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Abstract

In this dissertation, we look at the Littlewood Conjecture and several related
open problems. We introduce notions and theorems from various fields in order to
properly formulate the conjectures and properly state the various results related
to them. In Chapter 5, we investigate a potential counter-example to the p-adic
Littlewood conjecture when p = 2 via an intricate construction, and show that this
potential counter-example does indeed satisfy the premises of the conjecture.

1



Acknowledgements

It would be impossible to name all to whom I am indebted for helping and inspiring
me throughout my studies, be it at postgraduate, undergraduate, or even school-level.
First and foremost, I would like to thank my supervisor, Dr Dzmitry Badziahin, for his
excellent supervision and patient help throughout my MRes research and studies. My
previous formal training was mostly in very pure mathematics (set theory, set-theoretic
topology and logic) and philosophy. Thus, I am greatly indebted to Dr Badziahin and,
previously, to Dr Jonathan Pila (who supervised my 4th year Master’s dissertation at
the University of Oxford) for patiently guiding me into the beautiful world of number
theory, and taking me on faith without any previous background in the field. Finally, I
am also very grateful to the referees for their assiduous reading of the thesis, and helpful
comments and suggestions.

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be published
without the author’s prior written consent and information derived from it should be
acknowledged.

2



Around the p-adic Littlewood Conjecture

Petra Staynova

June 3, 2015

Contents

1 Introduction 5
1.1 A Note on Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Further Clarification of Notation Used . . . . . . . . . . . . . . . 7
1.2 Some Background From Real and Functional Analysis . . . . . . . . . . . 7

2 Taking a Dip into Diophantine Approximation 10
2.1 Commencing with Continued Fractions . . . . . . . . . . . . . . . . . . . 12
2.2 Two Classical Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 The Badly Approximable Numbers . . . . . . . . . . . . . . . . . . . . . 27

3 Some Words on Words 37
3.1 More Words on Morphic Words . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Words in Diophantine Approximations . . . . . . . . . . . . . . . . . . . 46

4 The Littlewood Conjecture and a Little More (or Less) 47
4.1 The Littlewood Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The Mixed Littlewood Conjecture . . . . . . . . . . . . . . . . . . . . . . 50
4.3 The p-adic Littlewood Conjecture . . . . . . . . . . . . . . . . . . . . . . 51

5 Looking at a Potential Counter-example to the 2-adic Littlewood Con-
jecture 52
5.1 Definining the Sequence {cn}n∈N . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Interaction Between Functional and Rational Approximations . . . . . . 76
5.3 Further Observations and Some Open Questions . . . . . . . . . . . . . . 79

5.3.1 A Link with the Thue-Morse Word . . . . . . . . . . . . . . . . . 79
5.3.2 On an Interesting Structure Arising From the Sequence {cn}n∈N . 81

3



6 Conclusion 83
6.1 Various Questions for Further on . . . . . . . . . . . . . . . . . . . . . . 83

4



1 Introduction

The Littlewood Conjecture was first stated by John Littlewood in the 1930’s in his book
[Lit68]. Informally, it conjectures that for every pair of real numbers α, β ∈ R, the area of
the rectangle formed between the point (qα, qβ) (where q ∈ N) and the nearest point with
integer co-ordinates grows slower than 1/q; in other words, that the product q.||qα||.||qβ||,
where ||.|| denotes the (Euclidean) distance to the nearest integer, gets arbitrarily close
to 0. One can also re-state this as lim infq→∞ q.||qα||.||qβ|| = 0.

This Thesis comprises of four main chapters. ‘Taking a Dip into Diophantine Ap-
proximations’ (Chapter 2) provides an overview of the machinery required to talk about
and tackle problems in Diophantine Approximations which are close to the Littlewood
conjecture. It gives a brief exposition of the needed theorems about continued fraction
expansions, continues with the theorems of Dirichlet and Hurwitz, which are central to
the field, and finishes by considering the class of badly approximable numbers and some
of their properties. The next chapter, ‘Some Words on Words’, gives an exposition of
some material from combinatorics on words that has been widely used in problems in Dio-
phantine Approximations. Chapter 4, ‘The Littlewood Conjecture and a Little More (or
Less)’ deals with the Littlewood conjecture, placing it in the wider context of Diophan-
tine Approximations. It also provides information on work that has been done regarding
this problem, including a survey of some state-of-the-art recent results. Also, the chapter
includes information on several Littlewood-type questions, which, though currently also
open, are considered more accessible than the standard Littlewood conjecture. One such
problem is the so-called p-adic Littlewood Conjecture, which will be further studied in
this Thesis. Some results on recent progress in those areas are also considered.

Finally, in Chapter 5, we focus on a partial case of the p-adic Littlewood Conjecture:
the case when p = 2. We explore properties of the product q|q|2||qα||, and provide an
upper bound for the lim inf of the expression considered. While doing this, we find some
interesting and unexpected relations to the Thue-Morse word (which will be introduced in
Chapter 3.1) and some fractal-like structures briefly studied in subsection 5.3.2. We will
conclude in Chapter 6 with open questions and point out possible directions for further
research.

1.1 A Note on Notation

1.1 Note. Some of the notions for which the notation is now introduced will only be
defined later on in the dissertation.

Notation. We denote by:

• N,Z,Q,R the set of natural, integer, rational, and real numbers, respectively;
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• N+ the set of positive integers; otherwise, N is assumed to contain 0;

• ω the first infinite countable ordinal; we can think of ω as the natural numbers N
with the usual order;

• dom(f) the domain of a function f ;

• deg(f) for the degree of a polynomial f .

Notation. For a real number x ∈ R, we write:

• bxc for max{z ∈ Z : z 6 x}, in other words bxc is the greatest integer less than x
(x ∈ R);

• [x] for the integer part of x (note that, unlike bxc, [x] is the least integer greater
than x when x is negative);

• {x} for the fractional part of x, in other words, x− bxc;

• ln(x) for the natural logarithm loge(x);

• x|n, where x, n ∈ Z, x 6= 0, if x divides n.

Notation. We denote by ||θ|| the (Euclidean) distance between θ and the nearest integer,
in other words:

||θ|| = min{|θ − n| : n ∈ N}.

Notation. For a subset A ⊆ R, we denote by:

• int(A) the topological interior of A in the usual Euclidean topology on R;

• cl(A) the topological closure of A in the usual Euclidean topology on R;

• card(A) to denote the cardinality of A;

• µ(A) the Lebesgue measure of A.

Notation. When I is an indexing set and {Ai}i∈I is a family of sets, we denote by
∏

i∈I Ai

the Cartesian product of the sets Ai.
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1.1.1 Further Clarification of Notation Used

• ε will denote either a very small quantity or the empty word. Both should not occur
in the same proof, and thus no confusion should arise from this.

• |.| will denote: the (Euclidean) distance between two points, the length of an interval
(a, b) ⊂ R, or the length of a finite word w. The way in which it is used should
be obvious from the context, but in the cases it might not be, it will be further
clarified.

• {x} could denote either the fractional part of a number x or the singleton which
contains x as its only element. Moreover, there is a possible confusion with sequence
{yn}n∈N. However, the three should be distinguishable by context;

•
∏

can denote either multiplication of numbers or expressions (as in ‘
∏n

i=1(x− i)’),
or Cartesian product (in the case of sets, as specified above).

1.2 Some Background From Real and Functional Analysis

The study of badly approximable numbers and the Littlewood conjecture draws on mate-
rial, notions and techniques from many different fields, including measure theory, graph
theory, combinatorics on words, real analysis, ergodic theory, and many more. While in
Chapters 2 and 3, we will respectively give the necessary background in number theory
and properties of words, in this section, we will provide (mostly classical) material which
will be needed in some theorems and their proofs further on.

In many fields of mathematics, various specific and interesting sets of numbers are
defined, depending on the problems considered. Their investigation sometimes requires
considering various measures of those sets, for example, Lebesgue measure, Hausdorff
measure, and box product measure, on the set of real numbers. For the purposes of this
dissertation, we will use the Lebesgue measure on the real numbers. The notions and
theorems listed below can be found in, for example, Capinski and Kopp [CK03]. A special
role in Number Theory is played by those subsets of R whose Lebesgue measure is zero.
In Diophantine approximations, many important subsets of R (for example, the set of
rational numbers, the set of badly approximable numbers, the set of well-approximable
numbers, the set of algebraic numbers, and the set of transcendental numbers) have either
Lebesgue measure zero, or their complement in R (or a subset of R) has Lebesgue measure
zero. For convenience, we will use the following notion:

1.2 Definition (null set). A set A ⊂ R is called (Lebesgue) null if and only if µ(A) = 0.

1.3 Example. The empty set is null. Also, any singleton {x}, where x ∈ R, is null.

7



We also have:

1.4 Theorem. If A ⊂ R is a countable set, then A is null.

Moreover:

1.5 Example. There exist uncountable sets which are also null, such as the Cantor
middle-third set (for an intuitive idea, the Cantor set is the intersection of a sequence
of sets, the measure of each new element of which is 2/3 the measure of the previous
one). We will see in Theorem 2.47 that the set of badly approximable numbers is another
example of an uncountable null set.

Let us recall some properties of the Lebesgue measure:

1.6 Theorem. The Lebesgue measure is invariant under translations, in other words, if
A is a translation of the set B in R, then µ(A) = µ(B).

1.7 Theorem. If A ⊂ B ⊂ R, then µ(A) 6 µ(B).

The following theorem will be essential in the proof of Theorem 2.47.

1.8 Theorem. For any sequence {En}n∈N of subsets of R, we have

µ

(
∞⋃
n=1

En

)
6

∞∑
n=1

µ(En)

The above are basic theorems in Lebesgue measure theory. The interested reader can
find their proofs in Capinski and Kopp [CK03].

We continue with the definition of lim inf and lim sup, which will be needed in the for-
mulation of the Littlewood and related conjectures. These can also be found in Capinski
and Kopp [CK03].

1.9 Definition (limit inferior and limit superior). Let {xn}n∈N be a sequence of real
numbers. Then the limit inferior of this sequence is written

lim inf
n→∞

xn,

and defined as
lim inf
n→∞

xn = lim
n→∞

(
inf
m>n

xm

)
.

Similarly, the limit superior is written lim supn→∞ xn and defined as

lim sup
n→∞

xn = lim
n→∞

(
sup
m>n

xm

)
.
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It is easy to see that one may equivalently define:

lim inf
n→∞

xn = sup
{
inf{xm : m > n} : n > 0

}
.

In fact, from a topological point of view, the limit inferior of a sequence {xn}n∈N which is
bounded above is the infimum of all accumulation points of the sequence, and the limit
superior of a bounded below sequence {xn}n∈N is the supremum of all its accumulation
points.

In Chapter 5, we will need the following theorems from real analysis, most of which
are considered classical. We begin with one which is basic for any real analysis course:

1.10 Theorem (l’Hôpital). Let a ∈ R, and suppose that f(x), g(x) are functions such
that limx→a f(x) and limx→a g(x) are either both zero or both infinite. If f(x) and g(x)
are differentiable in a neighbourhood of the point a and

lim
x→a

f ′(x)

g′(x)

exists (finite or infinite), then the limit of f(x)/g(x) also exists, and moreover

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

If limx→±∞ f(x) and limx→±∞ g(x) are either both zero or infinite, and if, from some
point on, on the real line, f(x) and g(x) are differentiable, and

lim
x→±∞

f ′(x)

g′(x)

exists (finite or infinite), then the limit of f(x)/g(x) also exists, and moreover

lim
x→±∞

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

We continue with two lesser-used theorems.

1.11 Theorem (n-th root test). Let
∑∞

n=1 an be a series of real (or complex) numbers.
If

lim sup
n→∞

n
√
|an| < 1,

then the series is convergent.

Similarly to formal sums
∑∞

n=1 an whose convergence we can consider and investigate,
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we can consider the formal infinite product
∏∞

n=1 an of real numbers and call them conver-
gent if the sequence of the partial products {Pn}n∈N, where Pn =

∏n
i=1 ai, is convergent.

We have the following convergence criterion:

1.12 Theorem. Let
∏∞

n=1 an be an infinite product of positive real numbers. If the series

∞∑
n=1

ln(an)

is convergent, then the product
∞∏
n=1

an

is convergent and non-zero.

Proof. Let {Pn}n∈N be the sequence of partial products of
∏∞

n=1 an. Note that the function
ln : R+ → R is a continuous bijection. By the definition of Heine of continuity, if {an}n∈N
is a sequence of positive numbers converging to a > 0, then

lim
n→∞

ln(an) = ln(a),

and vice-versa.
Let limn→∞ ln(Pn) be > 0 and finite. Then, Pn → P > 0. Note that

ln(Pn) = ln

(
n∏
i=1

ai

)
=

n∑
i=1

ln(ai).

Hence, if the sequence {ln(Pn)}n∈N converges, the series
∑∞

n=1 ln(an) converges to a non-
negative sum. Therefore,

∏∞
n=1 an converges to a positive limit.

2 Taking a Dip into Diophantine Approximation

Diophantine approximation is one of the oldest sub-fields of number theory. The field is
named after the father of modern algebra, Diophantus of Alexandria, who is considered
to be the first Greek mathematician to recognise fractions as numbers. Diophantine ap-
proximation deal with the question of how ‘well’ real numbers can be approximated by
rationals, where the ‘quality’ of approximation is measured by the distance between the
real and rational number, in comparison to the value of the rational number’s denomina-
tor. This is also one of the most thriving fields of mathematical research today.

Diophantine approximation provides the context in which the Littlewood conjecture is
formulated. The conjecture itself is part of a natural chain of questions, which begin with
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one of the fundamental theorems in Diophantine approximation, Dirichlet’s Theorem. For
this theorem, we first need to recall a couple of definitions. In this section, we will use
material from [Cas57], [HW03], [Bug12], and [YIM95]. The interesting historical facts
can primarily be found in [Bre91].

We first introduce the following function on R, which is central to Diophantine ap-
proximation:

2.1 Definition (distance to the nearest integer). Define ||.|| : R → [0, 1
2
] as ||x|| =

min{|x− n| : n ∈ N}. In other words, ||x|| gives the distance between x and the nearest
integer.

2.2 Example. Some values of the function ||.|| are, for example:

• ||q|| = 0 for any integer q;

• ||1
3
|| = ||2

3
|| = 1

3
;

• ||
√
8|| = 3−

√
8 = 3− 2

√
2.

The function ||.|| resembles in some way the distance function. For example, we have:

2.3 Proposition. The function ||.|| : R → [0, 1
2
] satisfies the triangle inequality: for all

x, y ∈ R, we have
||x+ y|| 6 ||x||+ ||y||.

Thus, in particular,
||x|| > ||x+ y|| − ||y||,

which will be useful later on.

Proof. Let x, y ∈ R. Set n ∈ {m ∈ N : |m − x| = ||x||}, in other words, let n be the
nearest integer to x. Let q ∈ Z be arbitrary. We have

||x+ y|| 6 |x+ y − q| by definition of ||.||

= |(x− n) + (y + n)− q|

6 |x− n|+ |y + n− q| by the triangle inequality for the Euclidean distance

= ||x||+ |y + n− q| since n = ||x||.

