again.

As N0 has size 5, we can apply a full N0-propagation in polynomial time

by Lemma 3.4. By the same lemma we are done if we can prove that (G,L)

is N0-terminal. We prove this claim in exactly the same way in which we

proved a similar claim in the proof of Theorem 3.13 except for the following

di�erences:

1. instead of using the 6-vertex set {x1, x2, x3, z, v, y} we use the 7-vertex

set {x1, x5, x4, x3, z, v, y} after observing that z cannot be adjacent to

x5 due to the C4-freeness of G, and

2. instead of using the 6-vertex set {x1, x5, x4, w, v, y} we use the 7-vertex

set {x1, x2, x3, x4, w, v, y} after observing that w cannot be adjacent to

x2, again due to the C4-freeness of G.

We refer again to Figure 3.6 for a display of the situation.

3.5.2 The Extended Propagation Algorithm and Two

Results

For our next two results, we need a more sophisticated method. Let (G,L)
be an instance of List 3-Colouring. Let p be some positive constant.
We consider each set N0 ⊆ V (G) of size at most p and perform a full N0-
propagation. Afterwards we say that we performed a full p-propagation. We
say that (G,L) is p-terminal if after the full p-propagation one of the following
cases hold:

1. for some N0 ⊆ V (G) with |N0| ≤ c, there is an L-promising N0-
precolouring c, such that the propagation algorithm returns yes; or

2. for every set N0 ⊆ V (G) with |N0| ≤ c and every L-promising N0-
precolouring c, the propagation algorithm returns no.

We can now prove the following lemma.
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Lemma 3.5. Let (G,L) be an instance of List 3-Colouring and p ≥ 1

be some constant. Performing a full p-propagation takes polynomial time.

Moreover, if (G,L) is p-terminal, then we have solved List 3-Colouring

on instance (G,L).

Proof. For every set N0 ⊆ V (G), a full N0-propagation takes polynomial

time by Lemma 3.4. Then the �rst statement of the lemma follows from this

observation and the fact that we need to perform O(np) full N0-propagations,

which is a polynomial number, as p is a constant.

Now suppose that (G,L) is p-terminal. First assume that for some N0 ⊆
V (G) with |N0| ≤ c, there exists an L-promising N0-precolouring c, such that

the propagation algorithm returns yes. Then (G,L) is a yes-instance due to

Lemma 3.3. Now assume that for every set N0 ⊆ V (G) with |N0| ≤ c and

every L-promising N0-precolouring c, the propagation algorithm returns no.

Then (G,L) is a no-instance. This follows from Lemma 3.3 combined with

the observation that if (G,L) was a yes-instance, the restriction of a colouring

c that respects L to any set N0 of size at most p would be an L-promising

N0-precolouring of G.

In our next two algorithms, we perform a full p-propagation for some appro-
priate constant p. If we �nd that an instance (G,L) is p-terminal, then we
are done by Lemma 3.5. In the other case, we exploit the new information on
the structure of G that we obtain from the fact that (G,L) is not p-terminal.

Theorem 3.15. List 3-Colouring can be solved in polynomial time for

(C4, C8)-free graphs of diameter 2.

Proof. Let G = (V,E) be a (C4, C8)-free graph of diameter 2 with a list 3-

assignment L. If G is C6-free, then we apply Theorem 3.13. If G contains

a K4, then G is not 3-colourable and hence, (G,L) is a no-instance of List

3-Colouring. We check these properties in polynomial time. So, from now

on, we assume that G is a K4-free graph that contains at least one induced

cycle on six vertices.
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We set p = 6 and perform a full p-propagation. This takes polynomial

time by Lemma 3.5. By the same lemma, we have solved List 3-Colouring

on (G,L) if (G,L) is p-terminal. Suppose we �nd that (G,L) is not p-

terminal.

We �rst prove the following claim.

Claim 1. For each induced 6-vertex cycle C, the propagation algorithm re-

turned no for every V (C)-promising colouring c that assigns the same colour

i on two vertices of C that have a common neighbour on C.

We prove Claim 1 as follows. Consider an induced 6-vertex cycle C, say with

vertex set N0 = {x1, . . . , x6} in this order. Let N1 be the set of vertices that

do not belong to C but that are adjacent to at least one vertex of C. Let

N2 = V \ (N0 ∪N1) be the set of remaining vertices. For contradiction, let c

be a V (C)-promising colouring that assigns two vertices of C with a common

neighbour on C the same colour, say c(x1) = 1 and c(x3) = 1, such that a full

c-propagation does not yield a no output. As (G,L) is not p-terminal, this

means that we obtained the c-propagated list assignment L′c. By de�nition of

L′c we �nd that G contains a vertex v with L′c(v) = {1, 2, 3}. Then v /∈ N0, as

every u ∈ N0 has L′c(u) = {c(u)}. Moreover, v /∈ N1, as vertices in N1 have

a list of size at most 2 after applying Rule 3. Hence, we �nd that v ∈ N2.

As G has diameter 2, there exist a vertex y ∈ N1 that is adjacent to both v

and x1. As c(x1) = 1, we �nd that c(x2) ∈ {2, 3} and c(x6) ∈ {2, 3}. As

c(x3) = 1, we �nd that c(x4) ∈ {2, 3}. Hence, y is not adjacent to any vertex

of {x2, x4, x6}; otherwise y would have a list of size 1 due to Rule 3, and by

the same rule, v would have a list of size 2. We note that y is not adjacent

to x3 or x5 either, as otherwise {x1, x2, x3, y} or {x1, x6, x5, y} induces a C4,

contradicting the C4-freeness of G.

As G has diameter 2 and yx3 /∈ E, there exists a vertex y′ ∈ N1 \ {y}
that is adjacent to both v and x3. By the same arguments as above, y′ is not

adjacent to any vertex of {x1, x2, x4, x5, x6}. If y and y′ are adjacent, then v

would have list {1} due to Rule 5. Hence y and y′ are not adjacent. However,
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v

y y′

x1 x2 x3 x4 x5 x6

{1} {1}⊂ {2, 3} ⊂ {2, 3} ⊂ {1, 2, 3} ⊂ {2, 3}

Figure 3.7: The situation that is described in Claim 1 in the proof of Theo-

rem 3.15: the set {x1, y, v, y
′, x3, x4, x5, x6} induces a C8, which is not possi-

ble.

we now �nd that {x1, y, v, y
′, x3, x4, x5, x6} induces a C8, contradicting the

C8-freeness of G; see also Figure 3.7. This proves Claim 1.

Due to Claim 1, we know that if G has a colouring c respecting L, then any

such colouring c gives a di�erent colour to every two non-adjacent vertices

that are of distance 2 on some induced 6-vertex cycle. Hence, we can safely

use the following new rule. To explain this, x5 cannot get the same colour as

either x1 or x3, which are both of distance 2 from x5 on an induced C6, thus

x5 must get the remaining colour, which is the colour of x2. Moreover, an

application of the new rule takes polynomial time. Note that we must also

have that L(x4) = L(x1) and L(x6) = L(x3) but this will be irrelevant for

our purposes.

Rule 6. (C6 colour propagation) Let C be an induced six vertex cycle

x1, x2, . . . , x6 in that order. If |L(x1)| = |L(x2)| = |L(x3)| = 1,

L({x1, x2, x3}) = {1, 2, 3} and L(x2) 6= L(x5), then set

L(x5) := L(x2) ∩ L(x5) (so x5 gets a list of size at most 1).

We can now do as follows. Consider an induced 6-vertex cycle C in G,
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v

y y′ y′′

x1 x2 x3 x4 x5 x6

{1} {3}{2} {1} {3}{2}

Figure 3.8: The situation in the proof of Theorem 3.15, where a vertex v ∈ N2

still has a list of three available colours after a full propagation including Rule

6: we show that in this case G contains a K4, namely on vertices v, y, y′, y′′,

a contradiction.

say on vertices x1, . . . , x6 in that order. Then we may assume without loss

of generality that if G has a colouring c that respects L, then c(x1) = 1,

c(x2) = 2, c(x3) = 3, c(x4) = 1, c(x5) = 2 and c(x6) = 3 (otherwise we can

do some permutation of the colours). See also Figure 3.8.

We let again N0 = {x1, . . . , x6}, N1 be the set of vertices that do not

belong to C but that are adjacent to at least one vertex of C, and N2 =

V \ (N0 ∪ N1) be the set of remaining vertices. We de�ne a colouring c of

G[N0] by setting c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 1, c(x5) = 2 and

c(x6) = 3. We do a full c-propagation but now we also include the exhaustive

use of Rule 6. By combining Lemma 3.5 with the observation that Rule 6 runs

in polynomial time and reduces the list size of at least one vertex, this takes

polynomial time. By combining the same lemma with the fact that Rule 6

is safe (due to Claim 1) and the above observation that every L-respecting

colouring of G coincides with c on N0 (subject to colour permutation), we

are done if we can prove that the propagation algorithm either outputs yes

or no.
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For contradiction, assume that the propagation algorithm returns unknown.

Then we obtained the c-propagated list assignment L′c. By de�nition of L′c
we �nd that G contains a a vertex v with L′c(v) = {1, 2, 3}. Then v /∈ N0, as

every u ∈ N0 has L′c(u) = {c(u)}. Moreover, v /∈ N1, as vertices in N1 have

a list of size at most 2 after applying Rule 3. Hence, we �nd that v ∈ N2.

As G has diameter 2, there exists a vertex y ∈ N1 that is adjacent to x1

and v. Hence, y is not adjacent to any vertex in {x2, x3, x5, x6}; otherwise
y would have a list of size 1 due to Rule 3, and by the same rule, v would

have a list of size 2. As G has diameter 2 and yx3 /∈ E, there exists a

vertex y′ ∈ N1 \ {y} that is adjacent to x3 and v. By the same arguments

as above, y′ is not adjacent to any vertex in {x1, x2, x4, x5}. If yy′ /∈ E,

then {x1, x2, x3, y
′, v, y} induces a C6. However, in that case we would have

applied Rule 6 and v would have had list {2}. Hence, we �nd that y and y′

are adjacent; see also Figure 3.8.

As G has diameter 2, yx5 /∈ E and y′x5 /∈ E, there exists a vertex

y′′ ∈ N1 \ {y, y′} that is adjacent to x5 and v. By using exactly the same

arguments as above but now applied to y′′ and to the pairs (y, y′′) and (y′, y′′),

respectively, we �nd that y′′ is adjacent to both y and y′. However, now the

vertices v, y, y′, y′′ induce a K4, contradicting the K4-freeness of G (see again

Figure 3.8). We conclude that the propagation algorithm returned either yes

or no.

Theorem 3.16. List 3-Colouring can be solved in polynomial time for

(C4, C9)-free graphs of diameter 2.

Proof. Let G = (V,E) be a (C4, C9)-free graph of diameter 2 with a list 3-

assignment L. If G is C7-free, then we apply Theorem 3.14. If G contains

a K4, then G is not 3-colourable and hence, (G,L) is a no-instance of List

3-Colouring. We check these properties in polynomial time. So, from now

on, we assume that G is a K4-free graph that contains at least one induced

cycle on seven vertices.
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We set p = 7 and perform a full p-propagation. This takes polynomial

time by Lemma 3.5. By the same lemma, we have solved List 3-Colouring

on (G,L) if (G,L) is p-terminal. Suppose we �nd that (G,L) is not p-

terminal.

We �rst prove the following claim.

Claim 1. For each induced 7-vertex cycle C, the propagation algorithm re-

turned no for every L-promising V (C)-colouring c that assigns the same

colour i on two vertices of C that have a common neighbour on C and that

gives every other vertex of C a colour di�erent from i.

We prove Claim 1 as follows. Consider an induced 7-vertex cycle C, say with

vertex set N0 = {x1, . . . , x7} in this order. Let N1 be the set of vertices that

do not belong to C but that are adjacent to at least one vertex of C. Let

N2 = V \ (N0∪N1) be the set of remaining vertices. Let c be an L-promising

V (C)-colouring that assigns two vertices of C with a common neighbour on

C the same colour, say c(x1) = 1 and c(x3) = 1, and moreover, that assigns

every vertex xi with i ∈ {2, 4, 5, 6, 7} colour c(xi) 6= 1.

For contradiction, suppose that a full c-propagation does not yield a no

output. As (G,L) is not p-terminal, this means that we obtained the c-

propagated list assignment L′c. By de�nition of L′c we �nd that G contains

a vertex v with L′c(v) = {1, 2, 3}. Then v /∈ N0, as every u ∈ N0 has

L′c(u) = {c(u)}. Moreover, v /∈ N1, as vertices in N1 have a list of size at

most 2 after applying Rule 3. Hence, we �nd that v ∈ N2.

As G has diameter 2, there exist a vertex y ∈ N1 that is adjacent to

both v and x1. Then y is not adjacent to any xi with i ∈ {2, 4, 5, 6, 7}; in
that case y would have a list of size 1 (as each xi other than x1 and x3 is

coloured 2 or 3) meaning that L′c(v) would have size at most 2. Hence, y is

not adjacent to x3 either, as otherwise {y, x1, x2, x3} would induce a C4. As

G has diameter 2, this means that there exists a vertex y′ ∈ N1 with y′ 6= y

such that y′ is adjacent to both v and x3. By the same arguments we used

for y′, we �nd that x3 is the only neighbour of y′ on C.
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If yy′ is an edge then, by Rule 5, v would have had list {1} instead

of {1, 2, 3}. Hence, y and y′ are not adjacent. However, in this case the

vertices {y, v, y′, x3, x4, x5, x6, x7, x1} induces a C9, a contradiction; see also

Figure 3.9. This proves Claim 1.

v

y y′

x1 x2 x3 x4 x5 x6 x7

{1} {1}⊂ {2, 3} ⊂ {2, 3}⊂ {2, 3}⊂ {2, 3}⊂ {2, 3}

Figure 3.9: The situation that is described in Claim 1 in the proof of The-

orem 3.16. The set {x1, y, v, y
′, x3, x4, x5, x6, x7} induces a C9, which is not

possible.

Claim 1 tells us that if G has a colouring c respecting L, then c only gives the

same colour to two vertices x and x′ that are of distance 2 on some induced

7-vertex cycle C if there is a third vertex x′′ that is of distance 2 from either x

or x′ on C with c(x′′) = c(x′) = c(x). Hence, we can safely use the following

new rule, whose execution takes polynomial time (in this rule, c(x1) = c(x6)

is not possible: view x1 as x and x6 as x′ and note that x′′ can neither be x3

or x4).

Rule 7. (C7 colour propagation) Let C be an induced seven vertex

cycle x1, x2, . . . , x7 in that order. If |L(xi)| = 1 for i ∈ {1, 2, 3, 4},
L({x1, x2, x3}) = {1, 2, 3}, L(x4) = L(x2), and L(x1) ⊆ L(x6), then

set L(x6) := {1, 2, 3} \ L(x1) (so L(x6) gets size at most 2).
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We now consider an induced 7-vertex cycle C in G, say on vertices x1, . . . , x7

in that order. Then either one colour appear once on C, or two colours

appear exactly twice on C, with distance 3 from each other on C. Hence,

we may assume without loss of generality that if G has a colouring c that

respects L, then one of the following holds for such a colouring c (see also

Figures 3.10 and 3.11):

(1) c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 2, c(x5) = 3, c(x6) = 2,

c(x7) = 3; or

(2) c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 1, c(x5) = 3, c(x6) = 2,

c(x7) = 3.

We let again N0 = {x1, . . . , x7}, N1 be the set of vertices that do not belong

to C but that are adjacent to at least one vertex of C, and N2 = V \(N0∪N1)

be the set of remaining vertices. We do a full c-propagation but now we

also include the exhaustive use of Rule 7. By combining Lemma 3.5 with

the observation that Rule 7 runs in polynomial time and reduces the list

size of at least one vertex, this takes polynomial time. By combining the

same lemma with the fact that Rule 7 is safe (due to Claim 1) and the

above observation that every L-respecting colouring of G coincides with c on

N0 (subject to colour permutation), we are done if we can prove that the

propagation algorithm either outputs yes or no. We show that this is the

case for each of the two possibilities (1) and (2) of c.

For contradiction, assume that the propagation algorithm returns unknown.

Then we obtained the c-propagated list assignment L′c. By de�nition of L′c
we �nd that G contains a vertex v with L′c(v) = {1, 2, 3}. Then v /∈ N0, as

every u ∈ N0 has L′c(u) = {c(u)}. Moreover, v /∈ N1, as vertices in N1 have

a list of size at most 2 after applying Rule 3. Hence, we �nd that v ∈ N2.

We now need to distinguish between the two possibilities of c.

Case 1 c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 2, c(x5) = 3, c(x6) = 2,

c(x7) = 3
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As G has diameter 2, there exists a vertex y ∈ N1 that is adjacent to x1

and v. Hence, y is not adjacent to any vertex in {x2, . . . , x7}; otherwise y
would have a list of size 1 due to Rule 3, and by the same rule, v would have

a list of size 2. As G has diameter 2, there exists a vertex y′ ∈ N1 that is

adjacent to x4 and v. By the same arguments as above, y′ is not adjacent to

any vertex of {x1, x3, x5, x7}. The latter, together with the C4-freeness of G,

implies that y′ is not adjacent to x2 and x6 either.

First suppose that yy′ ∈ E. Then {x1, x7, x6, x5, x4, y
′, y} induces a C7;

see also Figure 3.10. As c(x1) = 1, c(x7) = 3, c(x6) = 2 and c(x5) = 3,

we �nd that Lc({x1, x7, x6}) = {1, 2, 3} and Lc(x5) = Lc(x7). Then 1 /∈
Lc(y

′), as otherwise the propagation algorithm would have applied Rule 7.

Moreover, 2 /∈ Lc(y
′), as otherwise the propagation algorithm would have

applied Rule 3. Hence, Lc(y′) = {3}. However, then |Lc(v)| ≤ 2, again due

to Rule 3, a contradiction.

Now suppose that yy′ /∈ E. Then {x1, x2, x3, x4, y
′, v, y} induces a C7. As

c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 2, we �nd that Lc({x1, x2, x3}) =

{1, 2, 3} and Lc(x4) = Lc(x2). Then 1 /∈ Lc(v) due to Rule 7. This is

a contradiction, as we assumed Lc(v) = {1, 2, 3}. We conclude that the

propagation algorithm returned either yes or no.

Case 2 c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 1, c(x5) = 3, c(x6) =

2, c(x7) = 3

As G has diameter 2, there is a vertex y ∈ N1 adjacent to x3 and v. Hence, y

is not adjacent to any vertex in {x1, x2, x4, x6}; otherwise y would have a list

of size 1 due to Rule 3, and by the same rule, v would have a list of size 2.

As yx4 /∈ E, we �nd that yx5 /∈ E either; otherwise {y, x3, x4, x5} induces a
C4. As G has diameter 2, this means there is a vertex y′ ∈ N1 \ {y} adjacent
to x5 and v. By the same arguments as above, y′ is not adjacent to any

vertex of {x1, x2, x4, x6}. As G is C4-free, the latter implies that y′x3 /∈ E
and y′x7 /∈ E.

If yy′ ∈ E, then v would have a list of size at most 2 due to Rule 5. Hence
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v

y y′

x1 x2 x3 x4 x5 x6 x7

{1} {3}{2} {2} {3} {2} {3}

Figure 3.10: The situation that is described in Case 1 in the proof of

Theorem 3.16. If the edge yy′ exists, then {x1, x7, x6, x5, x4, y
′, y} induces

a C7 to which Rule 7 should have been applied. Otherwise the vertices

{x1, x2, x3, x4, y
′, v, y} induce such a C7.

yy′ /∈ E. If yx7 /∈ E, this means that {x1, x2, x3, y, v, y
′, x5, x6, x7} induces a

C9, which is not possible. Hence, yx7 ∈ E.
To summarize, we found that v has two distinct neighbours y and y′,

where y has exactly two neighbours on C, namely x3 and x7, and y′ has

exactly one neighbour on C, namely x5. As G has diameter 2, this means

that there exists a vertex z ∈ N1 with z /∈ {y, y′} that is adjacent to x6 and v.

Then z is not adjacent to any vertex of {x1, x3, x4, x5, x7}, as otherwise z

would have a list of size 1 due to Rule 3, and by the same rule, v would

have a list of size 2. If zy ∈ E, then {y, z, x6, x7} induces a C4, which is not

possible. Hence zy /∈ E.
From the above, we �nd that {x6, x5, x4, x3, y, v, z} induces a C7; see also

Figure 3.11. As c(x6) = 2, c(x5) = 3, c(x4) = 1 and c(x3) = 3, we �nd that

Lc({x6, x5, x4}) = {1, 2, 3} and Lc(x3) = Lc(x5). Then 2 /∈ Lc(v), due to Rule

7. Hence, |Lc(v)| ≤ 2, a contradiction. We conclude that the propagation

algorithm returned either yes or no in Case 2 as well.

Finally, we complement our polynomial-time results by proving the fol-
lowing hardness result for graphs of diameter 4.
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v

y y′

x1 x2 x3 x4 x5 x6 x7

z

{1} {3}{2} {1} {3} {2} {3}

Figure 3.11: The situation that is described in Case 2 in the proof of Theo-

rem 3.16. The set {x6, x5, x4, x3, y, v, z} induces a C7 to which Rule 7 should

have been applied.

