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Abstract

With the discovery of the Higgs boson at the Large Hadron Collider (LHC), and no

signs of new physics to current date, precise theoretical predictions are of increasing

importance. It is now essential to study in details the properties of the newly found

boson, in particular its coupling to other particles and itself, as this unveils further

the mechanism of symmetry breaking.

In this thesis, we extend the currently used methods to deal with heavy quarks

in hadron collision processes, the four-flavour and the five-flavour scheme, to con-

sistently include mass effects as well as resummation of collinear logarithms. This

is done using two complementary approaches. At the inclusive level, we extend a

method used to include mass effects in parton densities evolution, known as FONLL.

At the differential level, we devise a five-flavour scheme that includes mass effects

consistently and systematically up to MC@NLO accuracy.

We study the impact of such schemes on two phenomenologically relevant pro-

cesses at the LHC: the production of a heavy boson, a Z or a Higgs, in association

with heavy quarks. For these processes, in fact, the two standard schemes, have been

known to largely disagree. In both new schemes, mass effects are found to have a

few percent effect, with the bulk of the difference between a completely massless and

a completely massive picture, residing in the resummation of collinear logarithms.
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Chapter 1

Motivation and outline

In order to study the fundamental laws of nature, particles are smashed together

at a speed very marginally lower than that of light with an incredible amount of

energy. Nowadays this happens at the Large Hadron Collider, LHC, at CERN,

where a record energy of 6.5 TeV per beam particle is given to protons, which are

made colliding inside the four detectors ATLAS, CMS, LHCB and ALICE. Thanks

to these collider experiments we have discovered the Higgs boson, which was the

most important missing piece of the Standard Model of interactions [6, 7], as its

properties determine how particles have acquired their mass through electroweak

symmetry breaking.

The need for experiments, especially in the process of discovering new particles, is

clear, but a fundamental part of information in understanding experimental results

comes from theoretical predictions. These theory inputs are, in fact, extensively

used in experiments for many reasons. For example they are used to predict how we

expect a certain collection of events to look like, and are thus used to extract the

background, that we now how to model, from what we expect to highlight, or sig-

nal. As the precision of experimental results increases, thus theoretical predictions’

precision and accuracy must be increased accordingly. For many years the main

way this has been achieved is through the inclusion of higher-order corrections. The

calculation of higher orders alone, however, has not proved to be enough.

The way the proton momentum is distributed amongst its partons, parametrised

by parton distribution functions (PDFs), the way particles produced at the hard

1



Chapter 1. Motivation and outline 2

scale of the core process then evolve and emit other particles, as well as how they

then combine to produce the observable hadrons, all concur to the final precision

of the theory prediction. Monte Carlo event generators are tools that allow to

predict this whole chain, thus giving results that can be directly compared with

experimental measurements. It is clear that each of the previous pieces must come

as precise and accurate as possible. For this reason, aspects of calculations that

were always considered to be negligible are now becoming increasingly important.

For historical and practical reasons, for example, a parton, that is a particle that

is allowed to be found inside a proton and thus participate in a reaction, has always

been considered to be massless. This is clearly a good a approximation for those

quarks whose mass is so small that we are never able to resolve at hadron colliders,

or have a mass so large that they are extremely unlikely to be found inside a proton.

The reason behind this idea is that we are only able to define, in a universal way, the

partonic content of the proton up to power corrections of the mass of the given quark

over the characteristic scale of Quantum Chromodynamics, mQ/ΛQCD. For quarks

that have a very small mass, like the up, down or strange quarks, or an extremely

large mass, like the top, this description is clearly enough.

There is, however, a class of quarks, the charm and the bottom, whose masses

are small enough to be negligible for some of the energy scales at hadron colliders,

but still much larger than ΛQCD. As such, the proper inclusion of mass corrections

for these quarks can have important effects in regions of phase space, where their

suppression is not so large. In this work, we study how to extend the standard

massless parton description to include systematically quark masses and retain full

mass effects.

In the context of this thesis we focus on b-quarks, and in particular, we focus

on the associated production of such heavy quarks with a heavy boson (a Z or a

Higgs boson). These processes are interesting for a variety of reasons, and as such

demand a good theoretical control. Firstly, processes like bg → Zb, which are a

subprocesses of the ones considered here, are used to determine the bottom content

of the proton. The precise determination of the bottom quark density, in turn, can

be used to make precise predictions for processes like Higgs production in bottom
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quark fusion. This latter process is then used to precisely determine the bottom

Yukawa coupling to the Higgs boson. The reason why the precise determination of

this coupling is important is that it can help discriminating between various beyond

the Standard Model scenarios. Many of these models, in fact, allow for Higgs boson

multiplets and the mixing among these Higgs bosons can modify the coupling to

heavy quarks with respect to that the Standard Models.

In addition, from the experimental point of view, the difference between a scheme,

in which b-quarks are treated as massive, decoupled particles, and one, in which

they are treated on the same footing as the other partons, is often taken as a theory

uncertainty inputs. It is thus necessary to understand the origin of this difference

in order to be able to provide with reliable simulations of processes involving heavy

flavours. This case is of particular relevance for observables like the pT spectrum

of a Z boson in Drell-Yan, where the partonic channel bb̄ → Z play an important

role. This process is in fact measured with outstanding precision, and is used as

input to measure the W boson mass. It thus require theoretical predictions at the

sub-percent accuracy level. At this level of accuracy mass effects must be taken into

account, in particular in the low pT region.

Lastly, contrary to the charm quarks that has a mass close to that of the proton,

and is in general safe to consider massless, the mass of the bottom quark lies within

the region of interest at hadron colliders. Its inclusion is thus thought to yield

larger effects than that of the charm quark in general, and in particular in the

case of Higgs boson production, where the Yukawa coupling is proportional to the

mass of the interacting particles. Furthermore, events with identified b-jets and

a significant missing transverse momentum constitute a possible signature of Dark

Matter production. For this signal invisibly decaying Z-bosons associated with b-jets

pose a severe irreducible background.

The outline of this work is the following. We start by reviewing some fundamental

methods by which it is possible to obtain theoretical predictions. This serves to

introduce the notation we use throughout. As this project is carried out in the

context of the SHERPA Monte Carlo collaboration, we focus only on those methods

that are implemented there, when discussing event generation, unless otherwise
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stated.

We discuss how the two schemes generally used to obtain prediction for processes

involving bottom quarks, the four and the five flavour scheme, can lead to substantial

differences in predictions for the inclusive production of a Higgs boson. We then show

how to match these two predictions to obtain a reliable estimate of the importance

of mass effects for this process.

Further, we study how these two different approaches describe experimental data

for the associated production of a Z boson. We use the conclusions in this case to

understand differential predictions for the similar case of the associated production

of a Higgs boson.

Lastly we introduce the ingredients that are needed to promote the standard

five flavour scheme to a scheme in which full mass effects are systematically re-

tained. This requires to extend some of the standard techniques presented in this

first chapter to accommodate for the introduction of massive quarks in the initial

state. We conclude this part by presenting an explicit example of this scheme in

Higgs production in bottom quark fusion.



Chapter 2

Theoretical tools

2.1 Factorisation of QCD cross sections

Every Quantum Chromodynamics (QCD) calculation at the LHC is based on a

collinear factorisation theorem which states that the low-energy (long-distance) and

the high-energy (short-distance or partonic) part of an observable factorise. Ad-

ditionally, the long-distance part is process independent and encodes how the lon-

gitudinal momentum of the proton is shared among its partons and is commonly

known as Parton Distribution Function (PDF). However, this factorisation theo-

rem can only be exactly derived in Deeply Inelastic Scattering processes using an

Operator Product Expansion. In this expansion, only the leading term is really be-

lieved to be universal and thus put in the definition of PDF, while power-suppressed

(higher-twist) terms are neglected [8, 9].

Although a formal theorem/proof does not exist for general LHC processes, it is

widely believed that a factorisation theorem holds for the most important produc-

tion modes, in non-pathological observables, with higher-twist contributions being

suppressed by powers of ΛQCD/Q, where Q is some energy scale in the hard process,

while ΛQCD represents the energy at which the αs(ΛQCD) ∼ 1, ΛQCD ∼ 0.3 GeV.

Including such power suppressed contributions would require to calculate higher-

twist corrections to the parton densities, which, as we said, are non-universal. For

this reason the common practice is to consider massless, or active, all the quarks

for which corrections of the type mq/ΛQCD are small, while all massive quarks, for

5



2.1. Factorisation of QCD cross sections 6

which mq/ΛQCD is not small are treated as decoupled from QCD evolution.

This picture, however, is extremely simplistic for two reasons. First, it really

only works if there is only one scale in the process. As soon as another energy scale,

t, appears, ratios of mQ/t follow and the hierarchy is no longer straightforward.

Second, when we perform a factorisation we need to define what is regarded as high-

or low-energy. We thus need to introduce an energy reference scale for factorisation,

commonly called factorisation scale, or µF . In practice, PDFs and partonic cross-

sections are a function of this scale. As this scales runs, collinear logarithms like

log µF/mQ appear and might dominate over power-suppressed terms.

In formulae, the factorised differential cross section can be written as

dσ(Q2) =
∑

a,b∈(q,g)

∫ 1

0

dx1

∫ 1

0

dx2 fa(x1, µ
2
F ) fb(x2, µ

2
F )dσ̂ab

(
x1, x2,

µ2
F

Q2

)

+ O
(

Λ2
QCD

Q2

)
. (2.1)

Here and in the following, unless differently stated, hatted letters represent the

partonic version of that object, such that dσ̂ab stands for the partonic differential

cross section for incoming partons (a, b). At leading order, for example,

dσ̂ = dΦN(p1, . . . , pN)B(pa, pb; p1, . . . , pN)

=
1

φ(pa, pb)
|M(pa, pb; p1, . . . , pN)|2 (2 π)4δ(4)(pa + pb −

N∑
i=1

pi)
N∏
i=1

d3pi
(2 π)32Ei

, (2.2)

where we denote by B the born matrix element squared, and φ, the initial state flux,

is usually included in the definition of dΦN unless otherwise explicitated.

We indicate with fa(x1, µ
2
F ) the PDF for parton a with momentum fraction x1

at the factorisation scale µF . These functions are subject to the DGLAP equations

[10–12]:

dfa(x, µ
2
F )

d log µF
=
αs(µ

2
F )

2 π

∑
b∈(q,g)

∫ 1

x

dz

z
Pab(z) fb

(x
z
, µ2

F

)
+O(α2

s) (2.3)

The functions Pab(z) are the Altarelli-Parisi splitting function and they are reported

in Appendix A for reference. Further the partonic cross section can be written as

an expansion in αs, with µR being the renormalisation scale

dσ̂ab

(
x1, x2,

µ2
F

Q2

)
=
∑
k

αks(µR) dσ̂
(k)
ab

(
x1, x2,

µ2
F

Q2
,
µ2
R

Q2

)
, (2.4)
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with
dαs(µ

2
R)

d log µR
= −b0α

2
s − b1α

3
s +O(α4

s) (2.5)

and

b0 =
11CA − 4nf TR

12π
; b1 =

34C2
A − 20nf TR CA − 12nf TR Cf

48π2
. (2.6)

Equations of the form of Eq. (2.3) and Eq. (2.5) are generically referred to as evolu-

tion equations. In particular Eq. (2.3) describes how parton distribution functions

evolve with energy. The idea is that a parton a has a given differential probability to

split into a parton b, which is proportional to the Altarelli-Parisi splitting function

Pab. As these splittings happen, the distributions of both parton a and b inside the

proton, change consequently.

Note that the introduction of scales like µR,F is an artifact of the theory, and,

as such, physical observables are independent of those scales. Although theoretical

predictions are instead dependent on those scales at any given order, Eq. (2.3) and

Eq. (2.5) make sure that the structure of any additional order cancel the dependence

on those scales at each order. Thus, higher-order predictions depend less on the

additional scales µR,F , the variation of which is commonly used as an estimate of

missing higher order contributions.

It is important to notice at this point that both the running of the coupling

constant, and the evolution of the parton densities, as they depend on b0, depend

on how many flavour are active (= massless) at the a given energy scale flavour

through nf . There are, traditionally, two approaches in deciding how many flavours

are active. One approach, consists in taking ΛQCD as a reference scale. In this

way, every quark that has a mass greater than ΛQCD, is considered a massive, or

heavy, quark, while every other parton is considered massless and, as a consequence,

contributes to nf . This approach is generally called Fixed Flavour Number Scheme

(FFNS). In this case, in fact, nf remains a fixed number at all energy scales. In

the FFNS, heavy quarks do not contribute to either the running of the coupling

constant or the evolution of PDFs. In this way, heavy quarks can never appear as

initial state particles in the calculation of hard scattering matrix elements, but they

can only be produced in them. Thus the partonic cross section can retain the exact
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mass dependence.

In an opposed approach, one could argue that some other scales, like µR or

µF , is taken as the reference scale, as in practice one gets logarithms of µR,F/mQ

and not of ΛQCD/mQ, when solving Eqs. (2.3,2.5). Then the heavy quark will start

contributing to both the running of the coupling constant and the evolution of PDFs,

only when µR,F & mQ. This is called a Variable Flavour Number Scheme (VFNS) 1.

In a VFNS, the mass of the heavy quark mass parametrise whether the particle is a

heavy quark or an active parton, thus acting like a threshold. Threshold effects that

appear through terms like log µR,F/mQ are resummed to all orders by Eqs. (2.3,2.5),

and all mass effects are consistently neglected in the calculation of hard matrix

elements.

2.2 Monte Carlo methods in brief

The goal of phenomenology studies, like this one, is to ultimately compare against

experimental data. There are a very limited set of cases in which this can be done by

means of analytical calculations alone. The problem is that experiments have to deal

many more particles and many more phase space constraints than we can handle

with a simple enough description. To this end, Monte Carlo event generators, like

PYTHIA, HERWIG, or SHERPA, play an important role in providing a theory prediction

that is the closest possible to what experiments measure.

To get a general idea of how such programs work, imagine an experiment has

measured some physical observable, O. In general, we can identify an observable as

a function of all final state particles, f , and their momenta {pi}i≤nf ,

O ≡ O(f ; p1, . . . , pnf ) . (2.7)

Having to deal with quantum mechanical processes, however, means that we cannot

determine exactly the final state for any one specific collision. We can, however,

1There are various ways of defining a VFNS. In particular the choice of threshold and the

inclusion of some mass suppressed terms play a role. All different choices, however, are equal up

to mass, power-suppressed terms.
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predict the differential probability, which in turn is proportional to the differential

cross section for producing a specific final state configuration,

dP(f ; p1, . . . , pnf ) ∝
dσ(f ; p1, . . . , pnf )

d3p1 . . . d3pnf
. (2.8)

Repeating the experiment over many times gives us access to the expectation value

of O,

〈O〉 = L
∑
f

∫
dσ(f ; p1, . . . , pnf )

d3p1 . . . d3pnf
O(f ; p1, . . . , pnf ) d3p1 . . . d

3pnf . (2.9)

The quantity L is called integrated luminosity, and is a measure of the number of

particles expected to collide over the time of the experiment.

There are two main complications. Firstly, the larger the number of final state

particles, the more complicated the integrals. To deal with this issue the Monte

Carlo integration method is used. The idea is to generate a very large number, N ,

of randomly distributed copies of the final state momenta, we label each copy with

superscript j. Calling the total volume of integration V , we have that

〈O〉 = lim
N→∞

L V
N

N∑
j=0

∑
f

dσ(f ; pj1, . . . , p
j
nf

)

d3pj1 . . . d
3pjnf

O(f ; pj1, . . . , p
j
nf

) , (2.10)

which follows from the fundamental theorem of calculus and the central value theo-

rem. The main advantage of such an approach is that we can compute the differential

cross section for a given configuration and treat that as a weight, wjf . We can then

just store these weights and attach them to any observable we wish to compute. In

contrast, an analytical calculation would only be valid for the specific observable we

performed the calculation for.

The second problem comes from the theoretical prediction of dσ. To make mean-

ingful comparison to experimental data, we need to predict the differential proba-

bility with the highest possible accuracy. The main way to achieve such accuracy

is to calculate higher orders in the series expansion in Eq. (2.4), in what is called a

fixed order expansion.
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2.3 Fixed order expansion

In a fixed-order expansion, one keeps all matrix elements that contribute to a specific

order in the expansion. As the parameter of the expansion is a coupling constant,

αs in the case of QCD, we can view calculating an extra order in the expansion

parameter as adding an extra vertex, and thus an extra particle, in all allowed ways.

In practice, we can classify such particle only in two ways. We can either resolve

this particle, which case is called a real correction, or R, or this particle is virtual

and thus is not resolved, which case is called a virtual correction, or V .
In principle this idea can be iterated as many times as one wishes, giving rise

to a factorial growth of matrix elements to be considered at each extra order. In

practice there is a complication arising when one adds one extra particle. When

considering higher order corrections to Eq. (2.2), as we said, we can either have the

extra particle being unresolved, in which case the phase space integral is the same

as the born cross section, and the integral over internal momenta is carried over in

the calculation of the matrix elements, or the extra particle is resolved, thus the

phase over which the integration is performed is different.