Since q was arbitrary, we can take q to be the nearest integer to y + n, more formally,
q ∈ {m ∈ N : |m− y − n| = ||y + n||}, and thus obtain

||x+ y|| 6 ||x||+ ||y||,

as required.
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2.4 Definition (best approximation, [YIM95]). Let α ∈ R. A fraction p
q
∈ Q is said to

be a best approximation to α if for all 0 < q′ 6 q, p 6= p′, we have

|qα− p| < |q′α− p′|.

Equivalently, we can define a best approximation as:

2.5 Definition (best approximation, [Cas57]). A fraction p
q
gives a best approximation

to α ∈ R if
||qα|| = |qα− p|,

and if
||q′α|| > ||qα|| for 0 < q′ < q.

2.6 Note. It is important to note that a given number can have more than one best
approximation. The reason behind defining best approximations is that not all fractions
which are ‘Euclidean-close’ to a number give ‘good enough’ approximations. For example,
we have that Euler’s constant e is nearer in the Euclidean distance to 3 than to 2, and
also nearer to 5/2 than to 3, but 5/2 does not give a better approximation of e than 3

does:
||e|| < ||2e||,

where we use Definition 2.5. Another best approximation to e is 8/3.

2.7 Example. The four best approximations to π with least denominators are 3, 22/7,
333/106, and 355/113.

Interestingly, while the approximation 22/7 was the most accurate estimate of π known
in European mathematics well into the Middle Ages, the Chinese astronomer Tsu Ch’ung-
Chih had proved that 355/113 is a better approximation around the 5th century AD.
The estimate of 22/7 is commonly attributed to Euclid, whose methods have laid the
foundations for finding the best approximations to a given number through its continued
fraction expansion. This naturally brings us to the next subsection.

2.1 Commencing with Continued Fractions

The earliest example of an algorithm leading to a terminating continued fraction expan-
sion is commonly attributed to Euclid, and relies on the geometry of line segments. How-
ever, the algorithm is believed to predate Euclid, and might be attributed to the ancient
Greek mathematician Theaetetus. Ever since, continued fraction expansions have played
an important part of mathematics. Leonard Euler used them to prove the irrationality of
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e in what is considered to be the first more comprehensive account of continued fraction
expansions in [Eul37], and Johan Lambert used continued fraction expansions to give the
first proof that π is irrational [Lam68]. In recent times, they are used in many areas
of number theory, for example Diophantine approximation. The theorems and concepts
given here will be ubiquitous throughout this paper.

In this section, we present a short extract of the theory on continued fraction expan-
sions which can be found in [HW03], [Cas57], [Bug12], [YIM95], [Hen06], [Bur01], and
[Sch80]. Since similar theorems and propositions can be found in several different sources
and the overview below is a distillation and amalgamation of the ones cited above, we will
usually not cite where each of the theorems is from. For proofs of the classical theorems
given here, the reader is referred to, for example, [HW03].

From now on in this section, when we talk about convergence, we mean convergence
in the Euclidean topology on R.

2.8 Definition (continued fraction). A finite continued fraction is an expression of the
form

a0 +
1

a1 +
1

. . .+
1

an

,

where a0 ∈ Z and ai,∈ N+ for i ∈ N+. In shorthand, we will denote this expression by
[a0; a1, . . . , an], and note that [a0; a1, . . . , an] ∈ Q. If a0 ∈ Z and ai ∈ N+ for i ∈ N+, an
infinite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

. . .

= lim
n→∞

[a0; a1, . . . , an],

provided that the limit of the sequence of rational numbers {[a0; a1, . . . , an]}n∈N exists.
We will write [a0; a1, . . . , an, . . .] as shorthand for infinite continued fractions. A continued
fraction is a finite or infinite continued fraction.

We will see that all real numbers have (at least one) representation as a continued
fraction. Moreover, we have that this representation is unique for irrational numbers,
and any infinite continued fraction converges to an irrational number.

The following algorithm gives an explicit procedure for computing a continued fraction
expansion of a real number α. In the case when α is rational, one might notice distinct
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similarities between this and the well-known Euclidean algorithm for finding the greatest
common divisor of two natural numbers.

2.9 Algorithm. Let α ∈ R, and define inductively a (possibly finite) sequence an of
natural numbers and αn of real numbers such that:

α0 = α,

a0 = bαc;

if an 6= αn, define:

αn+1 =
1

αn − an
,

an+1 = bαn+1c,

if an = αn, the process stops with an.

From this definition, we get the identity

αn+1 = [an+1; an+2, . . .],

which will be useful later on. Note that the algorithm above terminates if and only if
α is a rational number (this will be made more precise in Theorem 2.12), and yields
α = [a0; a1, . . .], which possibly terminates at some n ∈ N.

2.10 Definition (partial quotient and convergent of a continued fraction). Given a (pos-
sibly infinite) continued fraction [a0; a1, . . . , an, . . .], we define:

• its nth partial quotient to be the integer an; and

• its nth convergent to be the rational number (in lowest terms) pn/qn = [a0; a1, . . . , an].

Sometimes, we will write ‘quotient’ instead of ‘partial quotient’ for brevity.
The following theorem shows one of the many reasons why continued fractions are

useful in Number Theory:

2.11 Theorem. The convergents pn/qn of a continued fraction expansion of a number
α ∈ R are the best approximations of α.

This theorem is central to both the proofs of the Dirichlet Theorem (Theorem 2.25)
and the Hurwitz Theorem (Theorem 2.33) in the next section.

2.12 Theorem. Every rational number has precisely two (finite) continued fraction ex-
pansions:

[a0; a1, . . . , an] , where an 6= 1,

14



and
[a0; a1, . . . , an − 1, 1].

Thus, we have that α ∈ R is representable by a continued fraction with an odd number of
convergents if and only if it is representable by one with an even number of convergents.

In view of Theorem 2.12, when we say ‘the continued fraction expansion of a number’,
we will mean the continued fraction expansion obtained in the manner of Algorithm 2.9,
which is clearly unique.

2.13 Theorem. Let us set

p−1 = 1, q−1 = 0, p0 = a0, and q0 = 1.

Then, for any positive integer n ∈ N, the following recurrent identities hold for the
convergents pn/qn:

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2.

This theorem can be proved in a straightforward manner by induction using the
recurrent identities and the definition of convergent. Theorem 2.13 will be used in the
proof of Hurwitz’ Theorem, as well as in proving that a real number is badly approximable
if and only if the partial quotients of its continued fraction expansion are bounded in
Theorem 2.38.

The next theorem will be used to prove Theorem 2.47, that the set of badly approx-
imable numbers is Lebesgue null, as well as to show that a certain sequence of rational
numbers is a sequence of odd convergents of a special irrational number in Corollary 5.16.

2.14 Theorem. Let α ∈ R be irrational. The convergents of α with even indices form a
strictly increasing sequence, and it’s convergents with odd indices form a strictly decreas-
ing sequence. The sequence of convergents {pn/qn}n∈N is convergent, and converges to α.
Thus, we can set

α = [a0; a1, . . . , an, . . .].

We also have that the opposite the direction of Theorem 2.12 and Theorem 2.14 holds:

2.15 Theorem. Every finite continued fraction [a0; a1, . . . , an] expresses a rational num-
ber, and every infinite continued fraction [a0; a1, . . . , an, . . .] converges to an irrational
number.

15



Next, we have another very useful theorem, which will make appearances in several
places throughout this dissertation. The the first part of Theorem 2.16 will be important
in proving the Lagrange’s Theorem (Theorem 2.40), while latter part will be crucial
to showing that the set of badly approximable numbers is of Lebesgue measure zero
(Theorem 2.47).

2.16 Theorem. Let n ∈ N be a positive integer and α ∈ R be irrational number with
α = [a0; a1, . . .]. Then

α = [a0; a1; . . . , an, αn+1] =
pnαn+1 + pn−1
qnαn+1 + qn−1

(1)

and
qnα− pn =

(−1)n

qnαn+1 + qn−1
=

(−1)n

qn
× 1

αn+1 + [0; an, an−1, . . . , a1]
.

Furthermore, the set of real numbers whose continued fraction expansions begin with
the partial quotients a0, a1, . . . , an is precisely the closed interval bounded by the points
(pn−1 + pn)/(qn−1 + qn) and pn/qn, which are respectively equal to [a0; a1, . . . , an, 1] and
[a0; a1, . . . , an].

Theorem 2.16 also has a very useful corollary:

2.17 Corollary. For any irrational number α and any non-negative integer n ∈ N, we
have

1

qn(qn + qn+1)
<

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1

.

Proof. Write α = [a0; a1, . . .], and recall αn := [an; an+1, . . .].
Note that an < αn < an + 1. Thus, from Theorem 2.16 we obtain that

1

qn((an+1 + 1)qn + qn−1)
<

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qn(an+1qn + qn−1)
.

Thus, from Theorem 2.13 we get that

1

qn(qn + qn+1)
<

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1

,

as required.

One may wonder: what happens if equality (1) in Proposition 2.16 holds for some
given integers and reals, without us knowing whether they are related in any way? For
example, if we are given two irrationals α and β and two rational numbers p/q, r/s, such
that

α =
pβ + r

qβ + s
,
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can we think about r/s and p/q as two consecutive convergents of α? The following
proposition addresses this:

2.18 Proposition. If α, β ∈ R are real numbers and p, q, r, s are integers such that

α =
pβ + r

qβ + s
, q > s > 0, ps− qr = ±1,

then r/s and p/q are two consecutive convergents of the continued fraction expansion of
α.

Proposition 2.18 allows us to decide whether a given pair of rational numbers is in
fact a pair of consecutive convergents. It would be useful to have a criterion for finding
whether a single rational number is a convergent of a given real number. The following
theorem provides a partial result in this direction:

2.19 Theorem. Let α ∈ R be a real number. If, for a rational number p/q ∈ Q, we have
that ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
,

then p/q is a convergent in the continued fraction expansion of α.

Since this theorem will play an important role later on, we will provide its proof.

Proof. Assume that α ∈ R, p/q ∈ Q are such that∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Assume further α 6= p/q, since otherwise the fraction is obviously a convergent of itself.
Then, we can write

p

q
− α =

εθ

q2
,

where ε = ±1 and 0 < θ < 1
2
.

Let us write p
q
as a finite continued fraction

[a0, a1, . . . , an];

By Theorem 2.12, we can choose to make n odd or even; thus we may write that

ε = (−1)n−1.
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Denoting by pn
qn
, pn−1

qn−1
the last and the last-but-one convergents to the continued fraction

for p
q
, we write

α =
βpn + pn−1
βqn + qn−1

.

Then
εθ

q2n
=
pn
qn
− α =

pnqn−1 − pn−1qn
qn(βqn + qn−1)

=
ε

qn(βqn + qn−1)
,

which can be rewritten as
qn

βqn + qn−1
= θ.

Thus
β =

1

θ
− qn−1

qn
> 1

(recalling that 0 < θ < 1
2
); and so, by Proposition 2.18, pn−1

qn−1
and pn

qn
are consecutive

convergents to α. Noting that pn
qn

= p
q
, we complete the proof.

The above Theorem 2.19 can be found in many textbooks on continued fractions.
But what happens if we relax the condition in 2.19 and require that the difference be
bounded just by 1/q2? A less-known but very interesting result by Fatou [Fat04] provides
an answer to this, creating a pleasing complement to the previous theorem.

2.20 Theorem (as seen in [Bug12]). Let α ∈ R be a real number and p/q ∈ Q be rational.
If ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
,

then there exists an index n ∈ N such that p/q is an element of the set of three numbers{
pn
qn
,
pn+1 + pn
qn+1 + qn

,
pn+2 − pn+1

qn+2 − qn+1

}
.

Continuing in a similar vein, the reverse direction of Theorem 2.19 also provides an
analogous inequality:

2.21 Theorem. Let α ∈ R be expanded into a continued fraction. Then at least one of
every two of its consecutive convergents satisfies the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

We will need many of the above theorems in Chapter 5 to show that a certain conver-
gent sequence is actually a sequence of convergents of its limit, and some more interesting
observations related to this.
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On a more immediate note, Proposition 2.18 might prompt us to define an equivalence
relation on the real numbers, which will be needed in the proof of Lagrange’s Theorem
in the next subsection:

2.22 Definition (equivalent numbers). Two numbers α, β ∈ R are called equivalent if
and only if there exist integers a, b, c, d ∈ N such that

ad− bc = ±1

β =
aα + b

cα + d
.

This equivalence corresponds to the ‘left shift’ operator on the word obtained from
the continued fraction expansion of a number (see Section 3). It can also be expressed in
terms of tails of the numbers’ continued fraction expansions:

2.23 Proposition. Two irrational numbers α and β are equivalent if the tails of their
continued fractions agree, in other words,

α = [a0, a1, . . . , aj, c0, c1, . . .]

β = [b0, b1, . . . , bk, c0, c1, . . .].

Finally, we have all the machinery necessary to begin exploring the path through
Diophantine Approximations which leads to the Littlewood (and p-adic Littlewood) con-
jecture.

2.2 Two Classical Theorems

This section deals with two classical theorems in the field of Diophantine approxima-
tion: those of Dirichlet and Hurwitz. Both theorems are precisely about how well real
numbers can be approximated by rationals, which is the main idea behind Diophantine
approximation.

Many contemporary questions in this field stem from a deceptively simple theorem,
formulated and proved by Dirichlet in 1842. Here, we will give several equivalent for-
mulations. Then, we will look at two different approaches to proving the theorem. To
complete the part about Dirichlet, we will give examples of several streams of research
which are still active, and all of which originate from the Dirichlet inequality, given below.

Let us begin by providing the original formulation from [Dir42]:
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2.24 Theorem (Dirichlet). For any real θ and any number Q ∈ N there exist integers p
and q such that 1 6 q < Q and ∣∣∣∣θ − p

q

∣∣∣∣ 6 1

qQ
.

Essentially, it is a statement about how well real numbers can be approximated by
rationals with relatively ‘small’ denominators. In [Khi26], Khintchine observed that the
exponent −1 of Q in Theorem 2.24 cannot be improved (say, to −1− ε) for any θ ∈ R. In
other words, for any ε > 0 there exists a θ ∈ R such that there are no q with 1 6 q < Q

such that ∣∣∣∣θ − p

q

∣∣∣∣ 6 1

qQ1+ε
.

Theorem 2.24 can be re-formulated as:

2.25 Theorem. Let Q > 1 be arbitrary but fixed. Then for any real number θ there exist
at least two coprime integers p, q ∈ N such that 1 6 q < Q and

|qθ − p| 6 1

Q
.

This can further be written in more modern notation as:

||qθ|| 6 1

Q
. (2)

Note that if we take Q ∈ N and θ = 1/Q, then for all p and for any 1 6 q < Q, we
will get that |qθ− p| > 1/Q, and hence the 6 in equation (2) (and the equivalent ones in
Theorems 2.24 and 2.25) cannot be improved to a strict inequality.

Dirichlet’s Theorem is more powerful than an initial observation might suggest. For
instance, it can give us information about approximating rational numbers by other
rational numbers which have smaller denominators, as the following example illustrates:

2.26 Example. Taking θ = 26/135 and N = 100, Theorem 2.24 states that we can find
a rational number p/q whose distance to θ is less than 1

100
and such that q < 100. Indeed,

for example, we can take p = 5 and q = 26 to get∣∣∣∣θ − p

q

∣∣∣∣ = 1

3510
<

1

100
,

as required.