Theorem 3.17. For every integer t ≥ 8, 3-Colouring is NP-complete on

the class of (C4, C6, C7 . . . , Ct)-free graphs of diameter 4.

Proof. Note that the problem is readily seen to be in NP. To prove NP-

hardness we modify the standard reduction for Colouring from the NP-

complete problemNot-All-Equal 3-Satisfiability [87], where each vari-

able appears in at most three clauses. So, given a CNF formula φ, we �rst

construct a graph G as follows (see also Figure 3.12):

� add literal vertices vi and v′i for each variable xi;

� add an edge between each vi and v′i;

� add a vertex z adjacent to every vi and every v′i;

� for each clause Ci add a triangle Ti with clause vertices ci1 , ci2 , ci3 ;

� �x an arbitrary order of the literals xi1 , xi2 , xi3 of Ci and for j ∈
{1, 2, 3}, add the edge vijcij if xij is positive and the edge v′ijcij if

xij is negative.

63



z

v1 v1
′ v2 v2

′ v3 v3
′ v4 v4

′

c12c11 c13 c22c21 c23

Figure 3.12: An example of a graph G in the reduction from Not-All-

Equal 3-Satisfiability to 3-Colouring with clauses C1 = x1 ∧ x2 ∧ x3

and C2 = x3 ∧ ¬x3 ∧ x4. We obtain the graph G′ by subdividing the thick

edges (edges between literal and clause vertices) the same number of times

and connecting the newly introduced vertices to z.

It is well known that φ has a truth assignment τ such that each clause

contains at least one true literal and at least one false literal (call such a τ

satisfying) if and only if G has a 3-colouring. For completeness we give a

proof below.

First suppose φ has a satisfying truth assignment. Colour vertex z with

colour 1, each true literal with colour 2 and each false literal with colour 3.

Then, as each clause has a true literal and a false literal, each triangle Ti has

neighbours in two di�erent colours. Hence, we can complete the 3-colouring.

Now suppose G has a 3-colouring. Say z is assigned colour 1. Then

each literal vertex has either colour 2 or colour 3. Moreover, each Ti must

be adjacent to at least one literal vertex coloured 2 and to at least one

literal vertex coloured 3. Hence, the truth assignment that sets literals whose

vertices are coloured with colour 2 to be true and those coloured with colour

3 to be false is satisfying.

As every clause vertex is adjacent to a literal vertex and literal vertices

are adjacent to z, every vertex has distance at most 2 from z. So G has

diameter 4.
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We modify G into a graph G′: for some p ≥ 0, subdivide each edge vijcij
and each edge v′ijcij p times and make each newly introduced vertex adjacent

to z; see also Figure 3.12. Then G′ has a 3-colouring if and only if G has a

3-colouring, as the new vertices will be alternatingly coloured by 2 and 3 if z

has colour 1. Moreover, G′ still has diameter 4, and it can be readily checked

that every induced cycle of G of length at most p is either a C3 (either a

triangle Ti or a triangle containing z) or a C5 (which must contain z). As we

can make p arbitrarily large, the result follows.

3.6 Conclusions

In this chapter we have studied the e�ect on the complexity of the Colour-
ing and k-Colouring problems of simultaneously restricting the input
graph to some class characterised by a set of forbidden induced subgraphs
and bounding its diameter. We classi�ed the complexity of Colouring for
H-free graphs of diameter at most d for all but �nitely many graphs H. The
open cases are those where H is a claw and d is any integer and the case
where H is a triangle and d = 2 . For the k-Colouring problem, we obtain
both polynomial and NP-completeness results for H-free graphs for a num-
ber of polyads H. We also give both NP-completeness and polynomial-time
results for graphs of girth at least g as well as for H-free graphs where H
is a set of one or more cycles. We now highlight the most interesting open
problems from this section.

Resolving the �rst two would complete our classi�cation of Colouring
for H-free graphs of diameter at most d.

Open Problem 1. What is the complexity of Colouring for claw-free

graphs of diameter 2? Does there exist an integer d such that Colouring

is NP-complete for claw-free graphs of diameter at most d?

Open Problem 2. What is the complexity of Colouring for C3-free graphs

of diameter 2?

Next we consider some natural next steps towards classi�cation of polyads
for graphs of bounded diameter.
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Open Problem 3. What is the complexity of 3-Colouring for K1
1,4-free

graphs of diameter at most 3 and for K2
1,3-free graphs of diameter at most 3?

Open Problem 4. Does there exist a polyad S such that 3-Colouring is

NP-complete for S-free graphs of diameter at most 3?

We also have a number of open cases for graphs of bounded diameter and
girth.

Open Problem 5. What are the complexities of the remaining open cases in

table 3.2? In particular what is the complexity of 3-Colouring for (C3-free)

graphs of diameter at most 2?

We are also left with many open cases for 3-Colouring and List 3-
Colouring graphs of diameter at most 2 in the absence of one or two short
cycles.

Open Problem 6. What is the complexity of 3-Colouring (or list 3-

Colouring) for Ct-free graphs of diameter at most 2, t ∈ {3, 4, 7, 8 . . . }?

Open Problem 7. What is the complexity of 3-Colouring (or List 3-

Colouring) for (C4, Ct)-free graphs of diameter at most 2, t ≥ 10?

We may also consider k-Colouring for triangle-free graphs of diameter
at most 2 where k ≥ 4.

Open Problem 8. What is the complexity of k-Colouring for triangle-free

graphs of diameter at most 2 with k ≥ 4?

Finally we note that the construction of Mertzios and Spirakis for triangle-
free graphs of diameter 3 seems to contain cycles Cs of arbitrary length for
s ≥ 4. With this in mind we pose the following open problems for graphs of
diameter at most 3.

Open Problem 9. What is the complexity of 3-Colouring (List 3-

Colouring) for Ct-free graphs of diameter at most 3 with t ≥ 4?

Open Problem 10. What is the complexity of 3-Colouring (Similarly

List 3-Colouring) for (C4, Ct)-free graphs of diameter at most 3 with t ∈
{3, 5, 6 . . . }?
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Chapter 4

Variants of the Colouring

Problem

In this chapter we study three variants of the colouring problem; acyclic
colouring, star colouring and Injective Colouring. After outlin-
ing known results, we present a general polynomial-time result applicable to
all three problems in Section 4.3. We then prove almost complete complexity
dichotomies for each of the three problems in Sections 4.4, 4.5 and 4.6.

4.1 Known Results

Before discussing our new results and techniques, we �rst brie�y discuss some
known results.

Coleman and Cai [26] proved that for every k ≥ 3, the problem Acyclic
k-Colouring is NP-complete for bipartite graphs. Afterwards, a number
of hardness results appeared for other hereditary graph classes. Alon and
Zaks [5] showed that Acyclic 3-Colouring is NP-complete for line graphs
of maximum degree 4. Kostochka [61] proved that Acyclic 3-Colouring
is NP-complete for planar graphs. This result was improved to planar bipar-
tite graphs of maximum degree 4 by Ochem [81]. Mondal et al. [79] proved
that Acyclic 4-Colouring is NP-complete for graphs of maximum de-
gree 5 and for planar graphs of maximum degree 7. Ochem [81] showed that
Acyclic 5-Colouring is NP-complete for planar bipartite graphs of max-
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imum degree 8. We refer to the paper of Angelini and Frati [6] for a further
discussion on acyclic colourable planar graphs.

Albertson et al. [2] and recently, Lei et al. [64] proved that Star 3-
Colouring is NP-complete for planar bipartite graphs and line graphs,
respectively. Shalu and Antony [89] showed that Star Colouring is NP-
complete for co-bipartite graphs. Bodlaender et al. [10], Sen and Huson [88]
and Lloyd and Ramanathan [67] proved that Injective Colouring is NP-
complete for split graphs, unit disk graphs and planar graphs, respectively.
Mahdian [72] proved that for every k ≥ 4, Injective k-Colouring is NP-
complete for line graphs. Injective 4-Colouring is also known to be NP-
complete for cubic graphs (see [22]). Observe that Injective 3-Colouring
is trivial for general graphs.

On the positive side, Lyons [71] proved that Acyclic Colouring and
Star Colouring are polynomial-time solvable for P4-free graphs; in par-
ticular, he showed that every acyclic colouring of a P4-free graph is, in fact,
a star colouring. We note that Injective Colouring is trivial for P4-free
graphs, as every injective colouring must assign each vertex of a connected
P4-free graph a unique colour. Afterwards, the results of Lyons have been
extended to P4-tidy graphs and (q, q−4)-graphs by Linhares-Sales et al. [66].

Cheng et al. [23] complemented the aforementioned result of Alon and
Zaks [5] by proving that Acyclic Colouring is polynomial-time solvable
for claw-free graphs of maximum degree at most 3. Calamoneri [22] observed
that Injective Colouring is polynomial-time solvable for comparabil-
ity and co-comparability graphs. Zhou et al. [96] proved that Injective
Colouring is polynomial-time solvable for graphs of bounded treewidth.

4.2 Our Results

We focus on two important graph classes, namely the classes of graphs of high
girth and line graphs of multigraphs, which are interesting classes on their
own. If a problem is NP-complete for both classes, then it is NP-complete
for H-free graphs whenever H has a cycle or a claw. It then remains to
analyze the case when H is a linear forest, i.e., a disjoint union of paths;
see [15, 21, 38, 62] for examples of this approach, which we discuss in detail
below.

The construction of graph families of high girth and large chromatic num-
ber is well studied in graph theory (see, e.g. [35]). To prove their complexity
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dichotomy for Colouring on H-free graphs, Král' et al. [62] �rst showed
that for every integer g ≥ 3, 3-Colouring is NP-complete for the class of
graphs of girth at least g. This approach can be readily extended to any in-
teger k ≥ 3 [34, 69]. The basic idea is to replace edges in a graph by graphs
of high girth and large chromatic number, such that the resulting graph has
su�ciently high girth and is k-colourable if and only if the original graph is
so (see also [42, 53]).

By a more intricate use of the above technique we are able to prove that
for every g ≥ 3 and every k ≥ 3, Acyclic k-Colouring is NP-complete
for the class of 2-degenerate bipartite graphs of girth at least g. This implies
that Acyclic k-Colouring is NP-complete for H-free graphs whenever H
has a cycle. For Star 3-Colouring we are also able to prove that the
problem remains NP-complete, for the class of graphs of girth at least g,
for each g ≥ 3. This implies that Star 3-Colouring is NP-complete for
H-free graphs whenever H has a cycle. We prove the latter result for every
k ≥ 4 by combining known results, just as we use known results to prove
that Injective k-Colouring (k ≥ 4) is NP-complete for H-free graphs if
H has a cycle.

A classical result of Holyer [50] is that 3-Colouring is NP-complete for
line graphs (and Leven and Galil [65] proved the same for k ≥ 4). As line
graphs are claw-free, Král' et al. [62] used Holyer's result to show that 3-
Colouring is NP-complete for H-free graphs whenever H has an induced
claw. For Acyclic 3-Colouring, this follows from Alon and Zaks' re-
sult [5], which we extend to work for k ≥ 4. For Injective k-Colouring
(k ≥ 4) we can use the aforementioned result on line graphs of Mahdian [72].

The above hardness results leave us to consider the case where H is a
linear forest. In Section 4.3 we will use a result of Atminas et al. [8] to prove
a general result from which it follows that for �xed k, all three problems are
polynomial-time solvable for H-free graphs if H is a linear forest. Hence,
we have full complexity dichotomies for the three problems when k is �xed.
However, these positive results do not extend to the case where k is part of
the input: we prove NP-completeness for graphs that are Pr-free for some
small value of r or have a small independence number, i.e., that are sP1-free
for some small integer s.

Our complexity results for H-free graphs are summarized in the following
three theorems, proven in Sections 4.4�4.6, respectively; see Table 4.2 for a
comparison.
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polynomial time NP-complete

Colouring [62] H ⊆i P4 or P1 + P3 Otherwise

Acyclic Colouring H ⊆i P4 Otherwise except for 2P2

Star Colouring H ⊆i P4 Otherwise except for 2P2

Injective Colouring H 6⊆i 2P1 + P4 Oth. except for 2P1 + P4

k-Colouring (see [24, 41, 60]) depends on k in�nitely many open H

Acyclic k-Colouring (k ≥ 3) H is a linear forest Otherwise

Star k-Colouring (k ≥ 3) H is a linear forest Otherwise

Injective k-Colouring (k ≥ 4) H is a linear forest Otherwise

Table 4.1: The state-of-the-art for the three problems in this paper and the

original Colouring problem; both when k is �xed and part of the input.

The open case for both Acyclic Colouring and Star Colouring is 2P2.

The open case for Injective Colouring is 2P1 + P4

.

Theorem 4.1. Let H be a graph. For the class of H-free graphs it holds that:

(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and

NP-complete otherwise for H 6= 2P2;

(ii) for every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable

if H is a linear forest and NP-complete otherwise.

Theorem 4.2. Let H be a graph. For the class of H-free graphs it holds that:

(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and

NP-complete if H 6⊆i P4 and H 6= 2P2;
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(ii) for every k ≥ 3, Star k-Colouring is polynomial-time solvable if H

is a linear forest and NP-complete otherwise.

Theorem 4.3. Let H be a graph. For the class of H-free graphs it holds that:

(i) Injective Colouring is polynomial-time solvable if H (i 2P1 + P4

and NP-complete if H 6⊆ 2P1 + P4;

(ii) for every k ≥ 4, Injective k-Colouring is polynomial-time solvable

if H is a linear forest and NP-complete otherwise.

In Section 4.7 we give a number of open problems that resulted from our
systematic study.

polynomial time NP-complete

Colouring [62] H ⊆i P4 or P1 + P3 Otherwise

Acyclic Colouring H ⊆i P4 Otherwise except for 2P2

Star Colouring H ⊆i P4 Otherwise except for 2P2

Injective Colouring H 6⊆i 2P1 + P4 Oth. except for 2P1 + P4

k-Colouring (see [24, 41, 60]) depends on k in�nitely many open H

Acyclic k-Colouring (k ≥ 3) H is a linear forest Otherwise

Star k-Colouring (k ≥ 3) H is a linear forest Otherwise

Injective k-Colouring (k ≥ 4) H is a linear forest Otherwise

Table 4.2: The state-of-the-art for the three problems in this paper and the

original Colouring problem; both when k is �xed and part of the input.

The open case for both Acyclic Colouring and Star Colouring is 2P2.

The open case for Injective Colouring is 2P1 + P4

.
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4.3 A General Polynomial Result

A biclique Ks,t is called balanced if s = t. We say that a colouring c of a
graph G satis�es the balance biclique condition (BB-condition) if c uses at
least k+ 1 colours to colour G, where k is the order of a largest biclique that
is contained in G as a (not necessarily induced) subgraph.

Let π be some colouring property; e.g., π could mean being acyclic, star or
injective. Then π can be expressed in MSO2 (monadic second-order logic with
edge sets) if for every k ≥ 1, the graph property of having a k-colouring with
property π can be expressed in MSO2. The general problem Colouring(π)
is to decide, on a graph G and integer k ≥ 1, if G has a k-colouring with
property π. If k is �xed, we write k-Colouring(π). We now prove the
following result.

Theorem 4.4. Let H be a linear forest, and let π be a colouring property

that can be expressed in MSO2, such that every colouring with property π

satis�es the BB-condition. Then, for every integer k ≥ 1, k-Colouring(π)

is linear-time solvable for H-free graphs.

Proof. Atminas, Lozin and Razgon [8] proved that that for every pair of

integers ` and k, there exists a constant b(`, k) such that every graph of

treewidth at least b(`, k) contains an induced P` or a (not necessarily induced)

bicliqueKk,k. Let G be anH-free graph, and let ` be the smallest integer such

that H ⊆i P`; observe that ` is a constant. Hence, we can use Bodlaender's

algorithm [9] to test in linear time if G has treewidth at most b(`, k)− 1.

First suppose that the treewidth of G is at most b(`, k) − 1. As π can

be expressed in MSO2, the result of Courcelle [29] allows us to test in linear

time whether G has a k-colouring with property π. Now suppose that the

treewidth of G is at least b(`, k). As G is H-free, G is P`-free. Then, by

the result of Atminas, Lozin and Razgon [8], we �nd that G contains Kk,k

as a subgraph. As π satis�es the BB-condition, G has no k-colouring with

property π.

We now apply Theorem 4.4 to obtain the polynomial cases for �xed k in
Theorem 4.1�4.3.
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Corollary 1. Let H be a linear forest. For every k ≥ 1, Acyclic k-

Colouring, Star k-Colouring and Injective k-Colouring are

polynomial-time solvable for H-free graphs.

Proof. All three kinds of colourings use at least s colours to colour Ks,s (as

the vertices from one bipartition class of Ks,s must receive unique colours).

Hence, every acyclic, star and injective colouring of every graph satis�es the

BB-condition. Moreover, it is readily seen that the colouring properties of

being acyclic, star or injective can all be expressed in MSO2. Hence, we may

apply Theorem 4.4.

4.4 Acyclic Colouring

In this section, we prove Theorem 4.1. For a graph G and a colouring c, the
pair (G, c) has a bichromatic cycle C if C is a cycle of G with |c(V (C)| = 2,
i.e., the vertices of C are coloured by two alternating colours (so C is even).
A path P in G is an i-j-path if the vertices of P have alternating colours i
and j. We now prove the following result.

Lemma 4.1. For every k ≥ 3 and every g ≥ 3, Acyclic k-Colouring is

NP-complete for 2-degenerate bipartite graphs of girth at least g.

Proof. We reduce from Acyclic k-Colouring, which is known to be NP-

complete for bipartite graphs [26]. Recall that the arboricity of a graph is

the minimum number of forests needed to partition its edge set. By counting

the edges, a graph with arboricity at most t is (2t− 1)-degenerate and thus

2t-colourable. We start by taking a graph F that has no 2k(k− 1)-colouring

and that is of girth at least g. By a seminal result of Erd®s [35], such

a graph F exists (and its size is constant, as it only depends on g which

is a �xed integer). Notice that F does not admit a vertex-partition into k

subgraphs with arboricity at most k−1, since otherwise F would be 2k(k−1)-

colourable. Now we consider the graph S obtained by subdividing every edge

of G exactly once. The graph S is 2-degenerate and bipartite with the old
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vertices from F in one part and the new vertices of degree 2 in the other

part. For contradiction, assume that S has an acyclic k-colouring. Assign

the colour of every old vertex to the corresponding vertex of F and assign

the colour of every new vertex to the corresponding edge of F . For every

colour i, we consider the subgraph Fi of F induced by the vertices coloured

i. For every j 6= i, the subgraph of S induced by the colours i and j is a

forest. This implies that the subgraph of Fi induced by the edges coloured

j is a forest. So the arboricity of Fi is at most k − 1, that is, the number

of colours distinct from i. By previous discussion, the chromatic number of

Fi is at most 2(k − 1), so that F is 2k(k − 1)-colourable. This contradiction

shows that S has no acyclic k-colouring.

We repeatedly remove new vertices from S until we obtain a graph S ′ that

is acyclically k-colourable. Let x2 be the last vertex that we removed and

let x1 and x3 be the neighbours of x2 in S. By construction, S ′ is acyclically

k-colourable and every acyclic k-colouring c of S ′ is such that:

� c(x1) = c(x3), since otherwise setting c(x2) 6∈ {c(x1), c(x3)} would ex-

tend c to x2. Without loss of generality, c(x1) = c(x3) = 1

� For every colour i 6= 1, S ′ contains a bichromatic path coloured 1 and

i between x1 and x3, since otherwise setting c(x2) = i would extend c

to x2.

We are ready to describe the reduction. Let G be a bipartite instance of

Acyclic k-Colouring. We construct an equivalent instance G′ with large

girth as follows. For every vertex z of G, we �x an arbitrary order on the

neighbours of z. We replace z of G by d vertices {z1, z2, · · · , zd}, where d is

the degree of z. Then for 1 ≤ i ≤ d− 1, we take a copy of S ′ and we identify

the vertex x1 of S ′ with zi and the vertex x3 of S ′ with zi+1. Now for every

edge mn of G, say n is the ith neighbour of m and m is the jth neighbour of

n, we add the edge minj in G′.
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Given an acyclic k-colouring of G, we assign the colour of z to {z1, · · · , zd}
and extend the colouring to the copies of F ′, which gives an acyclic colouring

of G′. Given an acyclic k-colouring of G′, the copies of F ′ force the same

colour on {z1, · · · , zd} and we assign this common colour to z, which gives

an acyclic colouring of G.

Finally, notice that since G is bipartite, G′ is bipartite, 2-degenerate and

with girth at least g.

In Lemma 4.2 we modify the construction of [5] for line graphs from k = 3
to k ≥ 3.

Lemma 4.2. For every k ≥ 3, Acyclic k-Colouring is NP-complete for

line graphs of multigraphs.