Each of these two integrals can give singular contributions in the case in which

the extra particle, resolved or not, becomes either soft, or collinear to one of the

other particle in process. These divergences get canceled when every contribution is

added up together [13,14]. The problem is that these contributions live in different

phase-spaces, and Monte Carlo integrators can only deal with one phase-space at

a time. We need then to subtract divergences at the integrand level to have finite

integral, these methods are generally called subtraction methods.

Subtraction methods are now completely automated in Monte Carlo generators

for next-to-leading order calculations, that is calculations that only involve one extra

particle in the final state with respect to the leading order. Efforts are being made to

promote such methods for next-to-next-to-leading order corrections, although so far

this has only been possible for selected processes and in no automatised way. The

most widely used of such methods are the Catani-Seymour dipole formalism [15,

16] and the Frixione-Kunszt-Signer subtraction [17]. In the context of this study

we focus on the former method. This algorithm was first developed for massless-
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particles (including QCD partons) [15], extended to massive fermions [18] in QED,

and to massive final state QCD partons [16].

These methods make use of two important properties of QCD radiation. First,

the divergent structure of QCD amplitudes factorises, in both the soft and the

collinear limit, in a well-know universal structure. Second, the N +1 particles phase

space factorises into a N and 1 particle phase space, when one of the particles

becomes soft, or collinear to any other particle in the event [19, 20]. We can thus

make use of these facts to construct subtraction terms that mimic the infrared

and collinear behaviour of next-to-leading order QCD amplitudes to render next-to-

leading order observables not only finite at an integral level, but also at an integrand

level. In this way integration over the full phase-space by means of any Monte Carlo

method can be performed. We briefly report in the following section, the main

ingredients needed to construct Catani-Seymour subtraction.

2.3.1 Catani-Seymour subtraction in brief

Consider some hard scattering process involving N particles in the final state at its

leading order. The NLO cross section is given by

σNLO
N =

∫
dΦN [B + V ] +

∫
dΦN+1R, (2.11)

where B corresponds to the born contribution, V is the one-loop, or virtual contri-

bution, and R is the real emission contribution term.

As denoted by the N + 1, in the real emission process, one additional particle

is emitted. As this particle can get infinitively soft or collinear to any of the other

N final state particles, or the beam direction, R becomes divergent. The main idea

behind the Catani-Seymour method is to make use of universal properties of QCD

amplitudes in these limits, to construct subtraction terms S. To better define, we

want to perform the integral of |MN+1|2 ≡ R(ΦN+1) over the N + 1 particle phase

space, ΦN+1, which is both soft and collinear divergent. We thus need to construct
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a set of functions S(ΦN ⊗ Φ1), such that in∫
dΦN+1R(ΦN+1) =

∫
dΦN+1 [R(ΦN+1)− S(ΦN ⊗ Φ1)]

+

∫
dΦN ⊗

∫
dΦ1S(ΦN ⊗ Φ1) (2.12)

the first term of the right hand side is finite. The functions S(ΦN ⊗ Φ1) depend on

the additional property that phase space factorises in the soft and collinear limits.

We require in particular that the subtraction terms S(ΦN ⊗ Φ1) respect some

properties. First, in the limit in which a particle k, of momentum pk becomes soft, or

collinear to a particle i of momentum pi, if we parametrise the degree of divergence

with λ, by having pk, pi · pk ∼ λ for λ→ 0, we have to have:

lim
pk, pi·pk→0

[R(ΦN+1)− S(ΦN ⊗ Φ1)] = O(λ0) . (2.13)

Second, the functions S(ΦN ⊗Φ1) are constructed in such a way that their integral

over the extra emission phase space can be calculated analytically. Note that these

integrals are soft and collinear divergent. However, their divergent part can be

computed and extracted and used to subtract 1/ε2 and 1/ε divergences that appear

in the one loop contributions to the next to leading order cross section.

If we make use of Eq. (2.12) we then get

σNLO
N =

∫
dΦN

[
B + V +

∫
dΦ1 S

]
+

∫
dΦN+1

[
R− S

]
, (2.14)

which is now completely free of divergences.

2.3.2 The dipole factorisation formula

The form of the functions S, can be extracted from matrix elements, where diver-

gences appear as poles in the denominator of propagators of intermediate particles.

We can thus partial fraction all denominators, which separates all contributions that

are divergent only in a specific configuration. When doing this partial fractioning

one realises that QCD radiation terms have the form of colour dipoles, D, that can
be identified with an emitter particle and a spectator. It turns out that only four

configurations are possible:
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FF : the particle going soft or collinear is emitted from a final state particle, and

the spectator is also in the final state,

FI : the particle going soft or collinear is emitted from a final state particle, and

the spectator is in the final state,

IF : the particle going soft or collinear is emitted from an initial state particle, and

the spectator is in the final state,

II : the particle going soft or collinear is emitted from an initial state particle, and

the spectator is also in the initial state.

As a consequence, we can write the real emission matrix element as a sum of all

dipoles, plus terms that are non divergent. The former part equals the function S,
such that:

S ≡
∑

i=FF,FI,IF,II

Di. (2.15)

Further, each dipole contribution is given by the sum of all possible emitter-spectator

pair in a given state,

DFF =
∑

(i,j) 6=k

Dij,k ; DFI =
∑

(i,j)6=k

Dij,k + Daij (2.16)

DIF =
∑
i 6=k

Daik ; DII = Dak;b + Dbk;a (2.17)

(2.18)

In the context of this study we primarily focus on II configurations, so that in

practice we only have

S = Dak;b(p1, . . . , pk, . . . , pN+1; pa, pb) + Dbk;a(p1, . . . , pk, . . . , pN+1; pa, pb) . (2.19)

The term Dak;b represents a dipole contribution where the emitter is an initial state

particle, a and the spectator is another initial state particle b, and can be further

express as

Dak;b(p1, . . . , pk, . . . , pN+1; pa, pb) = − 1

2xab pa · pk
Ta ·Tb

T2
a

Vak,b(pa, pb, pk)

⊗
∣∣∣M̃N (p̃1, . . . , p̃N+1; p̃a, pb)

∣∣∣2 (2.20)
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∣∣∣∣ ∣∣∣∣2 → −Ta ·Tb

T2
a

Vak,b(pa, pb, pk)

2xab pa · pk
⊗
∣∣∣∣ ∣∣∣∣2

Figure 2.1: Diagrammatic representation of Eq. (2.20) for an initial state emission

with an initial state spectator.

where by p̃i we mean a momentum pi that has been transformed such to re-establish

momentum conservation in the projected matrix element. Note also that the symbol

⊗ in this context simply hides possible summation in color and helicity space. The

functions 1
2 pi·pjV

ij,k(pi, pk, pj) are generically called splitting kernels, or dipole split-

ting functions. The sum of all these functions is referred to as K in the remainder

of this work2.

2.3.3 Dipole terms construction

The construction of the dipole subtraction terms comes from the universal structure

of soft and collinear singularities. To see how this work in practice, take for example

the matrix element for the production of a Higgs in bottom-quark fusion, with

massless b. The matrix element for the emission of an additional gluon can be

written as

|Mbb̄→Hg|2 = 8π CF αs

(
1

2 pa · pk
+

1

2 pb · pk

)
1 + x2

1− x |Mbb̄→H |2 , (2.21)

if we make the replacement in |Mbb̄→H |2 that

s = 2pa · pb → x s = 2x pa · pb . (2.22)

2A special case of splitting kernels is given by the Altarelli-Parisi splitting functions, Pij .
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This, in turn, can be achieved by the variable transformation

p̃a = x pa ; p̃b = pb . (2.23)

Making use of Eq. (2.20) we can easily isolate the splitting function,

Vak,b = 8π CF αs
1 + x2

1− x , (2.24)

and the corresponding dipole term

Dak;b =
1

2 pa · pk
Vak,b |Mbb̄→H |2 . (2.25)

We can play the same exercise in the case of e+e− → qq̄. The next-to-leading

order real emission process in this case, can be written as

|Me+e−→qq̄g|2 = 8π CF αs
1

s

x2
1 + x2

2

(1− x1)(1− x2)
|Me+e−→qq̄|2 , (2.26)

with x1,2 = 2E1,2/
√
s are the energy fraction of the final state quarks. Performing

a partial fractioning on

x2
1 + x2

2

(1− x1)(1− x2)
=

1

1− x2

(
2

2− x1 − x2

− (1 + x1)

)
+ (x1 ↔ x2) , (2.27)

we get

Vij,k = 8π CF αs

(
2

2− xi − xk
− (1 + xi)

)
, (2.28)

with

Dij;k =
1

2 pi · pj
Vij,k |Me+e−→qq̄|2. (2.29)

Note that now we have employed a different phase space mapping

p̃k =
1

xk
pk ; p̃ij = Q− p̃k , (2.30)

where Q is the total momentum minus that of the gluon.

The exact form for the dipole functions, as well as for the corresponding phase-

space mappings in the general case, are reported in [15]. It is important to notice

that, when considering massive quarks [16], mass effects appear, in the construction

of the dipole functions, only as power suppressed modifications of Vij,k, as well as

of the phase space mappings.



2.4. Parton Shower 16

2.4 Parton Shower

Another way of increasing the accuracy of a calculation can be achieved by including

part of the leading contributions that appear at each extra order. This can be done

using the knowledge of the singular structure of matrix elements, in the same fashion

as the PDF factorisation works. Each extra emission, in fact, in the soft or collinear

limit factorises off of the born matrix element, in the way described in Eq. (2.20).

The m-th emission gives a contribution proportional to

1

m!

(
αs(t) log

t′

t
K

)m
, (2.31)

with K being splitting kernels. Neglecting color correlations, this series can be

summed to all orders in αs(t) log t′
t
. The result of this operation is called Sudakov

form factor [21–23],

∆N(t0, t) = exp

[
−
∫

dΦ1 KN(Φ1)

]
(2.32)

where KN(Φ1) represents a generalised splitting kernel that depends on the phase

space of the extra emission,

dΦ1 = dt dz dϕJ (t, z, ϕ) , (2.33)

with J being the Jacobian transformation coming from the relevant phase-space

mappings. The Sudakov form factor, ∆N(t0, t), represents the unconditional dif-

ferential probability that parton a has not undergone a branching between t0 and

t. Further, the evolution of the Sudakov form factor is, in the same way of PDFs,

determined by DGLAP equations.

A reasonable approximation is to identify the splitting kernels with the Altarelli-

Parisi splitting function appearing in Eq. (2.3). Another possibility, is to use instead

Catani-Seymour dipoles, such that

KN(Φ1) =
αs
2 π

∑
(i,j)6=k

Dij,k
BN

=
αs
2 π

S
BN

. (2.34)

Particles emitted from the fixed order matrix element with an initial scale µQ

undergo a backward evolution towards a lower cutoff scale t0 ∼ 1 GeV. At each stage

an extra branching occurs, or not, depending on the relative probability, or weight,
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of the Sudakov at that given scale. As the splitting kernels are derived in the soft

and collinear limit of matrix elements, this procedure then retains and resum, the

leading logarithmic term of each branching.

At the leading order, the showered differential cross section Eq. (2.2) becomes

dσLO⊗PS ≡ dΦN BN(ΦN) ⊗ ΠPS

= dΦN BN(ΦN)

[
∆N(t0, µ

2
Q) +

∫
t∈[t0,µ2Q]

dΦ1 KN(Φ1) ∆N(t(Φ1), µ2
Q)

]
. (2.35)

An important feature of the parton shower, that comes from its probabilistic inter-

pretation, is that it is unitary. That means that∫
dσLO⊗PS =

∫
dσLO (2.36)

2.4.1 MC@NLO

Having used Catani-Seymour dipole as splitting kernels, we can extend the picture

presented to next-to-leading order matrix elements. For convenience, we define∫
dΦ1 S(ΦN+1) = I(ΦN) . (2.37)

The MC@NLO matching, is most conveniently expressed in terms of a NLO-weighted

Born cross section,

B(ΦN) = B(ΦN) + V(ΦN) + I(ΦN) −
∫

dΦ1S(ΦN+1) Θ(t− µ2
Q) , (2.38)

and a hard remainder,

H(ΦN+1) = RN(ΦN+1) − S(ΦN+1) Θ(µ2
Q − t) . (2.39)

Note that the ordering variable t is defined differently for each dipole as it depends

on the various phase space mappings. Using the same definition of the Sudakov

form factor given in Eq. (2.34), we have that

dσMC@NLO ≡ dΦN B(ΦN) ⊗ ΠPS + dΦN+1H(ΦN+1)

= dΦN B(ΦN)

[
∆N(t0, µ

2
Q) +

∫
t∈[t0,µ2Q]

dΦ1 KN(Φ1) ∆N(t(Φ1), µ2
Q)

]
+ dΦN+1H(ΦN+1) . (2.40)
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As in the leading order case, it can be shown that∫
dσMC@NLO =

∫
dσNLO . (2.41)

Note that this last relation implies that a MC@NLO observable has the same fixed

order accuracy as a NLO one.

2.5 Merging

Parton showers are, broadly speaking, very precise in regions of phase space where

soft and collinear radiation dominates. On the other hand, they are not reliable

in describing hard radiation, for which the calculation of hard matrix elements is

needed. As described in the previous section we can match these two description.

In doing so we retain the fixed order accuracy of the matrix element for the first N

emission, while any additional emission has the parton shower accuracy.

Merging techniques are used to extend the accuracy of fixed order matrix element

to higher multiplicity, N+1 . . . , in case any of this emission is hard, and to retain the

parton shower picture when these extra emission are soft or collinear. The method

we will focus here is the CKKW [24], as implemented in SHERPA [25].

To see how this works, consider one extra emission. We start by defining a

parameter, Qcut, that separates between a regime in which a parton is hard, which

we call jet production, and a regime in which the parton is soft and collinear, called

jet evolution. In the former we wish to retain the matrix element description, while

in the latter we leave the production of the extra parton to the parton shower. In

formulae, assigning a scale QN+1 to the extra emission phase space, in the same way

as Qcut,

dσMEPS@LO ≡
∫

dσLO⊗PS
N ⊕

∫
dσLO⊗PS

N+1

dΦN BN(ΦN)

[
∆N(t0, µ

2
Q) +

∫
t∈[t0,µ2Q]

dΦ1 KN(Φ1) ∆N(tN+1, µ
2
Q) Θ(Qcut −QN+1)

]
+ dΦN+1 BN+1(ΦN+1) ∆N(t0, µ

2
Q) Θ(QN+1 −Qcut) . (2.42)

This method can be extended to as high a multiplicity as desired.
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2.6 Higher order merging

As well as to higher multiplicity, the method outlined above can be extend to higher

accuracy [26]. In particular, using the same techniques, we can merge MC@NLO

accurate calculations together, and together with leading order calculation for very

high multiplicity where a NLO calculation becomes too expensive. This method is

called MEPS@NLO and is developed in [27]. Schematically for one extra emission,

dσMEPS@NLO = dσMC@NLO
N ⊕ dσMC@NLO

N+1

= dΦN BN(ΦN)

[
∆N(t0, µ

2
Q) +

∫
t∈[t0,µ2Q]

dΦ1 KN(Φ1) ∆N(tN+1, µ
2
Q) Θ(Qcut −QN+1)

]
+ dΦN+1HN(ΦN+1) ∆N(tN+1, µ

2
Q) Θ(Qcut −QN+1)

+ dΦN+1 BN+1(ΦN+1)

(
1 +

BN+1(ΦN+1)

BN+1(ΦN+1)

∫
t∈[tN+1,µ

2
Q]

dΦ1 KN(Φ1)

)
Θ(QN+1−Qcut)

×
[

∆N+1(t0, tN+1) +

∫
t∈[t0,tN+1]

dΦ1 KN+1(Φ1) ∆N+1(tN+2, tN+1)

]
+ dΦN+2HN+1(ΦN+2) ∆N(tN+1, µ

2
Q) ∆N+1(tN+2, tN+1) Θ(QN+1 −Qcut) . (2.43)

The meaning of this equation can be summarised as follows. For Qcut < QN+1

Eq. (2.43) reduces to Eq. (5.50). The case of Qcut > QN+1, on the other hand, is

structurally more complicated. The last three lines of Eq. (2.43) have, in fact, two

parts. The first one, corresponds to Eq. (5.50) for a N + 1-particle process. The

second one have to account for the second additional radiation either coming from

showered N + 1 differential cross section or from the hard reminder, without double

counting.



Chapter 3

Matching the 4F and the 5F schemes

3.1 Need for a matched calculation

This chapter is devoted on how to obtain predictions in a matched scheme, namely

the FONLL [28, 29] scheme. In particular, we focus on the production of a Higgs

boson in bottom quark fusion [1, 2].