Theorem 2.24 is very reminiscent of the Pigeonhole Principle. This relation is reflected
in the Theorem’s original proof, which we will now paraphrase.
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Proof. To prove this theorem, we will use Dirichlet’s Pigeonhole Principle: that if we
have n+ 1 items placed in n places, at least two items will have to share a place.

First, let us consider the Q+ 1 numbers

A := {{qθ} : q = 0, 1, . . . , Q− 1} ∪ {1} ⊂ [0, 1].

Now, let us divide the unit interval [0, 1] into Q subintervals Ui, for i = 0, 1, . . . , Q−1

by:

Ui :=

[
i

Q
,
i+ 1

Q

)
,

where we set UQ−1 to include the end-point 1. Then, since card(A) = Q+ 1 and

A ⊂
⋃

i=0,...,Q−1

Ui,

Dirichlet’s Pigeonhole Principle implies that two points in A are in the same subinterval.
Call these points {q1θ} and {q2θ}, which can correspondingly be written as sums of whole
and rational parts as qjθ = rj + {qjθ}, with j = 1, 2. Since all intervals Ui are of length
1/Q, we have

|(q1θ − r1)− (q2θ − r2)| 6
1

Q
, (3)

which we can rewrite as (recalling that q1, q2, r1, r2 ∈ N)

||(q1 − q2)θ|| 6
1

Q
.

Now, setting q = |q1 − q2| and recalling that 0 6 q1, q2 < Q − 1, we obtain a q with
0 < q 6 Q and

||qθ|| 6 1

Q
,

as required.

It is useful to note that there are other proofs of Dirichlet’s Theorem. For example,
one can utilise the theory of continued fraction expansions:

Proof of Theorem 2.25 using continued fractions: If θ is rational, say θ = r
p
, and 1 6 p <

Q, then setting q = p gives the required result.
So assume that either θ is irrational or θ = r

p
with p > Q. Then θ has a (possibly

finite) continued fraction expansion θ = [a0; a1, . . .] with partial quotients Pn
Qn

. Let Qn be
the greatest denominator of the partial quotients which is less than or equal to Q (we
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know that this exists, because a0 is an integer). This Qn is not the denominator of the
final partial quotient, since we assumed that if θ = r

p
, then p > Q. Thus Qn+1 exists and

is greater than Q.
From the general properties of partial quotients of the continued fraction expansion

(Corollary 2.17), we have that∣∣∣∣θ − Pn+1

Qn+1

∣∣∣∣ 6 1

Qn+1Qn+2

6
1

QnQn+1

<
1

QQn

, (4)

since by assumption, Qn+1 > Q > Qn.
Note that if θ is rational and all denominators are less than or equal to Qn+1, then in

(4) we will have equality instead of non-strict inequality.
Thus, (4) gives us

|Qn+1θ − Pn+1| <
1

Q
,

in other words, taking the definition of ||.|| as a minimum, we obtain

||Qn+1θ|| = min{|Qn+1θ − k| : k ∈ N} 6 |Qn+1θ − Pn+1| <
1

Q
,

which is the required inequality.

It is important to note that this proof relies implicitly on Theorem 2.11, that the
convergents to a continued fraction expansion are in fact its best approximations.

As observed previously, Khintchine showed that the exponent of Q in Theorem 2.24
cannot be improved. However, what happens if we instead fix θ, and replace the require-
ment of ‘for all Q ∈ N’ with ‘there exist arbitrarily large Q ∈ N’? In this case, the thus
amended inequality can have solutions for some integers p, q ∈ N with 1 6 q 6 Q [BL07].
This motivates the following definition:

2.27 Definition (ŵ1(θ)). For an irrational number θ, define ŵ1(θ) as the supremum of
values w such that for all sufficiently large numbers Q ∈ N, the equation

||qθ|| < Q−w

has a solution 1 6 q 6 Q.

One can relax the requirements on Q even further:

2.28 Definition (w1(θ)). For an irrational number θ, define w1(θ) as the supremum of
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values w such that there exist arbitrarily large numbers Q ∈ N such that the equation

||qθ|| < Q−w

has a solution 1 6 q 6 Q.

The author of this paper first came accross these definitions in a lecture by Yann
Bugeaud given at the ‘Easter School in Dynamics and Number Theory’ in 2014 in Durham
University; more general versions of them (for greater dimensions) can be found in [BL07].
One can readily note that

w1(θ) > ŵ1(θ),

and can enquire whether further bounds can be imposed on w1 or ŵ1 for certain θ. One
may also study the set of all θ ∈ R for which the constants above have given values.

In fact, there are many more similar ‘exponents of Diophantine approximation’ which
are either related to relaxing some of the requirements in Dirichlet’s Theorem, requiring
simultaneous approximations, or related to changing the required inequality to another
with a similar flavour. Mahler [Mah32] and Koksma [Kok39] defined two more such
constants, which can be used to classify numbers in terms of their approximations by
algebraic numbers. Note that since we are no longer approximating by rationals, we are
a bit outside the classic setting of Diophantine Approximations; this material is (briefly)
mentioned for interest and to show that many different streams of research can stem
from the deceptively simple Dirichlet inequality (2). Recalling that the height H of an
algebraic number θ ∈ R is the maximum of the moduli of the coefficients of its minimal
polynomial, we have:

2.29 Definition (w∗n(θ)). For an irrational number θ and for a natural number n ∈ N,
define w∗n(θ) as the supremum of values w∗ such that there exist arbitrarily large H such
that the equation

|θ − α| < H−w
∗−1

has a solution α, such that α is an algebraic number of degree 6 n and height H(α) = H.

To give an idea of the depth of the constant in Definition 2.29, the following is still
an open problem:

2.30 Conjecture (Wirsing, [Wir61]). For any transcendental number θ ∈ R and for any
n ∈ N+, we have

w∗n(θ) > n.

Mahler and Koksma also defined and studied:
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2.31 Definition (wn(θ)). For an irrational number θ and for a natural number n ∈ N,
define wn(θ) as the supremum of values w such that there exist arbitrarily large H such
that the equation

|P (θ)| < H−w

has a solution P (x) ∈ Z(x) of degree 6 n and height H(P ) 6 H.

One may also consider a similar exponent for simultaneous approximations to a num-
ber and its powers, for example see [Roy04]. To give an idea of the depth and breadth
of study of these and other exponents, we mention a few papers in this respect: [BL07],
[BL05], [Dys47], [Jar50], [Jar54].

We now return to the question - how well can we improve the estimate Q in Dirichlet’s
Theorem? For example, can we improve it to Q2, or to aQ for some a ∈ R? Arguments
similar to the ones used in the proof of Theorem 2.25 can be used to show that ||qθ|| can
be estimated with order 1/q2:

2.32 Corollary. For all irrational θ ∈ R, there exist infinitely many coprime pairs
p, q ∈ Z such that ∣∣∣∣pq − θ

∣∣∣∣ < 1

q2
.

If we consider the inequality ∣∣∣∣pq − θ
∣∣∣∣ < 1

aq2
,

the above Corollary 2.32 implies that the constant a can be made as large as 1. Can we
improve on this? In other words, is there a precise constant a beyond which there exist
θ such that we can no longer estimate |p/q − θ| with accuracy 1/aq2? In 1891, Hurwitz
showed that the constant can be improved to

√
5 in the following Theorem which bears

his name. The example following the theorem shows that the estimate is sharp in the
case of the Golden Ratio, and thus the constant

√
5 the best possible.

2.33 Theorem (Hurwitz, [Hur91]). Let α ∈ R be irrational. Then there exist infinitely
many rational numbers p/q ∈ Q such that∣∣∣∣α− p

q

∣∣∣∣ 6 1√
5q2

. (5)

Proof. Let α ∈ R be irrational and let [a0; a1, . . . , an, . . .] be its continued fraction expan-
sion.

We will show that at least one of every three consecutive convergents to α,

pn−2
qn−2

,
pn−1
qn−1

,
pn
qn
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strictly satisfies inequality (5). Recall the definition of αi from Algorithm 2.9, and let βi
be the ratio

βi =
qi−2
qi−1

.

Then, we can write α = [a0, . . . , an, αn+1], and so by Theorem 2.16, we obtain

αqn − pn =
(−1)n

αn+1qn + qn−1
.

Thus, the distance to α is∣∣∣∣α− pn
qn

∣∣∣∣ = 1

qn(αn+1qn + qn−1)
=

1

q2n(αn+1 + βn+1)
.

Now we only need to show that for at least one of the three integers i = n − 1, n, n + 1

we have αi + βi >
√
5.

For a contradiction, let us assume that for all three i = n− 1, n, n+ 1, we have

αi + βi 6
√
5. (6)

By Algorithm 2.9,

αn−1 = an−1 +
1

αn
.

We also have
1

βn
=
qn−1
qn−2

= an−1 +
qn−3
qn−2

= an−1 + βn−1,

so if we assume inequality (6) holds for i = n− 1, the above two equalities give us

1

αn
+

1

βn
= αn−1 + βn−1 6

√
5,

which we can rewrite as
1

αn
6
√
5− 1

βn
. (7)

Therefore,

1 6 αn

(√
5− 1

βn

)
by (7)

6 (
√
5− βn)

(√
5− 1

βn

)
by (6) for i = n,

which is equivalent to
β2
n −
√
5βn + 1 6 0. (8)
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The quadratic expression on the left has roots

x1,2 =

√
5± 1

2
,

and thus inequality (8) combined with the fact that βn are rational gives us the strict
inequalities

1

2
(
√
5− 1) < βn <

1

2
(
√
5 + 1). (9)

Similarly, for i = n, we get
1

βn+1

<
2√
5− 1

. (10)

Therefore, we obtain

1 6 an =
qn
qn−1

− qn−2
qn−1

by Theorem 2.13

=
1

βn+1

− βn by definition of βn

<
1

βn+1

− 1

2
(
√
5− 1) by (9)

<
2√
5− 1

−
√
5− 1

2
by (10)

= 1,

which is the required contradiction.

The constant above, 1/
√
5, is the best possible, as the following example shows:

2.34 Example (The Golden Ratio). If we take the golden ratio

φ =
1 +
√
5

2
= [1; 1, 1, 1, . . .], (11)

we will obtain that for all convergents pi
qi
, we have∣∣∣∣φ− pi
qi

∣∣∣∣ = 1√
5q2

.

Amore detailed proof of the last equality in equation (11) can be found in, for example,
[Cas57].

Example 2.34 inspires us to consider how well (or respectively, badly) irrational num-
bers can be approximated by rationals, which will be further explored in the following
sub-section.
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2.3 The Badly Approximable Numbers

From Example 2.34 we have that for all p/q ∈ Q,∣∣∣∣φ− p

q

∣∣∣∣ > 1√
5q2

,

which can be re-written as
q||qφ|| > 1√

5
,

for all q ∈ N. Combining this inequality with Theorem 2.11 (the convergents to a contin-
ued fraction of a number are that number’s best approximations), allows us to conclude
that

lim inf
q→∞

q||qφ|| = 1√
5
.

From Hurwitz’ Theorem 2.33, we know that for all α ∈ R,

lim inf
q→∞

q||qα|| 6 1√
5
.

This leads us to define the following constant c(α) (also known as Lagrange’s con-
stant), which we can then use to classify numbers α ∈ R:

2.35 Definition (approximation constant [Bug12]). For each number α ∈ R, we define
its approximation constant c(α) as

c(α) := lim inf
n→∞

n||nα||.

For any rational number, we clearly have that c(α) = 0 (consider the sequence of
multiples of its denominator). In fact, in Theorem 2.47 we will see that for ‘most’ numbers
α ∈ R, this c(α) = 0. On the other hand, Example 2.34 shows that for the Golden Ratio
φ, we have c(φ) = 1/

√
5 6= 0. This prompts us to define:

2.36 Definition (badly approximable number). We call α ∈ R badly approximable iff
c(α) > 0. We will denote by BAD the set of badly approximable numbers.

An alternative and more explicit formulation of this is given in [Bug12] and [Bur01]:

2.37 Definition. A number α ∈ R is called badly approximable iff there is a positive
constant c = c(α) such that for all rational p

q
we have∣∣∣∣α− p

q

∣∣∣∣ > c

q2
.
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These numbers are called ‘badly approximable’, since there is a non-zero constant
beyond which they cannot be approximated. In other words, all approximations of these
numbers are ‘relatively far’ away from the numbers themselves.

Given the above definitions, it initially seems that examples of badly approximable
numbers are very difficult to find. One natural starting point is the Golden Ratio. In the
previous section, we noticed that its continued fraction expansion exhibits an interesting
pattern - it is just the constant number 1. This prompts us to ask whether it might be
possible to characterize badly approximable numbers in terms of their continued fraction
expansion. Indeed, this is the case, as the following Theorem illustrates.

2.38 Theorem. A number α ∈ R is badly approximable iff the partial quotients an in its
continued fraction expansion are bounded.

Proof. We follow the proof given in [Bur01] and in [Bug12].
First, let α ∈ R be badly approximable with approximation constant c(α) > 0, and

let n ∈ N be a positive integer.
Combining the inequality for c(α) with Corollary 2.17, we obtain

c

q2n−1
<

∣∣∣∣α− pn−1
qn−1

∣∣∣∣ < 1

qnqn−1
,

and thus
qn 6

qn−1
c
.

By Theorem 2.13, we have that qn > anqn−1; thus an 6 1
c
. Thus, the sequence of

partial quotients is bounded.
For the converse, assume that the partial quotients of α are bounded, say by some

M ∈ R. Then, for any non-negative integer n ∈ N,

qn+1 6 (M + 1)qn.

Also, by Theorem 2.19, we have that if there are positive numbers p, q ∈ N such that∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
,

then p/q is a convergent in the continued fraction expansion of α, in other words, there
is an n ∈ N such that p = pn and q = qn. Thus, by Corollary 2.17, we have that∣∣∣∣α− p

q

∣∣∣∣ > 1

q(q + qn+1)
>

1

(M + 2)q2
.

Thus, by Theorem 2.15, we can conclude that α is badly approximable.
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Thus, it is relatively easy to imagine the continued fraction expansion of a badly
approximable number. Also, we can describe all badly approximable numbers via their
continued fraction expansion. Moreover, by a Cantor-type argument, we can construct
uncountably many such numbers.

However, if we do not want to resort to continued fraction expansions, do we know
of any numbers besides the Golden Ratio which occur ‘naturally’ in mathematics and
are badly approximable? In 1748, Euler derived the continued fraction expansion of e
[Eul48]:

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, . . .].

A more comprehensible proof of the above equality can be found in [Old70], who won
the Chauvenet Prize in 1973 for his exposition of this derivation. In fact, the continued
fraction expansion of e has unbounded partial quotients, and thus e is not badly approx-
imable. The beautiful patterns exhibited in it, and in the continued fraction expansions
of its rational powers, have spurred numerous research, including [Els99], [Kom07], and
[BBG04].

What about another irrational favourite, π? Its continued fraction expansion is

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, . . .].

There are no known arithmetical relations between the partial quotients of its continued
fraction expansion [Gar95], and, as far as the author knows, it is still open whether or
not π is badly approximable.