Proof. For an integer k ≥ 1, a k-edge colouring of a graph G = (V,E) is

a mapping c : E → {1, . . . , k} such that c(e) 6= c(f) whenever the edges e

and f share an end-vertex. A colour class consists of all edges of G that are

mapped by c to a speci�c colour i. The pair (G, c) has a bichromatic cycle C

if C is a cycle of G with its edges coloured by two alternating colours. The

notion of a bichromatic path is de�ned in a similar manner. We say that c

is acyclic if (G, c) has no bichromatic cycle. For a �xed integer k ≥ 1, the

Acyclic k-Edge Colouring problem is to decide if a given graph has

an acyclic k-edge colouring. Alon and Zaks proved that Acyclic 3-Edge

Colouring is NP-complete for multigraphs [5]. We note that a graph has an

acyclic k-edge colouring if and only if its line graph has an acyclic k-colouring.

Hence, it remains to generalize the construction of Alon and Zaks [5] from

k = 3 to k ≥ 3. Our main tool is the gadget graph Fk, depicted in Figure 4.1,

about which we prove the following two claims.

(i) The edges of Fk can be coloured acyclically using k colours, with no bichro-

matic path between v1 and v14.

(ii) Every acyclic k-edge colouring of Fk using k colours assigns e1 and e2

the same colour.
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v1 v2

v3 v5

v4 v6

v7 v8

v9

v10

v11

v12

v13 v14
e1 e2

(k − 2)

(k − 2)

(k − 2)
(k − 2)

(k − 2)

Figure 4.1: The gadget multigraph Fk. The labels on edges are multiplicities.

We �rst prove (ii). We assume, without loss of generality, that e1 is coloured

by 1, v2v4 by 2 and the edges between v2 and v3 by colours 3, . . . , k. The

edge v3v5 has to be coloured by 1, otherwise we have a bichromatic cycle on

v2v3v5v4. This necessarily implies that

� the edges between v4 and v5 are coloured by 3, . . . , k,

� the edge v5v7 is coloured by 2,

� the edge v4v6 is coloured by 1,

� the edges between v6 and v7 are coloured by 3, . . . , k, and

� the edge v7v8 is coloured by 1.

Now assume that the edge v8v9 is coloured by a ∈ {2, . . . , k} and the edges

between v8 and v10 by colours from the set A, where A = {2, . . . , k} \ a.
The edge v10v11 is either coloured a or 1. However, if it is coloured 1, v9v11

is assigned a colour b ∈ A and necessarily we have either a bichromatic

cycle on v8v9v11v13v12v10, coloured by b and a, or a bichromatic cycle on

v10v11v13v12, coloured by a and 1. Thus v10v11 is coloured by a. To prevent

a bichromatic cycle on v8v9v11v10, the edge v9v11 is assigned colour 1. The

rest of the colouring is now determined as v10v12 has to be coloured by 1,

the edges between v11 and v13 by A, v12v13 by a, and e2 by 1. We then have

a k-colouring with no bichromatic cycles of size at least 3 in Fk for every
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possible choice of a. This proves that e1 and e2 are coloured alike under

every acyclic k-edge colouring.

We prove (i) by choosing a di�erent from 2. Then there is no bichromatic

path between v1 and v14.

We now reduce from k-Edge-Colouring toAcyclic k-Edge Colour-

ing as follows. Given an instance G of k-Edge Colouring we construct

an instance G′ of Acyclic k-Edge Colouring by replacing each edge uv

in G by a copy of Fk where u is identi�ed with v1 and v is identi�ed with v14.

If G′ has an acyclic k-edge colouring c′ then we obtain a k-edge colouring

c of G by setting c(uv) = c′(e1) where e1 belongs to the gadget Fk corre-

sponding to the edge uv. If G has a k-edge colouring c then we obtain an

acyclic k-edge colouring c′ of G′ by setting c′(e1) = c(uv) where e1 belongs

to the gadget corresponding to the edge uv. The remainder of each gadget

Fk can then be coloured as described above.

Lemma 4.3. Acyclic Colouring is NP-complete for co-bipartite graphs.

Proof. Alon et al. [4, Theorem 3.5] proved that deciding if a balanced bipar-

tite graph on 2n vertices has a connected matching of size n is NP-complete.

A matching is called connected if no two edges of the matching induce 2K2

in the given graph. We shall reduce from this problem to prove our theorem.

To this end, we claim that a balanced bipartite graph G with parts A and

B such that |A| = |B| = n has a connected matching of size n if and only if

its complement has an acyclic colouring with n colours.

Suppose that there is an acyclic colouring c of G with n colours. Clearly,

such colouring uses n colours on A and n colours on B. Vertices coloured

with the same colour do not have an edge between them in G and thus are

connected by an edge in G. Let us take the set of edges formed by each of the

n colour classes. By the property of colouring, this is a matching in G and it

is of size n. To see that it is also connected, suppose for a contradiction that

there are two edges of the matching, say a1b1 and a2b2, forming an induced
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2K2 in G. Without loss of generality, c(a1) = c(b1) = 1 and c(a2) = c(b2) = 2.

Now the induced 2K2 in G corresponds to a 4-cycle in G coloured with two

colours, a contradiction with c being an acyclic colouring.

In the opposite direction, let us have a connected matching of size n in

G. Colour the n vertices in A by 1, . . . , n. Let us colour the vertices of B

with respect to the connected matching so that each vertex of B gets the

colour of the vertex in A it is matched to. Indeed, this is a colouring of G

by n colours. It remains to prove that it is acyclic. Any cycle in G having

more than �ve vertices has by the de�nition of our colouring at least three

colours. Therefore, a possible bichromatic cycle in G must be of size 4. The

only possibility for such 4-cycle is that it is formed by two pairs of vertices,

each one forming an edge of the connected matching in G. However, this

implies that these two matching edges induce 2K2 in G, a contradiction with

connectedness of the original matching. This completes the proof.

We combine the above results with a result of Lyons [71] to prove Theo-
rem 4.1.

Theorem 4.1 (restated). Let H be a graph. For the class of H-free graphs

it holds that:

(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-

complete if H 6⊆i P4 and H 6= 2P2 ;

(ii) for every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable

if H is a linear forest and NP-complete otherwise.

Proof. We �rst prove (ii). First suppose that H contains an induced cycle

Cp, then we use Lemma 4.1. Now assume H has no cycle so H is a forest. If

H has a vertex of degree at least 3, then H has an induced K1,3. As every

line graph of a multigraph is K1,3-free, we can use Lemma 4.2. Otherwise H

is a linear forest and we use Corollary 1.
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We now prove (i). Due to (ii), we may assume that H is a linear forest.

If H ⊆i P4, then we use the result of Lyons [71] that states that Acyclic

Colouring is polynomial-time solvable for P4-free graphs. Now suppose

3P1 ⊆i H. By lemma 4.3, acyclic colouring is NP-complete for co-

bipartite and thus for 3P1-free graphs. It remains to consider the case where

H = 2P2, but this case is excluded from the theorem.

4.5 Star Colouring

In this section we prove Theorem 4.2. We �rst prove the following lemma.

Lemma 4.4. For every g ≥ 3, Star 3-Colouring is NP-complete for

planar graphs of girth at least g and maximum degree 3.

Proof. We reduce from 3-Colouring, which is NP-complete even for planar

graphs with maximum degree 4 [39]. Let G be an instance of this restricted

version of graph of 3-Colouring. The vertex gadget D contains

� a cycle of length 12g with vertices d1, · · · , d12g,

� 12g independent vertices e1, · · · , e12g such that ei is adjacent to di for

every 1 ≤ i ≤ 12g, and

� 4 independent vertices f1, f2, f3, f4 such that fi is adjacent to e3ig for

every 1 ≤ i ≤ 4.

We construct an instance G′ of Star 3-Colouring from G as follows.

We consider a planar embedding of G and for every vertex x, we order the

neighbours of x in a clockwise way. Then we replace x by a copy Dx of D.

Now for every edge mn of G, say n is the ith neighbour of m and m is the jth

neighbour of n, we add the edge between the vertex fi of Dm and the vertex

fj of Dn, see Figure ??.
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It is not hard to check that in every star 3-colouring of D, the 4 vertices

fi get the same colour. moreover, there is no bichromatic path between any

two vertices fi.

Suppose that G admits a 3-colouring c of with colours in {0, 1, 2}. For

every vertex x in G, we assign c(x) to the vertices fi in Dx and we assign

(c(x) + 1) (mod 3) to the vertices e3ig. Then we extend this pre-colouring

into a star 3-colouring of Dx. This gives a star 3-colouring of G′. Given a

star 3-colouring of G′, we assign to every vertex x in G the colour of the

vertices fi in Dx, which gives a 3-colouring of G.

Finally, notice that since G is planar with maximum degree 4, G′ is planar

with maximum degree 3 and girth at least g.

Now we begin our development for Theorem 4.2.

Lemma 4.5. Let p ≥ 4 be a �xed integer. Then, for every k ≥ 3, Star

k-Colouring is NP-complete for Cp-free graphs.

Proof. The case k = 3 follows from Lemma 4.4. We obtain NP-completeness

for k ≥ 4 by a reduction from Star 3-Colouring for Cp-free graphs by

adding a dominating clique of size k − 3.

In Lemma 4.6 we extend the recent result of Lei et al. [64] from k = 3 to
k ≥ 3.

v1 v2 v3 v4 v5 v6 v7 v8

v9 v10

. . .

1

k − 2

1

k − 2

. . .

e1 e2

Figure 4.2: The gadget Fk in the proof of Lemma 4.6.
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Lemma 4.6. For every k ≥ 3, Star k-Colouring is NP-complete for line

graphs of multigraphs.

Proof. A proper edge k-colouring c is a star k-edge colouring if the union

of any two colour classes does not contain a path or cycle of on four edges.

For a �xed integer k ≥ 1, the Star k-Edge Colouring problem is to

decide if a given graph has an star k-edge colouring. Lei et al. [64] proved

that Star 3-Edge Colouring is NP-complete. Dvo°ák et al. [32] observed

that a graph has a star k-edge colouring if and only if its line graph has

a star k-colouring. Hence, it su�ces to follow the proof of Lei et al.[64] in

order to generalize the case k = 3 to k ≥ 3. As such, we give a reduction

from k-Edge Colouring to Star k-Edge Colouring which makes use

of the gadget Fk in Figure 4.2. First we consider separately the case where

the edges e1 = v4v9 and e2 = v5v10 are coloured alike and the case where

they are coloured di�erently to show that in any star k-edge colouring of the

gadget Fk shown in Figure 4.2, v1v2 and v7v8 are assigned the same colour.

Assume c(e1) = c(e2) = 1. We may then assume that the edge v4v5 is

assigned colour 2 and the remaining k − 2 colours are used for the multiple

edges v3v4 and v5v6. The edge v2v3, and similarly v6v7, must then be assigned

colour 1 to avoid a bichromatic P5 on the vertices {v2, v3, v4, v5, v6} using any
two of the multiple edges in a single colour. The edge v1v2, and similarly

v7v8 must then be assigned colour 2 to avoid a bichromatic P5 on the vertices

{v1, v2, v3, v4, v9}.
Next assume e1 and e2 are coloured di�erently. Without loss of generality,

let c(e1) = 1, c(e2) = 2 and c(v4v5) = 3. The multiple edges v3v4 must then be

assigned colours 2 and 4 . . . k and v5v6 colour 1 and colours 4 . . . k. To avoid

a bichromatic P5 on the vertices {v2, v3, v4, v5, v6}, v2v3 must be coloured 1.

Similarly, v6v7 must be assigned colour 2. Finally, to avoid a bichromatic

P5 on the vertices {v1, v2, v3, v4, v9}, v1v2 must be coloured 3. By a similar

argument, v7v8 must also be coloured 3, hence v1v2 and v7v8 must be coloured

alike.
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We can then replace every edge e in some instance G of the problem

k-Edge-Colouring by a copy of Fk, identifying its endpoints with v1 and

v8, to obtain an instance G′ of Star k-Edge-Colouring. If G is k-edge

colourable we can star k-edgecolour G′ by setting c′(v1v2) = c′(v7v8) = c(e).

If G′ is star k-edge colourable, we obtain a k-edge colouring of G by setting

c(e) = c′(v1v2).

We now combine the above results with results of Albertson et al. [2], Lyons [71]
and Shalu and Anthony [89] to prove Theorem 4.2.

Theorem 4.2 (restated). Let H be a graph. For the class of H-free graphs

it holds that:

(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and NP-

complete if H 6⊆i P4 and H 6= 2P2;

(ii) for every k ≥ 3, Star k-Colouring is polynomial-time solvable if H

is a linear forest and NP-complete otherwise.

Proof. We �rst prove (ii). First suppose that H contains an induced odd

cycle. Then the class of bipartite graphs is contained in the class of H-free

graphs. Lemma 7.1 in Albertson et al. [2] implies, together with the fact

that for every k ≥ 3, k-Colouring is NP-complete, that for every k ≥ 3,

Star k-Colouring is NP-complete for bipartite graphs. If H contains an

induced even cycle, then we use Lemma 4.5. Now assume H has no cycle,

so H is a forest. If H contains a vertex of degree at least 3, then H contains

an induced K1,3. As every line graph of a multigraph is K1,3-free, we can use

Lemma 4.6. Otherwise H is a linear forest, in which case we use Corollary 1.

We now prove (i). Due to (ii), we may assume that H is a linear forest.

If H ⊆i P4, then we use the result of Lyons [71] that states that Star

Colouring is polynomial-time solvable for P4-free graphs. Now suppose

3P1 ⊆i H. A graph is co-bipartite if it is the complement of a bipartite

graph. As bipartite graphs are C3-free, co-bipartite graphs are 3P1-free.
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Hence, we can use the result of Shalu and Antony [89] who proved that Star

Colouring is NP-complete for co-bipartite graphs. It remains to consider

the case where H = 2P2, but this case was excluded from the statement of

the theorem.

4.6 Injective Colouring

In this section we prove Theorem 4.3. We �rst show a hardness result for
�xed k.1

Lemma 4.7. For every k ≥ 4, Injective k-Colouring is NP-complete

for bipartite graphs.

Proof. We reduce from Injective k-Colouring; recall that this problem

is NP-complete for every k ≥ 4. Let G = (V,E) be a graph. We construct

a graph G′ as follows. For each edge uv of G, we remove the edge uv and

add two vertices u′v, which we make adjacent to u, and v′u, which we make

adjacent to v. Next, we place an independent set Iuv of k−2 vertices adjacent

to both u′v and v′u. Note that G′ is bipartite: we can let one partition class

consist of all vertices of V (G) and the vertices of the Iuv-sets and the other

one consist of all the remaining vertices (that is, all the �prime� vertices we

added). It remains to show that G′ has an injective k-colouring if and only

if G has an injective k-colouring.

First assume that G has an injective k-colouring c. Colour the vertices

of G′ corresponding to vertices of G as they are coloured by c. We can

extend this to an injective k-colouring c′ of G′ by considering the gadget

corresponding to each edge uv of G. Set c′(u′v) = c′(v) and c′(v′u) = c′(u). We

can now assign the remaining k−2 colours to the vertices of the independent

sets. Clearly c′ creates no bichromatic P3 involving vertices in at most one
1We note that Janczewski et al. [55] proved that L(p, q)-Labelling is NP-complete for

planar bipartite graphs, but in their paper they assumed that p > q.
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u

Iuv

vu′
v v′u

k − 2

Figure 4.3: The edge gadget used in the proof of Lemma 4.7.

edge gadget. Assume there exists a bichromatic P3 involving vertices in

more than one edge gadget, then this path must consist of a vertex u of G

together with two gadget vertices u′v and u
′
w which are coloured alike. This

is a contradiction since it implies the existence of a bichromatic path v, u, w

in G.

Now assume that G′ has an injective k-colouring c′. Let c be the restric-

tion of c′ to those vertices of G′ which correspond to vertices of G. To see

that c is an injective colouring of G, note that we must have c′(u′v) = c′(v)

and c′(v′u) = c′(u) for any edge uv. Therefore, if c induces a bichromatic P3

on u, v, w, then c′ induces a bichromatic P3 on v′u, v, v
′
w. We conclude that c

is injective.

We now turn to the case where k is part of the input and �rst prove a number
of positive results. An injective colouring c of a graph G is optimal if G has
no injective colouring using fewer colours than c. An injective colouring c
is `-injective if every colour class of c has size at most `. An `-injective
colouring c of a graph G is `-optimal if G has no `-injective colouring that
uses fewer colours than c. We start with a useful lemma for the case where
` = 2 that we will also use in our proofs.

Lemma 4.8. A 2-optimal 2-injective colouring of a graph G can be found in

polynomial time.

Proof. Let c be a 2-injective colouring of G. Then each colour class of size 2 in

G corresponds to a dominating edge ofG (an edge uv of a graph is dominating

if every other vertex in the graph is adjacent to at least one of u, v). Hence,
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the end-vertices of every non-dominating edge in G have di�erent colours in

G. Algorithmically, this means we may delete every non-dominating edge of

G from G; note that we do not delete the end-vertices of such an edge.

Let µ∗ be the size of a maximum matching in the graph obtained from G

after deleting all non-dominating edges of G. The edges in such a matching

will form exactly the colour classes of size 2 of an optimal 2-injective colouring

of G. Hence, the injective chromatic number of G is equal to µ∗+ (|V (G)| −
2µ∗). It remains to observe that we can �nd a maximum matching in a graph

in polynomial time by using a standard algorithm.

We can now prove our �rst positive result.

Lemma 4.9. Injective Colouring is polynomial-time solvable for (P1 +

P4)-free graphs.

Proof. Let G be a (P1 + P4)-free graph. Since connected P4-free graphs

have diameter at most 2, no two vertices can be coloured alike in an injec-

tive colouring. Hence, the injective chromatic number of a P4-free graph is

equal to the number of its vertices. Consequently, Injective Colouring

is polynomial-time solvable for P4-free graphs. From now on, we assume that

G is not P4-free.

We �rst show that any colour class in any injective colouring of G has

size at most 2. For contradiction, assume that c is an injective colouring of

G such that there exists some colour, say colour 1, that has a colour class of

size at least 3. Let P = x1x2x3x4 be some induced P4 of G.

We �rst consider the case where colour 1 appears at least twice on P . As

no vertex has two neighbours coloured with the same colour, the only way in

which this can happen is when c(x1) = c(x4) = 1. By our assumption, G−P
contains a vertex u with c(u) = 1. As G is (P1 + P4)-free, u has a neighbour

on P . As every colour class is an independent set, this means that u must

be adjacent to at least one of x2 and x3. Consequently, either x2 or x3 has

two neighbours with colour 1, a contradiction.
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Now we consider the case where colour 1 appears exactly once on P ,

say c(xh) = 1 for some h ∈ {1, 2, 3, 4}. Then, by our assumption, G − P

contains two vertices u1 and u2 with colour 1. As G is (P1 + P4)-free, both

u1 and u2 must be adjacent to at least one vertex of P , say u1 is adjacent

to xi and u2 is adjacent to xj. Then xi 6= xj, as otherwise G has a vertex

with two neighbours coloured 1. As every colour class is an independent

set, we have that xh /∈ {xi, xj}, and hence, xh, xi, xj are distinct vertices.

Moreover, xh is not a neighbour of xi or xj, as otherwise xi or xj has two

neighbours coloured 1. Hence, we may assume without loss of generality that

h = 1, i = 3 and j = 4. As every colour class is an independent set, u1 and

u2 are non-adjacent. However, now {x1, u1, x3, x4, u2} induces a P1 + P4, a

contradiction.

Finally, we consider the case where colour 1 does not appear on P . Let

u1, u2, u3 be three vertices of G − P coloured 1. As before, {u1, u2, u3} is
an independent set and each ui has a di�erent neighbour on P . We �rst

consider the case where x1 or x4, say x4 is not adjacent to any ui. Then we

may assume without loss of generality that u1x1 and u2x2 are edges. However,

now {x4, u1, x1, x2, u2} induces a P1 + P4, which is not possible. Hence, we

may assume without loss of generality that u1x1, u2x2 and u4x4 are edges of

G. Again we �nd that {x4, u1, x1, x2, u2} induces a P1 + P4, a contradiction.

From the above, we �nd that each colour class in an injective colouring

of G has size at most 2. This means we can use Lemma 4.8.

We use the next lemma in the proofs of the results for H = 2P1 + P3 and
H = 3P1 + P2.

Lemma 4.10. Injective Colouring is polynomial-time solvable for 4P1-

free graphs.

Proof. Let G = (V,E) be a 4P1-free graph on n vertices. We �rst analyze the

structure of injective colourings of G. Let c be an optimal injective colouring

of G. As G is 4P1-free, every colour class of c has size at most 3. From
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all optimal injective colourings, we choose c such that the number of size-3

colour classes is as small as possible. We say that c is class-3-optimal.