Higgs production in bottom fusion, like any process involving bottom quarks at

the matrix-element level, may be computed using two different factorisation schemes.

In the four-flavour scheme, the bottom quark is treated as a massive object, which is

not endowed with a parton distribution (PDF). It decouples from QCD perturbative

evolution, which is performed only including the four lightest flavours and the gluon

in the DGLAP equations, and likewise it decouples from the running of αs so that

nf = 4 in the computation of the QCD β function. In the five-flavour scheme (5FS),

instead, the bottom quark is treated on the same footing as other quark flavours,

there is a b PDF, and nf = 5 in both the DGLAP and renormalisation-group

equations.

As the total inclusive cross section for a Drell-Yan-like process depends only on

one hard scale, the virtuality of the produced boson Q, we can predict what the

role of mass effects is. For high enough scales, Q2 � m2
b , mass effects become

negligible, collinear logarithms related to b-quark radiation are large and must be

resummed, and the 5FS is always more accurate. On the other hand, very close to

the production threshold, Q2 ∼ m2
b , mass effects are important while collinear logs

20
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are not large, and the 4FS is more accurate. In principle, a computation performed

at high enough perturbative order in the 4FS will reproduce the 5FS result, while

this is not the case for a 5FS computation, in which b-mass effects are never included.

In practice, however, for Higgs production in bottom fusion the leading-order

production diagram, which is O(α0
s) (parton model) in the 5FS, is O(α2

s) in the

4FS, so one must go to very high order indeed in the 5FS computation in order

to reproduce 4FS results. In fact, in the 5FS, the cross section is known up to

NNLO [30] and in the 4FS up to NLO [31,32]. Furthermore, the characteristic scale

for this process is necessarily higher than the b production threshold, but perhaps

rather lower than the Higgs mass itself [33, 34]. In a wide range the 4FS and 5FS

computations at the highest available accuracy disagree by a sizeable amount, with

the 5FS result being significantly larger than the 4FS one, though they can be

brought to a better agreement with a very low factorisation scale choices, µF .

mH/4. All this suggests that a reliable computation of this process requires the use

of a matched scheme which combines the accuracy of the 4FS and 5FS results.

Historically, a matching scheme was devised to interpolate phenomenologically

between these the two schemes, the so-called Santander matching [35]. In this

scheme, the 4FS and 5FS results are interpolated using a weighted average of the

two. The idea is to define the weight as a function of the Higgs boson mass, mH

such that

w = log

(
mH

mb

)
− 2 ; (3.1)

the combined cross section is then given by

σSantander-Matched(m2
H) =

σ(4F ) + w σ(5F )

1 + w
. (3.2)

An extensive discussion on how this type of matched prediction compares with

theoretically motivated ones, like the one presented in this work can be found in [3].

In the next sections we work out the necessary formulae to construct such a matched

scheme, focusing on the bottom quark fusion process.
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3.2 The FONLL scheme

The basic idea of the FONLL method is to expand out the 5FS computation, in which

logarithms of Q2/m2
b are resummed to all orders, in powers of the strong coupling

αs, and replace them with their massive-scheme counterparts, up to the same order

at which the massive-scheme result is known. The combination then retains the

logarithmic accuracy of the 5FS result one starts from (with the b quark treated as

massless), but now also has the fixed-order accuracy of the massive result, up to the

order which has been included. Henceforth, we consistently use the notation NkLL

to refer to the resummed accuracy of the 5FS computation (i.e. by LL we mean a

computation in which
(
αs ln

m2
b

Q2

)
is treated as order one), and by NkLO to the fixed

order at which the massive 4FS is performed. These two calculations can thus be

matched at any preferred order, in practice however we concentrate on two possible

orders. The FONLL-A [1] scheme which is NNLL+LO accurate, and the FONLL-B [2]

combination which is NNLL+NLO accurate.

The only technical complication of the FONLL method is that the two compu-

tations, which are being combined, are performed in different renormalisation and

factorisation schemes. This difficulty is overcome by re-expressing αs and PDFs in

the 4FS computation in terms of their 5FS counterparts, so that one single αs and

set of PDFs is used everywhere. Once this is done, the 4FS and 5FS computations

can be simply added, with overlapping terms subtracted in order to avoid double

counting: the result has the structure

σFONLL = σ(4) + σ(5) − σ(4),(0), (3.3)

in which σ(4) and σ(5) are respectively the 4FS and 5FS results, and σ(4),(0) is their

overlap. The contributions to σ(4),(0) can be viewed and obtained either from ex-

pansion of the 5FS computation up to finite order or as the massless limit of the

massive computation - with the caveat that the 4FS result in the massive limit

acquires collinear singularities which in the 5FS are factorized in the PDFs.

We must now work out the necessary ingredients to construct Eq. (3.3). In the

following we make extensive use of Eqs. (2.1),(2.3),(2.5). We name objects by adding

a (nf ) whenever neccessary to avoid confusion.
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3.2.1 The 4F scheme cross section

In order to compute a total cross section in the four flavour scheme we need to use

Eq. (2.1) with 4F scheme ingredients. Namely,

σ(4) =

∫ 1

τH

dx

x

∫ 1

τH
x

dy

y2

∑
ij=q,g

f
(4)
i (x,Q2)f

(4)
j

(
τH
xy
,Q2

)
σ̂ij

(
y, α(4)

s (Q2),
Q2

m2
b

)
, (3.4)

with

σ̂ij

(
y, α(4)

s (Q2),
Q2

m2
b

)
=

N∑
p=2

(
αs(Q

2)
)p
σ̂

(p)
ij

(
y,
Q2

m2
b

)
. (3.5)

Note that here and in the following discussion on the 4FS, σ̂(p)
ij refer to the partonic

cross sections computed in the 4FS, as highlighted by their explicit dependence on

the ratio Q2/m2
b .

In practice, we can transform Eq. (3.4) by expressing PDFs and αs in the 4F

scheme to those calculated in the 5F scheme. In this way, we obtain

σ(4) =

∫ 1

τH

dx

x

∫ 1

τH
x

dy

y2

∑
ij=q,g

f
(5)
i (x,Q2)f

(5)
j

(
τH
xy
,Q2

)
Bij

(
y, α(5)

s (Q2),
Q2

m2
b

)
, (3.6)

where f (5)
i and α(5)

s are 5FS PDFs and αs, and the coefficients

Bij

(
y, α(5)

s (Q2),
Q2

m2
b

)
=

N∑
p=2

(
α(5)
s (Q2)

)p
B

(p)
ij

(
y,
Q2

m2
b

)
(3.7)

are such that if f (5)
i and α

(5)
s are re-expressed in terms of f (4)

i and α
(4)
s , then the

expression of σ(4) in the 4FS, Eq. (3.4), is recovered.

In order to obtain the coefficients Bij, we thus need to match Eq. (3.6) onto

Eq. (3.4) at the order in αs we wish to perform the matching at. The coupling

constant and the PDFs are related in the two schemes by equations of the form

α(5)
s (Q2) = α(4)

s (Q2) +
∞∑
i=2

ci

(
log

Q2

m2
b

)
×
(
α(4)
s (m2

b)
)i
, (3.8)

f
(5)
i (x,Q2) =

∫ 1

x

dy

y

∑
j

Kij

(
y, log

Q2

m2
b

, α(4)
s (Q2)

)
f

(4)
j

(
x

y
,Q2

)
, (3.9)

where the sum runs over the eight lightest flavours, antiflavours, and the gluon,

while the index i takes value over all ten quarks and antiquarks and the gluon.

The coefficients ci(L) are polynomials in L ≡ log Q2

m2
b
, and the functions Kij can be
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expressed as an expansion in powers of αs, with coefficients that are polynomials in

L.

The first nine equations, Eq. (3.9), relate the eight lightest quarks and the gluon

in the two schemes and can be inverted to express the four-flavour-scheme PDFs in

terms of the five-flavour-scheme ones. The last two equations, assuming that the

bottom quark is generated by radiation from the gluon (i.e. no intrinsic [36] bottom

component) express the bottom and anti-bottom PDFs in terms of the other ones.

In particular, this assumption implies that the b quark and antiquark PDFs are

equal to each other, f (5)
b = f

(5)

b̄
+ O(α2

s). Inverting Eqs. (3.8-3.9) and substituting

in Eq. (3.4) one can obtain an expression of σ(4) in terms of Bij and 5FS objects.

The solution of Eq. (3.8) are explicitly reported in Appendix B up to order α2
s.

Making use of Eqs. (3.8),(3.9) expression we get the non-vanishing B(k)
ij coefficients

at O(α2
s)

B(2)
gg

(
y,
Q2

m2
b

)
= σ̂(2)

gg

(
y,
Q2

m2
b

)
, (3.10)

B
(2)
qq̄

(
y,
Q2

m2
b

)
= σ̂

(2)
qq̄

(
y,
Q2

m2
b

)
; (3.11)

while at O(α3
s) we get:

B(3)
gg

(
y,
Q2

m2
b

,
µ2
R

m2
b

,
µ2
F

m2
b

)
= σ̂(3)

gg

(
y,
Q2

m2
b

)
− 2TR

3π
ln
µ2
R

µ2
F

σ̂(2)
gg

(
y,
Q2

m2
b

)
, (3.12)

B
(3)
qq̄

(
y,
Q2

m2
b

,
µ2
R

m2
b

,
µ2
F

m2
b

)
= σ̂

(3)
qq̄

(
y,
Q2

m2
b

)
− 2TR

3π
ln
µ2
R

m2
b

σ̂
(2)
qq̄

(
y,
Q2

m2
b

)
, (3.13)

B(3)
gq

(
y,
Q2

m2
b

)
= σ̂(3)

gq

(
y,
Q2

m2
b

)
, (3.14)

B(3)
qg

(
y,
Q2

m2
b

)
= σ̂(3)

qg

(
y,
Q2

m2
b

)
. (3.15)

Note that we suppress the obvious µR,F dependence in σ̂(p)
ij .

3.2.2 The massless limit of the massive cross section

As we said, the overlap term corresponds to the massless limit of the massive cross

section. This contribution is equivalent to a 4FS calculation where all logarithms and

constant terms retained, and all terms suppressed by powers of mb/Q are dropped.
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This can be written as

σ(4F ),(0)
(
αs(Q

2), L
)

=

∫ 1

τH

dx

x

∫ 1

τH
x

dy

y2

∑
ij=q,g

fi(x,Q
2)fj

(
τH
xy
,Q2

)
B

(0)
ij

(
y, L, αs(Q

2)
)
,

(3.16)

where

B
(0)
ij

(
y, L, αs(Q

2)
)

=
N∑
p=2

(
αs(Q

2)
)p
B

(0),(p)
ij (y, L) , (3.17)

and the coefficients B(0),(p)
ij satisfy

lim
mb→0

[
B

(p)
ij

(
y,
Q2

m2
b

)
−B(0),(p)

ij

(
y,
Q2

m2
b

)]
= 0 . (3.18)

Extracting the coefficients B(0),(p)
ij from the massive limit can only be done in cases

�̂bb̄

O(↵0
s) O(↵1

s) O(↵2
s)

�̂bg

�̂b⌃

Figure 3.1: Representative examples of contributions to the 5FS computation which

are subtracted and get replaced by massive 4FS contributions. The diagrams circled

with a dashed line become massive in FONLL-A, while those circled with a solid pink

line are those that must be additionally subtracted in the FONLL-B scheme.

in which there exist a simple closed-form expression for the massive coefficients
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B
(p)
ij . In most cases, however, this is not doable. All B(0),(p)

ij terms in Eq. (3.16) may

be equivalently viewed as contributions to the 5FS computation, as schematically

summarized in Fig. 3.1 (for real emission terms). This must clearly be true as they

account for double counting contributions. To obtain these terms from the 5FS

expression we need to express the b-PDF in terms of light quarks and gluon PDFs,

Eq. (3.9). At order α2
s, the result has the following structure:

f
(5)
b (x,Q2) = α(5)

s (Q2)

∫ 1

x

dz

z

{
A(1)
gb (z, L) f (5)

g

(x
z
,Q2

)
+ αs(Q

2)
[
A(2)
gb (z, L) f (5)

g

(x
z
,Q2

)
+A(2)

Σb (z, L) f
(5)
Σ

(x
z
,Q2

)]}
, (3.19)

where f (5)
b , f (5)

Σ and f (5)
g are respectively the 5FS b quark, singlet, and gluon PDFs,

and

A(1)
gb = a

(1,1)
gb (z)L,

A(2)
gb = a

(2,2)
gb (z)L2 + a

(2,1)
gb (z)L+ a

(2,0)
gb (z), (3.20)

A(2)
Σb = a

(2,2)
Σb (z)L2 + a

(2,1)
Σb (z)L+ a

(2,0)
Σb (z)

Note that, as well known, toO(α2
s) the expression of the 5FS f (5)

b in terms of the light

quarks and gluon receives constant (i.e. non-logarithmic) contributions a(2,0)
gb (z) and

a
(2,0)
Σb (z), and thus it is discontinuous at threshold Q2 = m2

b in the massless scheme,

as a consequence of it being continuous in the fully massive calculation. The explicit

expressions of the coefficients Eq. (3.20) are given in Appendix B for completeness.

We can now collect all contributions to σ(4),(0). The O(α2
s) terms, already given

in Ref. [1], are

B(0)(2)
gg (y, L) = y

∫ 1

y

dz

z

[
2A(1)

gb (z, L)A(1)
gb

(y
z
, L
)
σ̂

(0)

bb̄
(z) + 4A(1)

gb

(y
z
, L
)
σ̂

(1)
gb (z)

]
+ σ̂(2)

gg (y), (3.21)

B
(0)(2)
qq̄ (y, L) = σ̂

(2)
qq̄ (y); (3.22)
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while the O(α3
s) are [2]

B(0)(3)
gg (y, L) = y

∫ 1

y

dz

z

[
4A(2)

gb (z, L)A(1)
gb

(y
z
, L
)
σ̂

(0)

bb̄
(z)

+ 2A(1)
gb (z, L)A(1)

gb

(y
z
, L
)
σ̂

(1)

bb̄
(z) + 4A(2)

gb

(y
z
, L
)
σ̂

(1)
gb (z) + 4A(1)

gb

(y
z
, L
)
σ̂

(2)
gb (z)

]
,

(3.23)

B(0)(3)
gq (y, L) = y

∫ 1

y

dz

z

[
2A(2)

Σb (z, L)A(1)
gb

(y
z
, L
)
σ̂

(0)

bb̄
(z) + 2A(2)

Σb

(y
z
, L
)
σ̂

(1)
gb (z)

+2A(1)
gb

(y
z
, L
)
σ̂

(2)
qb (z)

]
, (3.24)

which completes our result. Note that in Eqs. (3.21)-(3.24) σ̂(p)
ij (x) denotes the

partonic cross-section in the 5FS, as indicated by the fact that it only depends on

the momentum fraction and does not have any dependence on mb
1.

3.3 Properties of the matched cross section

Using Eqs. (3.19,3.20) we can express the five flavour scheme cross section in terms

of only light quarks and gluons. If we do, we see that the five flavour scheme cross

section can be written as

σ(5) =

∫ 1

τH

dx

x

∫ 1

τH
x

dy

y2

∑
ij=q,g

f
(5)
i (x,Q2)f

(5)
j

(
τH
xy
,Q2

) N∑
p=0

αps

∞∑
k=0

a
(p,k)
ij (y) (αs L)k .

(3.25)

In the same spirit, the massless limit of the massive cross section, Eq. (3.16) is given

by

σ(4F ),(0) =

∫ 1

τH

dx

x

∫ 1

τH
x

dy

y2

∑
ij=q,g

f
(5)
i (x,Q2)f

(5)
j

(
τH
xy
,Q2

) N∑
p=0

αps

p∑
k=0

a
(p−k,k)
ij (y)Lk .

(3.26)

Let us now define σ(d), called difference term,

σ(d) = σ(5) − σ(4F ),(0) , (3.27)

1unlike the 4FS partonic cross sections σ̂(p)
ij

(
x, Q

2

m2
b

)
of Eq. (3.5)
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such that

σFONLL = σ(4) + σ(d) . (3.28)

This term is then expressed as:

σ(d) =

∫ 1

τH

dx

x

∫ 1

τH
x

dy

y2

∑
ij=q,g

f
(5)
i (x,Q2)f

(5)
j

(
τH
xy
,Q2

) N∑
p=0

αps

×
{ ∞∑
k=0

a
(p,k)
ij (y) (αs L)k −

p∑
k=0

a
(p−k,k)
ij (y)Lk

}
. (3.29)

In the region in which mb ∼ Q, we have that L ∼ 0. In this limit, mass effects

dominates over resummation effects and we thus expect the FONLL prediction to

match the four flavour one. As a confirmation we see the the two terms in the

second line of Eq. (3.29) have the same asymptotic behaviour in this limit, making

σ(d) vanish.