If we move away from transcendental numbers like π and e, what can we say about al-
gebraic irrationals? The Golden Ratio φ is a quadratic irrational; looking at its continued
fraction expansion, we notice its partial quotients are in fact a constant - a0 = a1 = . . . = 1

- and thus this quadratic irrational is badly approximable. So, we can ask ourselves: is
this a coincidence, or does it reveal some deeper pattern about partial quotients and
quadratic numbers? The following theorem of Lagrange answers this very elegantly: a
number has an eventually periodic continued fraction expansion if and only if it is a
quadratic irrational. For completeness and rigour, we define:

2.39 Definition (quadratic irrational). A quadratic irrational is a number of the form
a±
√
b, where a and b are rational and b is not the square of another rational number.

2.40 Theorem (Lagrange). An irrational number x ∈ R is a quadratic irrational if and
only if its continued fraction expansion is eventually periodic.

This theorem shows how to ‘explain’ the continued fraction expansion of a quadratic
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irrational number.
We will need the following Lemma:

2.41 Lemma ([Ros93]). If α is a quadratic irrational and if r, s, t, u ∈ Z, then

rα + s

tα + u

is either rational or a quadratic irrational.

We first prove only the first direction of the implication of Lagrange’s Theorem:

2.42 Proposition. If the real number α expands into an infinite continued fraction which
is eventually periodic, then α is a quadratic irrational number.

Proof. Let α expand into [a0; a1, a2, . . . , aN , aN+1, . . . , aN+k]. Then α is irrational, since
every rational number has a finite continued fraction expansion.

Let
β = [aN , aN+1, . . . , aN+k].

Then, by Theorem 2.16,

β =
pk + βpk−1
qk + βqk−1

,

thus
qk−1β

2 + (qk − pk−1)β − pk = 0.

Therefore, β is a quadratic irrational.
By Theorem 2.16 again,

α =
pN−1β + pN−1
qN−1β + qN−2

,

and thus Lemma 2.41 gives us that α is also a quadratic irrational (since α is not a
rational number, because its continued fraction expansion is infinite).

2.43 Note. In fact, over here we are using the equivalence defined in Proposition 2.23,
and Lemma 2.41 states that two continued fractions which are equivalent in that sense
also share certain properties (of being either rational or quadratic irrational numbers).

2.44 Note. There are several proofs for the other direction, which follow a common arc
of reasoning. They show that there is a sequence of quadratic polynomials fn(x) ∈ Z[x]
which share the same discriminant, whose coefficients can be bounded independently of
n, and such that fn(αn) = 0 for all n. They can thus conclude that two of the elements of
the sequence {αn}n∈N have to be equal, hence the sequence {αn} is eventually periodic,
and with it {an} is also eventually periodic. The main difference between the proofs is
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in the manner in which the fn are constructed and the way in which the coefficients are
bounded.

We now follow [Ste92] for the other direction.

2.45 Proposition. The continued fraction for a quadratic irrational is eventually peri-
odic.

Proof. Let α be a quadratic irrational.
Recall Algorithm 2.9:

an = [αn] (n > 0, α0 = α),

αn = an +
1

αn+1

. (12)

In other words, we have αn+1 =
1

αn−an . We will use induction to show that for each n > 0

there is a polynomial
fn(x) = Anx

2 +Bnx+ Cn,

with An, Bn, Cn integers, which has a non-square, positive determinant, and is such that
fn(αn) = 0.

Base case: For n = 0, we already have that α is a quadratic irrational, so it is the
solution of some function f0(x) = A0x

2 +B0x+ C0.
Induction step: Suppose that such an fn exists for some n > 0; in other words,

fn(x) = Anx
2+Bnx+Cn, with integer coefficients and a positive, not-square determinant,

such that fn(αn) = 0. Then equation (12) gives us

0 = fn

(
an +

1

αn+1

)
= An

(
an +

1

αn+1

)2

+Bn

(
an +

1

αn+1

)
+ Cn

= An
1

α2
n+1

+ (2Anan +Bn)
1

αn+1

+ Ana
2
n +Bnan + Cn.

Multiplying by α2
n+1, we get

0 = α2
n+1

(
Ana

2
n +Bnan + Cn

)
+ αn+1 (2Anan +Bn) + An = 0,
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so in fact

An+1 = Ana
2
n +Bnan + Cn,

Bn+1 = 2Anan +Bn, (13)

Cn+1 = An. (14)

Thus, we have reached an fn+1 such that fn+1(αn+1) = 0. We now show it satisfies the
remaining conditions. Its coefficients are obviously integers, as sums and products of
such. As for the determinant, we have that

B2
n+1 − 4An+1Cn+1 = (2Anan +Bn)

2 − 4(Ana
2
n +Bnan + Cn)An

= B2
n − 4CnAn =: D, (15)

which by hypothesis is greater than 0 and not a square.
In order to get a bound for the coefficients for some of the fn’s, we need to look at the

sequence {An}n>0. This sequence changes sign infinitely often. Indeed, if An became of
constant sign after a certain index m (without loss of generality, An > 0), then equation
(13) would give us that {Bn}n>0 would become a strictly increasing sequence after index
m, and would thus become strictly positive after some index, say l > m, since an > 0 for
n > 1. Combining this with (14) yields that for n > l, An > 0, Bn > 0, Cn > 0. But this
is impossible, since αn > 0, and fn(αn) = Anα

2
n + Bnαn + Cn = 0. A similar argument

gives a contradiction when {An}n>0 becomes a strictly decreasing sequence after a certain
index, since then fn(αn) would be strictly negative after a certain higher index.

Therefore, An changes sign infinitely often, and thus

AnAn−1 < 0 (16)

on some infinite set E ⊂ N. Recalling the definition of Cn from equation (14), this means
that AnCn < 0 for n ∈ E.

Hence, by (15)

|Bn| <
√
D,

|An| 6
1

4
D,

|Cn| 6
1

4
D,

for n ∈ E.
Since the value of D is independent of n, we have that for N ∈ E there are finitely
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many possible values for An, Bn, Cn, and thus there are only finitely many distinct
polynomials fn. Thus, two of the αn are equal, say αn0 = αn1 and thus we have an0+1 =

an1+1. Therefore, the continued fraction of α will eventually become periodic.

It is conjectured that none of the algebraic numbers of degree greater than 2 are badly
approximable, but is currently unresolved [BvdPSZ14]. The best known general result
in this direction is currently the Thue-Siegel-Roth Theorem, for which Roth received a
Fields medal. It can be found in Baker [Bak90]:

2.46 Theorem (Thue-Siegel-Roth’s Theorem). Let α be an algebraic irrational. Then
for any ε > 0, the inequality ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+ε

has only finitely many solutions p/q ∈ Q.

Even though there are uncountably many badly approximable numbers, the set BAD
is in some sense ‘small’, as the following theorem states:

2.47 Theorem. The set BAD of badly approximable numbers has Lebesgue measure zero.

We completely rewrite the proof given in [HW03] to give a more set-theoretic and
measure-theoretic exposition than the one presented there.

Proof. Throughout this proof, we will write ‘perforated interval’ from a to b (where a, b ∈
R) for a real interval (a, b) ⊂ R without the rational points (in other words, (a, b) \ Q).
Throughout this proof, the length of the interval is considered to be its Lebesgue measure
(which coincides with ‘Euclidean’ length), and we note that, by Theorem 1.4, the measure
of a perforated interval is the same as the length of the interval itself.

Note that µ(BAD) =
∑

k∈Z µ(BAD ∩ [k, k + 1]). Since both Lebesgue measure (The-
orem 1.6) and the set of badly approximable numbers are invariant under translation by
integers, we have that ∀k, l ∈ Z,

µ(BAD ∩ [k, k + 1]) = µ(BAD ∩ [l, l + 1]).

Thus, we can initially investigate µ(BAD∩[0, 1]) without any loss of generality. Moreover,
since the set of rational number is null (by Theorem 1.4), we may without loss of generality
restrict ourselves to µ

(
(BAD ∩ [0, 1]) \Q

)
; in other words, to the set of irrational badly

approximable numbers in (0, 1).
By Theorem 2.38, this coincides with the set of numbers in (0, 1) whose continued

fraction expansions are infinite and bounded.
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We note that the set of irrationals with bounded partial quotients is the countable
union of the set of irrationals whose partial quotients are bounded by M , for M ∈ N.
Let us denote the set of irrational numbers in (0, 1) whose partial quotients are bounded
by M ∈ N by FM . Thus, it is sufficient to prove that for all M ∈ N, the set FM is null.

From here on, let M ∈ N be arbitrary but fixed. Denote by Ea1,...,an the set of
irrationals whose first n + 1 partial quotients are 0, a1, . . . , an. Now note that FM is in
fact the countable intersection

FM =

( ⋃
a16M

Ea1

)
∩

( ⋃
a1,a26M

Ea1,a2

)
∩ . . . ∩

( ⋃
a1,...,an6M

Ea1,...,an

)
∩ . . .

=
⋂
n∈N+

 ⋃
ai6M
16i6n

Ea1,...,an

 .

Thus, for all n ∈ N,
FM ⊂

⋃
ai6M,16i6n

Ea1,...,an .

Write
Gn,M :=

⋃
ai6M,16i6n

Ea1,...,an .

We will show that Gn,M lie in the finite union of disjoint intervals, whose number goes to
infinity as n → ∞ slower than their lengths go to zero, and hence limn→∞ µ(Gn,M) = 0.
Note that, for am 6= an, we have that

Ea1,...,am ∩ Ea1,...,an = ∅,

thus we already have that Gn,M consists of disjoint intervals. In particular, this means
that

µ(Gn,M) :=
∑

ai6M,16i6n

µ (Ea1,...,an) . (17)

We will now proceed to prove that µ(Gn,M)→ 0 as n→∞.
Note that Ea1,...,an is the open perforated interval with endpoints

[a1, a2, . . . , an−1, an + 1], [a1, . . . , an−1, an],

which can be easily seen from Theorem 2.16.
Thus, Ea1,...,an is the union of the perforated intervals

Ea1,...,an,1, Ea1,...,an,2, . . . Ea1,...,an,k, . . . ;
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in other words,
Ea1,...,an =

⋃
k∈N+

Ea1,...,an,k.

By Theorem 2.16, the end-points of Ea1,...,an can also be expressed as

(an + 1)pn−1 + pn−2
(an + 1)qn−1 + qn−2

,
anpn−1 + pn−2
anqn−1 + qn−2

;

from which we can calculate (again by Theorem 2.16)

µ(Ea1,...,an) =
1

((an + 1)qn−1 + qn−2)(anqn−1 + qn−2)
=

1

(qn + qn−1)qn
, (18)

noting that the perforated interval has the same Lebesgue measure as the normal interval.
Thus,

µ(Ea1) =
1

(a1 + 1)a1
.

Denote
Ha1,...,an;k :=

⋃
an+16k

Ea1,...,an,an+1 .

The end-points of the perforated interval Ea1,...,an,an+1 are

[a1, . . . , an+1 + 1], [a1, . . . , an+1].

From an argument similar to the proof of Theorem 2.14, the rationals associated with
these continued fraction expansions are either monotone increasing or decreasing, and
therefore the end-points of the perforated interval Ha1,...,an,k are

[a1, . . . , an, k + 1], [a1, a2, . . . , an, 1],

which by Theorem 2.16 can be expressed as the rational numbers

(k + 1)pn + pn−1
(k + 1)qn + qn−1

,
pn + pn−1
qn + qn−1

.

Thus, the length of the perforated interval Ha1,...,an,k is

µ(Ha1,...,an,k) =
k

((k + 1)qn + qn−1)(qn + qn−1)
. (19)
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If we wish to express this in terms of the length of Ea1,...,an , we get that, for all a1, . . . , an,

µ(Ha1,...,an;k)

µ(Ea1,...,an)
=

kqn
(k + 1)qn + qn−1

<
k

k + 1
, (20)

which is obtained by equations (18) and (19).
Recalling the definition of Gn,M and note that

G1,M =
⋃

a1=1,...,M

Ea1 , (21)

and thus

µ(G1,M) =
M∑
a1=1

1

a1(a1 + 1)

=
1

1× 2
+

1

2× 3
+

1

3× 4
+ . . .+

1

M × (M + 1)

= 1− 1

M + 1
=

M

M + 1
,

where the next-to-last equality follows from an easy induction on M .
Note that inequality (20) can be re-written as

µ(Ha1,...,an;k) <
k

k + 1
µ(Ea1,...,an). (22)

Thus, in general,

µ(Gn+1,M) =
∑
a16M
...

an6M

µ(Ha1,...,an;M) by Definition of Gn,M and Ha1,...,an;M

6
M

M + 1

∑
a16M
...

an6M

µ(Ea1,...,an) by equation (22)

=
M

M + 1
µ(Gn,M) again by definition of Gn,M .

Through this formula and equality (21), we derive

µ(Gn+1,M) <

(
M

M + 1

)n+1

Next, we note that, for any arbitrary but fixed M ∈ N, this measure goes to zero as
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n goes to infinity:

lim
n→∞

µ(Gn+1,M) = lim
n→∞

(
M

M + 1

)n+1

= 0.

By monotonicity of Lebesgue measure (Theorem 1.7), µ(FM) 6 µ(Gn,M) for all n ∈ N
and hence µ(FM) = 0 for all M ∈ N, which concludes the proof.

In light of the usefulness of Theorem 2.38 in the proof of Theorem 2.47 and in ‘gen-
erating’ badly approximable numbers, we can shift our focus from studying badly ap-
proximable numbers to investigating infinite continued fraction expansions with bounded
partial quotients. Informally, we could consider the finite number of distinct integers
which occur in the continued fraction expansion of x ∈ BAD as distinct ‘letters’ in an
‘alphabet’. Thus, the continued fraction expansion can be seen as an infinite ‘word’ over
the alphabet. In the following section, we will make this intuition more rigorous.

3 Some Words on Words

Throughout this section, we will expand on material presented in [Lot02], unless otherwise
stated. We will provide a more rigorous exposition of definitions, theorems, and proofs,
and also provide one or two novel theorems. We will also rigorously define concepts used
intuitively in the book. As in [Lot02], the introduction might be a bit dry in the sense
of many definitions without much immediate applications; however, this lays a rigorous
background for swifter formulations later on, both in algebraic combinatorics over words,
and in this Thesis in general.

From here on, the adjective ‘countable’ will refer to infinite countable sets; in other
words, to sets which are in bijection with the natural numbers.

3.1 Definition (alphabet, letter of an alphabet). We define an alphabet to be a set A.
The elements of this set are called letters of the alphabet. We write a ∈ A to mean a is
a letter of the alphabet A.

From here on, we will always assume that the alphabet A is finite.

3.2 Definition (space of words over an alphabet). We denote by A∗ the set of finite
ordered sequences of elements of A, which we will call words over the alphabet A. We
also define the empty word e, the word composed of no letters, and consider it as an
element of A∗. We note that letters in A can also be considered words over A.

To avoid confusion between words and letters, we will use a bold script for the words
and a normal script for the letters. We will write a word w ∈ A∗ as w = w1 . . . wn,
where w1, . . . , wn are letters of the alphabet A. Note that the letters w1, . . . , wn are not
necessarily distinct.
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3.3 Definition (length of a word). If w = w1 . . . wn is a word in A∗, then n is called the
length of w and denoted by |w|.