Suppose c contains a colour class of size 3, say colour 1 appears on three

distinct vertices u1, u2 and u3 of G. As G is 4P1-free, {u1, u2, u3} dominates

G. As c is injective, this means that every vertex inG−{u1, u2, u3} is adjacent
to exactly one vertex of {u1, u2, u3}. Hence, we can partition V \ {u1, u2, u3}
into three sets T1, T2 and T3, such that for i ∈ {1, 2, 3}, every vertex of Ti is

adjacent to ui and not to any other vertex of {u1, u2, u3}. If two vertices t, t′

in the same Ti, say T1, are non-adjacent, then {t, t′, u2, u3} induces a 4P1, a

contradiction. Hence, we partitioned V into three cliques Ti ∪ {ui}. We call

the cliques T1, T2, T3, the T -cliques of the triple {u1, u2, u3}.
Let t ∈ Ti for some i ∈ {1, 2, 3}. For i ∈ {0, 1, 2} we say that t is i-clique-

adjacent if t has a neighbour in zero, one or two cliques of {T1, T2, T3} \ Ti,
respectively. By the de�nition of an injective colouring and the fact that every

Ti is a clique, a 1-clique-adjacent vertex of T1 ∪ T2 ∪ T3 belongs to a colour

class of size at most 2, and a 2-clique-adjacent vertex of T1 ∪ T2 ∪ T3 belongs

to a colour class of size 1. Hence, all the vertices that belong to a colour

class of size 3 are 0-clique-adjacent. The partition of V (G) is illustrated in

Figure 4.4.

T1

u1

T2

u2

T3

u3

Figure 4.4: The partition of V (G) from Lemma 4.10. The squares inside each

Ti, i ∈ {1, 2, 3}, represent, from left to right, the sets of 0-clique-adjacent,

1-clique-adjacent and 2-clique-adjacent vertices in Ti, respectively.
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We now use the fact that c is class-3-optimal. Let t ∈ V \{u1, u2, u3}, say
t ∈ T1, be i-clique-adjacent for i = 0 or i = 1. Then we may assume without

loss of generality that t has no neighbours in T2. If t belongs to a colour

class of size 1, then we can set c(u2) := c(t) to obtain an optimal injective

colouring with fewer size-3 colour classes, contradicting our choice of c.

We now consider the 0-clique-adjacent vertices again. Recall that these

are the only vertices, other than u1, u2 and u3, that may belong to a colour

class of size 3. As every Ti is a clique, every colour class of size 3 (other than

{u1, u2, u3}) has exactly one vertex of each Ti. Let {w1, w2, w3} be another

colour class of size 3 with wi ∈ Ti for every i ∈ {1, 2, 3}. Let x ∈ T1 \ {w1}
be another 0-clique-adjacent vertex. Then swapping the colours of w1 and x

yields another class-3-optimal injective colouring of G. Hence, we derived the

following claim, which summarizes the discussion above and where statement

(iv) follows from (i)�(iii).

Claim. Let c be a class-3-optimal injective colouring of G such that

c(u1) = c(u2) = c(u3) for three distinct vertices u1, u2, u3 and with p ≥ 0

other colour classes of size 3. Then the following four statements hold:

(i) All 0-clique-adjacent and 1-clique-adjacent vertices belong to a colour

class of size at least 2.

(ii) Let S = {y1, . . . , ys} be the set of 2-clique-adjacent vertices. Then

{y1}, . . . , {ys} are exactly the size-1 colour classes.

(iii) For i ∈ {1, 2, 3}, let xi1, . . . , xiqi be the 0-clique-adjacent vertices of Ti

and assume without loss of generality that q1 ≤ q2 ≤ q3. Then p ≤ q1

and if p ≥ 1, we may assume without loss of generality that the size-3

classes, other than {u1, u2, u3}, are {x1
1, x

2
1, x

3
1}, . . . , {x1

p, x
2
p, x

3
p}.
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(iv) The number of colours used by c, or equivalently, the number of colour

classes of c is equal to 1+s+p+ 1
2
(n−s−3(p+1)) = 1

2
n+ 1

2
s− 1

2
p− 1

2
.

We are now ready to present our algorithm. We �rst �nd, in polynomial

time, an optimal 2-injective colouring of G by Lemma 4.8. We remember

the number of colours used. Recall that the colour classes of every injective

colouring of G have size at most 3. So, it remains to compute an optimal

injective colouring for which at least one colour class has size 3.

We consider each triple u1, u2, u3 of vertices of G and check if {u1, u2, u3}
can be a colour class. That is, we check if {u1, u2, u3} is an independent

set and has corresponding T -cliques T1, T2, T3. This takes polynomial time.

If not, then we discard {u1, u2, u3}. Otherwise we continue as follows. Let

S = {y1, . . . , ys} be the set of 2-clique adjacent vertices in T1 ∪ T2 ∪ T3.

Exactly the vertices of S will form the size-1 colour classes by Claim (ii).

For i ∈ {1, 2, 3}, let xi1, . . . , xiqi be the 0-clique-adjacent vertices of Ti, where

we assume without loss of generality that q1 ≤ q2 ≤ q3. By Claim (iii), any

injective colouring of G which has {u1, u2, u3} as one of its colour classes has
at most q1 other colour classes of size 3 besides {u1, u2, u3}. As can be seen

from Claim (iv), the value 1
2
n+ 1

2
s− 1

2
p− 1

2
is minimized if the number p of

size-3 colour classes is maximum.

From the above we can now do as follows. For p = q1, . . . , 1, we check if

G has an injective colouring with exactly p colour classes of size 3. We

stop as soon as we �nd a yes-answer or if p is set to 0. We �rst set

{x1
1, x

2
1, x

3
1}, . . . , {x1

p, x
2
p, x

3
p} as the colour classes of size 3 by Claim (iii). Let

Z be the set of remaining 0-clique-adjacent and 1-clique-adjacent vertices.

We use Lemma 4.8 to check in polynomial time if the subgraph of G in-

duced by S ∪ Z has an injective colouring that uses s + 1
2
(n− s− 3(p + 1))

colours (which is the minimum number of colours possible). If so, then we

stop and note that after adding the size-3 colour classes we obtained an in-

jective colouring of G that uses 1
2
n+ 1

2
s− 1

2
p− 1

2
colours, which we remember.

Otherwise we repeat this step after �rst setting p := p− 1.
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As the above procedure for a triple u1, u2, u3 takes polynomial time and

the number of triples we must check is O(n3), our algorithm runs in polyno-

mial time. We take the 3-injective colouring that uses the smallest number

of colours and compare it with the number of colours used by the optimal

2-injective colouring that we computed at the start. Our algorithm then

returns a colouring with the smallest of these two values as its output.

We use the previous lemma to prove our next lemma.

Lemma 4.11. Injective Colouring is polynomial-time solvable for (2P1+

P3)-free graphs.

Proof. Let G = (V,E) be a (2P1 + P3)-free graph. We may assume without

loss of generality that G is connected and by Lemma 4.10 that G has an

induced 4P1. We �rst show that any colour class in any injective colouring

of G has size at most 2. For contradiction, assume that c is an injective

colouring of G such that there exists some colour, say colour 1, that has a

colour class of size at least 3. Let U = {u1, . . . , up} for some p ≥ 3 be the set

of vertices of G with c(ui) = 1 for i ∈ {1, . . . , p}.
As c is injective, every vertex in G− U has at most one neighbour in U .

Hence, we can partition G − U into (possibly empty) sets T0, . . . , Tp, where

T0 is the set of vertices with no neighbour in U and for i ∈ {1, . . . , p}, Ti is
the set of vertices of G− U adjacent to ui.

We �rst claim that T0 is empty. For contradiction, assume v ∈ T0. As G

is connected, we may assume without loss of generality that v is adjacent to

some vertex t ∈ T1. Then {u2, u3, u1, t, v} induces a 2P1+P3, a contradiction.

Hence, T0 = ∅.
We now prove that every Ti is a clique. For contradiction, assume that

t and t′ are non-adjacent vertices of T1. Then {u2, u3, t, u1, t
′} induces a

2P1 + P3, a contradiction. Hence, every Ti and thus every Ti ∪ {ui} is a

clique.
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We now claim that p = 3. For contradiction, assume that p ≥ 4. As G

is connected and U is an independent set, we may assume without loss of

generality that there exist vertices t1 ∈ T1 and t2 ∈ T2 with t1t2 ∈ E. Then
{u3, u4, u1, t1, t2} induces a 2P1 + P3, a contradiction. Hence, p = 3.

Now we know that V can be partitioned into three cliques T1 ∪ {u1},
T2 ∪ {u2} and T3 ∪ {u3}. However, then G is 4P1-free, a contradiction. We

conclude that every colour class of every injective colouring of G has size at

most 2. This means we can use Lemma 4.8.

We also use Lemma 4.10 in the proof of our next result.

Lemma 4.12. Injective Colouring is polynomial-time solvable for (3P1+

P2)-free graphs.

Proof. Let G be a (3P1 + P2)-free graph on n vertices. We may assume

without loss of generality that G is connected and by Lemma 4.10 that G

has an induced 4P1. As before, we will �rst analyze the structure of injective

colourings of G. We will then exploit the properties found algorithmically.

Let c be an injective colouring of G that has a colour class U of size at

least 3. So let U = {u1, . . . , up} for some p ≥ 3 be the set of vertices of G

with, say colour 1. As c is injective, every vertex in G− U has at most one

neighbour in U . Hence, we can partition G − U into (possibly empty) sets

T0, . . . , Tp, where T0 is the set of vertices with no neighbour in U and for

i ∈ {1, . . . , p}, Ti is the set of vertices of G− U adjacent to ui.

Assume that p ≥ 4. As G is connected, there exists a vertex v /∈ U but

that has a neighbour in U , say v ∈ T1. Then {u2, u3, u4, u1, v} induces a

3P1 + P2, a contradiction. Hence, we have shown the following claim.

Claim 1. Every injective colouring of G is `-injective for some ` ∈ {1, 2, 3}.

We continue as follows. As p = 3 by Claim 1, we have V (G) = U∪T0∪T1∪T2∪
T3. Suppose T0 contains two adjacent vertices x and y. Then {u1, u2, u3, x, y}
induces a 3P1 + P2, a contradiction. Hence, T0 is an independent set. As G

is connected, this means each vertex in T0 has a neighbour in T1 ∪ T2 ∪ T3.
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Suppose T0 contains two vertices x and y with the same colour, say c(x) =

c(y) = 2. Let v ∈ T1 ∪ T2 ∪ T3, say v ∈ T1 be a neighbour of x. Then, as

c(x) = c(y) and c is injective, v is not adjacent to y. As T0 is independent,

x and y are not adjacent. However, now {u2, u3, y, x, v} induces a 3P1 + P2,

a contradiction. Hence, every vertex in T0 has a unique colour. Suppose T0

contains a vertex x and T1∪T2∪T3 contains a vertex v such that c(x) = c(v).

We may assume without loss of generality that v ∈ T1. Then {u2, u3, x, v, u1}
induces a 3P1 + P2, a contradiction.

Finally, suppose that T1 ∪ T2 ∪ T3 contain two distinct vertices v and v′

with c(v) = c(v′). Let x ∈ T0. Then x is not adjacent to at least one of v,

v′, say xv /∈ E and also assume that v ∈ T1. Then {u2, u3, x, v, u1} induces a
3P1 + P2. Hence, we have shown the following claim.

Claim 2. If c is 3-injective and U is a size-3 colour class such that G has a

vertex not adjacent to any vertex of U , then all colour classes not equal to U

have size 1.

We note that the injective colouring c in Claim 2 uses n− 2 distinct colours.

We continue as follows. From now on we assume that T0 = ∅. Every Ti is

(P1 + P2)-free, as otherwise, if say T1 contains an induced P1 + P2, then this

P1 + P2, together with u2 and u3, forms an induced 3P1 + P2, which is not

possible. Hence, each Ti induces a complete ri-partite graph for some integer

ri (that is, the complement of a disjoint union of ri complete graphs). Hence,

we can partition each Ti into ri independent sets T 1
i , . . . , T

ri
i such that there

exists an edge between every vertex in T ai and every vertex in T bi if a 6= b.

See also Figure 4.5.

Suppose G contains another colour class of size 3, say v1, v2 and v3 are

three distinct vertices coloured 2. If two of these vertices, say v1 and v2,

belong to the same Ti, say T1, then u1 has two neighbours with the same

colour. This is not possible, as c is injective. Hence, we may assume without

loss of generality that vi ∈ T 1
i for i ∈ {1, 2, 3}.
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Suppose that T 2
1 contains two vertices s and t. Then, as s and t are

adjacent to v1, both of them are not adjacent to v2 (recall that c(v1) = c(v2)

and c is injective). Hence, {s, t, u3, v2, u2} induces a 3P1 +P2 (see Figure 4.5).

We conclude that for every i ∈ {1, 2, 3}, the sets T 2
i , . . . , T

ri
i have size 1.

u1

T2

u2

T3

u3

v1
t

s

v2

T 1
1

T1

T 2
1 T 1

2

Figure 4.5: The situation in Lemma 4.12 where T 2
1 contains two vertices s

and t. We show that this situation cannot happen, as it would lead to a

forbidden induced 3P1 + P2. Note that each ui is adjacent to all vertices of

Ti and not to any vertices of Tj for j 6= i. There may exist edges between

vertices of di�erent sets, but these are not drawn.

We will now make use of the fact that G contains an induced 4P1. We

note that each Ti ∪ {ui} is a clique, unless |T 1
i | ≥ 2. As V (G) = T1 ∪ T2 ∪

T3∪{u1, u2, u3} and G contains an induced 4P1, we may assume without loss

of generality that T 1
1 has size at least 2. Recall that v1 ∈ T 1

1 . Let z 6= v1 be

some further vertex of T 1
1 . If z is not adjacent to v2, then {z, v1, u3, v2, u2}

induces a 3P1 +P2, which is not possible. Hence, z is adjacent to v2. For the

same reason, z is adjacent to v3. This is not possible, as c is injective and v2

and v3 both have colour 2. Hence, we have proven the following claim.

Claim 3. If c is 3-injective and U is a size-3 colour class such that each

vertex of G−U is adjacent to a vertex of U , then c has no other colour class

of size 3.

We are now ready to present our polynomial-time algorithm. We �rst use

Lemma 4.8 to �nd in polynomial time an optimal 2-injective colouring of G.

We remember the number of colours it uses.

93



By Claim 1, it remains to �nd an optimal 3-injective colouring with at

least one colour class of size 3. We now consider each set {u1, u2, u3} of three
vertices. We discard our choice if u1, u2, u3 do not form an independent set or

if V (G) \ {u1, u2, u3} cannot be partitioned into sets T0, . . . , T4 as described

above. Suppose we have not discarded our choice of vertices u1, u2, u3. We

continue as follows.

If T0 6= ∅, then by Claim 2 the only 3-injective colouring of G (subject to

colour permutation) with colour class {u1, u2, u3} is the colouring that gives

each ui the same colour and a unique colour to all the other vertices of G.

This colouring uses n− 2 colours and we remember this number of colours.

Now suppose T0 = ∅. By Claim 3, we �nd that {u1, u2, u3} is the only

colour class of size 3. Recall that no vertex in G−{u1, u2, u3} = T1 ∪T2 ∪T3

is adjacent to more than one vertex of {u1, u2, u3}. Hence, we can apply

Lemma 4.8 on G− {u1, u2, u3}. This yields an optimal 2-injective colouring

of G − {u1, u2, u3}. We colour u1, u2, u3 with the same colour and choose

a colour that is not used in the colouring of G − {u1, u2, u3}. This yields a

3-injective colouring of G that is optimal over all 3-injective colourings with

colour class {u1, u2, u3}. We remember the number of colours.

As the above procedure takes polynomial time and there are O(n3) triples

to consider, we �nd in polynomial time an optimal 3-injective colouring of G

that has at least one colour class of size 3 (should it exist). We compare the

number of colours used with the number of colours of the optimal 2-injective

colouring of G that we found earlier. Our algorithm returns the minimum of

the two values as the output. Since both colourings are found in polynomial

time, we conclude that our algorithm runs in polynomial time.

To prove our next hardness result, we �rst need to introduce some terminol-
ogy and prove a lemma on Colouring. A k-colouring of G can be seen as a
partition of V (G) into k independent sets. Hence, a (k-)colouring of G cor-
responds to a (k-)clique-covering of G, which is a partition of V (G) = V (G)
into k cliques. The clique covering number χ(G) of G is the smallest number
of cliques in a clique-covering of G. Note that χ(G) = χ(G).
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Lemma 4.13. Colouring is NP-complete for graphs with χ ≤ 3.

Proof. The List Colouring problem takes as input a graph G and a list

assignment L that assigns each vertex u ∈ V (G) a list L(u) ⊆ {1, 2, . . .}.
The question is whether G admits a colouring c with c(u) ∈ L(u) for every

u ∈ V (G). Jansen [56] proved that List Colouring is NP-complete for

co-bipartite graphs. This is the problem we reduce from.

Let G be a graph with a list assignment L and assume that V (G) can be

split into two (not necessarily disjoint) cliques K and K ′. We set A1 := K

and A2 := K \K ′. As both A1 and A2 are cliques, we have that χ(G) ≤ 2.

We may assume without loss of generality that the union of all the lists L(u)

is {1, . . . , k} for some integer k. We now extend G by adding a clique A3 of

k new vertices v1, . . . , vk and by adding an edge between a vertex x` and a

vertex u ∈ V (G) if and only if ` /∈ L(u). This yields a new graph G′ with

χ(G′) ≤ 3. It is readily seen that G has a colouring c with c(u) ∈ L(u) for

every u ∈ V (G) if and only if G′ has a k-colouring.

We use Lemma 4.13 to prove the next lemma.

Lemma 4.14. Injective Colouring is NP-complete for 5P1-free graphs.

Proof. The problem is readily seen to belong to NP. We reduce fromColour-

ing. Let (G, k) be an instance of this problem. By Lemma 4.13 we may

assume that V (G) can be partitioned into three cliques A1, A2 and A3 with

|A1| ≤ |A2| ≤ |A3|. We may assume that k ≥ |A3|; otherwise (G, k) is a

no-instance. Moreover, we may assume that every vertex u in every Ai has

at least one neighbour in V \Ai; otherwise u has degree |Ai| − 1 ≤ k− 1 and

hence, G− u is k-colourable if and only if G is k-colourable.

We now construct a graph G′ as follows. Let E∗ be the set of edges in

G whose end-vertices belong to di�erent cliques of {A1, A2, A3}. We add a

clique A0 of |E∗| new vertices, so with exactly one vertex ve for each edge

e = xy in E∗. We replace each e ∈ E∗ by the edges xve and yve. We
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denote the resulting graph by G′ (see also Figure 4.6). We claim that G has

a k-colouring if and only if G′ has an injective (k + |E∗|)-colouring.

A0

A1 A2 A3

x y

ve

e

Figure 4.6: The graph G′ constructed in the proof of Lemma 4.14.

First suppose that G has a k-colouring c. We give each vertex of A0 a

unique colour from {k + 1, . . . , k + |E∗|}. This yields a (k + |E∗|)-colouring
c′ of G′. We claim that c′ is injective. In order to see this, suppose that G′

contains a vertex s that has two neighbours x and y with c′(x) = c′(y). Every

vertex in A1∪A2∪A3 is only adjacent to vertices from its own clique Ai and

A0 and the colour sets used on those two cliques do not intersect. Hence, s

belongs to A0. Then, by de�nition of G′, we �nd that x and y must belong

to di�erent cliques Ah and Ai. By construction, xy is an edge in E. As c is

a k-colouring, this means that c′(x) = c(x) 6= c(y) = c′(y), a contradiction.

We conclude that c′ is an injective (k + |E∗|)-colouring of G′.

Now suppose that G′ has a (k+|E∗|)-colouring c′. Let e ∈ A0 and suppose

c′(e) = 1. We assume without loss of generality that e corresponds to an edge

e = xy in G with x ∈ A1 and y ∈ A2. Then, in G′, we have that e is adjacent

to x and to y. Hence, x and y are not coloured 1. As c′ is injective, the

neighbours of x and y have di�erent colours. As A1 and A2 are cliques, x

is adjacent to every vertex in A1 \ {x} and y is adjacent to every vertex in

A2 \ {y}. Hence, no vertex in A1 ∪ A2 can have colour 1.

Now suppose that there exists a vertex z ∈ A3 with c′(z) = 1. In G each

vertex in every Ai has at least one neighbour in a di�erent clique Aj. Hence,
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z has a neighbour f ∈ A0 in G′ by construction of G′. However, now f has

two neighbours, e and z, each with colour 1, contradicting the fact that c′ is

injective. We conclude that the colours of A0 do not occur on A1 ∪A2 ∪A3.

Recall that A0 is a clique of size |E∗|. Hence, c′ uses |E∗| di�erent colours.
As no colour of A0 occurs on A1 ∪A2 ∪A3, this means that |E∗| colours are
not used on V (G). Hence, the restriction c of c′ to V (G) = A1 ∪ A2 ∪ A3 is

a k-colouring of the subgraph of G′ induced by A1 ∪ A2 ∪ A3.

We claim that c is even a k-colouring of G. Otherwise, if there exists

an edge e = xy with c(x) = c(y), then e must be an edge in G that is not

in G′. This means that x and y must belong to di�erent cliques Ai and

Aj. By construction, G′ then contains the vertex e = xy. However, then

c′(x) = c(x) = c(y) = c(y′) and e′ has two neighbours with the same colour.

This contradicts our assumption that c′ is injective. We conclude that c is a

k-colouring of G.

We combine the above results with results of Bodlaender et al. [10] and
Mahdian [72] to prove Theorem 4.3.

Theorem 4.3 (restated). Let H be a graph. For the class of H-free graphs
it holds that:

(i) Injective Colouring is polynomial-time solvable if H (i 2P1 + P4

and NP-complete if H 6⊆i 2P1 + P4;

(ii) for every k ≥ 4, Injective k-Colouring is polynomial-time solvable
if H is a linear forest and NP-complete otherwise.