On the other hand, in the limit in which mb � Q2, by definition of the massless

limit of the massive calculation, we have that the four flavour scheme calculation

and the massless limit cancel. This leaves the FONLL prediction equal to the five

flavour one in this limit, as expected. In any intermediate regime, the first p terms

present in the second line of Eq. (3.29) coming from the massless limit, cancel the

first p terms coming from the massless calculation, leaving the remaining ∞ − p

tower of logs resummed in the five flavour scheme. The first p terms, on the other

hand are then added back in the four flavour scheme, and thus include mass effects

exactly up the p-th order.

3.4 The bb̄→ H FONLL cross section

We now have all the ingredients to construct the matched result. As everything in

Eq. (3.3) is now expressed in terms of the same perturbative objects we can perform

an αs expansion on the final result,

σFONLL = α2
s(Q

2)σ(2) + α3
s(Q

2)σ(3) + O(α4
s) . (3.30)

In the rest of this work, following the notation set in [29], we identify with FONLL-A

the order α2
s [1] term of Eq. (3.30), while we call FONLL-B the contribution to order
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α3
s [2]. The accuracy of these two schemes is given by the two matched calculations.

In the FONLL-A matching, the 5F NNLL cross section (which is order α2
s) to the

4FS LO (O(α2
s)) cross section thus having NNLL+LO accuracy. In the FONLL-B

matching, mass effects are included up to NLO (O(α3
s)) which then corresponds to

a NNLL+NLO matched scheme.

We have implemented our final FONLL-B expression by combining, according to

Eq. (3.3) 4FS predictions up to NLO obtained using MG5_aMC@NLO [37,38], 5FS

computations up to NNLL obtained using the bbh@nnlo code [30], and our own

implementation of the subtraction term Eq. (3.16).

In Figs. 3.2-3.4 we compare the 4FS, 5FS and matched FONLL results. Specif-

ically, in Figs. 3.2-3.3 we show for the physical Higgs mass value mH = 125 GeV,

varying the renormalisation and factorisation scale both the LO and NLO 4FS pre-

dictions, and the FONLL-A and FONLL-B matched results in which they are respec-

tively combined with the NNLL 5FS result, also shown. In Fig. 3.4 we show the most

accurate results obtained in the 4FS (NLO), 5FS (NNLO) and matched (FONLL-B)

schemes, as a function of the Higgs mass, with µR = µF = mH+4mB
4

, and the uncer-

tainty band obtained by taking the envelope of the variations of the renormalisation

and factorisation scales by a factor two about the central value with the two outer

points µR = 4µF and µF = 4µR omitted. Note that for the lowest (unphysical)

Higgs mass values this uncertainty blows up because the lower edge of the scale

variation range extends in the nonperturbative region.

The 4FS results shown are those which enter the FONLL combination, namely,

the form Eq. (3.6) of the 4FS result is used, in which this is expressed in terms of 5FS

PDFs and αs. All results are computed using a PDF set presented and discussed

in [39]. This PDF set is based on the PDF4LHC15 combined sets [40–46], with

which it is taken to coincide below the b mass, but from which it is then evolved

up in the 5FS from Q = mb, with the results below and above threshold matched

exactly as in Eq. (3.19). This is not quite the same as the original PDF4LHC15

combination, which is obtained by combining sets which adopt different values ofmb,

and also incorporate subleading differences in the way the 4FS and 5FS are matched

at threshold: it thus has the advantage of being fully consistent. We use pole-mass
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Figure 3.2: Comparison of the FONLL matched result and its 4FS and 5FS com-

ponents, Eq. (3.3). Results are shown as a function of the renormalisation scale,

with the factorisation scale fixed at a high value µF = mH (top) or a low value

µF = (mH+2mb)
4

(bottom).
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Figure 3.3: Same as Fig. 3.2, but now with the factorisation scale varied with the

renormalisation scale kept fixed at a high value µR = mH (top) or a low value

µR = (mH+2mb)
4

(bottom) .
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expressions and take a b pole-mass value mb = 4.58 GeV; the strong coupling is

αs(mZ) = 0.118.

From Fig. 3.2 we see that the strong renormalisation scale dependence of the

LO 4FS result is reduced at NLO, and also, that at NLO the big gap between

the 4FS and 5FS results gets compensated for by the inclusion of higher order

terms in the 4FS. This, together with the fact that the 5FS shows very little scale

dependence, and that differences are significantly smaller for smaller values of µF ,

strongly suggests that the bulk of the difference between the 4FS and the 5FS is due

to large logs of µ2
F/m

2
b which are resummed into the PDF in the latter case. This is

in agreement with the conclusion of [34], in which it was shown that resummation

increases the cross section in most cases by up to 30% at the LHC, leading to a

better precision. On the other hand, the 4FS predictions at NLO also displays a

consistent perturbative behaviour only when evaluated at a suitably low scale.

The massive corrections which the 4FS result contains turn out to be much

smaller, though not entirely negligible. Indeed, whereas the FONLL-A result essen-

tially coincides with the 5FS, the FONLL-B, which only differs from it because of

the inclusion of massive terms at one extra perturbative order, departs somewhat

from it. The factorisation scheme dependence shown in Fig. 3.3 is very mild in all

schemes when µR is high, but for low µR, where the perturbative expansion of the

4FS result is more reliable, both the 5FS and the FONLL-A results show a contained

scale dependence, comparable in size to the mass effects, which is reduced in the

FONLL-B result.

These results suggest that the main difference between the FONLL-A and the

FONLL-B schemes is the inclusion of a higher order contribution from the 4FS com-

putation which reduces the the scale dependence of the FONLL-A result; because

the latter is essentially the same as that of the 5FS computation this contribution is

likely to be dominated by a constant, i.e., mass-independent term. This conclusion

is supported by Fig. 3.4, in which results are shown as a function of the Higgs mass:

the difference between the FONLL-B and 5FS results decreases slightly as the mass

grows until mH ∼ 200 GeV, but then remains constant up to the highest values of

the Higgs mass.
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Figure 3.4: The cross-section using the most accurate results in the 4FS (NLO),

5FS (NNLO) and matched (FONLL-B) schemes, as a function of the Higgs mass,

with µr = µF = (mH+2mb)
4

. The bottom panel shows the result as a ratio to the

5FS computation. The uncertainty band is obtained by standard seven-point scale

variation (see text).
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We conclude that the FONLL-B result is the most reliable, and a low choice of

renormalisation and factorisation scheme seems to lead to a more reliable perturba-

tive expansion. All in all mass corrections are very moderate, so the usage of the

5FS result at all scales would be adequate in most cases. This rather disfavours phe-

nomenological combinations such as the so-called Santander matching [35] in which

the 4FS and 5FS results are combined through an interpolation that gives each of

them comparable weight. The difference between the FONLL-B and 5FS is almost

entirely due to a constant O(α3
s) mass-independent contribution which appears in

the 4FS at NLO but would only enter the 5FS at N3LO; the FONLL-B computation,

which includes it, is accordingly more accurate, even for very high vales of the Higgs

mass.

In conclusion, we find that mass corrections are very small while collinear logs

are substantial, so that in practice the fully matched result is very close to the 5FS

one. The fully matched result receives a small correction from mass effects and it

is very stable upon renormalisation and factorisation scheme variation, suggesting

that it is adequate for precision phenomenology at the LHC.



Chapter 4

Comparing the 4F and the 5F

scheme: heavy boson production

4.1 Introduction

Processes involving heavy flavours at the LHC, like the production of a heavy boson

(V = W,Z,H) in association with bottom (b) quarks present an interesting study

case of heavy flavour modeling and have recently attracted renewed interest for a

number of old and new reasons [33,34,38,47–49]. Firstly, the associated production

of a vector boson with b-tagged jets points to born level processes like gb → V b

which is sensitive to the b-quark Parton Distribution Function (PDF), the precise

determination of which is fundamental for phenomenologically relevant processes like

the production of a Higgs boson in bottom-quark fusion [1,2,39,50]. This sensitivity

also helps disentangle the relative effects of resummation to fixed order mass effects.

Secondly, and complementary to this purely Standard-Model reasoning, many

models for physics beyond the Standard Model come with extended Higgs sectors,

quite often in the form of a second Higgs doublet. The mixing among the Higgs

doublets often amplifies the couplings of the Higgs bosons to the b-quarks. As a

consequence, bH and bb̄H production provide important search grounds for new

physics. Furthermore, events with identified b-jets and a significant missing trans-

verse momentum constitute a possible signature of Dark Matter [51–53] production.

For this signal invisibly decaying Z-bosons associated with b-jets pose a severe irre-

35
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ducible background.

In general, these processes have always been approached in either of two schemes,

commonly known as the four or five-flavour scheme (4FS and 5FS). In the 4FS, bot-

tom quarks are completely decoupled from both the running of the strong coupling

constant (αs) and the evolution of PDFs. In addition all mass effects are retained

everywhere in the calculation. In the 5FS, on the other hand, mass effects are

completely neglected, and b-quarks are treated on the same footing as any other

light-quark. In particular, they contribute to both αs and PDFs evolution. A more

detailed description of these two approaches is carried on in Sec. (2.1).

We can make use of a simple argument to see where problems can arise. From

dimensional analysis in fact, we now that mass effects must appear as ratio of scales,

namely the mass of the heavy quarks (mQ in general, mb in particular) and some

other scale (Q) in the process. When looking at inclusive observables, we typically

have to deal with only one scale, like the invariant mass of the final state. In such

cases, it is easy to argue if mass effects will play an important role or not.

However, experimental analyses often consider differential distributions, like the

transverse-momentum (pT ) or the invariant mass of a subset of particles in the final

state. This introduces additional scales that are not a fixed number, but vary event

by event, making the ratio mb/Q a number that can be both small and large in the

same observable.

In the rest of this chapter, we study differences between the 4FS and the 5FS.

In particular we compare the two schemes in the context of the production of heavy

quarks in association with a Z boson, where we further compare with LHC data.

We then use the comparison with data to extend our discussion to the case of H

associated production.

4.2 Bottom-jet associated Z-boson production

The production of a Z boson in association with QCD jets provides the ideal test bed

for the theoretical approaches outlined above. Through the decay of the Z boson

to leptons these processes yield a rather simple and clean signature with sizeable
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rates even for higher jet counts. Precise measurements of the production rates and

differential distributions of both the Z-boson decay products and the accompanying

jets offer discriminating power for miscellaneous theoretical approaches. In fact,

measurements of Z+jets production served as key inputs for the validation of matrix-

element parton-shower simulation techniques, cf. [54–56], and impressively underpin

the enormous success of these calculational methods.

Here we focus on the production of Z bosons accompanied by identified b-jets.

Comparison with data from both the ATLAS and CMS collaborations at 7 TeV [57,

58] provides the benchmark for the accuracy and quality of four– and five–flavour

simulations with SHERPA. Similar measurements at 8 and 13 TeV LHC collision

energies are under way [59].

4.2.1 Details of the simulations

Efficient routines for the required QCD matrix-element calculations and a well un-

derstood QCD parton-shower are the key ingredients to all matching and merging

calculations. Within SHERPA LO matrix elements are provided by the built-in gener-

ators AMEGIC++ [60] and COMIX [61]. While virtual matrix elements contributing to

QCD NLO corrections can be invoked through interfaces to a number of specialised

tools, e.g. BLACKHAT [62], GOSAM [63], NJET [64], OPENLOOPS [65] or through the

BLHA interface [66], we employ in this study the OPENLOOPS generator [67] in con-

junction with the COLLIER library [68, 69]. Infrared divergences are treated by the

Catani–Seymour dipole method [15, 16] which has been automated in SHERPA [70].

In this implementation mass effects are included for final-state splitter and spectator

partons but massless initial-state particles are assumed throughout. SHERPA’s de-

fault parton-shower model [71,72] is based on Catani–Seymour factorisation [73]. In

order to arrive at meaningful fragmentation functions for heavy quarks, all modern

parton showers take full account of their finite masses in the final state, although in

algorithmically different ways. In SHERPA, the transition from massless to massive

kinematics is achieved by rescaling four-momenta at the beginning of the parton

shower. In the initial-state parton shower in SHERPA, the g → bb̄ and b → bg

splitting functions do not contain b-quark mass effects in their functional form and
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account for mass effects in the kinematics only.

In the following we briefly define the methods available in SHERPA for simulating

b-associated production processes, that will then be validated and applied for LHC

predictions:

4F NLO (4F MC@NLO): In the four–flavour scheme, b-quarks are consistently

treated as massive particles, only appearing in the final state. As a conse-

quence, b-associated Z- and H-boson production proceeds through the parton-

level processes gg → Z/H + bb̄, and qq̄ → Z/H + bb̄ at Born level. MC@NLO

matching is obtained by consistently combining fully differential NLO QCD

calculations with the parton shower, cf. [74,75]. Due to the finite b-quark mass

these processes do not exhibit infrared divergences and the corresponding in-

clusive cross sections can thus be evaluated without any cuts on the b-partons.

5F LO (5F MEPS@LO): In the five–flavour scheme b-quarks are massless parti-

cles in the hard matrix element, while they are treated as massive particles in

both the initial- and final-state parton shower.

In the MEPS@LO [25] samples we merge pp → H/Z plus up to three jets at

leading order; this includes, for instance, the parton–level processes bb̄→ Z/H,

gb → Z/Hb, gg → Z/Hbb̄, . . . . To separate the various matrix-element

multiplicities, independent of the jet flavour, a jet cut of Qcut = 10 GeV is

used in the Z case while Qcut = 20 GeV is employed in H-boson production.

5F NLO (5F MEPS@NLO): In the 5FS MEPS@NLO scheme [27,76], we account

for quark masses in complete analogy to the LO case: the quarks are treated as

massless in the hard matrix elements, but as massive in the initial- and final-

state parton showering. Again, partonic processes of different multiplicity are

merged similarly to the MEPS@LO albeit retaining their next-to-leading-order

accuracy. In particular, we consider the merging of the processes pp → H/Z

plus up to two jets each calculated with MC@NLO accuracy further merged

with pp→ H/Z + 3j calculated at MEPS@LO.
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dσ4F MC@NLO = dΦ3

∣∣∣∣ + V
∣∣∣∣2 ⊗ ΠPS

+ dΦ4

∣∣∣∣ ∣∣∣∣2 ⊗ ΠPS

Figure 4.1: Pictorial representation of V + bb̄ processes contributing to the 4F

MC@NLO calculation. Here V = (Z,H) and by ⊗ we just mean that it is not a

simple product, and P.S. is the parton shower contribution. V refers to the one-loop

virtual contributions to the born.



4.2. Bottom-jet associated Z-boson production 40

dσ5F MEPS@LO = dΦ1

∣∣∣∣ ∣∣∣∣2⊗ ΠPS ⊕ dΦ2

∣∣∣∣ ∣∣∣∣2⊗ ΠPS

⊕ dΦ3

∣∣∣∣ ∣∣∣∣2 ⊗ ΠPS ⊕ dΦ4

∣∣∣∣ ∣∣∣∣2 ⊗ ΠPS

Figure 4.2: Same as Fig. 4.1 but for the 5F MEPS@LO. The ⊕ symbol represents

the merging, i.e. a sum with the overlapping part removed. Note that in the five

flavour scheme the bottom contribution is included in q.
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We consistently use four–flavour PDFs in the 4F scheme, i.e. the dedicated four–

flavour NNPDF3.0 set [41] with the strong coupling given by αs(mZ) = 0.118 and

running at NLO. For the simulations in the five–flavour schemes the five–flavour

NNLO PDFs from NNPDF3.0 are used, with αs(mZ) = 0.118 and running at

NNLO. We assume all quarks apart from the b to be massless, with a pole mass of

mb = 4.92 GeV which enters the hard matrix-element calculation, where appropri-

ate, and the parton shower.

Results in the 4F and 5F schemes have been obtained with the default scale-

setting prescription for parton-shower matched calculations in SHERPA [25,77]. They

are calculated using a backward-clustering algorithm, and for each emission from the

shower, couplings are evaluated at either the kT of the corresponding emitted par-

ticle (in the case of gluon emission), or at the invariant mass of the emitted pair

(in the case of gluon splitting into quarks). The clustering stops at a “core” 2 → 2

process, with all scales set to µF = µR = µQ = mT (V )/2, where mT (V ) corresponds

to the transverse mass of the boson. This scale is thus used to evaluate couplings in

the hard matrix element and PDFs. The corresponding central values are supple-

mented with uncertainty bands reflecting the dependence on the unphysical scales.

Renormalisation and factorisation scales are varied around their central value by a

factor of two up and down, with a standard 7-point variation. The scale variations

use the SHERPA internal reweighting procedure [78] and result in envelopes around

the central value. Furthermore, we consider explicit variations of the parton-shower

starting scale, i.e. µQ, by a factor of two up and down.