We may observe the following:

3.4 Note. We can view A∗ as the set of maps from some subsets of N into A in the
following sense: for every word w = w1 . . . wn we define a map fw : {0, . . . , n−1} → A by
fw(i) = wi+1 for i ∈ {0, . . . , n− 1}, and vice-versa - for every map f : {0, . . . , n− 1} → A

we define a word w = w1 . . . wn with wi = f(i− 1).

The above correspondence justifies the author of this dissertation to formulate and
prove the theorem:

3.5 Theorem. The set of finite words A∗ is bijective to
⋃
n∈N

∏
06i<nAi, where Ai = A

for all i 6 n and ∀n ∈ N.

Proof. We construct a bijection f : A∗ →
⋃
n∈N

∏
06i<nAi in the following manner.

For a word w ∈ A∗, w = w1 . . . , wm, we set f(w) = (w1, . . . , wm) ∈
∏

06i<mAi. The
map f is onto: each word of length m corresponds to an ordered m-tuple in

∏
06i<mAi,

and each ordered m-tuple (w1, . . . , wm) is the image of a word w = w1 . . . , wm. Moreover,
f is one-to-one: if u,w ∈ A∗ and w 6= u, then either |w| 6= |u| (thus the ordered tuples
would be of different lengths and trivially not equal), or |w| = |u| (say = m) and
without loss of generality, there exists j 6 |w| such that such that wj 6= uj. Then
f(w) = (w1, . . . , wj, . . . , wm) 6= (u1 . . . , uj, . . . , um) = f(u).

3.6 Note. It is easy to see the two sets in question have the same cardinality. However, the
bijection we just constructed has a further ‘nice’ property, namely, that it can be modified
to be order-preserving in the following sense. If we have an order on the alphabet A, we
can extend it to an order on A∗ by setting w < u if and only if |w| < |u| or |w| = |u| and
there is an index i 6 |w| such that wj = uj for j < i and wi < ui. It is easy to see how
the construction above can be slightly modified to preserve this order. Moreover, from a
purely set-theoretic point of view, the construction above does not rely on the Axiom of
Choice.

This is a very natural bijection, which we will even consider as ‘canonical’. It jus-
tifies identifying the two spaces, and gives a more concrete object to think about when
considering the space A∗.

3.7 Note. In the train of thought of Note 3.4, we can view the length |.| as a function
|.| : A∗ → N, |w| = |domfw|, where fw is the unique map defined in Note 3.4. We will
take the convention that the length of the empty word ε is |ε| = 0.
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3.8 Definition (concatenation). On the space A∗, we will define a binary operation,
called concatenation of words. It maps the pair of words w = w1 . . . wn and u = u1 . . . um

to the word wu = w1 . . . wnu1 . . . un. If we have w = uv for some words u,v,w, will also
say that the word w can be factorized into the words u and v.

Note that concatenation is associative. This will be useful in the next subsection,
when we consider some structure on the space of words induced by this binary operation.

3.9 Definition (conjugate). Let w ∈ A∗ be a word. We say that the word u ∈ A∗ is a
conjugate of w iff there exist words s, t ∈ A∗ such that w = st and u = ts. Note that in
this case, |w| = |u| = |s|+ |t|.

3.10 Definition (conjugacy class). The conjugacy class of a word w ∈ A∗ is the set
of all of its conjugates. More formally, if w = w1 . . . wn, then the conjugacy class of w,
denoted by Conj(w), is

Conj(w) = {w} ∪ {u ∈ A∗ : u = wiwi+1 . . . wnw1 . . . wi−1, 1 < i 6 n}

In order to study the space A∗ of finite words, we can introduce some structure on
it. For example, we can define several orders on A∗: the prefix, radix, and lexicographic
ones. The first one is a partial order, while the latter two are total orders which refine the
prefix order, but can only be defined when the alphabet A is ordered. For the purposes
of this thesis, we will only need the lexicographic order (defined below). The reader
interested in these and more possible orders on words is refered to [Lot02] and [CJS09],
and the reader interested in more on different types of orders on sets and their properties
is refered to the classical book of Set-Theory, [Kun11].

3.11 Definition (prefix). A word u = u1 . . . un is a prefix of a word w = w1 . . . wk if and
only if n 6 k and the letters ui = wi for 1 6 i 6 n. In this case, we will write w = uw′

with the implicit assumption that w′ = wn+1 . . . wk.

In Chapter 5, we will come accross several occasions when one finite word is ‘not
quite’ a prefix of another. Thus, the author of this dissertation introduces the following
definition here:

3.12 Definition (near-prefix of order n). Let v,w ∈ A∗, v = v1 . . . vk, w = w1 . . . wm

with k < m. For a positive integer n < k, we call v a near-prefix of order n of w, if for
all i = 1, . . . k − n, we have vi = wi.

Intuitively, the above definition says that the word v is a prefix of w, with the possible
exception of its last n letters.
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3.13 Definition (lexicographic order). Let A be an ordered alphabet and let u and w

be words over A. The lexicographic order on A∗ is defined in the following manner. We
say u 6 w if and only if either u is a prefix of w, or there exist factorizations u = vau′,
w = vbw′, where v,u′,w′ are words and a and b are letters with a < b.

3.14 Definition (Lyndon word). We call a word w ∈ A∗ a Lyndon word if and only if
it is minimal with respect to the lexicographic order in its conjugacy class.

In order to deal with infinite continued fraction expansions with bounded partial
quotients, we consider the following notion:

3.15 Definition (space of infinite words over a finite alphabet). We denote by AN the
set of infinite ordered sequences of elements of A, which we will call (infinite) words over
the alphabet A.

3.16 Definition (prefix of length n). For an infinite word x ∈ AN, we define the finite
word Prefn(x) ∈ A∗ as the prefix of length n of x.

For example, if v is a near-prefix of order n of w with |v| = k, |w| = m, we have
Prefk−n(v) = Prefk−n(w).

Periodic words will play an especially important part later in Chapter 4 and Chapter
5; thus, we introduce the notion here.

3.17 Definition (periodic infinite word). An infinite word w = w1 . . . wn . . . ∈ AN is
called periodic if for some N ∈ N, we have that for all i ∈ N, wi = wi+N . The least N for
which this equality holds is called the period of the word w. If an infinite word w ∈ AN

is periodic and w = uuuuu . . . for some finite word u = u1 . . . un ∈ A∗, we will write
w = (u) = (u1 . . . un).

There are also words which are similar to the periodic ones, but not necessarily peri-
odic themselves:

3.18 Definition (recurrent word). An infinite word w = w1 . . . wn . . . ∈ AN is called
recurrent if every finite block u ∈ A∗ occuring in w occurs infinitely often.

Note that every periodic word is recurrent; however, not every recurrent word is
periodic. For an example, the interested reader is directed to [Lot02].

3.19 Definition (distance on AN). We define a distance d : AN → R+ ∪ {0} on the set
of infinite words, by d(x,y) = 2−n, where x = x1 . . . xn . . . , y = y1 . . . yn . . . and

n = min{k ∈ N : xk 6= yk}.

We implicitly define d(x,x) = 0.
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In the next section, we will consider a natural extension of this notion of distance to
the space AN ∪ A∗.

Now, we complement the exposition in Lothaire by showing that the function defined
above indeed satisfies the required distance axioms. Let x,y, z ∈ AN. Indeed, since
2−n > 0 for all n ∈ N+ and we have defined d(x,x) = 0, we have that d(x,y) > 0. Also,
d(x,y) = 0 if and only if x = y, since otherwise 2−n > 0. This function is obviously
symmetric, by symmetry of equality. Finally, we show that the triangle inequality holds.
Without loss of generality, assume that x,y, z are all distinct (the case when two are
equal is obvious).

For words u,v ∈ AN, define n(u,v) = min{k ∈ N : uk 6= vk}. Note that for
0 < i < n(x,y), we have xi = yi.

Say n(x,y) = N .
We have two cases.
Case I : if N > n(x, z), then n(y, z) = n(x, z), since yi = xi for i < N . Thus,

2−N < 2× 2−N 6 2−n(x,z) + 2−n(z,y),

as required.
Case II : Assume N 6 n(x, z); in particular, this means that xN = zN , and so zN 6= yN

by definition of N . Thus, n(y, z) = N , since for i < N , we have xi = yi = zi by the
above assumptions. Therefore,

2−N < 2−N + 2−n(x,z) 6 2−n(y,z) + 2−n(x,z),

which finally shows that the distance defined indeed satisfies the triangle inequality, and
thus is indeed a distance.

This distance gives rise to a topology on AN.
We finish with one more notion needed later on:

3.20 Definition (shift operator). The shift operator is the function σ : AN → AN defined
for a word w = w1w2 . . . ∈ AN as σ(w1w2w3 . . .) = w2w3 . . ..

3.1 More Words on Morphic Words

The material in this subsection will be needed for some very interesting observations
in Chapter 5, where certain sequences of numbers have an unexpected pattern in their
binary expansions.

The definition of concatenation justifies viewing the space of words over an alphabet
as an example of a semigroup. We recall the definition of the latter:
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3.21 Definition (semigroup). A semigroup is a set with an associative binary operation.

In order to define some interesting infinite words, we also need the notion of a semi-
group morphism.

3.22 Definition (semigroup morphism). Let S and T be semigroups with binary op-
erations ·S and ·T , respectively. We define a semigroup morphism f from S to T as a
mapping f : S → T such that, for all u,w ∈ S, we have f(u ·S w) = f(u) ·T f(w)

We will now focus on some more specific types of morphisms between spaces of words:
the nonerasing morphisms.

3.23 Definition (nonerasing morphism). We call a morphism h : A∗ → A∗ nonerasing
if and only if the image of each letter is a non-empty word.

In Lothaire, we have the following definition of a morphic word:

3.24 Definition (morphic word, [Lot02]). A morphic word x(h, a) is obtained from a
nonerasing morphism h : A∗ → A∗ and from a letter a ∈ A such that h(a) = as for some
non-empty word s in the following manner:

x(h, a) = ash(s)h2(s) . . . hn(s) . . . .

In order to justify the above definition (in other words, that there are words which
satisfy its conditions), we have the following Theorem 3.25 formulated in Lothaire:

3.25 Theorem. Let h : A∗ → A∗ be a nonerasing morphism, and let a ∈ A be a letter
such that h(a) = as for some nonempty word s. For n ∈ N, denote

un := hn(a), vn = hn(s).

Then

1. un+1 = unvn. In particular, for all n ∈ N, we have that un is a prefix of un+1.

2. un+1 = av0v1 . . .vn

3. We have
x(h, a) = lim

n→∞
un;

moreover, x(h, a) is a fixed point of h and is the unique fixed point of h starting
from the letter a.
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We note that the problem of finite words converging to infinite ones is not addressed
at all in Lothaire. We also note that the infinite word x(h, a) is not in the domain of the
morphism h, and thus we cannot talk about it being a fixed point, as claimed in part 3.

We propose a solution as follows. First, we expand the alphabet to A∪ {ℵ}, where ℵ
is a symbol (letter) not in A. Then, we consider each finite word u ∈ A∗ as an infinite
word uℵ over the alphabet A ∪ {ℵ}. We note that AN ⊂ (A ∪ {ℵ})N, and that A∗ has a
natural embedding ι into (A ∪ {ℵ})N given by ι(u) = uℵ. In this setting, it now makes
sense to talk about finite words in A∗ converging to an infinite word in AN, by continuity
of h, distance, and ι. Finally, we observe that in part 3 of Theorem 3.25, we are in
fact considering the natural extension of the morphism h to (A ∪ {ℵ})N, noting that a
morphism is uniquely defined by its values on the alphabet A.

We now proceed to provide a more rigorous and detailed proof than the one found in
[Lot02]:

Proof. We have that:

1. un+1 = hn+1(a) = hn(h(a)) = hn(as) = hn(a)hn(s) = unvn, where the next-to-last
equality follows from the fact that h is a morphism.

2. We show part 2 by induction. It clearly holds for the base case n = 0. For the
inductive step, let us assume that for some n ∈ N, we have un = av0 . . .vn−1. Then

un+1 = unvn by part 1

= av0 . . .vn−1vn by the inductive hypothesis.

3. By parts 1 and 2, it is clear that the word x is the limit of (the extensions of) its
prefixes. To show it is a fixed point of the extension of h, we note that

h(x) = h(a)h(s)h2(s) . . . = x.

It is the unique fixed point starting with the letter a, since

lim
n→∞

hn(a) = lim
n→∞

un

by definition of un. Moreover, it is easily seen that the distance between the ex-
pansions of un in AN tends to zero as n→∞.

One important example of a morphic word is the Thue-Morse word, which will make
several surprising appearances later on.
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3.26 Definition (Thue-Morse word, [AS99]). Let A = {0, 1}. Define a non-erasing
morphism φ : AN → AN by

φ(0) = 01

φ(1) = 10.

The Thue-Morse word t is defined as the limit

t = lim
n→∞

φn(0).

Note that by Theorem 3.25, the Thue-Morse word t is the unique fixed point of the
nonerasing morphism φ starting from the letter 0.

The first couple of letters of t are

t = 0110100110010110100101100110100110010110011010010110100110010110 . . .

The Thue-Morse word is fascinating both in its wide scope of applications and appear-
ances, from number theory and recurrent geodesics to chess games [Euw29], astronomy
[Rou07], physics in general [AP89], [AAK+86], and in its rich and complex history, which
also reflects the word’s ubiquity in various mathematical (and extra-mathematical) fields.
It was defined independently by many mathematicians and non-mathematicians, in fun-
damentally different settings. For example, world chess champion Max Euwe implicitly
used its properties in his 1929 paper [Euw29] to define sequences of moves which would
lead to infinite repetition in a game of chess. For a more complete and fascinating
overview, the interested reader is refered to [AS99].

We will now focus on the three most significant mathematicians who came upon this
sequence in three completely different contexts. In 1851, Prouhet implicitly discovered
this sequence in his number-theoretic work [Pro51]. However, it was only in 1912 that
Axel Thue explicitly defined the word in his paper [Thu12] on combinatorics on words.
Thue was probably completely unaware of Prouhet’s work; ironically, since Thue’s own
paper was in an obscure Norwegian journal, it also did not gather the amount of attention
it deserved. Definition 3.27 below can be found in his ‘Satz 5’, or Theorem 2.4 in [Ber94],
which is a translation of two papers of Thue. These papers of Thue would become
one of the foundations of the field of combinatorics on words, which would gain greater
popularity a bit later on in the 1900’s. The sequence was ‘discovered’ yet a third time by
Marston Morse in 1921 [Mor21] in differential geometry.

This brings us to some alternative ways of defining the Thue-Morse word, which are
not at all obviously equivalent.
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3.27 Definition (Thue-Morse word [Lot02]). Let A = {0, 1}. Define sequences of words
{un}n>0 {vn}n>0 over the binary alphabet A by

u0 = 0, v0 = 1,

un+1 = unvn, vn+1 = vnun, n > 0.

The Thue-Morse word t is defined as the limit

t = lim
n→∞

un.