Proof. We �rst prove (ii). If C3 ⊆i H, then we use Lemma 4.7. Now suppose

Cp ⊆i H for some p ≥ 4. Mahdian [72] proved that for every g ≥ 4 and

k ≥ 4, Injective k-Colouring is NP-complete for line graphs of bipartite

graphs of girth at least g. These graphs may not be C3-free but are Cp-free

for g ≥ p + 1. Now assume H has no cycle, so H is a forest. If H contains

a vertex of degree at least 3, then H contains an induced K1,3. As every
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line graph is K1,3-free, we can use the aforementioned result of Mahdian [72]

again. Otherwise H is a linear forest, in which case we use Corollary 1.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If

H ⊆i P1+P4 orH ⊆i 2P1+P3 orH ⊆i 3P1+P2, then we use Lemma 4.9, 4.11,

or 4.12, respectively. Hence, ifH (i 2P1+P4, then Injective Colouring is

polynomial-time solvable for H-free graphs. Now suppose that H 6⊆i 2P1 +

P4. If 2P2 ⊆i H, then the class of (2P2, C4, C5)-free graphs are contained

in the class of H-free graphs. The latter class coincides with the class of

split graphs [37]. Recall that Bodlaender et al. [10] proved that Injective

Colouring is NP-complete for split graphs. In the remaining case it holds

that 5P1 ⊆i H, and for this case we can use Lemma 4.14.

4.7 Conclusions

Our complexity study led to three complete and three almost complete com-
plexity classi�cations (Theorems 4.1�4.3). Due to our systematic approach
we were able to identify a number of open questions for future research, which
we collect below.

In Lemma 4.1 we prove that for every k ≥ 3 and every g ≥ 3, Acyclic
k-Colouring is NP-complete for graphs of girth at least g. We would
like to prove an analogous result for the third problem we considered. We
recall that Injective 3-Colouring is polynomial-time solvable for general
graphs. Moreover, for every k ≥ 4, Injective k-Colouring is NP-complete
for bipartite graphs (by Lemma 4.7) and thus for graphs of girth at least 4.
Hence, we pose the following open problem.

Open Problem 11. For every g ≥ 5, determine the complexity of Injec-

tive Colouring and Injective k-Colouring (k ≥ 4) for graphs of girth

at least g.

This problem has eluded us and remains open and is, we believe, challenging.
We have made progress for the corresponding high-girth problem for Star
3-Colouring in Lemma 4.4. However, we leave the high-girth problem for
Star k-Colouring open for k ≥ 4, as follows. We believe it represents
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an interesting technical challenge. At the moment, we only know that for
k ≥ 4, Star k-Colouring is NP-complete for bipartite graphs [2] and thus
for graphs of girth at least 4.

Open Problem 12. For every g ≥ 5, determine the complexity of Star

k-Colouring (k ≥ 4) for graphs of girth at least g.

Naturally we also aim to settle the remaining open cases for our three prob-
lems in Table 4.2. In particular, there is one case left for Star Colouring
and one case left for Injective Colouring. We note that the graph G′ in
the proof of Lemma 4.14 contains an induced 2P1 + P4.

Open Problem 13. Determine the complexity of Injective Colouring

for (2P1 + P4)-free graphs.

Open Problem 14. Determine the complexity of Star Colouring for

2P2-free graphs.

Recall that Acyclic Colouring and Injective Colouring, and also
Colouring, are all NP-complete for 2P2-free graphs. However, none of the
hardness constructions for these problems carry over to Star Colouring.
In this context, the next open problem from Lyons [71] for a subclass of 2P2-
free graphs is also interesting. A graph G = (V,E) is split if V = I ∪ K,
where I is an independent set, K is a clique and I ∩ K = ∅. The class of
split graphs coincides with the class of (2P2, C4, C5)-free graphs [37].

Open Problem 15. Determine the complexity of Star Colouring for

split graphs, or equivalently, (2P2, C4, C5)-free graphs.

Let ω(G) denote the clique number of G (size of a largest clique of G). Let
χs(G) denote the the star chromatic number of G. It is easily observed (see
also [70]) that if G is a split graph, then either χs(G) = ω(G) or χs(G) =
ω(G) + 1.
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Chapter 5

Variants of Colouring for Graphs

of Bounded Diameter

In Section 5.2 we present a result on chair-free graphs of bounded diameter.
We then demonstrate that this result allows us to obtain polynomial-time
algorithms for a number of problems related to 3-Colouring for chair-
free graphs of bounded diameter. Next, we present an NP-completeness
result which exhibits a limit on how far this result can be extended. Finally,
in Section 5.3, we prove an NP-completeness result for the L(1, 2)-labelling
problem for graphs of diameter at most 2. In [19] and [20] a number of related
results are proved.

In [20] we study the complexity of a further decision problem, Indepen-
dent Set for H-free graphs of bounded diameter. In [19] we show that
Acyclic 3-Colouring is NP-complete for graphs of diameter at most 4
but polynomial-time solvable for graphs of diameter at most 2. Additionally,
we show that Star 3-Colouring is polynomial-time solvable for graphs of
diameter at most 3 and NP-complete for graphs of diameter at most 8.

5.1 Known Results

We refer the reader to Chapter 3 for results on 3-Colouring for polyad-free
graphs of bounded diameter and to Chapter 4 for results on Acyclic 3-
Colouring and Star 3-Colouring for polyad-free graphs. Here, we con-
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sider three further problems; Independent Feedback Vertex Set, In-
dependent Odd cycle Transversal and Near-Bipartiteness. Each
of these problems are known to be NP-complete for H-free graphs when H
contains a claw or a cycle [15]. The complexity of Near-bipartiteness and
Independent Feedback Vertex Set for graphs of bounded diameter is
classi�ed in [14]. Both problems are polynomial-time solvable for graphs
of diameter at most 2 and NP-complete for graphs of diameter at most 3.
By reduction from 3-colouring for graphs of diameter 3 [78], Independent
Odd Cycle Transversal is NP-complete for graphs of diameter at most
3. Like 3-colouring, its complexity remains open for graphs of diameter
2.

5.2 Chair-free Graphs of Bounded Diameter

We �rst prove our result for chair-free graphs.

Theorem 5.1. Let d ≥ 1 be an integer and G be a chair-free non-bipartite

graph of diameter d with n vertices and m edges.

1. We can decide whether G is 3-colourable in O(n+m) time.

2. If G is 3-colourable, then we �nd in O(n+m) time either all 3-colourings

of G, or a triangle xyz in G with exactly one vertex, say x, that has a

set of private neighbours P (x), and all 3-colourings of G − P (x) that

can be extended to 3-colourings of G. In both cases, we �nd at most

39·2d+8 3-colourings.

Proof. We �rst check in constant time whether G has at most 2d+1 vertices.

If so, we can determine in constant time all 3-colourings of G and there are

at most 32d+1. Note that 32d+1 < 39·2d+8. We proceed by assuming that

G has at least 2d + 2 vertices and claim that G contains a triangle. We

prove this claim by contradiction: assume that G is triangle-free. As G is

not bipartite, there is an odd cycle in G. Let x1x2 . . . xp be a shortest odd

cycle. As G is triangle-free and of diameter d, we �nd 5 ≤ p ≤ 2d + 1.
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Moreover, as G has size at least 2d + 2, there is some vertex outside this

cycle that has a neighbour on this cycle. Without loss of generality let us

assume y with y /∈ {x1, x2, . . . , xp} is adjacent to x1. As G is triangle-free, y

does not have two consecutive neighbours on x1x2 . . . xp. As G is chair-free

and y is neither adjacent to x2 nor to xp, we �nd that y must be adjacent to

x3. We repeat this argument and obtain that y is adjacent to x2q+1 for every

0 ≤ q ≤ bp
2
c. In particular y is adjacent to the two consecutive vertices x1

and xp, a contradiction. We conclude that our assumption is false and that

G contains a triangle.

We continue and show that we can compute a triangle, say T , of G in

O(n + m) time. Let u be a vertex of G. We partition V (G) from {u} and
note that breadth-�rst search computes a breadth-�rst tree F , that is, F is

a spanning tree of G such that each vertex of Ni has distance i to u in F

for any i. As G is not bipartite, there has to be an edge e and an integer i

such that e is incident to two vertices of Ni. We can compute such an edge

that additionally minimizes i in O(n + m) time. By adding this edge to F ,

we �nd an odd cycle C in G. As F is of diameter at most 2d, we �nd that

C has at most 2d + 1 vertices. Hence, we can determine in constant time a

shortest induced odd cycle, say C ′, in G[V (C)]. We check in constant time

whether C ′ is a triangle. If not, then C ′ has size at least 5. As G is of order

at least 2d+ 2, there is a vertex outside C ′ that has a neighbour on C ′. We

compute such a vertex, say y, in O(n+m) time. As shown above, y has two

consecutive neighbours on C ′. As C ′ has at most 2d+ 1 vertices, we can �nd

such two vertices, and thus a triangle in G, in constant time.

Let {x, y, z} be the vertex set of the triangle T . We partition V (G) from

V (T ) in O(n+m) time. We additionally determine all private neighbours of

the vertices of T and all vertices of N1 that are adjacent to all vertices of T in

linear time. If there is a vertex of the latter type, then G is not 3-colourable.

Thus, we focus on the case where each vertex of N1 is adjacent to at most

two vertices of T . We compute in linear time the set N∗1 of all vertices of N1
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that have two neighbours of T . Clearly, S = N1 \ N∗1 consists of all private

neighbours of the vertices of T , and its computation takes linear time. We

proceed by considering G−N1. We check in linear time if this graph has at

most 9 · 2d + 2 vertices.

Let us consider the subcase where G−N1 has at least 9 · 2d + 3 vertices.

We claim that G is not 3-colourable and prove this claim by contradiction:

assume that G is 3-colourable. Hence, G is K4-free. Recall that every vertex

of N1 has at most two neighbours on T . Let i ≥ 1 and u be a vertex of

Ni. As G is chair-free, the neighbours of u in Ni+1 form a clique. As G is

K4-free, we obtain that u has at most 2 neighbours in Ni+1. It follows that

3+9 ·2d ≤ |N0|+ |N2|+ |N3|+ . . .+ |Nd| ≤ 3+ |N2| ·
d∑
i=2

2i−2 < 3+ |N2| ·2d−1.

Hence, |N2| > 18. We let N∗2 be the neighbours of N∗1 in N2. Consider the set

Nxy of common neighbours of x and y in N∗1 . The set Nxy is an independent

set as G is K4-free. Every vertex u ∈ N∗2 with a neighbour v in Nxy must

be adjacent to every vertex in Nxy, as G is chair-free. For the same reason,

no vertex of N∗1 has two non-adjacent neighbours in N∗2 . As G is K4-free,

this means that there are at most two vertices in N∗2 that are adjacent to

the vertices of Nxy. By applying the same reasoning for every other pair of

vertices of T , we �nd that N∗2 has size at most 6. Thus, |N2 \N∗2 | > 12. As

every vertex of N1 has at most two neighbours in N2, it follows that |S| > 6.

We consider the subcase where at least two vertices, say x and y, of

T have a private neighbour. Assume that x has two non-adjacent private

neighbours u and v in S. Then these three vertices, together with y and a

private neighbour w ∈ S of y induce a chair unless w is adjacent to at least

one of u and v. If w is adjacent to u but not to v, then {u, v, w, x, z} induces
a chair. Hence, w is adjacent to both u and v, but then {u, v, w, y, z} induces
a chair. Therefore, the private neighbours of every vertex of T form a clique.

As G is 3-colourable, we �nd |S| ≤ 6 if at least two vertices of T have private
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neighbours. Thus, we obtain that all vertices of S are adjacent to a common

vertex, say x, of T . As G is 3-colourable, we �nd that G[S] is bipartite.

Due to the above, we partition S into two independent sets A and B (one

of these two sets might be empty). As G is chair-free and as A is independent,

the vertices of A share the same set of neighbours in N2. Similarly, the

vertices of B share the same set of neighbours in N2. As G is chair-free

and K4-free, the neighbourhood of every vertex of A∪B is a clique of size at

most 2. We conclude that the total number of vertices in N2 with a neighbour

in S is at most 4, a contradiction as |N2 \ N∗2 | > 12. We �nd that G is not

3-colourable and proceed by assuming that G − N1 has at most 9 · 2d + 2

vertices.

We consider every vertex labelling of G − N1 with labels 1, 2, 3 and de-

termine in O(n+m) time which ones lead to a 3-colouring of G. We discard

those labellings which are not a 3-colouring of G−N1. Given a 3-colouring of

G−N1, each vertex of N∗1 receives the remaining available label that is not

used for its neighbours of T . Note that this assignment takes linear time. We

discard in O(n+m) time those labellings which do not lead to a 3-colouring

of G− S.
Let us take an arbitrary 3-colouring of G − S. We assign lists to the

vertices of G as follows: we set L(u) = {i}, where i is the label of u, if u /∈ S
and we set L(u) = {1, 2, 3}\{i}, where i is the label of the unique neighbour
of u on T , if u ∈ S. Thus, checking whether a given 3-colouring of G − S
leads to a 3-colouring of G takes O(n+m) time by Theorem 3.4 as (G,L) is

an instance of 2-List Colouring. We discard those 3-colourings of G− S
which do not lead to a 3-colouring of G. If no 3-colouring of G− S lead to a

3-colouring of G, then G is not 3-colourable. Hence, we proceed by assuming

that at least one does, and so we �nd that G is 3-colourable. As there are at

most 39·2d+2 vertex labellings of G − N1, we can determine all 3-colourings

of G − S that can be extended to 3-colourings of G in O(n + m) time, and

there are at most 39·2d+2 such colourings of G− S.
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If S = ∅, then G − S equals G. We consider the subcase where at least

two vertices of T have a private neighbour. As shown above, the private

neighbours of every vertex of T form a clique. If |S| > 6, which we check

in constant time, then G is not 3-colourable. Otherwise, as we have at most

39·2d+2 3-colourings of G − S, we �nd at most 39·2d+8 3-colourings of G and

their computation takes O(n + m) time. We �nally consider the subcase

where all vertices of S are adjacent to a single vertex, say x, of T . We

conclude that S = P (x), which completes our proof.

We next use this result to show that each of the problems Independent
Feedback Vertex Set, Independent Odd Cycle Transversal and
Near Bipartiteness are polynomial-time solvable for chair-free graphs of
bounded diameter. Our proof requires the following theorem. Note that
a complex is a complete bipartite graph minus the edges of some (possibly
empty) matching.

Theorem 5.2 ([3]). If G is a connected bipartite chair-free graph, then G is

a cycle or a path or a complex.

Theorem 5.3. If d ≥ 1, then 3-Colouring, Acyclic 3-Colouring,

Star 3-Colouring, Independent Odd Cycle Transversal, Inde-

pendent Feedback Vertex Set, and Near-Bipartiteness can be solved

in O(n+m) time for chair-free graphs of diameter at most d.

Proof. Let G be a chair-free graph of diameter at most d with n vertices and

m edges. Note that G is acyclic 3-colourable or star 3-colourable only if G is

3-colourable. Moreover, if I is an independent set of G for which G− I is a

bipartite graph, then G is 3-colourable. Hence, our problems require all the

yes-instances to be 3-colourable. If d = 1, then G is 3-colourable if and only

if G has at most 3 vertices, and so each of our problems can be solved in

constant time. We proceed by assuming d ≥ 2 and check in O(n + m) time

whether G is bipartite.

Case 1: G is bipartite.
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Note that G is 3-colourable, near-bipartite, and has an independent odd cycle

transversal of size at most k for any integer k. We can determine the parts,

say S1 and S2, of G in O(n + m) time. We may assume without loss of

generality that |S1| ≥ |S2|. We check in constant time whether |S1|+ |S2| ≤
max{8, 2d} and if so, then we can solve each of our problems in constant

time. Otherwise, we �nd that |S1| ≥ 5. As bipartite graphs of maximum

degree at most 2 and diameter at most d are paths or cycles of at most 2d

vertices, we �nd that G has a vertex of degree at least 3, and so G is a

complex by Theorem 5.2.

We �rst claim that in the case where G is a complex with |S1| ≥ 5, G is

star 3-colourable if |S2| ≤ 2 and acyclic 3-colourable only if |S2| ≤ 2. Note

that this claim completes the bipartite case for Acyclic 3-Colouring and

Star 3-Colouring as we can decide whether |S2| ≤ 2 or not in constant

time and as every star 3-colouring of a graph is acyclic. We prove our claim

as follows: If |S2| ≤ 2, then, for any s ∈ S2, G− s is a forest each component

of which is of diameter at most 2, and thus G is star 3-colourable with colour

classes S1, S2\{s}, and {s}. If |S2| ≥ 3, then let c be an arbitrary 3-colouring

of G. By the pigeonhole principle there exists a colour class X of c that

contains at least two vertices of S1, and so X ∩S2 = ∅. As |S2| ≥ 3, there are

two vertices s2, s
′
2 ∈ S2 that are coloured alike. As |S1| ≥ 5, and as s2 and

s′2 are of degree at least |S1| − 1, we �nd that s2 and s′2 have at least three

common neighbours in S1 two of which, say s1 and s′1, are coloured alike.

Hence, s1s2s
′
1s
′
2 is a bichromatic 4-cycle. We conclude that every 3-colouring

of G is not acyclic, which completes the proof of our claim.

It remains to consider Independent Feedback Vertex Set for com-

plexes with at least 9 vertices. Let k be an arbitrary integer. We claim

that in the case where G is a complex with |S1| ≥ 5, G has an independent

feedback vertex set of size at most k if and only if k ≥ |S2| − 1. Note that

the latter can be decided in linear time. We prove our claim as follows: If

|S2| ≤ 2, then G − s is a forest for any s ∈ S2 and G has an independent
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feedback vertex set of size at most k. Hence, we may assume |S2| ≥ 3. Let I

be a minimum independent feedback vertex set in G. Such a set exists as G

is bipartite. As S2 \{s} is independent and as G[S1∪{s}] is a forest for each

vertex s ∈ S2, we �nd |I| ≤ |S2| − 1. For the sake of a contradiction, let us

assume |I| ≤ |S2| − 2. Hence, any two vertices of S2 \ I have at least |S1| − 2

common neighbours in S1, and so |I∩S1| ≥ |S1|−3 ≥ 2. Moreover, I = I∩S1

as every vertex of S2 has a neighbour in I ∩ S1 and as I is independent. As

I is an independent feedback vertex set with |I| ≤ |S1| − 2, any two vertices

of S1 \ I do not have two common neighbours in S2 and so |S2| ≤ 3. Hence,

5 ≤ |S1| ≤ |I|+ 3 ≤ |S2|+ 1 ≤ 4,

a contradiction. As |I| = |S2| − 1, the proof of our claim is complete.

Case 2: G is not bipartite.

Outline. As our problems require all the yes-instances to be 3-colourable,

we check �rst whether G is 3-colourable. If so, then we compute an induced

subgraph H of G and determine the set C of all its 3-colourings that can be

extended to 3-colourings of G. As we compute H by applying Theorem 5.1,

we �nd that |C| ≤ 39·2d+8. We then distinguish some subcases. In some of

them we further branch by extending our 3-colourings. However, in some

of them we �nd that H equals G, and so our six problems are solvable in

O(n + m) time as C is of constant size. As an implicit step, we apply this

�nding whenever H is the whole graph G.

Full Proof. We �rst apply Theorem 5.1. We continue by assuming that G

is 3-colourable. In fact, the only remaining case is that where the lemma

provides a triangle T on vertex set {x, y, z}, a vertex x of T that has private

neighbours, and the set of all 3-colourings of G−P (x) that can be extended

to 3-colourings of G. Note that we have at most 39·2d+8 such 3-colourings.

We partition V (G) from V (T ).

We �nd that G[P (x)] is bipartite, as G is 3-colourable, but not necessarily

connected. We extend each 3-colouring of G−P (x) that can be extended to
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a 3-colouring of G to some vertices of P (x). Let c be an arbitrary 3-colouring

of G − P (x) that can be extended to a 3-colouring of G. For i ∈ {0, 1, 2},
we compute in O(n + m) time the set Si of all vertices of P (x) which have

i available colours with respect to c, that is, Si is the set of all vertices of

P (x) which have neighbours in 3 − i colours. As c can be extended to a 3-

colouring of G, we �nd that S0 is empty. It takes O(n+m) time to determine

the available colour of each vertex in S1. Furthermore, we can extend c by

breadth-�rst search in the same time to the vertices of those components of

G[P (x)] that contain at least one vertex of S1.

Let Sc be the set of vertices that induce those components of G[P (x)] that

do not contain a vertex of S1. Note that Sc can be computed in O(n+m) time

and that all neighbours of all vertices of Sc in V (G) \ Sc are coloured alike.

Moreover, every vertex of Sc has its neighbours in [N(y)∩N(z)]∪N2∪Sc∪{x}
by de�nition. As c can be extended to a 3-colouring of G, we �nd that

our approach leads to a 3-colouring, say c′, of G − Sc. As there are at

most 39·26+2 3-colourings of G − P (x), we �nd at most 39·26+2 such triples

(c, c′, Sc). Furthermore, for each 3-colouring cs of G − P (x), there exists a

triple (cs, cs
′, Scs) if cs can be extended to a 3-colouring of G. We proceed

by considering the case where Sc 6= ∅ as otherwise G = G− Sc. We continue

by distinguishing on the problems we are considering. Recall that G is 3-

colourable.