4.2.2 Parton shower mass corrections

When producing predictions involving heavy quarks there are a number of subleading

effects that can be turned on or off. This happens in particular in the parton shower

part. As we discuss in Section 2.4, in fact, the Shower evolution is determined by

the exact definition of the Sudakov form factor,

∆N(t0, t) = exp

[
−
∫

dΦ1 KN(Φ1)

]
(4.1)
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with KN(Φ1) some splitting kernels. As we are using a dipole shower, in the con-

text of this study, we can identify KN(Φ1) with Catani-Seymour dipoles splitting

functions. As long as the correct limits are recovered by the splitting functions,

and one knows all the phase-space mappings needed to define the projected phase

space, one can use any splitting function. This imply that any non-divergent, mass

proportional, addition to the splitting kernels is subleading. In the simulations we

present here we do not include any additional mass effects, other than the ones that

are already present and described in [71].

Another subtlety stems when looking at the definition of KN(Φ1),

KN(Φ1) =
αs
2π

∑
(i,j) 6=k

Dij,k
BN

=
αs
2 π

S
BN

. (4.2)

The point at which αs should be evaluated in this formula, is the evolution variable.

In dipole based shower, like the one we discuss here, this parameter is calculated

as the transverse momentum of the splitting kT . Imagine now the splitting of a

gluon into a bb̄ pair. As the b quarks, in the shower, are always treated as massive

particles, it is unlikely that they are produced very collinear. On the other hand

kT can, in principle, be very small. Now αs is a decreasing function of kT . This

means that lower kT splitting have a higher weight, and thus a larger probability.

This issue can be fixed by evaluating αs in the context of g → bb̄ splittings at the

invariant mass of the splitted pair, mbb̄. This setting is the default setting we use in

this study.

As a last comment, let us underline how, however, the setup used here, and

presented in the previous section, makes most of these effects less important, at

least in the two five falvour scheme samples. The idea is that we exploit the merging

scale, Qcut, to reduce the influence of the parton shower in many regions of phase

space. To do that we choose Qcut such that

mb < Qcut < pcut
T , (4.3)

where pcut
T is the cut on pT applied to jets in the analysis. This low value makes then

sure that most of the samples are populated by matrix elements, with the parton

shower dominating only in the regions of very soft jets.
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4.2.3 Measurements at LHC Run I – the reference data

Based on a data set of 4.6 fb−1 integrated luminosity the ATLAS collaboration

studied the production of b-jets associated with Z/γ∗ that decay to electrons or

muons [57]. The dilepton invariant mass ranges between 76 GeV < m`` < 106 GeV.

Jets are reconstructed using the anti-kt algorithm [79] with a radius parameter

of R = 0.4, a minimal transverse momentum of pT,j > 20 GeV and a rapidity of

|yj| < 2.4. Furthermore, each jet candidate needs to be separated from the leptons by

∆Rj` > 0.5. Jets containing b-hadrons are identified using a multi-variate technique.

To match the outcome of the experimental analysis, simulated jets are identified as

b-jets, when there is one or more weakly decaying b-hadron with pT > 5 GeV within

a cone of ∆R = 0.3 around the jet axis. The sample of selected events is further

subdivided into a class containing events with at least one b-jet (1-tag) and a class

with at least two b-jets (2-tag).

A similar analysis was performed by CMS [58]. There, electrons and muons

are required to have a transverse momentum of pT,` > 20 GeV, a pseudorapidity

|η`| < 2.4, and a dilepton invariant mass within 81 GeV < m`` < 101 GeV. Only

events with exactly two additional b-hadrons were selected. The analysis focuses on

the measurement of angular correlations amongst the b-hadrons and with respect

to the Z boson. This includes in particular variables sensitive to rather collinear

b-hadron pairs. In addition, the total production cross section as a function of the

vector boson’s transverse momentum was measured.

Both analyses are implemented and publicly available in the RIVET analysis

software [80] that, together with the FASTJET package [81], is employed for all

particle, i.e. hadron, level analyses.

4.2.4 Comparison with LHC data

In this section the theoretical predictions from SHERPA are compared to the experi-

mental measurements from LHC Run I. We begin the discussion with the comparison

with the measurements presented by the ATLAS collaboration in Ref. [57]. The to-

tal cross sections for Z+ ≥ 1 and Z+ ≥ 2 b jets are collected in Fig. 4.3. Already
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there we see a pattern emerging that will further establish itself in the differential

cross sections: While the 5F MEPS@NLO results agree very well with data, the cen-

tral values of the 5F MEPS@LO cross sections tend to be around 10-20% lower than

the central values of data, but with theory uncertainties clearly overlapping them.

For all the runs the uncertainty estimates include both, 7-point variations of the

perturbative scales µR/F , as well as µQ variations by a factor of two up and down.

In contrast to the 5F case, the 4F MC@NLO cross sections tend to be significantly

below the experimental values for the Z+ ≥ 1 b-jets cross section, without over-

lap of uncertainties. In the Z+ ≥ 2 b-jets cross section the agreement between 4F

MC@NLO results and data is better, with the theoretical uncertainties including the

central value of the measured cross section.

In Fig. 4.4 the differential cross sections with respect to the transverse momen-

tum and rapidity of the b-jets, normalised to the number of b-jets, are presented

for events with at least one b-tagged jet. The shapes of both distributions are well

modelled both by the 4F and the two 5F calculations. However, clear differences

in the predicted production cross sections are observed. While the 5F NLO results

are in excellent agreement with data - both in shape and normalisation - the cen-

tral values of the 5F LO cross sections tend to be around 10% below data, at the

lower edge of the data uncertainty bands, and the 4F results are consistently out-

side data, about 25% too low. In the lower panels of Fig. 4.4 and all the following

plots in this section we show the uncertainty bands of the theoretical predictions,

corresponding to the above described µR/F and µQ variations. For the 5FS calcu-

lations the scale uncertainties clearly dominate, while for the 4F MC@NLO scheme

the shower-resummation uncertainty dominates.

This pattern is repeated in Fig. 4.5, where we show the differential σ(Zb) cross

section with respect to the dilepton transverse momentum and, rescaled to 1/Nb−jets,

as a function of the azimuthal separation between the reconstructed Z boson and

the b-jets. Again, both distributions are very well modelled by both 5F calculations.

The 4F MC@NLO prediction again underestimates data by a largely flat 20-25%.

Lastly for the one b-jet inclusive sample, we look at the rapidity and ∆R sepa-

ration between the Z boson and the leading b-jet, Fig. 4.6. In these two plots the
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Figure 4.3: Comparison of total production cross section predictions with ATLAS

data [57]. The error bars on the theoretical results are calculated from variations of

the hard-process scales µR/F and the parton-shower starting scale µQ.

additional constraint that pT,ll > 20 GeV is imposed. This case too highlight how

the three schemes differ from one another by a constant factor. In particular the
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Figure 4.4: Inclusive transverse-momentum and rapidity distribution of all b-jets in

events with at least one b-jet. Data taken from Ref. [57].

MEPS@NLO 5FS provide once again with the most accurate prediction, while the

4F MC@NLO undeshoot data by a roughly 20% factor. Somehow more interesting

is the ∆R separation between the Z boson and the leading b-jet. In this case in
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Figure 4.5: Transverse-momentum distribution of the Z boson (left) and the az-

imuthal separation between the Z boson and the b-jet (right) in events with at least

one b-jet. For the ∆φ(Z, b) measurement the additional constraint pT,ll > 20 GeV is

imposed. Data taken from Ref. [57].
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Figure 4.6: Difference in rapidity and ∆R separation between tne Z boson and the

first b-jet in events with at least one b-jet, with the additional constraint pT,ll >

20 GeV. Data taken from Ref. [57].

fact we notice some shape distortion in the ∆R ≥ 4 region. In this region the two

5FS predictions somehow depart from being a constant factor with respect to the
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4FS MC@NLO. This is due to the low merging scale that has been used in this case,

which moves the transition region to lower ∆R values, thus affecting this plot.

Moving on to final states exhibiting at least two identified b-jets, the role of

the 5F LO and 4F NLO predictions are somewhat reversed: As can be inferred

from Fig. 4.3, the 4F and 5F NLO samples provide good estimates for the inclusive

Zbb cross section, while the 5F LO calculation undershoots data by about 20%. In

Fig. 4.7 the ∆R separation of the two highest transverse-momentum b-jets along with

their invariant-mass distribution is presented. Both the 4F and the 5F approaches

yield a good description of the shape of the distributions. It is worth stressing that

this includes the regions of low invariant mass and low ∆R, corresponding to a

pair of rather collinear b-jets. This is a region that is usually riddled by potentially

large logarithms, where the parton shower starts taking effect. Note that in the

comparison presented in [57] this region showed some disagreement between data

and other theoretical predictions based on NLO QCD (dressed with parton showers).

In Fig. 4.8 the resulting transverse-momentum distribution of the dilepton system

when selecting for events with at least two associated b-jets is shown. The shape of

the data is very well reproduced by the 4F MC@NLO and 5F MEPS@NLO samples.

Also the 5F MEPS@LO prediction describes the data well despite of the overall rate

being 20% lower than observed in data.

The measurements presented by the CMS collaboration in Ref. [58] focus on

angular correlations between b-hadrons rather than b-jets. Two selections with re-

spect to the dilepton transverse momentum have been considered, a sample requiring

pT (Z) > 50 GeV and an inclusive one considering the whole range of pT (Z). The

∆R and ∆φ separation of the b-hadrons obviously prove to be most sensitive to the

theoretical modelling of the b-hadron production mechanism and the interplay of

the fixed-order components and the parton showers. They are presented in Figs. 4.9

and 4.10. In general, a good agreement in the shapes of simulation results and data

is found, with the same pattern of total cross sections as before: the 5F MEPS@NLO

sample describes data very well, while the 4F MC@NLO results tend to be a little bit,

about 10%, below data, with data and theory uncertainty bands well overlapping,

while the central values of the 5F MEPS@LO results undershoot data by typically
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Figure 4.7: The ∆R separation (left) and invariant-mass distribution (right) for the

leading two b-jets. Data taken from Ref. [57].

20-25%.

Overall it can be concluded that the 5F MEPS@NLO calculation yields the best

description of the existing measurements, regarding both the production rates and
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Figure 4.8: Transverse-momentum distribution of the dilepton system for events

with at least two b-jets. Comparison against various calculational schemes. Data

taken from Ref. [57].

shapes. The 4F MC@NLO and 5F MEPS@LO schemes succesfully model the shape

of the differential distributions but consistently underestimate the production rates.

4.3 Bottom-jet associated Higgs-boson production

In this section we present predictions for b-jet(s) associated production of the Standard-

Model Higgs boson in pp collisions at the 13 TeV LHC obtained in the four– and

five–flavour schemes. As standard when dealing with this process, we do not in-

clude contributions from the gluon-fusion channel. However, in the 4F MC@NLO

we do include terms proportional to the top-quark Yukawa coupling, contributing

to order ybyt as an interference effect at NLO QCD [3, 31, 32]. Although associated

Z+ b-jet(s) production serves as a good proxy for the Higgs-boson case, there are

important differences between both processes, mainly due to the different impact of

initial-state light quarks, which couple to Z bosons but not to the Higgs boson.
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Figure 4.9: ∆RBB distribution for two selections of the transverse momentum of the

Z boson. Data taken from Ref. [58].

As before, QCD jets are defined through the anti-kt algorithm using a radius

parameter of R = 0.4, a minimal transverse momentum pT,j > 25 GeV, and a

rapidity cut of |yj| < 2.5. In this case, we consider results that are at the parton
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Figure 4.10: ∆φBB distribution for two selections of the transverse momentum of

the Z boson. Data taken from Ref. [58].

level only, disregarding hadronisation and underlying-event effects, which may blur

the picture. We consider single b-tagged jets only, thus excluding jets with intra-jet

g → bb̄ splittings from the parton shower which would be the same for all flavour
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schemes we investigate. As for Z-boson production, we separate the event samples

into categories with at least one b-jet, i.e. H+ ≥ 1b-jet events, and at least two

tagged b-jets, i.e. H+ ≥ 2b-jets events.

LHC 13 TeV H+ ≥ 1b-jets [fb] H+ ≥ 2b-jets [fb]

σ4F
MC@NLO 45.2+15.5%

−18.4% 4.5+25.1%
−26.3%

σ5F
MEPS@LO 79.3+34.0%

−25.4% 3.8+34.3%
−30.3%

σ5F
MEPS@NLO 110.5+14.2%

−16.0% 6.9+27.3%
−27.1%

Table 4.1: 13 TeV total cross sections and the corresponding µF/R and µQ uncer-

tainties for H+ ≥ 1b and H+ ≥ 2bs.

In Tab. 4.1 cross sections for the three calculations are reported. Historically,

inclusive results have largely disagreed between the 4F and the 5F scheme. This

feature is observed for the case at hand, too, and especially so for the case of one

tagged b-jet. There the 4F MC@NLO prediction is smaller than the 5F results by

factors of about 1.75 (5F LO) and of 2.44 (5F NLO). The relative differences are

reduced when a second tagged b-jet is demanded. In this case we find that the 4F

result lies between the two 5F results, about 20% higher than the LO predictions, and

a factor of about 1.5 lower than the 5F NLO predictions. In both cases, inclusive

H + b and H + bb production, the uncertainty bands of the two 5F predictions,

corresponding to 7-point µR/F variations and µQ variations by a factor of two up

and down, do overlap. While for the two b-jet final states this includes the 4F result,

for the one b-jet case the 4F result is not compatible with the 5F predictions, taking

into account the considered scale uncertainties. It is worth noting that a milder

form of this relative scaling of the cross sections was already observed in the Z case.

In the case of the total inclusive cross section, this very large difference can

be mitigated by including higher-order corrections, on the one hand, and a better

assessment of which choice of the unphysical scales yields the better agreement [3,

34, 38, 49]. However, only a recent effort to match the two schemes [1, 2, 39, 50] has

clearly assessed the relative importance of mass corrections (appearing in the 4F

scheme) and large log resummation (as achieved in a 5F scheme). In particular it

has been found that the difference between these two schemes is mostly given by
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Figure 4.11: Predictions for the transverse-momentum distribution of the Higgs

boson (left panel) and the leading b-jet (right panel) in inclusive H+b-jet production

at the 13 TeV LHC.

the resummation of large logarithms, thus suggesting that for an inclusive enough

calculation either a 5F scheme or a matched scheme should be employed. This is
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Figure 4.12: The transverse-momentum distribution of the Higgs boson in inclusive

H + 2b-jets production at the 13 TeV LHC.

the same situation that one faces, albeit milder, in the Z case, where, in terms of

normalisation the 5F scheme performed better in all cases and especially in inclusive

calculations. We therefore recommend that in terms of overall normalisation, the

5F MEPS@NLO scheme should be used to obtain reliable predictions.

Let us now turn to the discussion of the relative differences in the shapes of

characteristic and important distributions. To better appreciate shape differences,

all differential distribution are normalised to the respective cross section, i.e. the

inclusive rates σ(Hb) and σ(Hbb). In all cases we obtain agreement at the 15%-

level or better between the 5F MEPS@NLO and 4F MC@NLO samples, the only

exception, not surprisingly, being the region of phase space where the two b’s come

close to each other and resummation effects start playing a role. Typically, the

5F MEPS@LO predictions are also in fair agreement with the other two results,

however, they exhibit a tendency for harder tails in the pT distributions, mainly in

the inclusive Higgs-boson pT and in the transverse momentum of the second b jet.

Starting with Fig. 4.11, the transverse-momentum distributions of the Higgs
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Figure 4.13: Predictions for the ∆R separation of the two leading b-jets (left panel)

and their invariant-mass distribution (right panel) in inclusiveH+2b-jets production

at the 13 TeV LHC.

boson and the leading b-jet in the case of at least one b-jet tagged is displayed.

Similarly to the Z example, this is the region where one would expect the 5F scheme
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to perform better. However, again similarly to the Z case, the three schemes largely

agree in terms of shapes, being well within scale uncertainties. Notably, this turns

out to be particularly true for the low (∼ 20–100 GeV) pT region where one could

have expected deviations to be the largest.

In Figs. 4.12 and 4.13 we present differential distributions for the selection of

events with at least two tagged b-jets. While Fig. 4.12 shows the resulting Higgs-

boson transverse-momentum distribution, Fig. 4.13 compiles results for the ∆R

separation of the two leading b-jets and their invariant-mass distribution. For such

two b-jets observables the 4F scheme is expected to work best, especially when

the two b are well separated to suppress potentially large logarithms. However,

in agreement with the Z-boson case, no significant differences between the various

scheme arise when taking into account µR/F and µQ scale-variation uncertainties.