3.28 Note. Through Definition 3.27, one can easily see that the prefixes un of the Thue-
Morse word of length 2n have the following structure (for n > 1):

un = un−1un−1,

where by w we denote the binary word obtained from w by changing all the 0’s to 1’s
and vice-versa.

3.29 Definition (Thue-Morse word, [AS03]). The Thue-Morse word t = t1t2 . . . tn . . . is
the unique infinite word over the binary alphabet satisfying the following condition: for
n ∈ N,

• tn = 1 if the number of 1’s in the binary expansion of n is odd;

• tn = 0 otherwise (if the number of 1’s in the binary expansion of n is even).

To give a flavour of precisely how ubiquitous and strange this sequence is, here is yet
another definition:

3.30 Definition (Thue-Morse word, [AC85]). Inductively define a sequence of numbers
{αn}n>0 by α0 = 1, and

αn+1 :=

{
+1 if

(
1
2

)α0 ×
(
3
4

)α1 × . . .×
(
2n+1
2n+2

)αn
>
√
2
2
,

−1 if
(
1
2

)α0 ×
(
3
4

)α1 × . . .×
(
2n+1
2n+2

)αn
<
√
2
2
.

Then the sequence {αn}n>0 is equal to the Thue-Morse sequence on the alphabet {−1,+1}.
Alternatively, for all n > 0 we have αn = (−1)tn , where tn is the nth letter of t.

3.31 Theorem. Definitions 3.26, 3.27, 3.29 and 3.30 are all equivalent.

For a proof of the equivalences in Theorem 3.31, the interested reader is referred to
[AS03], [Lot02] and [AC85].
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3.32 Theorem. The words 111 and 000 are not factors of the Thue-Morse word.

We mention the above Theorem 3.32 out of interest; it will not be central to the rest
of this thesis. A proof of this can be found in [Lot02]

The Thue-Morse word has made many unexpected appearances in very diverse fields,
from mathematics to physics and beyond. It will make at least one more such appearance
later on in this Thesis.

3.2 Words in Diophantine Approximations

What do combinatorics on words have to do with Diophantine approximation?
We can consider the continued fraction expansions of badly approximable numbers

as words over finite alphabets: we know that they are bounded, and each one of the
convergents can be considered as a letter in the alphabet.

Notation. For a badly approximable number α ∈ R, we will denote by w(α) the word
obtained from its continued fraction expansion.

For example, the Golden ratio is the infinite word composed of just one letter:

w(φ) = 1111 . . . 1 . . . = (1).

More generally, we have:

3.33 Corollary (Corollary to Lagrange’s Theorem). Let α ∈ [0, 1] be a quadratic irra-
tional. By Theorem 2.40, its continued fraction expansion is bounded, say by M ∈ N.
Then w(α) is an eventually periodic word over the alphabet A = {0, 1, . . . ,M}.

Moreover, the expansions of real numbers in a given base can be considered as words.
For the purposes of this dissertation, we will only need to consider the binary expansions
of numbers in the unit interval [0, 1].

Notation. Let α ∈ [0, 1] be a number. We will denote by w(2)(α) the word obtained from
its binary expansion, which will be a word over the binary alphabet A = {0, 1}.

3.34 Example. For example, we have:

1. w(2)(1/4) = 01,

2. w(2)(1/3) = 01010101 . . . = (01).

The theory of combinatorics on words has been useful not only as a language with
which to talk about continued fraction expansions or binary expansions of certain num-
bers, but also has been useful in the study of those numbers. For example, Theorem 4.6
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considers badly approximable numbers α such that w(α) is a recurrent word. There are
many other applications in results related to badly approximable numbers, as we will see
in Sections 4 and 5.

We now have all the necessary machinery to continue onto the Littlewood and related
conjectures.

4 The Littlewood Conjecture and a Little More (or

Less)

The Littlewood Conjecture was first stated by John Littlewood in the 1930’s in his book
[Lit68], but is more often cited as first mentioned in a 1942 paper by one of his students,
D. Spencer [Spe42]. It has since become a major problem in Diophantine approximation,
which unfortunately is currently considered out of reach. It has nonetheless spurred a
lot of research, as evidenced by the number of papers in preparation or that have been
recently published in the area. Moreover, study of the Littlewood Conjecture has inspired
several other ‘Littlewood-type’ problems to be asked. In this thesis, we will focus on two
of them: the Mixed Littlewood Conjecture, and a special case - the p-adic Littlewood
Conjecture.

4.1 The Littlewood Conjecture

Dirichlet’s Theorem 2.24 can be re-stated as: for any irrational number α, there exist
infinitely many integers n ∈ N such that

n||nα|| 6 1.

It is natural to ask what happens in higher dimensions. In particular, what can we
say about a pair of numbers α, β ∈ R? Dirichlet’s inequality implies that for all pairs
(α, β) ∈ R2, there are infinitely many n ∈ N such that

n.||nα||.||nβ|| < 1.

Littlewood conjectured that the constant 1 on the right-hand side of the above inequality
can be replaced by an arbitrarily small value:

4.1 Conjecture (Littlewood Conjecture). For every pair of real numbers α, β ∈ R, we
have:

lim inf
q→∞, q∈N

q.||qα||.||qβ|| = 0. (23)
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From now on, whenever we talk about lim infq→∞ P (q), where P (q) is some expression,
we implicitly assume that q ∈ N.

Note that, if Dirichlet’s inequality is a statement about how well a real number can
be approximated by a rational number with a relatively small denominator, then the
Littlewood Conjecture is a statement about how well rational numbers with the same
denominator can simultaneously approximate pairs of reals. However, this conjecture is
incredibly difficult to prove. It is not even known whether the Littlewood Conjecture
holds for α =

√
2 and β =

√
3 [HM14]! More generally, it is still open whether the

conjecture holds in the case when α and β are quadratic irrationals which are linearly
independent over Q.

So, for which numbers do we know that the Littlewood conjecture is satisfied? Firstly,
equation (23) obviously holds for any pair of rational numbers p1/q2, p2/q2 ∈ Q. Moreover,
whenever α /∈ BAD, the pair (α, β) satisfies Littlewood for any β ∈ R. By looking at
(24), one can intuitively see why the badly approximable numbers are the natural set of
counter-examples to consider. This is made more rigorous in the following Proposition:

4.2 Proposition. For any real α /∈ BAD, we have

lim inf
n→∞

n||nα||.||nβ|| = 0

Proof. Let α /∈ BAD. Then there is a sequence {nk}k∈N of natural numbers such that

lim
k→∞

nk||nkα|| = 0.

Note that for all β ∈ R, for all n ∈ N, the value ||nβ|| is bounded above by 1/2. Therefore,
for all β ∈ R,

lim
k→∞

nk||nkα||.||nkβ|| = 0,

and thus
lim inf
n→∞

n||nα||.||nβ|| = 0,

as required.

How big is the set of possible counter-examples to the Littlewood Conjecture? Ideally,
we would want the Conjecture to be true, and thus would want the set to be empty. Until
the conjecture is proven, we can try to provide some estimates on the size of the set of
numbers which might be counter-examples to it. We have seen that in the 1-dimensional
case, for badly approximable numbers α we have

lim inf
n→∞

n||nα|| > 0. (24)
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This, coupled with Proposition 4.2 gives that the set of possible counter-examples to the
Littlewood conjecture is a subset of the badly approximable pairs. Therefore, the set of
potential counter-examples is in one sense very small - as a corollary to Theorem 2.47,
we have that it also has Lebesgue measure zero. However, the set BAD is in another
sense ‘large’ - it has full Hausdorff dimension in R. We will not go into details of Haus-
dorff dimension here, but intuitively such sets have a very ‘rich’ structure. Recently,
Pollington and Velani [PV00] have shown that if α ∈ BAD, then set of β ∈ BAD such
that 1, α, β are linearly independent over Q and the Littlewood Conjecture holds for α
and β has full Hausdorff dimension. We would want a better restriction on its Hausdorff
dimension than the one available through [PV00]. A more recent result by Einsiedler,
Katok and Lindenstrauss [EKL06] provides just that: it states that the set of excep-
tions to the Littlewood Conjecutre has zero Hausdorff dimension. Still, we do not know
anything about the cardinality of the set of potential counter-examples. Though it has
both Lebesgue measure zero and Hausdorff dimension zero, it might still be uncountable.
Of course, if the Littlewood Conjecture holds, the set of its counter-examples would be
empty; however, we can currently not even restrict its cardinality to be countable.

The Pollington-Vellani Theorem [PV00] states that the structure of pairs of possible
counter-examples is very ‘rich’, but provides no specific example of such pairs. Cassels and
Swinnerton-Dyer showed that the Littlewood conjecture is satisfied for pairs of numbers
that belong to the same cubic field [CSD55]. Moreover, Peck [Pec61] has shown that, if
α, β are both cubic irrationals in the same cubic field, the following inequality is satisfied
infinitely often:

q||qα||.||qβ|| 6 1

ln q
.

If it were true that the only badly approximable algebraic irrationals are the quadratic
ones, then Peck’s Theorem (and the Cassels-Swinnerton-Dyer result) would follow im-
mediately from Proposition 4.2. However, as previously mentioned, it is still unknown
whether the cubic irrationals are badly approximable or not. So far we do not have any
specific example of a badly approximable pair of numbers which satisfies the Littlewood
Conjecture.

The above inequality from Peck’s Theorem might make one wonder: what will happen
if we consider a variation of the expression in equation (23)? In 2011, Badziahin showed
that

4.3 Theorem ([Bad11]). For any α ∈ R, the set of numbers β ∈ R for which

infq>3q. ln q ln ln q.||qα||.||qβ|| > 0

has full (Hausdorff) dimension.
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However, there are other modifications of equation (23) which lead to new open ques-
tions. This brings us to the next subsection.

4.2 The Mixed Littlewood Conjecture

It is natural to ask: what makes the Littlewood conjecture so difficult? One possible
intuitive answer would be the addition of another number, β. So perhaps, if one were to
replace ||nβ|| by something else which depends perhaps on n or α in equation (23), the
question would become easier to tackle.

One such variation was proposed by de Mathan and Teulié in [dMT04], where they
use a ‘generalisation’ of the p-adic norm (discussed further in the next subsection):

4.4 Conjecture (Mixed Littlewood Conjecture, [dMT04]). Let D = {dk}k>1 be a se-
quence of integers such that dk > 2 for all k ∈ N, and define integers en (for n ∈ N)
by:

e0 = 1

en =
∏

16k6n

dk.

For an integer p, we define

wD(p) := sup{n > 0 : p ∈ enZ},

and
|p|D =

1

ewD(p)

= inf

{
1

en
: p ∈ enZ

}
.

Then, for all α ∈ R, we conjecture that

lim inf
q→∞

q.||qα||.|q|D = 0.

Note that α must be badly approximable. We can draw some parallels with the
Littlewood Conjecture. Just as the Littlewood Conjecture has been established for pairs
of numbers in the same cubic field, so do we have, by a 2004 result of de Mathan and
Teuilie, that a very strong inequality holds for quadratic irrationals in a special case -
note the additional factor of log n in the inequality below:

4.5 Theorem ([dMT04]). For any bounded sequence D of integers greater or equal to 2

and for any α ∈ R, if α is a quadratic irrational, then

lim inf
n→∞

n|n|D||nα|| lnn <∞.
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Another proof of Theorem 4.5 follows from [BBEK14, Section 6].
We finish this section with a very interesting result linking the Mixed Littlewood

Conjecture to the word obtained from the continued fraction expansion of a number:

4.6 Theorem ([BBEK14]). Let {an}n∈N+ be a sequence of positive integers. If there exists
m ∈ N such that the infinite word am+1am+2 . . . is recurrent, then, for every sequence D
of integers greater than or equal to 2, the real number α := [0; a1, a2, . . .] satisfies

inf
q>1

q.|q|D.||qα|| = 0.

4.3 The p-adic Littlewood Conjecture

A slight weakening of the Mixed Littlewood conjecture is the p-adic Littlewood conjecture,
which takes the sequence D to be just the constant sequence {p}n∈N, where p is some
prime number. Thus, the valuation |.|D introduced in the Mixed Littlewood Conjecture
(4.4) becomes the p-adic norm.

For completeness, we introduce the notion of p-adic norm; for theory related to p-adic
analysis, we use [Gou93] and [Rob00].

4.7 Definition (p-adic valuation on Z). Let p ∈ Z be prime. We define the p-adic
valuation on Z as the map νp(x) : Z→ N given by νp(x) = q. For x ∈ Z \ {0}, we define
q as the greatest power of p in the prime factorization of x, in other words,

pq | x and pq+1 - x,

and we set νp(0) =∞.

4.8 Definition (p-adic norm). Let p ∈ Z be prime. We define the p-adic norm |.|p on Z
as the function |.|p : Z→ R defined by

|x|p := p−νp(x).

The p-adic norm can be generalized for rational numbers, but the above definition
suffices for the purposes of this thesis.

Note that, for all m,n ∈ N and all prime p ∈ Z, pm|pn|p = pm−n.
The p-adic Littlewood Conjecture states:

4.9 Conjecture (p-adic Littlewood Conjecture). For all α ∈ R, for all prime p ∈ Z, we
have

lim inf
n→∞

n|n|p||nα|| = 0. (25)
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When a real number α satisfies the p-adic Littlewood Conjecture, we will write pLC(α)
for brevity.

The Conjecture was formulated by de Mathan and Teuille in [dMT04], and is believed
more accessible than the classic Littlewood conjecture. We can say something about
quadratic irrationals in the p-adic case (analogous to the Mixed Littlewood Case), by
setting the sequence D to be the constant sequence {xn}n∈N, xn = p ∀n ∈ N, in Theorem
4.5. An alternative proof of the p-adic version of Theorem 4.5, using connections between
the chromatic number of Cayley graphs and Diophantine approximation, can be found
in [HM14].

Similarly as in the case of the Littlewood conjecture, we can naturally try to estab-
lish some sort of measures on the sets of numbers which satisfy the p-adic Littlewood
Conjecture. We automatically have that the set of possible counter-examples is a subset
of BAD and thus has Lebesgue measure zero. Einsiedler and Kleinbock used the same
method as in [EK07] to show that, for any prime p ∈ Z, the set of real numbers α for
which the ordered pair (α, p) satisfy (25) is ‘small’ (it has Hausdorff dimension zero).

There are also relations between the word obtained from a number α’s continued
fraction expansion and whether it satisfies the p-adic Littlewood Conjecture; namely, if
it contains arbitrarily long periodic parts, it satisfies the p-adic Littlewood Conjecture:

4.10 Theorem ([BDdM07]). Let the badly approximable number α ∈ R be expanded into
a continued fraction as α = [a1; a2 . . . , ]. Let T ∈ N+ and let b1, . . . , bT ∈ N+. If there
exist two sequences {mk}k>1, {hk}k>1, mk, hk ∈ N+, such that {hk}k>1 is unbounded and
also such that, for every j = 1, . . . , T and every n = 0 . . . , hk − 1,

amk+j+nT = bj,

then for any prime p ∈ Z, we have that the ordered pair (α, p) satisfies the p-adic Little-
wood Conjecture.

We have that ‘most’ numbers clearly satisfy the p-adic Littlewood Conjecture. In the
following chapter, we will investigate a certain special number, and show that it satisfies
the p-adic Littlewood conjecture when p = 2.