Subcase 2.1: Acyclic 3-Colouring and Star 3-Colouring

We check whether for some triple (c, c′, Sc), the 3-colouring c′ of G − Sc

that can be extended to an acyclic 3-colouring or star 3-colouring of G.

By this approach, we clearly solve Acyclic 3-Colouring and Star 3-

Colouring.

Let (c, c′, Sc) be an arbitrary triple as de�ned above. Recall that a star

3-colouring of a graph is acyclic. In time O(n + m), we can determine the

components of G[Sc] and check whether G[Sc] is a forest. If not, then G[Sc∪
{x}], and thus G, is not acyclic 3-colourable. We continue and assume that
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G[Sc] is a forest. We check in O(n+m) time if a vertex of Sc has a neighbour

in N(y) ∩ N(z). If so, say s ∈ Sc is adjacent to v ∈ N(y) ∩ N(z), then

c′ cannot be extended to an acyclic 3-colouring of c as either s and x are

coloured alike or one of {svyx, svzx} is a bichromatic 4-cycle.

We proceed by assuming that Sc has its neighbours in N2∪Sc∪{x}. As G
is chair-free, every two non-adjacent vertices of Sc share the same neighbours

in N2 and, if there exists such a neighbour, then these two vertices have to be

coloured di�erently to avoid a bichromatic 4-cycle. Therefore, in any acyclic

extension of c′ to G, each of the two colour classes in Sc either has size at

most 1 or has no neighbour in N2. We check in constant time if Sc is of

size at most 2. If so, then there are at most 4 possibilities to extend c′ to a

3-colouring of G. Hence, we may assume |Sc| ≥ 3. We check in O(n + m)

time if a vertex of Sc has a neighbour in N2.

Let us consider the subcase where s ∈ Sc has a neighbour, say v, in N2.

Let Gs be the component of G[P (x)] that contains s. Note that there are at

most two possibilities to extend c′ to the vertices of Gs. We check in linear

time if Sc \ V (Gs) is of size at least 2. If so, say s1, s2 ∈ Sc \ V (Gs), then v

is a neighbour of s, s1, and s2. Thus, xs′1vs
′
2 is a bichromatic 4-cycle for two

vertices s′1 and s′2 of {s, s1, s2}. We conclude that c′ cannot be extended to

an acyclic 3-colouring of G. Hence, we may assume |Sc \ V (Gs)| ≤ 1, and so

there are at most four possibilities to extend c′ to a 3-colouring of G each of

which can be obtained in O(n+m) time.

We proceed by assuming that no vertex of Sc has a neighbour in N2. In

other words, each vertex of Sc has its neighbours in Sc ∪ {x}. As x is a

cut-vertex of G, any extension of c′ to a 3-colouring of G is acyclic if and

only if c′ is acyclic. Hence, we can solve Acyclic 3-Colouring.

We now check in O(n+m) time if each component of G[Sc] is of diameter

at most 2. If not, then G[Sc ∪ {x}], and thus G is not star 3-colourable.

Let us proceed by assuming that each component of G[Sc] is of diameter at

most 2. We �nd that every 3-colouring of G[Sc ∪ {x}] is a star 3-colouring.
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In other words, we can restrict ourselves to those 3-colouring extensions of

c′ to G that assign one colour to all vertices of Sc if Sc is independent, and

an arbitrary 3-colouring extensions of c′ to G if Sc is not independent. Note

that we can check in O(n + m) time whether Sc is independent. We �nd in

both subcases at most two extensions of c′ to G.

Subcase 2.2: Independent Odd Cycle Transversal

Let k be an arbitrary integer. We check whether some triple (c, c′, Sc) consists

of a 3-colouring c′ of G−Sc that can be extended to a 3-colouring of G where

one colour class is an independent odd cycle transversal of size at most k.

As all the yes-instances require G to be 3-colourable, this approach clearly

solves Independent Odd Cycle Transversal.

Let (c, c′, Sc) be an arbitrary triple as de�ned above. Moreover, letX, Y, Z

be the colour classes of c′ with x ∈ X, y ∈ Y , and z ∈ Z. Clearly, X, Y, and
Z can be computed in linear time. We decide in linear time which of {Y, Z}
is of smaller size, say |Y | ≤ |Z|.

Recall that all vertices of Sc have their neighbours in Sc∪X. Note that c′

can be extended to a 3-colouring of G by 2-colourings of G[Sc] on the colours

that c′ assigns to y and z, and these are the only possibilities. We �nd that

the smallest possible colour class of a 3-colouring of G that extends c′ consists

of the vertices either in X or in Y ∪W , where W is the smallest possible

colour class of a 2-colouring of G[Sc]. As we can compute the components of

G[Sc] and its parts in O(n+m) time, we can �ndW in the same time. Hence,

the smallest possible independent odd cycle transversal of G that is a colour

class of an extension of c′ to a 3-colouring of G is of size min{|X|, |Y ∪W |}.
We can compare the sizes of X and Y ∪W with k in linear time.

Subcase 2.3: The problems Independent Feedback Vertex Set and

Near-Bipartiteness

Let k be an arbitrary integer. We check whether some triple (c, c′, Sc) consists

of a 3-colouring c′ of G−Sc that can be extended to a 3-colouring of G where

one colour class is an independent feedback vertex set (of size at most k).
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As all the yes-instances require G to be 3-colourable, this approach clearly

solves Independent Feedback Vertex Set and Near-Bipartiteness.

Let (c, c′, Sc) be an arbitrary triple as de�ned above. Moreover, letX, Y, Z

be the colour classes of c′ with x ∈ X, y ∈ Y , and z ∈ Z. Clearly, X, Y,

and Z can be computed in linear time. We check �rst whether G − X is

a forest in O(n + m) time. If so, then we �nd that X is an independent

feedback vertex set of G and we can determine its size in linear time. Hence,

we proceed by assuming that G−X contains a cycle or |X| > k. As we aim

to �nd an extension of c′ to a 3-colouring of G whose one colour class is an

independent feedback vertex set (of size at most k), we �nd that such a set

consists of the vertices of Y or of Z, and the vertices of some set A ⊆ Sc.

Recall that all vertices of Sc have their neighbours in [N(y) ∩ N(z)] ∪
N2 ∪ Sc ∪ {x} and their neighbours in [N(y) ∩ N(z)] ∪ N2 ∪ {x} form an

independent set. Note that c′ can be extended to a 3-colouring of G by 2-

colourings of G[Sc] on the colours that c′ assigns to y and z, and these are

the only possibilities. If G[Sc] is connected, which can be tested in O(n+m)

time, then there are at most two such possibilities. We proceed by assuming

that G[Sc] is disconnected, and so |Sc| ≥ 2.

We claim that all vertices of Sc have the same neighbours in N2. Let us

assume that v is an arbitrary vertex of N2 that is adjacent to some vertex of

Sc. Let Sv be the set of neighbours of v in Sc. By de�nition, we �nd that Sv
is non-empty. As G is chair-free, we obtain that every vertex of Sv is adjacent

to every vertex of Sc \ Sv as otherwise {s1, s2, v, x, y} would induce a chair

for some possible vertices s1 ∈ Sv and s2 ∈ Sc \Sv. As G[Sc] is disconnected,

we �nd that Sc \ Sv = ∅, which completes the proof of our claim as v is

arbitrarily chosen.

We can check if there is a vertex in N(y)∩N(z) in O(n+m) time. First

assume there is such a vertex, say w. As {s1, s2, w, x, y} does not induce a

chair for each two vertices s1, s2 of an independent set I of G[Sc], we �nd

that w is adjacent to all but at most one vertex of I. As G[Sc] is bipartite, it
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follows that w has at least |Sc|−2 neighbours in Sc. For each s ∈ N(w)∩Sc,
we �nd s ∈ A as sxyw and sxzw are 4-cycles. Note that N(w) ∩ Sc can be

computed in O(n + m) time. As |N(w) ∩ Sc| ≥ |Sc| − 2, we �nd at most

eight possibilities to extend c′ to a 3-colouring of G by a 2-colouring of G[Sc]

in which one colour class contains all the vertices of N(w) ∩ Sc. Hence, we

may assume that N(y)∩N(z) = ∅, and so every two vertices of Sc share the

same neighbours in V (G) \ Sc.
If no vertex of N2 has a neighbour in Sc, then x is a cut-vertex. In this

case we �nd that G has an independent feedback vertex set of size at most

k if and only if G − Sc has an independent feedback vertex set (of size at

most k − |W |, where W is the smallest possible colour class of a 2-colouring

of G[Sc].

We proceed by considering the situation where v ∈ N2 has a neighbour in

Sc. Recall that all vertices of Sc are adjacent to v. As xs1vs2 is a 4-cycle for

any two vertices s1, s2 ∈ Sc, we �nd that A has size at least |Sc|−1. In other

words, we aim for such a 2-colouring of G[Sc] whose one colour class is of size

at most 1. If Sc is not independent, we have at most two such possibilities,

and each leads to a 3-colouring of G.

Now suppose that Sc is independent. We �nd that any two vertices of Sc
have the same neighbours in G. Let us �x one vertex, say, s of Sc. As there

is at most one vertex of Sc that is not in the independent feedback vertex

set, we may assume that s is that vertex. We have four ways of colouring the

vertices of Sc such that all vertices of Sc \ {s} receive the same colour.

Next we present an NP-completeness result for polyad-free graphs.

Theorem 5.4. For the problems Star 3-Colouring, Independent Odd

Cycle Transversal and Acyclic 3-Colouring, there exists a polyad

H and integer d so that the problem remains NP-complete on H-free graphs

of diameter d.

Proof. We deploy an argument previously used in Chapter 2. There we recall
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the standard reduction from Not-All-Equal-3-Sat to 3-colouring.

� Add a vertex vxi for each literal xi.

� Add an edge between each literal and its negation.

� Add a vertex z adjacent to every literal vertex.

� For each clause Ci add a triangle Ti with vertices ci1 , ci2 , ci3 .

� Fix an arbitrary order of the literals of Ci, xi1 , xi2 , xi3 and add an edge

vxij cij .

c12 c13 c22 c23 c32 c33

c11 c21 c31

vx1 vx̄1 vx2 vx̄2 vx3 vx̄3

z

Figure 5.1: The standard reduction from Not-all-Equal 3-Sat to 3-

Colouring on the instance φ = (x1, x2, x3), (x̄1, x̄2, x̄3), (x1, x̄2, x̄3).

In Chapter 2 we reduced from 3-colouring for K3
1,4-free graphs of diameter

at most 4. This result implies the NP-completeness of Independent Odd

Cycle Transversal for the same class of graphs.

Suppose now we attempt to frame a similar argument forAcyclic 3-Colouring

(respectively, Star 3-Colouring) by putting this construction through a

process by which we map edges to bipartite graphs K2,3 (respectively, K2,2)
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c12 c13 c22 c23 c32 c33

c11 c21 c31

vx1 vx̄1 vx2 vx̄2 vx3 vx̄3

z

Figure 5.2: The reduction from Not-all-Equal 3-Sat to Acyclic 3-

Colouring on the instance φ = (x1, x2, x3), (x̄1, x̄2, x̄3), (x1, x̄2, x̄3). Double

lines are edges that are substitution instance of K2,3 where the endpoints

come from the partition of size 2.

which is the standard reduction from 3-Colouring to these respective prob-

lems. That is, for Acyclic 3-Colouring, we replace each edge u1u2 by

three new vertices w1, w2, w3 and edges uiwj for i ∈ {1, 2} and j ∈ {1, 2, 3},
and for Star 3-Colouring, we replace each edge u1u2 by two new ver-

tices w1 and w2 and edges uiwj for i ∈ {1, 2} and j ∈ {1, 2}. Alas, using

the top vertex z, which is the only vertex of unbounded degree, we can �nd

arbitrarily large polyads in both cases.

However, for Acyclic 3-Colouring, consider that we only substitute

edges outside of the set induced by z and the vertices vxi by instances of

K2,3. This is drawn in Figure 5.2. We claim that φ is not-all equal satis�able

if and only if G is acyclically 3-colourable.

Given an acyclic 3-colouring of G, assume z is assigned colour 1. Then

each vertex vxi is assigned either colour 2 or colour 3. The argument here

concludes as it does in the reduction to 3-Colouring, since in any acyclic

3-colouring of the gadget K2,3 the vertices in the partition of size 2 must

receive distinct colours.
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If φ is satis�able, then we can colour vertex z with colour 1, each true

literal vxi with colour 2 and each false literal vxi with colour 3. The proof

concludes as in the reduction to 3-Colouring, bearing in mind the reduction

from 3-Colouring to Acyclic 3-Colouring except that we must argue

there are no bichromatic cycles through z. This follows since all 4-paths

emanating from z are coloured with three colours. Indeed, the only non-

trivial case arises when we move from z to vxi to a vertex q in a clause

triangle via a vertex p in the K2,3 edge gadget. Thus there is a path zvxipq

on 4 distinct vertices. Suppose the colour of p is the same as z, then the

colour of q will be di�erent from this and from vxi .

We claim that G has diameter at most 8. Indeed, there is path of length

at most 4 from any vertex to z. We further claim that G is K8
1,6-free, which

follows from the fact that any induced K8
1,6 in the graph would have to

involve the vertex z and all paths of order 10 from z must involve two vertices

adjacent to z. This concludes the argument for Acyclic 3-Colouring.

Our construction for Acyclic 3-Colouring fails for Star 3-Colouring.

However, what we propose to do is to keep some of the construction (the

bottom half of Figure 5.1) while we substitute the remainder (the top half

of Figure 5.1). We reduce from a slightly di�erent problem: Not-All-

Equal(≤ 3, 2/3)-Sat with positive literals asks the same question as Not-

all-Equal 3-Sat but takes as input an instance φ that has a set of variables

X = {x1, . . . , xn} and a set of literal clauses {C1, . . . , Cm} over X with the

following properties. Each Ci has either two or three literals, and these

literals are all positive. Moreover, each literal occurs in at most three di�er-

ent clauses. This problem is well-known to be NP-complete, which follows

from [87] and a folklore trick (see, for example, [42]). Given a CNF formula

φ with the above properties, we construct a graph G as follows:

� Add a vertex vxi for each variable xi.

� Add a vertex z adjacent to each vertex vxi .
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� Add two new vertices z′, z′′ in a triangle with z.

� Add vertices p1
xi
, p2

xi
, p3

xi
for each instance of a variable xi with edges

from each of these to vxi .

� Add vertices q1
xi
, q2
xi
, q3
xi

for each instance of a variable xi with edges

from each qjxi to pjxi which are substitution instance of K2,2 and the

endpoints come from the same part.

� For each clause Ci add a triangle Ti with vertices ci1 , ci2 , ci3 where edges

are substitution instance of K2,2 and the endpoints come from the same

part.

� Fix an arbitrary order of the literals of every Ci, xi1 , xi2 , xi3 . Assign

every pair (i, j) a vertex of q1
xij
, q2
xij
, q3
xij

and make this vertex adjacent

to cij , such that this assignment is injective. Let each of the new edges

be a substitution instance of K2,2, where the endpoints come from the

same part.

We draw the special edges that are in fact built from instances K2,2 with

double lines in Figure 5.3. We claim φ is not-all-equal satis�able if and only

if G is star 3-colourable.

Given a star 3-colouring of G, assume z is assigned colour 1. Then each

vertex vxi is assigned either colour 2 or colour 3. Now each of the vertices

p1
xi
, p2

xi
, p3

xi
is assigned the same colour from {2, 3} (this is enforced by the

fact that {z′, z′′} must be coloured {2, 3} which forbids any possibility that

colour 1 is used). Furthermore each of the vertices q1
xi
, q2
xi
, q3
xi
is assigned pre-

cisely the colour from {2, 3} that p1
xi
, p2

xi
, p3

xi
was not assigned. The argument

here concludes as it does in the reduction to 3-Colouring.

If φ is satis�able, then we can colour vertex z with colour 1, the vertices

q1
xi
, q2
xi
, q3
xi
of each true literal with colour 2 and the vertices q1

xi
, q2
xi
, q3
xi
of each

false literal with colour 3. Then, since each clause has at least one true literal

and at least one false literal, each triangle has neighbours in two di�erent
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z′ z′′

c11 c13 c21 c23 c31 c33

c12 c22 c32

q1
x1
q2
x1
q3
x1

p1
x1
p2
x1
p3
x1

vx1 vx2 vx3 vx4

z

Figure 5.3: The reduction from Not-all-Equal(≤ 3, 2/3)-Sat to Star 3-

Colouring on the instance φ = (x1, x2, x3), (x1, x3, x4), (x2, x3, x4). Double

lines are edges that are substitution instance of K2,2 where the endpoints

come from same partition.

colours. This implies that each triangle is 3-colourable. The argument here

concludes as it does in the reduction to 3-Colouring.

We claim that G has diameter at most 14. Indeed, every vertex has a

path of length at most 7 from it to z. Moreover, all paths of order 16 from

z must involve two vertices adjacent to z. Therefore G is K16
1,6-free. This

concludes the argument for Star 3-Colouring.
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5.3 L(1,2)-labelling for Graphs of Bounded Di-

ameter

Here we prove that L(1, 2)-Labelling is NP-complete for graphs of diameter
at most 2. To do this we prove that it is NP-complete to decide whether
a graph of diameter 2 contains a Hamiltonian Path, no edge of which is
contained in a triangle.

We �rst present, as Lemmas 5.1 and 5.2, two hardness results for Hamil-
tonian Cycle. We use Lemma 5.1 to prove Lemmas 5.2, and the latter to
prove Lemma 5.3.

The eccentricity of a vertex u in a graph is the maximum distance of u to
some other vertex of G. The radius of G is the minimum eccentricity of G.

Lemma 5.1. Hamiltonian Cycle is NP-complete even for connected bi-

partite graphs of minimum degree 2 and maximum degree 5 that have the

following three additional properties:

1. for every two vertices x, y that belong to the same partition class and

that have no common neighbour, there exists a vertex in the same par-

tition class as x, y that is of distance greater than 2 from both x and y;

2. for every two non-adjacent vertices x, y that belong to di�erent parti-

tion classes, either x has a neighbour of distance greater than 2 from

y, or y has a neighbour of distance greater than 2 from x, and

3. no two vertices of degree 2 have the same neighbourhood.

Proof. We reduce from Hamiltonian Cycle, which is NP-complete even

for graphs of maximum degree 3 [40]. As graphs of bounded maximum degree

and bounded radius have constant size, the problem remains NP-complete if

in addition we assume that the input graph G = (V,E) of maximum degree 3

has radius at least 10.
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u1 u2

u0 u3

v1 v2

v0 v3

w1 w2

w0 w3

Figure 5.4: The graph G′ from the proof of Lemma 5.1, when G is the 3-

vertex path uvw.

We follow the construction used in [63]. That is, from G we construct a

graph G′ = (V ′, E ′) as follows. We replace each v ∈ V by a 4-cycle v0v1v2v3.

Moreover, for each uv ∈ E, we do as follows. Let u0u1u2u3 and v0v1v2v3

be the 4-cycles that are associated with u and v, respectively. We add the

two edges u0v3 and u3v0. This gives us the graph G′. See also Figure 5.4.

It is readily seen that G has a Hamiltonian cycle if and only if G′ has a

Hamiltonian cycle. Moreover, G′ is bipartite with one part

A = {vi : i = 0, 2} and the other B = {vi : i = 1, 3}, and G′ has minimum

degree 2 and maximum degree 5; the latter holds as every vertex vi has two

more neighbours than v and v has degree at most 3 (as G has maximum

degree 3). We now prove properties 1�3.

We �rst show Property 1. Let x and y be in the same partition class, say

A, and assume that x and y have no common neighbour. If every vertex of

A is of distance 2 from either x or y then, as G is connected, x and y are

of distance at most 6 from each other. Consequently, the distance from x

to any other vertex is at most 6 + 2 + 1 = 9. Hence, G′ has radius at most

9. As the distance between any two vertices ui and vi in G′ is at least the

distance between u and v in G, we �nd that G also has radius at most 9, a

contradiction.

We now show Property 2. Let x ∈ A and y ∈ B be non-adjacent. Then

x = ui for some i ∈ {0, 2} and y = vj for some j ∈ {1, 3} for vertices u, v ∈ V
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with u 6= v. First suppose that x = u0. If y = v1, then u1 is adjacent to u0

and shares no neighbour with v1, since u 6= v. If y = v3 then v2 is adjacent

to v3 and shares no neighbour with u0, since x = u0 and y = v3 are non-

adjacent. Now suppose that x = u2. If y = v1, then u1 is adjacent to u2

and shares no neighbour with v1. Finally, if x = u2 and y = v3 then v2 is

adjacent to v3 and shares no neighbour with u2.

Finally, Property 3 holds since the set of vertices of degree 2 is

{v1, v2 : v ∈ V }, and no pair of vertices from this set has the same neighbours.