Once again the region of low pT in Fig. 4.12 and the region of lowm(b, b) in Fig. (4.13)

show excellent agreement amongst the various descriptions. As anticipated, larger

differences can be seen between the two 5FS and the 4F MC@NLO calculations, in

the very low ∆R(b, b) and m(b, b) regions, Fig. (4.13), where the two b-jets become

collinear. This feature is however most likely due to the fact that we are dealing

with partonic b-jets as opposed to hadronic ones. Taking as a reference the Z-boson

case once again, in fact, where this difference is not present at all, suggests that a

realistic simulation, that accounts for hadronisation effects, should largely suppress

this difference.



Chapter 5

Towards a massive 5F scheme

5.1 Massive Subtraction

In previous chapters we saw how different choices in the treatment of mass effects

in processes involving heavy flavours can affect theoretical predictions. While for

totally inclusive predictions we can obtain matched result, for differential results

we need to resort to some other methods to discriminate. In the example of a Z

boson produced in association with heavy quarks, we showed how we can make use

of data for this purpose. However in general this is not always possible, and to

extend matching method in the context of Monte Carlo event generators is not a

straightforward task.

We can start from the observation made in the two examples we studied, Z/H

associated production, where we showed that the five flavour scheme generally per-

forms better. There are, however, regions in which this might not hold true and we

still need to include mass effects to properly account for those. The most natural

thing to do, is to extend the 5FS to allow for massive quarks in both the initial and

final state. The idea then is that this 5F Massive Scheme (5FMS), will have massive

b-quarks that contribute both to the running of the coupling constant and to the

evolution of PDFs.

To extend the 5F scheme to account for massive bs in the final state is concep-

tually easy, although practically difficult, as we would end up having two different

type of b quarks, which might lead to inconsistencies. Therefore we need to extend

59
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the methods and techniques developed for the massless five flavour scheme to allow

for massive initial state particles. Further we wish to retain the current fixed order

accuracy of the 5F scheme in Monte Carlo, namely the next to leading order.

In order to extend Catani-Seymour formalism to massive initial state particle,

it is necessary to work out the correspondent form of Vak,b(pa, pb, pk) in the case

particles a, b are both massive. This has been performed in [18] in the context of

fermions in QED in four dimensions, so we can make use of results reported there

and promote them to QCD and d = 4 − 2ε dimensions, by performing a simple

replacement:

e2Qa σaQb σb → 4π αS µ
2εTa ·Tb . (5.1)

We further have to define the phase space mapping that defines p̃i in Eq. (2.20), and

which is further needed to compute the one particle phase space, Φ1.

5.1.1 Initial state splitter with initial state spectator

We start by reporting some useful definitions that are used throughout,

s = (pa + pb)
2; sab = s − m2

a − m2
b ; (5.2)

Q2 = (pa + pb − pk)
2 = s − 2 (pa + pb) · pk ; (5.3)

xab = 1− 2
(pa + pb) · pk

sab
; (5.4)

ya = 2
pa · pk
sab

; (5.5)

λab = λ(s,m2
a,m

2
b) ; λ(a, b, c) = a2 + b2 + c2 − 2 (ab+ bc)− 2 ac . (5.6)

We define the contribution to the subtraction term, Vak,b(pa, pb, pk):

Vqagk,b(pa, pb, pk) = 8π µ2εαsCF

[
2

1− xab
− (1 + xab)− ε(1 − xab)−

xabm
2
a

pa · pk

]
(5.7)

in the case where the splitting is b → gb. In any other case we do not have any

singular contribution, so we do not need any subtraction term1. The necessary

1Although strictly speaking this is true, these additional contributions will still be proportional

to logm2
b/Q

2, where Q is some scale. For the example we discuss in this chapter, we checked that

this contribution are stable under variations of the parameter mb.
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phase space mappings have to preserve the mass shell, and it is customary to keep

the momentum pb fixed. As a result all other momenta pj are shifted as well as the

total momentum Q =
∑

j pj. The transformations are given by,

p̃µa =

√
λ (Q2,m2

a,m
2
b)

λab

(
pµa −

sab
2m2

b

pµb

)
+
Q2 −m2

a −m2
b

2m2
b

pµb ; Q̃µ = p̃µa + pµb . (5.8)

It is straightforward to check that these relations fulfill the mass-shell conditions,

such that p̃2
a = m2

a and Q̃2 = Q2, and that they possess the right infra-red and

collinear asymptotic limits. All other momenta, including those of non coloured

particles, transform as p̃µi = Λµ
ν p

ν
i where

Λµ
ν = gµν −

(Q+ Q̃)µ(Q+ Q̃)ν

Q2 +Q · Q̃
+

2 Q̃µQν

Q2
(5.9)

We further need to calculate the extra-emission phase space. In particular, we

have∫
dΦN+1(pk, Q; pa + pb) =

∫ 1

0

dx

∫
dΦN(Q̃(x); p̃a(x) + pb)

∫ [
dd−1pk(s, x, ya)

]
,

(5.10)

where x dependent momenta can be obtained from p̃a and Q̃ upon replacing Q2 →
sab x+m2

a +m2
b .

The explicit calculation of
∫ [

dd−1pk(s, x, ya)
]
can be found in Appendix C. the

final result yields∫ [
dd−1pk(s, x, ya)

]
=

1

16 π2

(4π)ε

Γ(1− ε)

(
sab√
λab

)1−2ε

(1− x)1−2ε sab s
−ε∫ v1

v2

dv[(v1 − v) (v − v2)]−ε , (5.11)

where we performed a change of variable ya = v (1− x), and

v1,2 =
sab + 2m2

a ∓ λab
2 s

. (5.12)

We can thus define the integral of the splitting function Vak,b, which defines the

x-distribution Ṽa,b. We start by expressing Eq. (5.7) in terms of the new variable v

and the splitting variable x,

αsCF
2π
Ṽa,b(x; ε) =

∫ [
dd−1pk(s, x, ya)

] 1

2pa · pk
Vak,b . (5.13)
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where, collecting an overall factor of (1 − x)−2 from Vak,b, and putting everything

together with Eq. (C.10), we get

Ṽa,b(x; ε) =
1

Γ(1− ε)

(
4πµ2

s

)ε(
sab√
λab

)1−2ε

(1− x)−1−2ε

∫ v1

v2

dv

v
[(v1 − v) (v − v2)]−ε

[
1 + x2 − ε (1− x)2 − 2xm2

a

sab v

]
. (5.14)

The distribution (1− x)−1−2ε is divergent in the double limit x, ε → 0. To make it

regular at this end-point, we introduce the plus prescription, such that:

(1− x)−1−2ε = −δ(1− x)

2ε
+

1

(1− x)+

+O(ε) . (5.15)

As a consequence, we can re-express Ṽa,b(x; ε) as

Ṽa,b(x; ε) = δ(1− x)Va,b(ε) +
[
Ka,b(x)

]
+
. (5.16)

The function Ka,b(x) corresponds to the v integral, finite part, of the ε expansion

of Eq. (5.14), and is given by

Ka,b(x) = − sab√
λab

(
1 + x2

1− x

)
log β0 − 2x ; (5.17)

while the end-point contribution

Va,b(ε) =
1 + sab√

λab
log β0

ε
+ log

(
µ2 s

s2
ab

)
+

3

2

+
sab√
λab

{[
log

(
µ2 λab
m2
as

2
ab

)
+

(
1

2
− 2m2

a

sab

)]
log β0 + 2 Li2(β0) +

1

2
log2 β0 −

π2

3

}
,

(5.18)

where

β0 ≡
v1

v2

=
sab + 2m2

a − λab
sab + 2m2

a + λab
. (5.19)

The contribution to the partonic differential cross section is thus given by∫
dΦ1 S =

αsCF
2π

{
Va,b(ε) dσ̂N(sab)

+

∫ 1

0

dxKa,b(x)

[
φ(x sab)

xφ(sab)
dΦN BN(x sab)− dΦN BN(sab)

]}
, (5.20)

where we make explicit the dependence on the is the initial state flux, φ.



5.1. Massive Subtraction 63

5.1.2 The case of initial state hadrons

So far we have only dealt with partonic observables, we now investigate the case of

initial state hadrons. Firstly, in the hadronic centre of mass, the hadron’s momenta

are parametrised as

P1,2 =

√
S

2
(1, 0, 0,± 1) , (5.21)

where
√
S is the hadronic centre of mass energy. While the parton’s momenta in

this frame are given by

pa,b = η1,2 P1,2 +
m2
a,b

η1,2 S
P2,1 ; (5.22)

where

η1,2 ∈
[

1

2

(
1 −

√
1− 4m2

am
2
b

S2

)
,

1

2

(
1 +

√
1− 4m2

am
2
b

S2

)]
(5.23)

The partonic centre of mass energy can be written as

s = (pa + pb)
2 = sab +m2

a +m2
b ; sab = 2 η1 η2 S +

m2
am

2
b

η1 η2 S
, (5.24)

and the initial state flux

φ(sab) = 4
√
λ(s,m2

a,m
2
b) . (5.25)

We can thus write the hadronic correspondent of Eq. (5.20),

I =
αsCF

2 π

∫∫
dη1 dη2 fa(η1) fb(η2)

{
Va,b(ε) dσ̂N(sab)

+

∫ 1

0

dxKa,b(x)

[
φ(x sab)

xφ(sab)
dΦN BN(x sab)− dΦN BN(sab)

]}
. (5.26)

The problem with this formula, as it is, is that it requires to evaluate the partonic

cross section with many different momenta configuration, for each value of x, as well

as at x = 1. This is not only inconvenient but inefficient, too, and can be solved by

means of a change of variable.

Consider the integral∫∫
dη1 dη2 fa(η1) fb(η2)

∫ 1

0

dxKa,b(x)
φ(x sab)

xφ(sab)
dΦN BN(x sab) , (5.27)
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we start by defining a change of variable such that:

x sab(η1, η2) = sab(η
′
1(x), η′2), (5.28)

η′2 = η2 . (5.29)

This transformation defines a Jacobian, J (η′1(x), η2), such that

dη1dη2dx = dη′1dη2dxJ (η′1(x), η2) . (5.30)

More details on this transformation are resported in Appendix C. After reversing

the integration order, and performing the change of variable, Eq. (5.27) becomes∫∫
dη′1 dη2 fa(η

′
1) fb(η2)dΦN BN(sab)

∫ 1

η1

dxKa,b(x)

[
J (η1, η2)

φ(sab)

xφ(sab(η1))

fa(η1)

fa(η′1)

]
(5.31)

where η1 = η1(η′1, x), is the old variable expressed in terms of the new ones. Note

also the sab is now expressed in terms of the new variables, where not explicitly

stated. We can now re-name η1 ↔ η′1 in Eq. (5.31) and combine it with Eq. (5.26),

I =
αsCF

2 π

∫∫
dη1 dη2 fa(η1) fb(η2) dΦN BN(sab)

{
Va,b(ε)

+

∫ 1

η1

dxKa,b(x)

[
J (η′1, η2)

φ(sab)

xφ(sab(η′1))

fa(η
′
1)

fa(η1)
− 1

]
−
∫ η1

0

dxKa,b(x)

}
, (5.32)

which is our final formula2. The main advantage of having performed this transfor-

mation is that now the whole curly bracket in Eq. (5.32) acts as a local K-factor on

top of the partonic cross section, which is now evaluated only once per phase-space

point.

5.2 Massive dipole formulae for other configurations

The steps presented in the previous sections can be straightforwardly applied to the

case of initial-final configuration. Any other case is already covered by the original

extension to massive particles of the Catani-Seymour method [16]. The idea is to

2In the term
∫ η1
0

dxKa,b(x) we use a shorthand notation. The upper integration bound, in

fact, is not exactly η1, although that is its massless limits. The correct value is that obtained by

inverting Eq. (C.25) with respect to η′1 and evaluating it for η1 = 0.
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take the relevant formulae from [18] and to transform them in the same way as it is

shown for initial-initial case. As all the relevant equations are presented there, and

we do not use these cases in the examples presented in this work, we do not repeat

them here.

We conclude this part presenting the modifications to [18] that are needed in

order to perform the extension. As we already mentioned, the first, overall, replace-

ment is given by

e2Qa σaQb σb → 4π αS µ
2εTa ·Tb . (5.33)

The only other necessary modification to obtain the corresponding version of Eq. (5.18),

is replacing, in Eq.(4.34) of [18], the mass of the photon, mγ, with

logm2
γ =

1

ε
+ log µ2

R +O(ε) . (5.34)

With these modifications and the method described in the previous section, we

obtain the relevant IF contributions in the case of massive initial state quarks.

5.3 Validation: bottom quark fusion with massive

quarks

To see how the 5F massive scheme (or 5FSM) works we now present an explicit

example: the production of a Higgs boson through bottom quark fusion. There are

two important features about this example. Firstly, as we discuss in Chapter 3, we

know how to include exact mass effects up to order α3
s through matching. From

that calculation we get that mass corrections to the total inclusive cross section are

quite small. Consequently we expect the 5FSM too to yield a marginally different

total cross section. Secondly, this example has a easy enough structure that most

formulae can be reported in closed analytic form.

We start by showing how the massive subtraction removes all divergences at the

integrand level, and we compare results obtained in the vanilla 5FS against the fully

massive 5FSM. The leading order colour summed, helicity averaged and squared

matrix element for Higgs production in bottom fusion is given by

|Mbb̄→H |2 =
g2
hbb̄

6

(
m2
H − 4m2

b

)
, (5.35)
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where ghbb̄ is the bottom Yukawa coupling, such that

ghbb̄ =
mb

v
, (5.36)

and v is the electroweak vacuum expectation value.

The matrix element corresponding to the emission of an extra gluon from the

initial state b has the form

R = |Mbb̄→Hg|2 =
αsCF 8 π g2

hbb̄

6{(
m2
H − 4m2

b

) [ 2(s− 2m2
b)

(m2
b − t)(m2

b − u)
− 2m2

b

(m2
b − t)2

− 2m2
b

(m2
b − u)2

]
+ (s−m2

h)

[
1

m2
b − t

+
1

m2
b − u

]}
. (5.37)

We firstly show that indeed |Mbb̄→Hg|2 − Dak,b − Dak,b gives a finite number.

Putting everything together and expressing R in Eq. (5.37) in terms of splitting

kinematics variables x, y and Q2 we get

R−Dak,b −Dak,b =
8 π

3
αsCF g

2
hbb̄

m2
b

sab

1− x
x y (1− x− y)

, (5.38)

where we make use of

s =
m2
h − 2m2

b(1− x)

x
,

t = − m
2
h(1 − x − y) − 2m2

b(2 − x − 2 y)

x
,

u = − y m
2
h − 2m2

b(x + 2 y)

x
. (5.39)

The soft limit is approached for x→ 1, and it is straight forward to check that,

in this limit, Eq. (5.38) is not only finite, but exactly zero.

Although the collinear limit, strictly speaking, does not exist if the mass of the

parton remains non zero, we can check that the quasi-collinear is finite. To phrase

this slightly differently we need to check that when pa · pk (or y) approaches zero as

mb, Eq. (5.38) remains finite. Again this is quite straightforward to see, and in this

limit we get exactly zero.

We now turn to the one loop contribution. At order αs, we have that

V = 2 Re(δg) |Mbb̄→H |2 (5.40)
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B + V =

∣∣∣∣ +

∣∣∣∣2 =

∣∣∣∣ ∣∣∣∣2 × (1 + 2 Re(δg)

)

Figure 5.1: Contributions to the born phase space of bb̄→ H.
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R =

∣∣∣∣ −
∣∣∣∣2

+

∣∣∣∣ ∣∣∣∣2

Figure 5.2: Contributions to the real emission phase space of bb̄ → Hg Eq. (5.37)

and bg → Hb.
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where

Re(δg) = −αsCF
2 π

{
1 + sab√

λab
log β0

ε
+ 1 + log

µ2

m2
b

+
1− β2

β2
log β0

− sab√
λab

[
− log

µ2

m2
b

log β0 − 2 Li2 (1− β0)− 1

2
log2 β0 + π2

]}
, (5.41)

with

β =

√
1 − 4m2

b

m2
H

; β0 =
1− β
1 + β

. (5.42)

Using Eq. (5.20) it is straightforward to see that indeed

V +

∫
dΦ1 S = O(ε0) , (5.43)

which in turn, combined with Eq. (5.38), yields that Eq. (2.14) is completely free of

singularities.

5.3.1 Factorisation of collinear singularities

We now turn to how the inclusion of mass effects affects the collinear limit, and,

therefore, the definition of PDFs. Our goal here is not a precise and consistent

discussion about the factorisation of collinear singularities in the presence of massive

initial state quarks, as this is beyond the scope of this work. Nevertheless it is

interesting to highlight the structure of mass correction, especially in the presence

of parton densities that have been obtained in a matched scheme.