5 Looking at a Potential Counter-example to the 2-adic

Littlewood Conjecture

Studying particular cases of a conjecture is useful, because it gives concrete examples,
based on which further generalisations and observations about the conjecture can be
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made. In this section, we will consider a partial case of the p-adic Littlewood conjecture
when p = 2, and obtain a possible upper bound for the corresponding expression in
equation (25). Through this method of construction, we will see that this bound will
also be a potential counter-example to the Conjecture, since the expression on the left
hand side of (25) will be in some sense ‘large’ (Corollary 5.12). We will also explore
some interesting connections with algebraic combinatorics on words, especially the Thue-
Morse word. Finally, we will pose some open problems and give directions for further
development.

Obviously, we have that

lim inf
q→∞

q|q|p||qα|| 6
1

2

for any α ∈ R and any prime p ∈ N. However, there are no known non-trivial upper
bounds for the expression on the left hand side of (25), even in the case when p = 2.
In this section, we will provide such a bound, c, which will be the limit of a decreasing
sequence {cn}n∈N; moreover, we have that c1 = 1/3 < 1/2, which makes c a much better
upper bound for the expression.

Setting p = 2 in the p-adic Littlewood Conjecture, we obtain a more particular case:

5.1 Conjecture (The 2-adic Littlewood Conjecture). For all α ∈ R, we have

lim inf
q→∞

q|q|2||qα|| = 0. (26)

For brevity, if α ∈ R satisfies equation (26), we will write 2LC(α).
A natural step towards proving the 2-adic Littlewood Conjecture would be to find an

upper bound for the value of lim infq→∞ q|q|2||qα||. In other words, we would want to
find some constant c > 0 such that for every α ∈ R we have

lim inf
q→∞

q|q|2||qα|| 6 c,

and moreover make c as small as possible (ideally, equal to zero).
We have that

lim inf
q→∞

q|q|2||qα|| 6 lim inf
n→∞

2n|2n|2||2nα|| = lim inf
n→∞

||2nα||;

thus, we could begin by finding an upper bound for the right-hand-side lim inf in the
above inequality. We can do this by attempting to find either

γ = sup
α∈R

{
lim inf
n→∞

||2nα||
}
,
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or finding another (best achievable) upper bound for

lim inf
n→∞

||2nα||.

Let us point out that, if found, this γ could serve another purpose: it could help
us find a potential counter-example for the 2-adic Littlewood Conjecture, since for it,
lim infn→∞ ||2nα|| is as big as possible. If γ = 0, then the conjecture is true. If γ > 0,
then we might proceed to construct a potential counter-example.

5.2 Definition. Define T : R/Z→ R/Z as

T (x) := 2x mod 1.

In other words, T n(x) is multiplication of x by 2n and mapping back into [0, 1].

5.3 Note. Note that ||T n(α)|| = ||2nα|| for any n ∈ N and α ∈ R. Thus, T does not
change the lim inf and we can equivalently be aiming to find

sup
α∈R

{
lim inf
n→∞

||T n(α)||
}}
.

5.1 Definining the Sequence {cn}n∈N
We want to find the set of α such that

lim inf
n→∞

||2nα|| > α,

for some α ∈ [0, 1/2]. In order to do that, we make the following definition:

5.4 Definition. We define inductively the following sets:

• Un, the set of x ∈ [0, 1
2
] for which ||2nx|| > x;

• V ′n :=
⋂
k6n Uk - the set for which ||2kx|| > x for all k 6 n;

• Vn := cl(int(V ′n));

• αn := max{r : r ∈ Vn}.

It is easy to check that, for n ∈ N, we have

αn := sup
α∈R

{
inf

k=1,...,n
||T k(α)||

}
,

thus again linking the αn to the function T defined earlier.
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V ′n has some isolated points, and thus we need to take Vn to remove all those isolated
points. For example:

5.5 Example. We have that U1 = [0, 1/3] = V1, U2 = [0, 1/5]∪[1/3, 2/5] and respectively
V2 = [0, 1/5].

1
3

1
5

2
50 1

2

U2

1
3

1
50 1

2

V ′
2

1
50 1

2

V2

For n = 3, we have:

1
7

2
7

3
7

1
9

2
9

3
9

4
90 1

2

U3

1
3

1
5

1
7

1
90 1

2

V ′
3

1
5

1
7

1
90 1

2

V3

5.6 Proposition. The sets Un are unions of the following intervals:

Un =
⋃

06i<2n−1

[
i

2n − 1
,
i+ 1

2n + 1

]

Indeed, we can easily see that for small n, we have

U1 =
⋃

06i<1

[
i

1
,
i+ 1

3

]
=

[
0,

1

3

]
U2 =

⋃
06i<2

[
i

3
,
i+ 1

5

]
=

[
0,

1

5

]
∪
[
1

3
,
2

5

]
U3 =

⋃
06i<3

[
i

7
,
i+ 1

9

]
=

[
0,

1

9

]
∪
[
1

7
,
2

9

]
∪
[
2

7
,
3

9

]
∪
[
3

7
,
4

9

]
.
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Proof. For the inclusion Un ⊆
⋃

06i<2n−1

[
i

2n−1 ,
i+1
2n+1

]
, we have that x ∈ Un if and only if

||2nx|| > x. Now, let k > 0 be the unique integer such that k 6 2nx < k + 1. Note that
since x 6 1/2, then immediately we have k 6 2n−1. Also,

min {2nx− k, k + 1− 2nx} > x.

Representing this as a system of two inequalities, we get that

2nx− k > x

k + 1− 2nx > x;

which can be solved as

x >
k

2n − 1

x 6
k + 1

2n + 1
,

in other words,

x ∈
[

k

2n − 1
,
k + 1

2n + 1

]
⊂

⋃
06i<2n−1

[
i

2n − 1
,
i+ 1

2n + 1

]
,

as required.
For the reverse inclusion, we have

x ∈
⋃

06i<2n−1

[
i

2n − 1
,
i+ 1

2n + 1

]

if and only if there is an integer k, 0 6 k < n, such that

x ∈
[

k

2n − 1
,
k + 1

2n + 1

]
.

Note in particular, x 6 k+1
2n+1

.
Then

2nx ∈
[

2nk

2n − 1
,
2n(k + 1)

2n + 1

]
=

[
k +

k

2n − 1
, k + 1− k + 1

2n + 1

]
,
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and thus
||2nx|| > max

{
k

2n − 1
,
k + 1

2n + 1

}
=

k + 1

2n + 1
> x,

in other words, ||2nx|| > x, so x ∈ Un as required. This completes the proof.

We would ideally like to give a formula for the αn, or at least an upper bound, for
each n. We give an upper bound through the following definition and Theorem 5.9.

5.7 Definition. We define the sequence {cn}n∈N of rational numbers by setting c0 = 1
3
,

and for n ∈ N+, setting

cn =

∏n−1
i=0

(
22

i − 1
)

22n + 1
.

We begin with the following observation:

5.8 Proposition. The sequence {cn}n∈N defined above is a strictly decreasing sequence
of positive numbers, hence convergent.

Proof. For all n ∈ N, it is obvious that cn > 0. To check the sequence is strictly
decreasing, we note that

cn+1 =

(
22

n
+ 1
) (

22
n − 1

)∏n−1
j=0

(
22

j − 1
)

(22n+1 + 1) (22n + 1)
= cn

22
n+1 − 1

22n+1 + 1
,

where the fraction on the right-hand side is always positive and strictly less than 1.

5.9 Theorem. For all n ∈ N and for all m ∈ {0, 1, . . . , 2n − 1}, we have that

cn > α2n+m.

In other words, cn is an upper bound for the respective α2n+m.

Proof. We use induction on n.
Base case: We already have computed that α1 = 1/3 = c0, and so α1 6 c0, as

required. Similarly, one could also compute α2 = 1/5 = c1, and thus check that indeed,
α2 6 c1.

Inductive step: Assume that for some n ∈ N+ and for all m ∈ {0, 1, . . . , 2n − 1}, we
have

cn > α2n+m.

By Definition 5.4 of αn, this means that cn is an upper bound for V2n+m for all m ∈
{0, 1, . . . , 2n − 1}. For brevity, write P (n) =

∏n−1
i=0

(
22

i − 1
)
. Note that

cn =
P (n)

22n + 1
=
P (n+ 1)

22n+1 − 1
,
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and thus the single point {cn} is the intersection of the two intervals

I0 =

[
P (n)− 1

22n − 1
,
P (n)

22n + 1

]
, and

I1 =

[
P (n+ 1)

22n+1 − 1
,
P (n+ 1) + 1

22n+1 + 1

]
.

By Proposition 5.6, we have that I0 ⊂ U2n and I1 ⊂ U2n+1 . Thus, cn is an isolated point
of U2n ∩ U2n+1 and is therefore not an element of V2n+1 , by Definition 5.4 of Vn. We note
that the interval of U2n+1 which immediately precedes I1 is[

P (n+ 1)− 1

22n+1 − 1
,
P (n+ 1)

22n+1 + 1

]
=

[
P (n+ 1)− 1

22n+1 − 1
, cn+1

]
.

Combining this with the inductive hypothesis that cn was an upper bound for V2n , and
with the structure of Un given by Proposition 5.6, we obtain that cn+1 is an upper bound
for V2n+1 , as required.

Besides being upper bounds for the αn’s, the numbers cn are also interesting in the
following sense - for certain values of k, the expression ||kcn|| is ‘relatively large’:

5.10 Theorem. For all q, n ∈ N, we have

||2qcn|| > cn.

Proof. For brevity, we again write P (n) =
∏n

i=0

(
22

i − 1
)
. We begin with the following

observation about the values of ||2mcn||, for m ∈ N. First, since P (n) is an integer, we
note that ||2mP (n)− x|| = ||x||, for any x ∈ R, for any n,m ∈ N.

Let m ∈ N be arbitrary but fixed. We note that

||22n+mcn|| =
∣∣∣∣∣∣∣∣22n2mP (n)22n + 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣2mP (n)− 2mP (n)

22n + 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣2mP (n)22n + 1

∣∣∣∣∣∣∣∣
= ||2mcn|| .

Thus, the expression ||2mcn|| is periodic, can take only finitely many values for m ∈ N,
and moreover, ||2mcn|| takes at most 2n distinct values. Therefore, it is sufficient to show
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that for all n ∈ N,

||cn|| > cn,

||2cn|| > cn,

...

||2ncn|| > cn.

We do this by induction on n.
Base case: For n = 0, we have ||c0|| = 1/3 > 1/3 = c0, as required. Moreover, we can

check that ||2c0|| = 1/3 > c0, as well, and that since 0 < cn 6 1/3, we have that for all
n ∈ N, ||2cn|| > cn.

Inductive step: Assume that for some n ∈ N, we have that for all m = 0, . . . , n,

||2mcn|| > cn.

We want to show that for n+ 1 and m = 0, . . . , n+ 1, we also have that

||2mcn+1|| > cn+1.

We first calculate
cn − cn+1 =

2cn
22n+1 + 1

.

Thus, for m = 0, . . . , n, we have

||2mcn+1|| =
∣∣∣∣∣∣∣∣2mcn − 2m+1cn

22n+1 + 1

∣∣∣∣∣∣∣∣ and by Proposition 2.3,

> ||2ncn+1|| −
∣∣∣∣∣∣∣∣ 2m+1cn
22n+1 + 1

∣∣∣∣∣∣∣∣ and by the Inductive Hypothesis,

> cn −
∣∣∣∣∣∣∣∣ 2m+1cn
22n+1 + 1

∣∣∣∣∣∣∣∣ and since 0 < cn < 1/2 and 0 <
2

22n+1 + 1
< 1,

= cn −
2 ||2mcn||
22n+1 + 1

and again applying the Inductive Hypothesis,

> cn −
2cn

22n+1 + 1
which, by the previous calculations, is just

= cn+1

Now all we need to complete the induction is to show that ||2n+1cn+1|| > cn+1. Indeed,
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we have

∣∣∣∣2n+1cn+1

∣∣∣∣ = ∣∣∣∣2n+1cn
∣∣∣∣− ∣∣∣∣∣∣∣∣ 2n+2cn

22n+1 + 1

∣∣∣∣∣∣∣∣ and since ||2ncn|| has period 2n,

= ||2cn|| −
∣∣∣∣∣∣∣∣ 2n+2cn
22n+1 + 1

∣∣∣∣∣∣∣∣ by the Inductive Hypothesis,

> cn −
2 ||2n+1cn||
22n+1 + 1

and as previously,

> cn −
2cn

22n+1 + 1
= cn+1.

This completes the proof.

We have in fact shown that

5.11 Corollary (to Theorem 5.10). For all n ∈ N,

cn ∈
⋂

k=0,...,n

Uk.

We have also shown that,

5.12 Corollary (to Theorem 5.10). For all n ∈ N,

lim inf
q→∞

||2qcn|| = cn.

Proof. Let n ∈ N be arbitrary but fixed. Theorem 5.10 gives us that

lim inf
q→∞

||2qcn|| > cn, (27)

since all of the elements of the sequence {||2qcn||}q∈N are greater than or equal to cn. To
show that in fact we have equality, we note that in the proof of Theorem 5.10, we showed
that ||22n+mcn|| = ||2mcn||. Setting m = 0, we obtain that ||22ncn|| = ||cn|| = cn. Thus,
the subsequence

{
||22qcn||

}
q∈N is the constant sequence {cn}q∈N, so

lim
q→∞

∣∣∣∣22qcn∣∣∣∣ = cn.

Thus, we have shown that in fact, we have equality in (27), as required.

5.13 Corollary. For all n ∈ N,

lim inf
q→∞

q|q|2||qcn|| 6 cn.
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Proof. Let n ∈ N be arbitrary but fixed. From Corollary 5.12, we have that

lim inf
q→∞

q|q|2||qcn|| 6 lim inf
m→∞

2m|2m|2||2mcn|| = lim inf
m→∞

||2mcn|| = cn,

as required.

Recalling Definition 3.12 of near-prefix, we observe an interesting pattern: the word
w(cn) obtained from the expansion of cn (sans c0) into a continued fraction is in fact a
near-prefix of order 1 of w(cn+1). Slightly abusing notation, we can see this for small n:

c1 =
1

5
= [0; 5]

c2 =
3

17
= [0; 5, 1, 2]

c3 =
45

257
= [0; 5, 1, 2, 2, 6]

c4 =
11475

65537
= [0; 5, 1, 2, 2, 6, 2, 1, 2, 9, 1, 2]

c5 = [0; 5, 1, 2, 2, 6, 2, 1, 2, 9, 1, 2, 2, 1, 1, 21, 1, 10, 2, 1, 1, 1, 5]

c6 = [0; 5, 1, 2, 2, 6, 2, 1, 2, 9, 1, 2, 2, 1, 1, 21, 1, 10, 2, 1, 1, 1, 4,1, 2, 29, 1, 24, 1, 1, 7, 11, 3, 2,

5, 1, 1, 1, 89]

c7 = [w(c6)− last letter of c6 + 88, 1, 1, 1, 6, 1, 1, 33, 2, 6, 1, 24, 1, 5, 212, 2, 1, 10, 1, 3,

11, 2, 1, 2, 1, 10, 11, 2, 3, 2549, 1, 2]

If we can prove this property, it would justify studying the properties of the continued
fraction expansion of the limit c through studying the continued fraction expansions of
the cn. We indirectly do this by using Proposition 2.19, and showing that for all n ∈ N,
cn is a convergent of cn+1:

5.14 Proposition. For each n ∈ N, cn is a convergent in the continued fraction expansion
of cn+1.

In particular, this means that, with some trivial exceptions, the word obtained from
the continued fraction expansion of cn is a prefix of the word obtained from the continued
fraction expansion of cn+1, as required.