Lemma 5.2. Hamiltonian Path is NP-complete even for connected bipar-

tite graphs that satisfy Properties 1 and 2 of Lemma 5.1.

Proof. We reduce from Hamiltonian Cycle, which is NP-complete even

for the graphs G′ = (V ′, E ′) constructed in the proof of Lemma 5.1. We

modify a given graph G′ into a graph G′′ as follows. We take some vertex

x of degree 2 and add a new vertex x′ with the same neighbourhood as x.

We then add two further new vertices, x1 and x′1 such that x1 is pendant

on x and x′1 is pendant on x′. See also Figure 5.5. We observe that G′ has

a Hamiltonian cycle if and only if G′′ has a Hamiltonian path, which must

start in u1 and end in u′1. As G
′ is bipartite, G′′ is also bipartite. Hence, it

remains to prove Properties 1 and 2.

We �rst show that Property 1 holds for G′′. As Property 1 holds for G′ by

Lemma 5.1 and the three new vertices x′, x1, x
′
1 do not decrease the distance

between any two vertices of G′, we only need to consider pairs of vertices

involving at least one of {x′, x1, x
′
1}. Vertices x1 and x′1 belong to the same

partition class of G′′ and have no common neighbour. Any non-neighbour

z of x in G′ is of distance greater than 2 from both x1 and x′1, and we can

choose z such that z belongs to the same partition class of G′′ as x1 and x′1.

Now consider one of x1, x
′
1, say x1, and a vertex y of G′ that belongs to the

same partition class as x1 in G′′, such that x1 and y do not have a common
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neighbour. Then x′1 is of distance greater than 2 from y in G′′, and we can

take x′1. Vertices x and x′ also belong to the same partition class of G′′, but

their neighbourhood is the same. Therefore, as Property 1 holds with respect

to x in G′, Property 1 also holds with respect to x′ in G′′.

We now show that Property 2 holds for G′′. Again we need only to verify

pairs involving at least one of {x′, x1, x
′
1}. We �rst consider the pair (x′, x1);

note that x′ and x1 are non-adjacent and belong to di�erent partition classes

of G′′. We can take x′1 as the desired vertex, as x′1 is adjacent to x′ but of

distance greater than 2 from x1 in G′′. By symmetry, Property 2 holds for

the pair (x, x′1).

We now consider a pair (x′, y) where y /∈ {x1, x
′
1} belongs to a di�erent

partition class of G′′ than x′ and is not adjacent to x′. As x and x′ have the

same neighbourhood in G′′, we �nd that y and x are non-adjacent vertices

in di�erent partition classes as well. As Property 2 holds for G′, there exists

a vertex z that is a neighbour of one of {x, y} but that is of distance greater
than 2 from the other vertex of {x, y}. As the distance between two vertices

of G′ is the same in G′′, we can take z as the desired vertex for the pair

(x′, y).

Finally, we consider a pair (x1, y) or (x′1, y), say (x1, y) (by symmetry),

where y is a non-neighbour of x1 in G′′ such that x1 and y belong to di�erent

partition classes of G′′. Note that y must be a vertex of G′. For contradiction,

assume that every neighbour of y is of distance 2 from x1 in G′′. Then every

neighbour of y inG′′ is a neighbour of x. As y belongs toG′, we �nd that y has

degree at least 2 in G′. As x has degree 2 in G′, this means that in G′, both

x and y have the same neighbourhood. The latter is a contradiction, as G′

satis�es Property 3 of Lemma 5.2. We conclude that G′′ has Property 2.

Lemma 5.3. It is NP-complete to decide if a graph has a Hamiltonian path,

no edge of which is contained in a triangle, even for graphs of diameter 2.

Proof. We reduce from Hamiltonian Path, which is NP-complete even for
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x1 xx′1 x′

Figure 5.5: The graph G′′ from the proof of Lemma 5.2.

the graphs G′′ = (V ′′, E ′′′) constructed in the proof of Lemma 5.2. We modify

a given graph G′′ into a graph G∗ by adding an edge between any two vertices

u, v that belong to the same partition class and that are of distance greater

than 2 from each other in G′′. By our construction, the distance between

any two vertices that belong to the same partition class of G′′ is at most 2 in

G∗. As G′′ has Property 2, the distance between any two vertices in di�erent

partition classes of G′′ is at most 2 in G∗ as well. Hence, G∗ has diameter at

most 2.

It remains to prove that G′′ has a Hamiltonian path if and only if G∗ has

a Hamiltonian path, no edge of which is contained in a triangle. For showing

this it su�ces to prove that for every edge e of G∗, it holds that e does not

belong to a triangle in G∗ if and only if e is an edge of G′′.

First suppose that e is not an edge of G′′. Say e is an edge between x and

y, where x and y are two vertices of distance greater than 2 that belong to

the same partition class of G′′. As G′′ has Property 1, there exists a vertex

z that also belongs to the same partition class as x and y and that is of

distance greater than 2 from both x and y. Hence, we have added the edges

xz and yz as well, thus e belongs to a triangle in G∗.

Now suppose that e is an edge of G′′. Let e = xy for two vertices x and

y (which belong to di�erent bipartition classes of G′′). For contradiction,

assume that x and y are contained in a triangle xyz where z belongs to the

same partition class as x, so we added the edge xz. Note that x and z have
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a common neighbour in G′′, namely y. This means that their distance is

not greater than 2 in G′′. Hence, we would not have added the edge xz, a

contradiction.

We can now prove our main result. For doing this, we show that an n-
vertex graph G of diameter 2 has an L(1, 2)-n-labelling if and only if G has
a Hamiltonian path, no edge of which is contained in a triangle.

Theorem 5.5. The L(1, 2)-Labelling problem is NP-complete even for

graphs of diameter at most 2.

Proof. Let G be an n-vertex graph of diameter 2. It su�ces to prove that G

has an L(1, 2)-n-labelling if and only if G has a Hamiltonian path, no edge of

which is contained in a triangle. Then, afterwards, we can apply Lemma 5.3.

First suppose that G has an L(1, 2)-n-labelling c. Since G has diameter 2,

any two non-adjacent vertices have a common neighbour. Hence, colours of

non-adjacent vertices must di�er by at least 2. Consequently, two vertices

with consecutive colours must be adjacent. As colours of adjacent vertices

di�er by at least 1, we also �nd that no two vertices have the same colour.

Consequently, every colour i with 1 ≤ i ≤ n is used. Therefore we have a

Hamiltonian path P = v1 . . . vn where vi is the vertex with colour c(vi) = i.

No edge vivi+1 is contained in a triangle since there can be no path of length 2

between vi and vi+1.

Now suppose that G contains a Hamiltonian path P = v1 . . . vn, no edge

of which is contained in a triangle. The latter means that there is no path

of length 2 between vi and vi+1 for i ∈ {1, . . . , n − 1}. Then we obtain an

L(1, 2)-n-labelling c by de�ning c(vi) = i.

5.4 Conclusions

We now suggest two open problems based on the results in this chapter.
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Open Problem 16. Does there exist a polyad H and an integer d such

that Independent Feedback Vertex Set and Near-Bipartiteness

are NP-complete for H-free graphs of diameter at most d?

Open Problem 17. For the remaining four problems, 3-Colouring,Independent

Odd Cycle Transversal, Acyclic 3-Colouring and Star 3-Colouring,

can we narrow the gap between our NP-completeness and polynomial-time re-

sults for chair-free graphs?
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Chapter 6

Disjoint Paths and Connected

Subgraphs

In this chapter we study two further problems, Disjoint Paths and Dis-
joint Connected Subgraphs. We �rst introduce the necessary de�ni-
tions and terminology. In Section 6.3 we prove a complexity dichotomy for
k-Disjoint Connected Subgraphs. In Section 6.4 we give an almost
complete complexity classi�cation for Disjoint Connected Subgraphs.

6.1 Terminology

A path from s to t in a graph G is an s-t-path of G, and s and t are called
its terminals. Here we assume that s and t are distinct. Two pairs (s1, t1)
and (s2, t2) are disjoint if {s1, t1}∩{s2, t2} = ∅. In 1980, Shiloach [90] gave a
polynomial-time algorithm for testing if a graph with disjoint terminal pairs
(s1, t1) and (s2, t2) has vertex-disjoint paths P 1 and P 2 such that each P i is
an si-ti path. This problem can be generalized as follows.

Disjoint Paths
Instance: A graph G and pairwise disjoint termi-

nal pairs (s1, t1) . . . , (sk, tk).
Question: Does G have pairwise vertex-disjoint paths

P 1,. . . ,P k such that P i is an si-ti path for
i ∈ {1, . . . , k}?
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•z2 •z2

•z1 • •z1 • •z2 •z1 • •z1 • •z2

•z2 •z2

Figure 6.1: An example of a yes-instance (G,Z1, Z2) of (2-)Disjoint Con-

nected Subgraphs (left) together with a solution (right).

Karp [57] proved that Disjoint Paths is NP-complete. If k is �xed, that
is, not part of the input, then we denote the problem as k-Disjoint Paths.
For every k ≥ 1, Robertson and Seymour proved the following celebrated
result.

Theorem 6.1 ([85]). For all k ≥ 1, k-Disjoint Paths is polynomial-time

solvable.

The running time in Theorem 6.1 is cubic. This was later improved to
quadratic time by Kawarabayashi, Kobayashi and Reed [54].

AsDisjoint Paths is NP-complete, it is natural to consider special graph
classes. The Disjoint Paths problem is known to be NP-complete even for
graph of clique-width at most 6 [46], split graphs [47], interval graphs [80]
and line graphs. The latter result can be obtained by a straightforward
reduction (see, for example, [46, 47]) from its edge variant, Edge Disjoint
Paths, proven to be NP-complete by Even, Itai and Shamir [36]. On the
positive side, Disjoint Paths is polynomial-time solvable for cographs, or
equivalently, P4-free graphs [46].

We can generalize the Disjoint Paths problem by considering terminal
sets Zi instead of terminal pairs (si, ti). We write G[S] for the subgraph
of a graph G = (V,E) induced by S ⊆ V , where S is connected if G[S] is
connected.
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Disjoint Connected Subgraphs
Instance: A graph G and pairwise disjoint termi-

nal sets Z1, . . . , Zk.
Question: Does G have pairwise disjoint connected sets

S1, . . . , Sk such that Zi ⊆ Si for i ∈ {1, . . . , k}?

If k is �xed, then we write k-Disjoint Connected Subgraphs. We refer
to Figure 6.1 for a simple example of an instance (G,Z1, Z2) of
2-Disjoint Connected Subgraphs. Robertson and Seymour [85] proved
in fact that k-Disjoint Connected Subgraphs is cubic-time solvable as
long as |Z1| + . . . + |Zk| is �xed (this result implies Theorem 6.1). Oth-
erwise, van 't Hof et al. [94] proved that already 2-Disjoint Connected
Subgraphs is NP-complete even if |Z1| = 2 (and |Z2| may have arbitrarily
large size). The same authors also proved that 2-Disjoint Connected
Subgraphs is NP-complete for split graphs. Afterwards, Gray et al. [43]
proved that 2-Disjoint Connected Subgraphs is NP-complete for pla-
nar graphs. Hence, Theorem 6.1 cannot be extended to hold for k-Disjoint
Connected Subgraphs.

We note that in recent years a number of exact algorithms were de-
signed for k-Disjoint Connected Subgraphs. Cygan et al. [30] gave
an O∗(1.933n)-time algorithm for the case k = 2 (see [84, 94] for faster exact
algorithms for special graph classes). Telle and Villanger [92] improved this
to time O∗(1.7804n). Recently, Agrawal et al. [1] gave an O∗(1.88n)-time
algorithm for the case k = 3. Moreover, the 2-Disjoint Connected Sub-
graphs problem plays a crucial role in graph contractibility: a connected
graph can be contracted to the 4-vertex path if and only if there exist two
vertices u and v such that (G− {u, v}, N(u), N(v)) is a yes-instance of
2-Disjoint Connected Subgraphs (see, e.g. [59, 94]).

6.2 Our Results

By combining some of the aforementioned known results with a number of
new results, we prove the following two theorems in Sections 6.3 and 6.4,
respectively. In particular, we generalize the polynomial-time result for Dis-
joint Paths on P4-free graphs to hold even for Disjoint Connected
Subgraphs.
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Theorem 6.2. Let H be a graph. If H ⊆i sP1 + P4, then for every k ≥
2, k-Disjoint Connected Subgraphs on H-free graphs is polynomial-

time solvable; otherwise even 2-Disjoint Connected Subgraphs is NP-

complete.

Theorem 6.3. Let H be a graph not in {3P1, 2P1 +P2, P1 +P3}. If H ⊆i P4,

then Disjoint Connected Subgraphs is polynomial-time solvable for H-

free graphs; otherwise even Disjoint Paths is NP-complete.

Theorem 6.2 completely classi�es, for every k ≥ 2, the complexity of k-
Disjoint Connected Subgraphs on H-free graphs. Theorem 3.6 de-
termines the complexity of Disjoint Paths and Disjoint Connected
Subgraphs on H-free graphs for every graph H except if
H ∈ {3P1, 2P1 + P2, P1 + P3}. In Section 6.5 we reduce the number of open
cases from six to three by showing some equivalencies.

In Section 6.6 we give some directions for future work. In particular
we prove that both problems are polynomial-time solvable for co-bipartite
graphs, which form a subclass of the class of 3P1-free graphs.

6.3 The Proof of Theorem 6.2

We consider k-Disjoint Connected Subgraphs for �xed k. First, we
show a polynomial-time algorithm on H-free graphs when H ⊆i sP1 +P4 for
some �xed s ≥ 0. Then, we prove the hardness result.

For the algorithm, we need the following lemma for P4-free graphs, or
equivalently, cographs. This lemma is well known and follows immediately
from the de�nition of a cograph [28]: in the construction of a connected
cograph G, the last operation must be a join, so there exists cographs G1

and G2, such that G is obtained from adding an edge between every vertex
of G1 and every vertex of G2. Hence, the spanning complete bipartite graph
of G has non-empty partition classes V (G1) and V (G2).

Lemma 6.1. Every connected P4-free graph on at least two vertices has a

spanning complete bipartite subgraph.

We note that if two adjacent vertices will always appear in the same set
of every solution (S1, . . . , Sk) for an instance (G,Z1, . . . , Zk), then we may
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contract the edge between them at the start of any algorithm. In particular,
we may contract any edge inside a terminal set. This takes linear time.
Moreover, H-free graphs are readily seen (see e.g. [59]) to be closed under
edge contraction if H is a linear forest. Hence, we can make the following
observation.

Lemma 6.2. For k ≥ 2, from every instance of (G,Z1, . . . , Zk) of k-Disjoint

Connected Subgraphs we can obtain in polynomial time an equivalent in-

stance (G′, Z ′1, . . . , Z
′
k) such that every Z ′i is an independent set. Moreover,

if G is H-free for some linear forest H, then G′ is also H-free.

We can now prove the following lemma.

Lemma 6.3. Let H be a graph. If H ⊆i sP1 + P4, then for every k ≥ 1,

k-Disjoint Connected Subgraphs on H-free graphs is polynomial-time

solvable.

Proof. Let H ⊆i sP1 +P4 for some s ≥ 0. Let (G,Z1, . . . , Zk) be an instance

of k-Disjoint Connected Subgraphs, where G is an H-free graph. By

Lemma 6.2, we may assume without loss of generality that G is connected

and moreover that Z1, . . . , Zk are all independent sets.

We �rst analyze the structure of a solution (S1, . . . , Sk) (if it exists). For

i ∈ {1, . . . , k}, we may assume that Si is inclusion-wise minimal, meaning

there is no S ′i ⊂ Si that contains Zi and is connected. Consider a graph

G[Si]. Either G[Si] is P4-free or G[Si] contains an induced rP1 +P4 for some

0 ≤ r ≤ s−1. We will now show that in both cases, Si is the (not necessarily

disjoint) union of Zi and a connected dominating set of G[Si] of constant

size.

First suppose that G[Si] is P4-free. As G[Si] is connected and Zi is inde-

pendent, we apply Lemma 6.1 to �nd that Si \Zi contains a vertex u that is

adjacent to every vertex of Zi. Hence, by minimality, Si = Zi ∪ {u} and {u}
is a connected dominating set of G[Si] of size 1.

Now suppose that G[Si] has an induced rP1 + P4 for some r ≥ 0, where

we choose r to be maximum. Note that r ≤ s−1. LetW be the vertex set of
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the induced rP1+P4. Then, as r is maximum,W dominates G[Si]. Note that

G[W ] has r+ 1 ≤ s connected components. Then, as G[Si] is connected and

W is a dominating set of G[Si] of size r + 4 ≤ s+ 3, it follows from folklore

arguments (see e.g. [93, Prop. 6.3.24]) that G[Si] has a connected dominating

set W ′ of size at most 3s+ 1. Moreover, by minimality, Si = Zi ∪W ′.

Hence, in both cases we �nd that Si is the union of Zi and a connected

dominating set of G[Si] of size at most t = 3s+ 1; note that t is a constant,

as s is a constant.

Our algorithm now does as follows. We consider all options of choosing

a connected dominating set of each G[Si], which from the above has size

at most t. As soon as one of the guesses makes every Zi connected, we

stop and return the solution. The total number of options is O(ntk), which

is polynomial as k and t are �xed. Moreover, checking the connectivity

condition can be done in polynomial time. Hence, the total running time of

the algorithm is polynomial.

The proof our next result is inspired by the aforementioned NP-completeness
result of [94] for instances (G,Z1, Z2) where |Z1| = 2 but G is a general
graph.

Lemma 6.4. The 2-Disjoint Connected Subgraphs problem is NP-

complete even on instances (G,Z1, Z2) where |Z1| = 2 and G is a line graph.

Proof. Note that the problem is in NP. We reduce from 3-SAT.

Let φ = φ(x1, . . . , xn) be an instance of 3-SAT with clauses C1, . . . , Cm. We

construct a corresponding graph G = (V,E) as follows. We start with two

disjoint paths P and P̄ on vertices pi, xi, qi and p̄i, x̄i, q̄i, respectively, where

xi, x̄i correspond to the positive and negative literals in φ, respectively. To

be more precise, we de�ne:

P = p1x1q1p2x2q2, . . . , pnxnqn, and P = p̄1x̄1q̄1 . . . p̄nx̄nq̄n

We add the two edges e = p1p̄1, and f = qnq̄n. For i = 1, . . . , n − 1,

we also add edges qip̄i+1 and q̄ipi+1. We now replace each xi by vertices
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C1◦

p1• x1
1◦ ◦ ◦ q1• p2• x1

2◦ ◦ ◦ q2• p3• ◦ ◦ q3•

p̄1•

e

x̄1
1◦ ◦ ◦ q̄1• p̄2• ◦ ◦ ◦ q̄2• p̄3• x̄1

3◦ ◦ q̄3•

f

Figure 6.2: The construction described with edges added for the clause C1 =

(x1 ∨ x2 ∨ x̄3).

xj1i , x
j2
i , . . . x

jr
i , where j1, . . . , jr are the indices of the clauses Cj that contain

xi. That is, we replace the subpath pixiqi of P by the path pix
j1
i x

j2
i , . . . x

jr
i , qi.

We do the same path replacement operation on P̄ with respect to every x̄i.

Finally, we add every clause Cj as a vertex and add an edge between Cj and

xji if and only if xi ∈ Cj, and between Cj and x̄ji if and only if x̄j ∈ Cj.

This completes the description of G = (V,E). We refer to Figure 6.2 for an

illustration of our construction.

We now focus on the line graph L = L(G) of G.

Let Z1 = {e, f} ⊆ E = V (L) and let Z2 consist of all vertices of L that

correspond to edges in G that are incident to some Cj. Note that Z1 and

Z2 are disjoint. Moreover, each clause Cj corresponds to a clique of size

at most 3 in L, which we call the clause clique of Cj. We claim that φ is

satis�able if and only if the instance (L,Z1, Z2) of 2-Disjoint Connected

Subgraphs is a yes-instance.

First suppose that φ is satis�able. Let τ be a satisfying truth assignment

for φ. In G, we let P 1 denote the unique path whose �rst edge is e and whose

last edge is f and that passes through all xji ∈ V if xi = 0 and through all

x̄ji if xi = 1. In L we let S1 consist of all vertices of L(P 1); note that

Z1 = {e, f} is contained in S1 and that S1 is connected. We let P 2 denote

the �complementary� path in G whose �rst edge is e and whose last edge is
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f but that passes through all xji if and only if P 1 passes through all x̄ji , and

conversely (i = 1, . . . , n). In L, we put all vertices of L(P 2), except e and f ,

together with all vertices of Z2 in S2. As τ satis�es φ, some vertex of each

clause clique is adjacent to a vertex of P 2. Hence, as P 2 is a path, S2 is

connected and we found a solution for (L,Z1, Z2).

Now suppose that (L,Z1, Z2) is a yes-instance of 2-Disjoint Connected

Subgraphs. Then V (L) can be partitioned into two vertex-disjoint con-

nected sets S1 and S2 such that Z1 ⊆ S1 and Z2 ⊆ S2. In particular, L[S1]

contains a path P 1 from e to f . In fact, we may assume that S1 = V (P 1),

as we can move every other vertex of S1 (if they exist) to S2 without discon-

necting S2.