In the standard case of massless initial state partons, Eq. (5.38) would be exactly

zero. This is due to the fact the only term appearing in the real emission matrix

element is also the leading log that gets factorised into the b-pdf and resummed

through Altarelli-Parisi equations, Eq. (2.3). The reason is that, in the massless

case, this process has only two scales mH and some dimensional regulator that

introduces a scale µF that separates the divergent and finite part. This means that

we can symbolically write∫
dΦ2R(mb = 0) ∝ A log

m2
H

µ2
F

. (5.44)

In the case of massive initial state particle we have an additional physical scale,

mb. This scale now regulates collinear divergences, we no longer need to introduce a
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collinear regulator related to the scale µF . However we can in practice still introduce

the scale µF , such that∫
dΦ2R(mb 6= 0) ∝ A

(
m2
b

m2
H

,
m2
b

µ2
F

)
log

mH

µ2
F

+B

(
m2
b

m2
H

,
m2
b

µ2
F

)
log

mH

m2
b

+O
(
m2
b

m2
H

,
m2
b

µ2
F

)
,

(5.45)

where we define A and B, such that

lim
mb→0

A

(
m2
b

m2
H

,
m2
b

µ2
F

)
= A , (5.46)

lim
mb→0

B

(
m2
b

m2
H

,
m2
b

µ2
F

)
= 0 , (5.47)

and by O
(
m2
b

m2
H
,
m2
b

µ2F

)
, we mean terms that are only given by powers of the two ratios.

In this way we separate terms that appears also in the massless case, and get modified

by power suppressed terms in the massive case, and new terms that arise only when

the massive case is considered.

As in the massless case the function A is proportional to the Altarelli-Parisi

splitting function Pqq, by extension we can define the massive A function to be

proportional to the massive Pqq, which in turn is proportional to Vqg,q of Eq. (5.7).

This means that this term corresponds to the term that would be absorbed into the

parton densities in the massive case at leading twist. However, PDFs are generally

given in schemes that account for some mass effects at fixed-order by means of some

matching method, like FONLL [29], ACOT [82], or TR [83,84]. Mass effects included

in these schemes coincide up to higher order effects and it is easy to see that the

order considered in this work they have the same functional form of the function A.

The B function appearing in Eq. (5.45) is just made up of terms that are pro-

portional to m2
b . These terms are clearly non divergent, and in principle it is not

necessary to absorb them into an initial state radiation term. However, some of

these terms might be universal and could definitely be accounted for by higher twist

contributions to the QCD factorisation formulae as well as with the introduction

of an intrinsic (or static) bottom-quark component in the proton. Although these

terms might in principle spoil factorisation, we can make sure that they are indeed

suppressed, as we expect from Eq. (2.1).
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Subtracting the A part of Eq. (5.45), corresponds to Eq. (5.38)∫
dΦ2

[
R(mb 6= 0)− S

]
∝ B

(
m2
b

m2
H

,
m2
b

µ2
F

)
log

m2
H

m2
b

+O
(
m2
b

m2
H

,
m2
b

µ2
F

)
, (5.48)

which we know from the previous section being exactly zero in the soft and collinear

limit. Further, when it is not zero, it is proportional to m2
b/sab ∼ 1 × 10−3 which

makes it very suppressed 3. We conclude that we can safely make use of standard

PDF sets that have been matched to include mass effects to obtain reliable predic-

tions at the NLO in the five flavour massive scheme.

5.4 Simulations for bb̄ → H with massive quarks,

fixed-order

We now show results obtained for bb̄ → H in the five-flavour massive scheme at

next-to-leading fixed-order accuracy. Predictions with massive initial state quarks

are obtained by implementing the massive subtraction as presented in Section 5.1

within the SHERPA event generator [85].

Leading order matrix elements, including those of real radiation processes, are

calculated using the AMEGIC++ [60] matrix element generator. The differential sub-

traction follows closely that presented in [70] with the ingredients reported in Sec-

tion 5.1. Integrated subtraction terms are implemented in SHERPA using Eq. (5.26),

and this implementation will be made public in a future SHERPA release. Virtual

corrections are obtained from the OPENLOOPS generator [67].

While no cuts at the generation level are applied, in the following results we

define b-jet any jet with pT ≥ 25 GeV that has at least one b-flavoured parton in

it. We further require any particle in the final state to have |η| ≤ 2.5. We generate

only fixed-order events at this stage, i.e. no parton shower effects are accounted.

In order to study the impact of the inclusion of mass effects, we compare the

five flavour massive scheme (5FMS) with the vanilla five flavour scheme, where b are

massless,

3Numerically we see that at the level of total cross section, Eq. (5.38) corresponds to roughly

0.001% of the Born cross section, which is comparable with the error from Monte Carlo integration.
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Figure 5.3: The pT and η spectrum of the Higgs boson at NLO. We compare the

vanilla 5FS, and the 5FMS matched with three different PDF sets. More details in

the text.
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Figure 5.4: The pT and η spectrum of the b-jet. We compare the vanilla 5FS, and

the 5FMS matched with three different PDF sets. More details in the text.
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We further consider matching the 5FMS partonic cross section to three different

PDF sets. The first choice is, as we discuss in the previous section, to use a standard

GM-VFNS evolved PDF set. As these sets include mass effects at a fixed order

accuracy, higher than the one considered in this example, we claim that they provide

a consistent result, up to a negligible effect. In particular, we choose the default

PDF set in SHERPA, namely the NNPDF30 set evolved at NNLO with αs(mZ) =

0.118 [41]. Mass corrections in this PDF set are obtained through FONLL-C [29]

matching and are included up to O(α2
s). To show the importance of such mass

effects in PDFs, we compare against the same PDF set re-evolved at NNLO, but in

a ZM-VFNS. This means that no mass effects are accounted other than threshold

effects, and massless splitting kernels are used to determine the evolution operator.

The last set we compare against, is a PDF set where the evolution of the b PDF

is obtained solving Eq. (2.3) at leading order, and replacing the standard Altarelli-

Parisi splitting function, Pqq, with the splitting kernel of Eq. (5.7),

f
Massive Pqq
b (x,Q2) =

αs
2π

log
Q2

m2
b

∫ 1

x

dz

z

[
1 + z

1− z −
2 z m2

b

Q2 (1− z)

]
+

fb

(x
z
,Q2

)
+ P (0)

qg (z) fg

(x
z
,Q2

)
+ O(α2

s) . (5.49)

These PDF sets are obtained using the APFEL [86] evolution library.

We report results in Figs. 5.3, 5.4 for the pT and η spectra of the Higgs boson

and the b-jet respectively.

By definition, and by the conclusions laid out in the previous chapters, we expect

mass effects to play a marginal, order ∼ 1 − 5%, effects at the level of total cross

sections. Further, as they are power suppressed, we expect them to be less important

at large pT , while having the largest impact in the lower bins of the distribution.

This is due to the fact that the difference in the mass treatment between the two

scheme is only in the hard matrix elements. Consequently, as pictured in Fig. 5.3,

for example, we see that the 5FMS obtained with the standard PDF set, blue solid

line, somehow starts a few percent off of the massless 5FS, black dashed line, while

they consistently overlap for pT (H, b) & 50 GeV.

We now turn to the comparison with the PDF set evolved in the zero mass

variable flavour number scheme (ZM-VFNS). The difference between the 5FMS in
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this set up, green solid line, and the massless 5FS, is that in the former mass effects

are included in the hard matrix elements, while some are included in the PDF in

the latter. Therefore, on top of the power suppressed terms there are other terms

coming from the matching. These terms include constant terms, i.e. independent of

mb, as it can be seen in Figs. 5.3, 5.4, where the difference between the ZM-VFNS

and the standard 5FMS result in a constant shift of a few percent.

Our final reference is a five flavour massive scheme obtained with a PDF set

evolved with a massive splitting function at the leading order, red solid line. We

firstly notice that a direct comparison with a standard parton density set is somehow

bugged by the fact the mass effects are included at different orders in the two

PDF sets. In addition the evolution operator is used at two different orders. As

a consequence the size of mass effects is not necessarily truthful. However it is

interesting to see that this scheme behaves with respect to the ZM-VFNS 5FMS, in

roughly the same way as the 5FMS with standard PDFs behaves with respect to the

vanilla 5FS. The only difference is that we see an overall constant factor of about

10-15%, which is due to the different evolution and mass effects accuracy.

We now briefly discuss the pseudo rapidity spectrum. In this case all schemes

differ by one another by a somehow constant amount. This follows from the fact

that pseudo rapidity is a dimensionless variable, and as such does not introduce any

scale to make mass effects less or more important in any region. We thus naturally

expect mass effects to be roughly of the same order as that seen in the case of the

total cross section. This fact can be seen explicitly in Figs. 5.3, 5.4.

We conclude that fixed order mass effects for this process are generally quite

small, both at the inclusive and differential level. We find that when they are

important they generally do not exceed a few percent. On the other hand, this

might not hold true for all processes involving heavy quarks. As such, the five

flavour massive scheme provides a useful and consistent scheme to produce fully

differential results including mass effects.
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5.5 Massive initial state shower

In this last section we provide the necessary ingredients to promote the five flavour

massive scheme we presented in previous sections to MC@NLO accuracy.

The MC@NLO matching combines the fixed order accuracy given by matrix ele-

ments, in this case the next to leading order, with the resummation performed by

the parton shower. The main formula for a MC@NLO matched observable is given

by

dσMC@NLO = dΦN B(ΦN)

[
∆N(t0, µ

2
Q) +

∫
t∈[t0,µ2Q]

dΦ1 KN(Φ1) ∆N(t(Φ1), µ2
Q)

]
+ dΦN+1H(ΦN+1) . (5.50)

The only modifications needed in the case of the 5FMS, compared to what is

described in section 2.4, are in which splitting kernels are taken in the Sudakov form

factor, the extra emission phase space, and the relevant phase space mappings. All of

these ingredients can be read off from section ??, with the additional semplification

that in this case we only need the d → 4 limit of the expressions presented there.

We start by taking the phase-space formula for one extra emission,∫ [
d3pk(s, x, ya)

]
=

1

16π2

(
s2
ab√
λab

) ∫ y1(x)

y2(x)

dy , (5.51)

where

y1,2(x) = (1− x)
sab + 2m2

a ∓ λab
2 s

. (5.52)

This would in principle be enough, however the actual variable the shower al-

gorithm generates is the k⊥ of the emission. We thus need to perform a change of

variable,

k2
⊥ =

2 y (1− x− y) pa · pb − (1− x− y)2m2
a − y2m2

b

1 − m2
am

2
b

(pa·pb)2

(5.53)

which yields the jacobian

dk2
⊥

k2
⊥

=
1− x− 2 y + (1− x− y) m2

a

pa·pb
− y m2

b

pa·pb

1− x− y − (1−x−y)2

2 y
m2
a

pa·pb
− y

2

m2
b

pa·pb

dy

y
. (5.54)

The Sudakov form factor is then given by

∆II(k
2
⊥,max,k

2
⊥,0) = exp

{
−
∑
ak

∑
b6=ak

1

Nspec

∫ k⊥,max

k2
⊥,0

dk2
⊥

k2
⊥

∫ x+

x−

dxJ (x, y; k2
⊥)Vak,b(pa, pb, pk)

}
(5.55)
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where

J (x, y; k2
⊥) =

1− x− y − (1−x−y)2

2 y
m2
a

pa·pb
− y

2

m2
b

pa·pb

1− x− 2 y + (1− x− y) m2
a

pa·pb
− y m2

b

pa·pb

sab√
λab

1

x

fa(η/x)

fa(η)
, (5.56)

and

Vak,b(pa, pb, pk) =
αsCF

2π

[
2

1− xab
− (1 + xab)−

xabm
2
a

pa · pk

]
. (5.57)

The last things needed to perform the extension are the phase-space mappings

and their inverted form. This is because we need to keep track of both the trans-

formed phase-space, as well as the original one. The forward transformations can

be read off from Eq. C.25 and read

p̃µa =

√
λ (Q2,m2

a,m
2
b)

λab

(
pµa −

sab
2m2

b

pµb

)
+
Q2 −m2

a −m2
b

2m2
b

pµb ; Q̃µ = p̃µa+pµb . (5.58)

The inverted transformations are easilly obtained then,

pµa =
1

x

√(2 p̃a · p̃b)2 − 4m2
am

2
b x

2

λ ((p̃a + p̃b)2,m2
a,m

2
b)

(
p̃µa −

p̃a · p̃b
m2
b

p̃µb

)
+
p̃a · p̃b
m2
b

p̃µb

 , (5.59)

pµb = p̃µb , (5.60)

pµk =
1− x− y − y m2

b

1 − m2
am

2
b

(pa·pb)2

pµa +
y − (1− x− y) m2

a x
p̃a·p̃b

1 − m2
am

2
b

(pa·pb)2

p̃µb + kµ⊥ . (5.61)

With all the necessary formulae, we can now test this scheme on a simple exam-

ple. We chose here to replicate the set-up of section 4.2 and check with data taken

from ATLAS. Matrix elements are generated in SHERPA with the built-in generators

AMEGIC++ [60] and COMIX [61]. While virtual matrix elements contributing to QCD

NLO corrections are taken from OPENLOOPS [65].

In this case we chose only to compare against the 1 b-jet selection, this is because

we can test both the matrix element corrections presented in the previous section

as well as the shower. For more particles the accuracy would only be that of the

shower, i.e. leading-log.

In Figs. 5.5,5.6 we show a multijet merged prediction based on pp → Z+ up

tp 3 jets. where the zero jet component of this sample is evaluated with MC@NLO

accuracy, while the rest of the samples are leading order. We thus have the same

fixed-order accuracy on the 5F MEPS@LO of section 4.2. Indeed this set-up, as
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Figure 5.5: Inclusive transverse-momentum and rapidity distribution of all b-jets in

events with at least one b-jet. Data taken from Ref. [57].
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Figure 5.6: Angular and ∆R separation between the reconstructed Z boson and

b-jets in events with at least one b-jet. Data taken from Ref. [57].
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well as the ones presented in section 4.2 show good agreement with data points for

all curves, which is reassuring of the implementation. A more detailed study of

processes for which this scheme is of interest is currently on going.



Chapter 6

Conclusions and outlook

In this work we present theoretically consistent methods to estimate, and include,

quark mass effects in theoretical predictions in a systematic way. We show, in par-

ticular, what is the interplay, using the FONLL matching technique together with

comparison with LHC data, between the resummation of collinear logarithms and

power suppressed mass corrections, for the production of a heavy boson in associa-

tion with bottom quarks.

As the dominant contribution stems from the resummation of collinear loga-

rithms, that are consistently included in a completely massless picture, or five-flavour

scheme, we provide a method to extend such scheme to accommodate for the inclu-

sion of mass effects. This is done in the context of the SHERPA Monte Carlo event

generator, at MC@NLO accuracy.

In Chapter 2, we show how to consistently match a completely massless picture

for handling bottom quarks, or five-flavour scheme, with a completely massive one,

or four-flavour scheme. This matched prediction, then includes the resummation

of collinear logarithms, to the accuracy of the five-flavour scheme, and mass effects

at the fixed order accuracy of the four-flavour scheme. We perform this matching

in the context of the production of a Higgs boson in association with heavy quarks

at the LHC at the NNLL+NLO accuracy. We find that mass corrections account

for a ∼ 5% effects on top of the five-flavour scheme. These contributions, however,

are non negligible, as we find they are roughly of the same size of scale variations,

and therefore are a non negligible source of uncertainty. An implementation for the
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production of a Higgs boson in bottom quark fusion in the FONLL scheme, has been

made publicly available and can be found in [87] .

In Chapter 3, we compare Monte Carlo predictions for the five-flavour and the

four-flavour scheme with LHC data, gathered at the centre of mass energy of 7 TeV,

for the production of a Z boson in association with at least one or at least to

bottom quark jets. We find that the MEPS@LO five-flavour scheme prediction and

the MC@NLO four-flavour one, disagree with data by a largely flat factor of about

10-20%. In particular the former agrees better for the one b jet inclusive sample with

the latter undershooting, while their role is essentially reversed for the two b jets

inclusive sample. On top of these two predictions a MEPS@NLO five-flavour scheme

calculation is also provided. This sample agrees well with data for all observables

provided. We find, in addition, that the three sample agree among themselves up to

a, roughly constant, normalisation factor. We then test this argument in the case of

Higgs boson production, where we confirm our finding in the case of the Z boson.

In Chapter 4, we start from a standard five-flavour scheme to construct five-

flavour massive scheme that can be used in Monte Carlo predictions, at the next-

to-leading order accuracy. Firstly we extend the currently used subtraction method

in SHERPA, the Catani-Seymour dipole method, to include massive quarks in the

initial state. We focus in particular on the initial-initial configuration as it is the

most relevant for the examples considered in this work. We describe how to obtain

the initial-final configuration from results present in the literature. In this chap-

ter we show how to construct efficient subtraction terms in the presence of massive

initial state quarks, in hadron-hadron collisions. These contribution have been im-

plemented in SHERPA and will be made public in a future release. We then show

how the inclusion of mass effects impact the fixed-order prediction for the produc-

tion of a Higgs boson in bottom quark fusion, in this scheme. In addition we show

how including, or not, mass effects in the parton densities evolution can affect the

consistency of this massive scheme. We find, as expected, that mass effects play a

few percent role in the low pT region of the Higgs boson spectrum while reconciling

with the standard five-flavour scheme for high pT .