Note that P 1 corresponds to a connected subgraph that contains the

adjacent vertices p1 and p̄1 as well as the adjacent vertices qn and q̄n. Hence,

we can modify P 1 into a path Q in G that starts in p1 or p̄1 and that ends in

qn or q̄n. Note that Q contains no edge incident to a clause vertex Cj, as those

edges correspond to vertices in L that belong to Z2. Hence, by construction,

Q �moves from left to right�, that is, Q cannot pass through both some xji
and x̄ji (as then Q needs to pass through either xji or x̄

j
i again implying that

Q is not a path).

Moreover, if Q passes through some xji , then Q must pass through all

vertices xjhi . Similarly, ifQ passes through some x̄ji , thenQmust pass through

all vertices x̄jhi . As Q connects the edges p1p̄1 and qnq̄n, we conclude that Q

must pass, for i = 1, . . . , n, through either every xjhi or through every x̄jhi .

Thus we may de�ne a truth assignment τ by setting

xi =

1 if Q passes through all x̄ji

0 if Q passes through all xji .

We claim that τ satis�es φ. For contradiction, assume some clause Cj is

not satis�ed. Then Q passes through all its literals. However, then in S2,

the vertices of Z2 that correspond to edges incident to Cj are not connected
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to other vertices of Z2, a contradiction. This completes the proof of the

lemma.

A straightforward modi�cation of the reduction of Lemma 6.5 gives us Lemma 6.6.
We can also obtain Lemma 6.6 by subdividing the graph G in the proof of
Lemma 6.4 twice (to get a bipartite graph) or p times (to get a graph of girth
at least p).

Lemma 6.5 ([94]). 2-Disjoint Connected Subgraphs is NP-complete

for split graphs, or equivalently, (2P2, C4, C5)-free graphs.

Lemma 6.6. 2-Disjoint Connected Subgraphs is NP-complete for bi-

partite graphs and for graphs of girth at least p, for every integer p ≥ 3.

We are now ready to prove Theorem 6.2.

Theorem 6.2 (restated) Let H be a graph. If H ⊆i sP1 + P4, then
for every k ≥ 1, k-Disjoint Connected Subgraphs on H-free graphs
is polynomial-time solvable; otherwise even 2-Disjoint Connected Sub-
graphs is NP-complete.

Proof. If H contains an induced cycle Cs for some s ≥ 3, then we apply

Lemma 6.6 by setting p = s+ 1. Now assume that H contains no cycle, that

is, H is a forest. If H has a vertex of degree at least 3, then H is a superclass

of the class of claw-free graphs, which in turn contains all line graphs. Hence,

we can apply Lemma 6.4. In the remaining case H is a linear forest. If H

contains an induced 2P2, we apply Lemma 6.5. Otherwise H is an induced

subgraph of sP1 + P4 for some s ≥ 0 and we apply Lemma 6.3.

6.4 The Proof of Theorem 6.3

We �rst prove the following result, which generalizes the corresponding result
of Disjoint Paths for P4-free graphs due to Gurski and Wanke [46]. We
show that we can use the same modi�cation to a matching problem in a
bipartite graph.
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Lemma 6.7. Disjoint Connected Subgraphs is polynomial-time solv-

able for P4-free graphs.

Proof. For some integer k ≥ 2, let (G,Z1, . . . , Zk) be an instance of Disjoint

Connected Subgraphs where G is a P4-free graph. By Lemma 6.2 we may

assume that every Zi is an independent set. Now suppose that (G,Z1, . . . , Zk)

has a solution (S1, . . . , Sk). Then G[Si] is a connected P4-free graph. Hence,

by Lemma 6.1, G[Si] has a spanning complete bipartite graph on non-empty

partition classes Ai and Bi. As every Zi is an independent set, it follows that

either Zi ⊆ Ai or Zi ⊆ Bi. If Zi ⊆ Ai, then every vertex of Bi is adjacent to

every vertex of Zi. Similarly, if Zi ⊆ Bi, then every vertex of Ai is adjacent

to every vertex of Zi. We conclude that in every set Si, there exists a vertex

yi such that Zi ∪ {yi} is connected.
The latter enables us to construct a bipartite graphG′ = (X∪Y,E ′) where

X contains vertices x1, . . . , xk corresponding to the set Z1, . . . , Zk and Y is

the set of non-terminal vertices of G. We add an edge between xi ∈ X and

y ∈ Y if and only if y is adjacent to every vertex of Zi. Then (G,Z1 . . . Zk)

is a yes-instance of Disjoint Connected Subgraphs if and only if G′

contains a matching of size k. It remains to observe that we can �nd a

maximum matching in polynomial time, for example, by using the Hopcroft-

Karp algorithm for bipartite graphs [51].

The �rst lemma of a series of four is obtained by a straightforward reduc-
tion from the Edge Disjoint Paths problem (see, e.g. [46, 47]), which was
proven to be NP-complete by Even, Itai and Shamir [36]. The second lemma
follows from the observation that an edge subdivision of the graph G in an
instance of Disjoint Paths results in an equivalent instance of Disjoint
Paths; we apply this operation a su�ciently large number of times to obtain
a graph of large girth. The third lemma is due to Heggernes et al. [47]. We
modify their construction to prove the fourth lemma.

Lemma 6.8. Disjoint Paths is NP-complete for line graphs.
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Lemma 6.9. For every g ≥ 3, Disjoint Paths is NP-complete for graphs

of girth at least g.

Lemma 6.10 ([47]). Disjoint Paths is NP-complete for split graphs, or

equivalently, (C4, C5, 2P2)-free graphs.

Lemma 6.11. Disjoint Paths is NP-complete for (4P1, P1+P4)-free graphs.

Proof. We reduce fromDisjoint Paths on split graphs, which is NP-complete

by Lemma 6.10. By inspection of this result (see [47, Theorem 3]), we

note that the instances (G, {(s1, t1), . . . , (sk, tk)}) have the following prop-

erty: the split graph G has a split decomposition (C, I), where C is a clique,

I an independent set, C and I are disjoint, and C ∪ I = V (G), such that

I = {s1, . . . , sk, t1, . . . , tk}. Now let G′ be obtained from G by, for each ter-

minal si, adding edges to sj and tj for all j 6= i. Then consider the instance

(G′, {(s1, t1), . . . , (sk, tk)}).
We note that G′[C] is still a complete graph, while G′[I] is a complete

graph minus a matching. It is immediate that G′ is 4P1-free. Moreover, any

induced subgraph H of G′ that is isomorphic to P4 must contain at least

two vertices of I and at least one vertex of C. If H contains two vertices

of C, then as G′[C] is a clique, H contains two non-adjacent vertices in I.

Similarly, if H contains one vertex of C (and thus three vertices of I), then H

contains two non-adjacent vertices in I. Since C is a clique in G′ and every

(other) vertex of I is adjacent in G′ to any pair of non-adjacent vertices of

I, it follows that G′ is P1 + P4-free as well.

We claim that (G, {(s1, t1), . . . , (sk, tk)}) is a yes-instance if and only if

(G′, {(s1, t1), . . . , (sk, tk)}) is a yes-instance. This is because the edges that

were added to G to obtain G′ are only between terminal vertices of di�erent

pairs. These edges cannot be used by any solution of Disjoint Paths

for (G′, {(s1, t1), . . . , (sk, tk)}), and thus the feasibility of the instance is not

a�ected by the addition of these edges.

We are now ready to prove Theorem 6.3.
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Theorem 6.3 (restated) Let H be a graph not in {3P1, 2P1 +P2, P1 +P3}.
If H ⊆i P4, then Disjoint Connected Subgraphs is polynomial-time
solvable for H-free graphs; otherwise even Disjoint Paths is NP-complete.

Proof. First suppose that H contains a cycle Cr for some r ≥ 3. Then

Disjoint Paths is NP-complete for the class of H-free graphs, as Disjoint

Paths is NP-complete on the subclass consisting of graphs of girth r + 1 by

Lemma 6.9. Now suppose that H contains no cycle, that is, H is a forest.

If H contains a vertex of degree at least 3, then the class of H-free graphs

contains the class of claw-free graphs, which in turn contains the class of line

graphs. Hence, we can apply Lemma 6.8. It remains to consider the case

where H is a forest with no vertices of degree at least 3, that is, when H is

a linear forest.

If H contains four connected components, then the class of H-free graphs

contains the class of 4P1-free graphs, and we can use Lemma 6.11. If H

contains an induced P5 or two connected components that each have at least

one edge, then H contains the class of 2P2-free graphs, and we can use

Lemma 6.10. If H contains two connected components, one of which has at

least four vertices, then H contains the class of (P1 + P4)-free graphs, and

we can use Lemma 6.11 again. As H /∈ {3P1, 2P1 + P2, P1 + P3}, this means

that in the remaining case H is an induced subgraph of P4. In that case even

Disjoint Connected Subgraphs is polynomial-time solvable on H-free

graphs, due to Lemma 6.7.

6.5 Reducing the Number of Open Cases to

Three

Theorem 6.3 shows that we have the same three open cases for Disjoint
Paths andDisjoint Connected Subgraphs, namely whenH ∈ {3P1, P1+
P3, 2P1 + P2}. We show that instead of six open cases, we have in fact only
three.
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Proposition 1. Disjoint Paths and Disjoint Connected Subgraphs

are equivalent for 3P1-free graphs.

Proof. Every instance of Disjoint Paths is an instance of Disjoint Con-

nected Subgraphs. Let (G,Z1, . . . , Zk) be an instance of Disjoint Con-

nected Subgraphs where G is a 3P1-free graph. By Lemma 6.2 we may

assume that each Zi is an independent set. Then, as G is 3P1-free, each Zi
has size at most 2. So we obtained an instance of Disjoint Paths.

Proposition 2. Disjoint Paths on (P1 + P3)-free graphs and Disjoint

Connected Subgraphs on (P1 + P3)-free graphs are polynomially equiva-

lent to Disjoint Paths on 3P1-free graphs.

Proof. We prove that we can solve Disjoint Connected Subgraphs in

polynomial time on (P1 +P3)-free graphs if we have a polynomial-time algo-

rithm for Disjoint Paths on 3P1-free graphs. Showing this su�ces to prove

the theorem, as Disjoint Paths is a special case of Disjoint Connected

Subgraphs and 3P1-free graphs form a subclass of (P1 + P3)-free graphs.

Let (G,Z1, . . . , Zk) be an instance ofDisjoint Connected Subgraphs,

where G is a (P1 + P3)-free graph. Olariu [82] proved that every connected

P1 + P3-free graph is either triangle-free or complete multipartite. Hence,

the vertex set of G can be partitioned into sets D1, . . . , Dp for some p ≥ 1

such that

� every G[Di] is 3P1-free or the disjoint union of complete graphs, and

� for every i, j with i 6= j, every vertex of Di is adjacent to every vertex

of Dj.

Using this structural characterization, we �rst argue that we may assume

that each Zi has size 2, making the problem an instance of Disjoint Paths.

Then we show that we can either solve the instance outright or can alter G

to be 3P1-free.
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First, we argue about the size of each Zi. By Lemma 6.2 we may assume

that every Zi is an independent set and is thus contained in the same set Dj.

If G[Dj] is 3P1-free, then this implies that any Zi that is contained in Dj has

size 2. If G[Dj] is a disjoint union of complete graphs, then each vertex of

a Zi that is contained in Dj belongs to a di�erent connected component of

Dj and Zi ∪{v} is connected for every vertex v /∈ Dj. As at least one vertex

v /∈ Dj is needed to make such a set Zi connected, we may therefore assume

that for a solution (S1, . . . , Sk) (if it exists), Si = Zi ∪ {v} for some v /∈ Dj.

The latter implies that we may assume without loss of generality that every

such Zi has size 2 as well.

If p = 1, then each connected component ofG is 3P1-free, and we are done.

Hence, we assume that p ≥ 2. In fact, since any two distinct sets Di and

Dj are complete to each other, the union of any two 3P1-free graphs induces

a 3P1-free graph. Therefore we may assume without loss of generality that

only G[D1] might be 3P1-free, whereas G[D2], . . . , G[Dp] are disjoint unions

of complete graphs.

Recall that Zi = {si, ti} for every i ∈ {1, . . . , k} and we search for a

solution (P 1, . . . , P k) where each P i is a path from si to ti. First suppose si
and ti belong toD1. Then P i has length 2 or 3 and in the latter case, V (P i) ⊆
D1. Now suppose that si and ti belong to Dh for some h ∈ {2, . . . , k}.
Then P i has length exactly 2, and moreover, the middle (non-terminal) vertex

of P i does not belong to Dh.

We will now check if there is a solution (P 1, . . . , P k) such that every P i

has length exactly 2. We call such a solution to be of type 1. In a solution

of type 1, every P i = siuti for some non-terminal vertex u of G. If si and

ti belong to Dh for some h ∈ {2, . . . , p}, then u ∈ Dj for some j 6= i. If si
and ti belong to D1, then u ∈ Dj for some j 6= 1 but also u ∈ D1 is possible,

namely when u is adjacent to both si and ti.

Verifying the existence of a type 1 solution is equivalent to �nding a

perfect matching in a bipartite graph G′ = A ∪ B that is de�ned as follows.
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The set A consists of one vertex vi for each pair {si, ti}. The set B consists

of all non-terminal vertices u of G. For {si, ti} ⊆ D1, there exists an edge

between u and vi in G′ if and only if in G it holds that u ∈ Dh for some

h ∈ {2, . . . , p} or u ∈ D1 and u is adjacent to both si and ti. For {si, ti} ⊆ Dh

with h ∈ {2, . . . , p}, there exists an edge between u and vi in G′ if and only

if in G it holds that u ∈ Dj for some j ∈ {1, . . . , p} with h 6= j. We can

�nd a perfect matching in G′ in polynomial time by using the Hopcroft-Karp

algorithm for bipartite graphs [51].

Suppose that we �nd that (G, {s1, t1}, . . . , {sk, tk}) has no solution of

type 1. As a solution can be assumed to be of type 1 if G[D1] is the disjoint

union of complete graphs, we �nd that G[D1] is not of this form. Hence,

G[D1] is 3P1-free. Recall that G[Dj] is the disjoint union of complete graphs

for 2 ≤ i ≤ p. It remains to check if there is a solution that is of type 2

meaning a solution (P 1, . . . , P k) in which at least one P i, whose vertices all

belong to D1, has length 3.

To �nd a type 2 solution (if it exists) we construct the following graph

G∗. We let V (G∗) = A1 ∪ A2 ∪B1 ∪B2, where

� A1 consists of all terminal vertices from D1;

� A2 consists of all non-terminal vertices from D1;

� B1 consists of all terminal vertices from D2 ∪ · · · ∪Dp; and

� B2 consists of all non-terminal vertices from D2 ∪ · · · ∪Dp.

Note that V (G∗) = V (G). To obtain E(G∗) from E(G) we add some edges

(if they do not exist in G already) and also delete some edges (if these existed

in G):

(i) for each {si, ti} ⊆ B1, add all edges between si and vertices of B2, and

delete any edges between ti and vertices of B2;
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(ii) add an edge between every two terminal vertices in B1 that belong to

di�erent terminal pairs; and

(iii) add an edge between every two vertices of B2.

We note that G∗[D1] is the same graph as G[D1] and thus G∗[D1] is 3P1-free.

Moreover, G∗[B1 ∪ B2] is 3P1-free by part (i) of the construction. Hence,

as there exists an edge between every vertex of A1 ∪ A2 and every vertex

of B1 ∪ B2 in G and thus also in G∗, this means that G∗ is 3P1-free. It

remains to prove that (G, {s1, t1}, . . . , {sk, tk}) and (G∗, {s1, t1}, . . . , {sk, tk})
are equivalent instances.

First suppose that (G, {s1, t1}, . . . , {sk, tk}) has a solution (P 1, . . . , P k).

Assume that the number of paths of length 3 in this solution is minimum

over all solutions for (G, {s1, t1}, . . . , {sk, tk}). We note that (P 1, . . . , P k)

is a solution for (G∗, {s1, t1}, . . . , {sk, tk}) unless there exists some P i that

contains an edge of E(G) \ E(G∗). Suppose this is indeed the case. As

G∗[D1] = G[D1] and every edge between a vertex of A1 ∪ A2 and a vertex

of B1 ∪ B2 also exists in G∗, we �nd that the paths connecting terminals

from pairs in D1 are paths in G∗. Hence, si and ti belong to Dh for some

h ∈ {2, . . . , p} and thus P i = siuti where u is a vertex of Dj for some

j ∈ {2, . . . , p} with j 6= h.

As we already found that (G, {s1, t1}, . . . , {sk, tk}) has no type 1 solution,
there is at least one P i′ with length 3, so P i′ = si′vv

′ti′ is in G[D1]. However,

we can now obtain another solution for (G, {s1, t1}, . . . , {sk, tk}) by changing

P i into sivti and P i′ into si′uti′ , a contradiction, as the number of paths

of length 3 in (P 1, . . . , P k) was minimum. We conclude that every P i only

contains edges from E(G) ∩ E(G∗), and thus (P 1, . . . , P k) is a solution for

(G∗, {s1, t1}, . . . , {sk, tk}).
Now suppose that (G∗, {s1, t1}, . . . , {sk, tk}) has a solution (P 1, . . . , P k).

Consider a path P i. First suppose that si and ti both belong to B1. Then

we may assume without loss of generality that P i = siuti for some u ∈ A2.
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As B1 only contains terminals from pairs in D2 ∪ . . .∪Dp, the latter implies

that P i is a path in G as well. Now suppose that si and ti both belong to

A1. Then we may assume without loss of generality that P i = siuti for some

non-terminal vertex of V (G) = V (G∗) or P i = siuu
′ti for two vertices u, u′

in A2 ⊆ D1. Hence, P i is a path in G as well. We conclude that (P 1, . . . , P k)

is a solution for (G, {s1, t1}, . . . , {sk, tk}). This completes our proof.

The three open cases seem challenging. We were able to prove the fol-
lowing positive result for a subclass of 3P1-free graphs, namely cobipartite
graphs, or equivalently, (3P1, C5, C7, C9, . . .)-free graphs.

Theorem 6.4. Disjoint Paths is polynomial-time solvable for cobipartite

graphs.

Proof. Let G = (A ∪ B,E), with cliques A and B, be the given cobipartite

graph. If si and ti are adjacent in G, then use the direct edge between them

as the path P i. We can then reduce the instance by removing si and ti. We

now assume the instance has thus been reduced and (by abuse of notation)

all terminal pairs are nonadjacent in G.

We now construct a bipartite graph G′ by removing each edge within the

cliques A and B as well as any edge sitj both of whose endpoints are termi-

nals. We then obtain a new graph G′′ by deleting each terminal vertex and

adding for each terminal pair (si, ti), a new vertex xi whose neighbourhood is

the union of the neighbourhoods of si and ti in G′. We claim that G contains

the required k disjoint paths P 1 . . . P k if and only if G′′ contains a matching

of size at least k. We can check the latter in polynomial time by using the

Hopcroft-Karp algorithm for bipartite graphs [51].

We �rst assume that G contains the disjoint paths P 1 . . . P k. Note that,

since G is 3P1-free, we may assume each path has length at most 3. A

matching M of size k is obtained as follows. For each i = 1 . . . k, if P i has

length 2 we add the edge xivi to M where vi is the interior vertex of P i. If

P i has length 3 then we add its interior edge uivi to M .
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Next assume G′′ contains a matching M of size k. For each edge of M

which includes a vertex xi corresponding to a terminal pair (si, ti) we set P i

to be siviti where vi is the vertex matched to xi. Note that any edge uv in G

which contains no terminal vertex and has one endpoint in each of A and B

lies on a path of length 3 between any two terminal vertices. Therefore, for

each i such that the vertex xi is not matched in M , we can choose a distinct

edge uivi in M to obtain the path siuiviti in G.

6.6 Conclusions

We �rst gave a dichotomy for k-Disjoint Connected Subgraphs in
Theorem 6.2: for every k, the problem is polynomial-time solvable on H-
free graphs if H ⊆i sP1 + P4 for some s ≥ 0 and otherwise it is NP-
complete even for k = 2. Two vertices u and v are a P4-suitable pair if
(G−{u, v}, N(u), N(v)) is a yes-instance of 2-Disjoint Connected Sub-
graphs. Recall that a graph G can be contracted to P4 if and only if G has a
P4-suitable pair. Deciding if a pair {u, v} is a suitable pair is polynomial-time
solvable forH-free graphs ifH is an induced subgraph of P2+P4, P1+P2+P3,
P1 +P5 or sP1 +P4 for some s ≥ 0; otherwise it is NP-complete [59]. Hence,
we conclude from our new result that the presence of the two vertices u and
v that are connected to the sets Z1 = N(u) and Z2 = N(v), respectively,
yield exactly three additional polynomial-time solvable cases.

We also classi�ed, in Theorem 6.3, the complexity of Disjoint Paths
and Disjoint Connected Subgraphs for H-free graphs. Due to Propo-
sitions 1 and 2, there are three non-equivalent open cases left and we ask the
following:

Open Problem 18. Determine the computational complexity of Disjoint

Paths on H-free graph for H ∈ {3P1, 2P1 + P2} and the computational

complexity of Disjoint Connected Subgraphs on H-free graphs for H =

2P1 + P2.
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