It is important to underline how the studies performed in the context of this work
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help having reliable predictions for processes involving heavy quarks at the LHC,

and, as such, heavily reducing their theoretical uncertainties. When feeding theory

predictions in experimental analysis, in fact, the difference between the four- and the

five-flavour scheme is usually taken as input of additional theory uncertainties. In

addition, as these two schemes largely disagree for most processes, this extra source

of uncertainty is generally quite large and definitely non negligible. This work, on

the other hand, aims at showing consistent methods of including both aspects of

these schemes consistently, at all energies. This eliminates the need of having the

additional theory uncertainty coming from the difference between the two schemes.

There are a couple of interesting points that are worth expanding in a continua-

tion of this work. Firstly, once the validation of the MC@NLO method is completed

we plan to produce a comparison between a five-flavour massive scheme next-to-

leading order, merged sample with the FONLL matched cross section in the cases

where this is possible. Secondly, it is interesting to investigate to what extent higher

twist corrections are suppressed as expected. In particular we are in the process of

testing our newly developed scheme for more complicated processes where we can

test our hypothesis. Lastly we are in the process of extending the FONLL method

for other phenomenologically relevant processes, like the production of a Z boson

in bottom quark fusion, single top production and the next-to-next-to-leading log

resummed pT spectrum in Drell-Yan.



Appendix A

Mathematical Tools

A.1 Colour Algebra of SU (3)

Here we report some useful relations for the colour algebra of SU (3).

For the case with two partons, using colour conservation, we have:

T1 ·T2 |1, 2 >= −T1 ·T1 |1, 2 >= −T2
1 |1, 2 >= −T2

2 |1, 2 > , (A.1)

so that all the charge operators {T2
1,T

2
2, −T1 ·T2} are factorizable in terms of the

(scalar) Casimir operator C1 = C2.

Using colour conservation for the three-parton case we have:

0 =

(
3∑
i=1

Ti

)2

|1, 2, 3 >

=
(
T2

1 + T2
2 + T2

3 + 2T1 ·T2 + 2T1 ·T3 + 2T2 ·T3

)
|1, 2, 3 > , (A.2)

and

(T1 ·T2 + T1 ·T3) |1, 2, 3 >= −T2
1 |1, 2, 3 > . (A.3)

Combining these two equations we get:

2T2 ·T3 |1, 2, 3 >=
(
T2

1 −T2
2 −T2

3

)
|1, 2, 3 > (A.4)

and similarly for T1 · T3 and T1 · T2. Therefore, all the charge operators are

factorizable in terms of linear combinations of the Casimir invariants C1, C2, C3

of the three partons.
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When the total number n of partons is n ≥ 4 the colour algebra does not factorize

any longer. For instance, if n = 4 we have four trivial relations, namely

T2
i |1, 2, 3, 4 >= Ci|1, 2, 3, 4 > , i = 1, ..., 4 . (A.5)

As for the remaining six charge operators Ti · Tj(i 6= j), we can use the following

four identities (due to charge conservation)

Ti ·
4∑
j=1

Tj|1, 2, 3, 4 >= 0 , i = 1, ..., 4 , (A.6)

in order to single out two independent charge operators. For instance we can write:

T3 ·T4|1, 2, 3, 4 > =

[
1

2
(C1 + C2 − C3 − C4) + T1 ·T2

]
|1, 2, 3, 4 > ,

T2 ·T4|1, 2, 3, 4 > =

[
1

2
(C1 + C3 − C2 − C4) + T1 ·T3

]
|1, 2, 3, 4 > ,

T2 ·T3|1, 2, 3, 4 > =

[
1

2
(C4 − C1 − C2 − C3)−T1 ·T2 −T1 ·T3

]
|1, 2, 3, 4 > ,

T1 ·T4|1, 2, 3, 4 > = − (C1 + T1 ·T2 + T1 ·T3) |1, 2, 3, 4 > , (A.7)

and express all the charge operators in terms of Casimir invariants andT1·T2,T1·T3.
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A.2 d–dimensional spherical coordinates

Leaving out the 0–th component, we have d − 1 euclidean dimensions that we can

parametrise by means of one length, ρ, and d− 2 angles. Let us further split them

in d− 3 angles, θi ∈ [0, π] and φ ∈ [0, 2π].

p =



p1 = ρ cos θ1

p2 = ρ sin θ1 cos θ2

p3 = ρ sin θ1 sin θ2 cos θ3

p4 = ρ sin θ1 sin θ2 sin θ3 cos θ4

. . .

. . .

pd−2 = ρ sin θ1 sin θ2 sin θ3 . . . cosφ

pd−1 = ρ sin θ1 sin θ2 sin θ3 . . . sinφ



(A.8)

The d− 1 dimensional phase–space can thus be written as

dd−1p = dρ ρd−2dθ1 sind−3 θ1dθ2 sind−4 θ2 . . . dθd−3 sin θd−3dφ . (A.9)

A.3 Altarelli-Parisi splitting functions

Here we report the unpolarised A-P splitting functions for reference.

Pqq(x) = CF

[
1 + x2

(1 − x)+

+
3

2
δ(1 − x)

]
, (A.10)

Pqg(x) = TR
[
x2 + (1 − x)2] , (A.11)

Pgq(x) = CF

[
1 + (1 − x)2

x

]
, (A.12)

Pgg(x) = CA

[
x

(1 − x)+

+
1 − x

x
+ x (1 − x)

]
+ β0δ(1 − x), (A.13)



Appendix B

Matching coefficients for massive

quarks

We give for completeness the expressions of the coefficients Eq. (3.20). These were

computed in Ref. [88]. There are a few differences compared to what is presented

there. Firstly we separate contributions from b and b̄. Secondly our expansion is

done in powers of αs rather than in powers of αs
4π
. Lastly we have re-expressed the

gluon and singlet PDFs in the 4FS in terms of those computed in the 5FS.

A(2)
Σb (z, L) =

1

32π2
CFTf

{[
−8(1 + z) ln z − 16

3z
− 4 + 4z +

16

3
z2

]
L2

−
[

8(1 + z) ln2 z −
(

8 + 40z +
64

3
z2

)
ln z − 160

9z
+ 16− 48z +

448

9
z2

]
L

+ (1 + z)

[
32S1,2(1− z) + 16 ln zLi2(1− z)− 16ζ(2) ln z − 4

3
ln3 z

]

+

(
32

3z
+ 8− 8z − 32

3
z2

)
Li2(1− z) +

(
−32

3z
− 8 + 8z +

32

3
z2

)
ζ(2)

+

(
2+10z+

16

3
z2

)
ln2 z−

(
56

3
+

88

3
z+

448

9
z2

)
ln z− 448

27z
− 4

3
− 124

3
z+

1600

27
z2

}
,

(B.1)

A(1)
gb (z, L) =

Tf
2π

[
(z2 + (1− z)2)L

]
, (B.2)

and
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A(2)
bg (z, L) =

1

32π2

{{
CFTf [(8−16z+16z2) ln(1−z)−(4−8z+16z2) ln z−(2−8z)]

+ CATf

[
−(8− 16z + 16z2) ln(1− z)− (8 + 32z) ln z − 16

3z
− 4− 32z +

124

3
z2

]

+ T 2
f

[
−16

3
(z2 + (1− z)2)

]
+ Tf

[
2

3
(z2 + (1− z)2)

]}
L2

−
{
CFTf

[
(8− 16z + 16z2)[2 ln z ln(1− z)− ln2(1− z) + 2ζ(2)]

−(4−8z+16z2) ln2 z−32z(1−z) ln(1−z)−(12−16z+32z2) ln z−56+116z−80z2

]

+ CATf

[
(16 + 32z + 32z2)[Li2(−z) + ln z ln(1 + z)] + (8− 16z + 16z2) ln2(1− z)

+ (8 + 16z) ln2 z + 32zζ(2) + 32z(1− z) ln(1− z)−
(

8 + 64z +
352

3
z2

)
ln z

− 160

9z
+ 16− 200z +

1744

9
z2

]}
L

+ CFTf

{
(1− 2z + 2z2)[8ζ(3) +

4

3
ln3(1− z)− 8 ln(1− z)Li2(1− z) + 8ζ(2) ln z

− 4 ln z ln2(1− z) +
2

3
ln3 z − 8 ln zLi2(1− z) + 8Li3(1− z)− 24S1,2(1− z)]

+ z2

[
−16ζ(2) ln z +

4

3
ln3 z + 16 ln zLi2(1− z) + 32S1,2(1− z)

]
− (4 + 96z − 64z2)Li2(1− z)− (4− 48z + 40z2)ζ(2)

− (8 + 48z − 24z2) ln z ln(1− z) + (4 + 8z − 12z2) ln2(1− z)

−(1+12z−20z2) ln2 z−(52z−48z2) ln(1−z)−(16+18z+48z2) ln z+26−82z+80z2

}

+CATf

{
(1−2z+2z2)[−4

3
ln3(1−z)+8 ln(1−z)Li2(1−z)−8Li3(1−z)]+(1+2z+2z2)

× [−8ζ(2) ln(1 + z)− 16 ln(1 + z)Li2(−z)− 8 ln z ln2(1 + z)

+ 4 ln2 z ln(1 + z) + 8 ln zLi2(−z)− 8Li3(−z)− 16S1,2(−z)]

+ (16 + 64z)[2S1,2(1− z) + ln zLi2(1− z)]−
(

4

3
+

8

3
z

)
ln3 z

+ (8− 32z + 16z2)ζ(3)− (16 + 64z)ζ(2) ln z + (16 + 16z2)
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× [Li2(−z) + ln z ln(1 + z)] +

(
32

3z
+ 12 + 64z − 272

3
z2

)
Li2(1− z)

−
(

12 + 48z − 260

3
z2 +

32

3z

)
ζ(2)− 4z2 ln z ln(1− z)

− (2 + 8z − 10z2) ln2(1− z) +

(
2 + 8z +

46

3
z2

)
ln2 z

+ (4 + 16z − 16z2) ln(1− z)−
(

56

3
+

172

3
z +

1600

9
z2

)
ln z

− 448

27z
− 4

3
− 628

3
z +

6352

27
z2

}}
. (B.3)
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Initial state massive subtraction

C.1 Initial massive quarks kinematics

Initial quarks momenta are parametrised, in the partonic centre of mass frame as

x =
1

2
+
m2
a −m2

b

2 s
, (C.1)

pa =

(
x
√
s, 0, 0,

√
λ(s,m2

a,m
2
b)

2
√
s

)
, (C.2)

pb =

(
(1− x)

√
s, 0, 0,−

√
λ(s,m2

a,m
2
b)

2
√
s

)
. (C.3)

In the hadronic centre of mass we get instead

pa,b = η1,2 P1,2 +
m2
a,b

η1,2 S
P2,1 ; η1,2 ∈ (0, 1] , (C.4)

where P1,2 are the hadronic momenta and are given by

P1,2 =

√
S

2
(1, 0, 0,± 1) . (C.5)

C.2 Initial-Initial massive subtraction integral

In this appendix we present the explicit ingredients used to derive the massive

subtraction integrated terms.

The integrated subtraction term, I, is given by the d-dimensional phase space

integral of the unpolarised splitting function Eq.(5.7). The phase space can be
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obtained from∫
dΦN+1(pk, Q; pa + pb) =

∫ 1

0

dx

∫
dΦN(Q̃(x); p̃a(x) + pb)

∫ [
dd−1pk(s, x, ya)

]
,

(C.6)

expanding both sides,

((1− x) sab)
d−3

(2 π)d−2 2d−1 s
d−2
2

d Ωd−3 Θ (x− α) =
2 π

sab
δ(x− xab) [d k(s, x, yab)]) , (C.7)

with

d Ωd−3 = − 4π1−ε

Γ(1− ε)
s√

λab (1− x)
(sin θ)−ε

∣∣∣∣
θ→y

Θ [(y1 − yab) (yab − y2)] d yab ,

(C.8)

and

y1,2(x) =
(1− x)

2 s

(
sab + 2m2

a ±
√
λab

)
. (C.9)

Finally we get∫ [
dd−1pk(s, x, ya)

]
=

1

16 π2

(4π)ε

Γ(1− ε)

(
sab√
λab

)1−2ε

(1− x)1−2ε sab s
−ε∫ v1

v2

dv[(v1 − v) (v − v2)]−ε , (C.10)

where, to further simplify the expression, we perform the change of variable yab →
vab (1− x),

C.2.1 The integral in v

We start by re-writing the dipole function in terms of the splitting variables x, v, s,

Vqagk,b(x, v; s) =
1

sab (1− x) v x

[
2

1− x − 1− x− ε (1− x)− 2xm2
a

sab v (1− x)

]
.

(C.11)

In order to simplify the following expressions we take for any function f :

f(x, ε) =
∞∑

i=−∞

εif (i)(x); (C.12)

further, we write

Vqagk,b(x, v; s) =
1

x sab

[
h1(x, ε)

v
+
h2(x; s)

v2

]
(C.13)
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with

h1(x, ε) =
1 + x2

(1− x)2
− ε, h2(x; s) = − 2xm2

a

sab (1− x)2 (C.14)

further, calling h = h1 + h2 we have:

h(0)(x; s) =
1 + x2 − 2xm2

a

sab

(1− x)2 ; and h(1) = −1. (C.15)

The result of the first integral can be written as follows

V(x) = x sab

∫ v2

v1

d vab [(v1 − vab) (vab − v2)]−ε Vqagk,b(x, v; s) =

1

(1− x)2

[
(a+ ε b) (1 + x2)− 2xm2

a

sab
(c+ ε d)

]
. (C.16)

When plugging in the full phase space we get a term like

(1− x)1−2ε V(x) = (1− x)−1−2ε

[
(a+ ε b) (1 + x2)− 2xm2

a

sab
(c+ ε d)

]
, (C.17)

which diverges in the limit x→ 1 when ε→ 0. To solve this problem we introduce

a plus distribution

Ṽa,b(x; ε) = δ(1− x)Va,b(ε;α) +
[
Ka,b(x)

]
+
. (C.18)

with[∫ 1

0

dxKa,b(x)

]
= −1

ε

(
a+

2 cm2
a

sab

)
−
[

3 a+ 2 b

2
+
m2
a

sab
(2 c+ d)

]
+O(ε) . (C.19)

The term Va,b(ε;α) is then given by

Va,b(ε;α) =

∫ 1

0

dxKa,b(x)−Θ(1− α) Θ(α)

∫ α

0

dxKa,b(x) (C.20)

which yield

Va,b(ε;α) =
1 + sab√

λab
log β0

ε
+ log

(
µ2 s

s2
ab

)
+

3

2

+
sab√
λab

{[
log

(
µ2 λab
m2
as

2
ab

)
+

(
1

2
− 2m2

a

sab

)]
log β0 + 2 Li2(β0) +

1

2
log2 β0 −

π2

3

}
+

sab√
λab

log β0

(
α2

2
+ α + 2 log (1− α)

)
− 2 (α + log (1− α)) , (C.21)

which corresponds to Eq. (5.18) for α = 0.
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C.2.2 The integral in x

In order to compute the integrated subtraction term for hadron-hadron collisions

we need to convolve the K functions with partonic matrix elements. As we dis-

cuss in the chapter, this is far from being efficient and it is customary perform a

change of variable that allows to evaluate matrix elements only for one momentum

configuration per event. We start from Eq. (5.26)

I =
αsCF

2 π

∫∫
dη1 dη2 fa(η1) fb(η2)

{
Va,b(ε) dσ̂N(sab)

+

∫ 1

0

dxKa,b(x)

[
φ(x sab)

xφ(sab)
dσ̂N(x sab)− dσ̂N(sab)

]}
. (C.22)

The idea is, then, to find a variable transformation such that

x sab(η1, η2) = sab(η
′
1(x), η′2), (C.23)

η′2 = η2 . (C.24)

We find that this is achieved by defining

η(x, η2; η′1) =

(
m2
am

2
b

S2 η2
+ η′1

2
)√√√√1−

4
m2
a m

2
b

S2 η2
η′1

2x2(
m2
a m

2
b

S2 η2
+η′1

2

)2 + 1


2 η′1x

, (C.25)

which yields the Jacobian

J (η′1, η2, x) =

(
η′1

2 − m2
am

2
b

S2 η2

)
η′1

2
(
η′1

2 +
m2
am

2
b

S2 η2

) √√√√1−
4
m2
a m

2
b

S2 η2
η′1

2x2(
m2
a m

2
b

S2 η2
+η′1

2

)2

η(x, η2; η′1) . (C.26)

With this definitions and Eq. (5.31) the integral in Eq. (5.32) is completely defined.
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