Proof. Recall that

cn =

∏n−1
j=0

(
22

j − 1
)

22n + 1
.

We prove, by induction on n, that the inequality from Proposition 2.19 holds for cn
and cn+1; in other words, that for all n ∈ N, cn is a convergent of cn+1.
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We first rewrite the inequality which we wish to verify:

∣∣∣∣∣∣
∏n−1

j=0

(
22

j − 1
)

22n + 1
−

∏n
j=0

(
22

j − 1
)

22n+1 + 1

∣∣∣∣∣∣ < 1

2 (22n + 1)2
⇔

∣∣∣∣∣∣
(
22

n+1
+ 1
)∏n−1

j=0

(
22

j − 1
)
−
(
22

n
+ 1
)∏n

j=0

(
22

j − 1
)

(22n + 1) (22n+1 + 1)

∣∣∣∣∣∣ < 1

2 (22n + 1)2
⇔

∣∣∣∣∣∣
2
∏n−1

j=0

(
22

j − 1
)

(22n+1 + 1) (22n + 1)

∣∣∣∣∣∣ < 1

2 (22n + 1)2
⇔

∣∣∣∣∣∣
4
∏n−1

j=0

(
22

j − 1
)

22n+1 + 1

∣∣∣∣∣∣ < 1

22n + 1
⇔

4
(
22

n
+ 1
)∏n−1

j=0

(
22

j − 1
)

22n+1 + 1
<1,

noting that we may omit the modulus symbol in the last line, since the expression inside
is positive.

We will show this by induction on n ∈ N. Since c0 is not a convergent of c1, the base
case for our induction will begin at n = 2.

Base case: We check that the inequality holds for n = 2; indeed, it becomes

204

257
< 1,

which is correct.
Inductive step: Assume that, for n > 2, n ∈ N, the following inequality holds:

4
(
22

n
+ 1
)∏n−1

j=0

(
22

j − 1
)

22n+1 + 1
< 1. (28)
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For n+ 1, we have

4
(
22

n+1
+ 1
)∏n

j=0

(
22

j − 1
)

22n+2 + 1
=

=
4
(
22

n
+ 1
)∏n−1

j=0

(
22

j − 1
)

22n+1 + 1

(
22

n+1
+ 1
)2 (

22
n − 1

)
(22n + 1) (22n+2 + 1)

< by IH

<

(
22

n+1
+ 1
)2 (

22
n − 1

)
(22n + 1) (22n+2 + 1)

=: f(n)

If we set 22n = x, we get 22n+1
= 22

n2 = x2 and 22
n+2

= 22
n22 = x4, and thus f(n) can

be rewritten as

g(x) :=
(x2 + 1)

2
(x− 1)

(x+ 1)(x4 + 1)
,

where we note f : N→ R, g : R→ R, and f = g|N, in other words, the function f is the
restriction of g to the natural numbers.

Note that, by analysis,
lim
x→∞

g(x) = 1.

We can directly show that g(x) < 1 by expanding out the brackets and noting that the
denominator is always > 0 for positive values of the variable x:

x5 − x4 + 2x3 − 2x2 + x− 1 < x5 + x4 + x+ 1.

It is easy to check (by looking at first and second derivatives and plotting the functions)
that for all x ∈ R,

− x4 + 2x3 − 2x2 + x− 1 < x4 + x+ 1 ⇔

0 < x4 − x3 + x2 + x+ 2.

The polynomial on the right-hand side of the inequality above is plotted below:
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Therefore, we have the required inequality, which completes the inductive step.

5.15 Corollary. The constant c = limn→∞ cn is irrational.

Proof. By the previous proposition, the lengths of the continued fraction expansions of
the cn’s form a monotone increasing sequence. By Theorem 2.15, any number with an
infinite continued fraction expansion is irrational.

5.16 Corollary. The rationals {cn}n∈N are odd convergents of c.

Proof. This follows from Theorem 2.14 and the fact that, by Proposition 5.8, the {cn}n∈N
is a strictly decreasing sequence.

We want to check whether c satisfies the 2-adic Littlewood Conjecture; moreover, we
constructed c as a possible counter-example to the conjecture. In view of the fact that
the set of possible counterexamples to the 2-adic Littlewood Conjecture is a subset of the
badly approximable numbers, it is sensible to ask:

1 Question. Is the constant c badly approximable?

One might try to show that c is badly approximable by considering certain subse-
quences of convergents of its continued fraction expansion. Unfortunately, the sequence
{cn}n∈N is not ‘sufficient’ to show that the 2-adic Littlewood Conjecture holds for c. In-
tuitively speaking, the current approximations cn are not good enough for this purpose,
since they do not contain large powers of 2 in their denominators. Thus, we adopt a new
approach.
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We look at a given function and some rational approximations of it which have certain
‘helpful’ properties. First, we need to translate our problem about the sequence {cn}n∈N
and its limit, c, into a problem about some functions, which are appropriately defined.

5.17 Theorem. Define a sequence of functions fn : (1,+∞)→ R by

fn(t) =

∏n−1
k=0(t

2k − 1)

t2n + 1
,

and define the function f : (1,+∞)→ R by

f(t) = lim
n→∞

fn(t).

Moreover, for any n ∈ N, cn = fn(2), and also c = f(2).

Proof. Obviously, we have that

cn =

∏n−1
k=0(2

2k − 1)

22n + 1
,

are evaluations at the point t = 2 of the sequence of functions fn,

fn(t) =

∏n−1
k=0(t

2k − 1)

t2n + 1
.

By real analysis, we can take the pointwise limit of the sequence of functions {fn}n∈N:

lim
n→∞

fn(t) = lim
n→∞

∏n−1
k=0(t

2k − 1)

t2n + 1

= lim
n→∞

t2
n−1

(1− t−2n−1
)
∏n−2

k=0(t
2k − 1)

t2n(1 + t−2n)

= lim
n→∞

t2
n−1

(1− t−2n−1
)
∏n−2

k=0(t
2k − 1)

(t2n−1)
2
(1 + t−2n)

= lim
n→∞

(1− t−2n−1
)
∏n−2

k=0(t
2k − 1)

t2n−1 (1 + t−2n)
.

Continuing in this way, we obtain

lim
n→∞

fn(t) = lim
n→∞

∏n−1
k=0

(
1− t−2k

)
t (1 + t−2n)

.

We define
f(t) = lim

n→∞
fn(t).

65



Thus,

f(t) =

∏∞
k=0

(
1− t−2k

)
t

,

Thus, we obtain pointwise convergence of {fn}n∈N to f .
Finally, it is obvious that c = f(2).

In order to justify the study of f , we also want to show that f is not the zero function
- that its product is indeed convergent. For this, we need some preliminary theorems.

5.18 Theorem. The sequence
{∏N

n=1

(
1− t−2n

)}
N∈N

is monotone decreasing.

Proof. Note that,
xn = xn−1

(
1− t−2n

)
,

where
(
1− t−2n

)
is strictly less than 1 for positive values of t (which are the only ones

for which we are considering this sequence).

5.19 Theorem. The formal product

∞∏
k=0

(
1− t−2k

)
converges to a non-zero limit, for all t > 1.

Proof. By Theorem 1.12, we have that

∞∏
k=0

(
1− t−2k

)
converges iff

∞∑
k=0

ln
(
1− t−2k

)
converges. Note that, for |t| > 1,

lim
k→∞

(1− 1

t2k
) = 1.

Since the logarithm function is continuous on (0,∞], we can conclude that

lim
k→∞

ln

(
1− 1

t2k

)
= ln(1) = 0.

We want to show that

lim
k→∞

k

√∣∣∣∣ln(1− 1

t2k

)∣∣∣∣ = 0 < 1.
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so we can use the n-th root test (Theorem 1.11) to conclude that the product is indeed
convergent and non-zero. Now, since for t > 1, we have ln(1− t−2k) < 0, so

lim
k→∞

∣∣∣∣ln(1− 1

t2k

)∣∣∣∣ 1k = lim
k→∞

(
− ln

(
1− 1

t2k

)) 1
k

= lim
k→∞

(
ln

(
t2
k

t2k − 1

)) 1
k

. (29)

Note this limit is of the sort ‘00’, so we will need to use l’Hôpital’s rule (Theorem 1.10),
noting that, for functions φ(x), ψ(x) which tend to 0 as x→∞,

lim
x→∞

φ(x)ψ(x) = lim
x→∞

eψ(x) lnφ(x).

We set

φ(k) = ln
t2
k

t2k − 1

ψ(k) =
1

x
,

and first try to find limk→∞ ψ(k) lnφ(k), again applying l’Hôpital’s rule

lim
k→∞

1

x
ln

(
ln

t2
k

t2k − 1

)
= − ln 2 ln t lim

k→∞

2k(
t2k − 1

)
ln t2k

t2
k−1

= − ln 2 ln t lim
u→∞

u

(tu − 1) ln tu

tu−1
, (30)

if we set 2k = u and note that k → ∞ implies u → ∞. Let us first calculate the
denominator of (30),

lim
u→∞

(tu − 1) ln
tu

tu − 1
= lim

u→∞
(tu − 1) ln

(
1 +

1

tu − 1

)
setting w = tu − 1

= lim
w→∞

w ln

(
1 +

1

w

)
setting s =

1

w

= lim
s→0

ln(1 + s)

s
finally, applying l’Hôpital

= lim
s→0

1

1 + s

= 1
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Thus, the expression in equation (30) becomes

(30) = − ln 2 ln t lim
u→∞

u

1
= −∞;

and so the original limit (29) becomes

lim
k→∞

(
ln

t2
k

t2k − 1

) 1
k

= e−∞ = 0 < 1,

and so we can successfully apply the nth root test to conclude that our product is con-
vergent and non-zero.

Thus, we are justified in studying f(t) and some special approximations of it. To
facilitate the process, we will first re-write f(t) in terms of a power series. We first need
to guarantee that the tail of the product in f does not ‘change too much’ the value of f .

5.20 Proposition. We have that

lim
l→∞

∞∏
n=l+1

(1− t−2n) = 1,

for t > 1.

Proof. This is in fact a straightforward corollary to Theorem 5.18, since here we are
considering the tail of an infinite product which converges to a positive number.

Now, we are ready for the transformation of f into a power series.

5.21 Theorem. We have that

f(t) =
∑
n∈N

(−1)2θn t−n, (31)

where θn = 1− σn, and σn is the nth letter of the Thue-Morse word.

5.22 Note. After formulating and proving Theorem 5.21, the author of this dissertation
found this Theorem stated in [AS99], but without proof.

Proof. By Theorem 5.19 and Proposition 5.20, we are justified in expanding out f(t) as
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follows:

f(t) =
1

t

∞∏
k=0

(1− t−2k)

=
1

t
(1− t−20)(1− t−21)(1− t−22)(1− t−23) . . .

= (t−1 − t−2)(1− t−21)(1− t−22)(1− t−23)
∞∏
k=4

(1− t−2k)

= (t−1 − t−2 − t−3 + t−4)(1− t−22)(1− t−23)
∞∏
k=4

(1− t−2k). (32)

Each time we have an expression of the form

φ(m, t) = a1t
−1 + a2t

−2 + . . .+ a2mt
−2m

which we multiply by (1− t−2m) to obtain:

ψ(m+ 1, t) := φ(m, t)(1− t−2m) = φ(m, t)− t−2mφ(m, t).

Thus, we have that the word u(m) = a1 . . . a2m obtained from the coefficients of the
expression φ(m, t) is a prefix of the word u(m + 1) = a1 . . . a2m . . . a2m+1 , obtained from
the coefficients of the expression ψ(m + 1, t). Moreover, by Note 3.28 and the fact that
a1 = (−1)21 and a2 = (−1)20 , we have that indeed, the powers of 2 in the exponents of
(−1), which we denote by θn, are obtained from the complements of the letters of the
Thue-Morse word. More precisely, if σn is the n-th letter of the Thue-Morse word, then
θn = 1 − σn = σn (we remind the reader that the underline means that all the 0’s are
changed to 1’s and vice-versa). Thus, we have that

(32) = (−1)21t−1 + (−1)20t−2 + (−1)20t−3 + (−1)21t−4 + (−1)20t−5 + . . .

=
∑
n∈N

(−1)2θn t−n, , (33)

which completes the proof.

We continue with a theorem which will be central to our further investigations, espe-
cially in finding two sequences of functions which provide sufficiently good approximations
to our function f .

5.23 Theorem. The function f satisfies the following functional equation:

f(t2) =
1

1− t
f(t). (34)
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Proof. To check that this is indeed so, we replace t by t2, and obtain

f(t2) =
1

t2

∞∏
k=0

(
1− t−2k+1

)
= t−2(1− t−2)(1− t−22)(1− t−23) . . . .

Also,

f(t) =
1

t

∞∏
k=0

(
1− t−2k

)
= t−1(1− t−1)(1− t−2)(1− t−22)(1− t−23) . . . .

If we set

A(t) = (1− t−2)(1− t−22)(1− t−23) . . . =
∞∏
k=1

(1− t−2k),

then we have

f(t2) =
1

t2
A(t),

f(t) =
1

t

(
1− 1

t

)
A(t).

From the second equation, we obtain

A(t) =
tf(t)

1− 1
t

=
t2f(t)

t− 1
,

and substituting in the first,

f(t2) =
1

t2
A(t) =

f(t)

t− 1
,

as required.

We want to find a “nice” rational approximation to f(t), and we begin with a rational
approximant with numerator and denominator both linear functions. To be more precise
in what we mean by “nice”, we introduce the following definition:

5.24 Definition (nice approximation to f(t)). Let n ∈ N+ and let φn(t)/ψn(t) be a
rational function with polynomial numerator and denominator both of degree at most n;
in other words, φn(t), ψn(t) ∈ Z[t], and deg(φn), deg(ψn) 6 n. To say that φn(t)/ψn(t)
is a nice approximation to f(t), we mean that as many as possible large powers of the
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variable t become zero in the following expression:∣∣∣∣f(t)− φn(t)

ψn(t)

∣∣∣∣ ; (35)

in other words, for any other φ∗n(t), ψ∗n(t) ∈ Z[t] with deg(φ∗n), deg(ψ
∗
n) 6 n, we have

deg

(
f(t)− φn(t)

ψn(t)

)
< deg

(
f(t)− φ∗n(t)

ψ∗n(t)

)
.

Here, by degree of the expression (35), we mean the first non-zero term in the expansion.
Moreover, we take as canonical the choice of φn, ψn with a leading coefficient of 1.

5.25 Proposition. The following rational function

1

t+ 1

is a nice approximation to f(t).

Proof. To do this, we calculate the corresponding expression in (35), where we write
φn(t) = a1t+ a0 and ψn(t) = b1t+ b0:

|b1tf(t) + b0f(t)− a1t− a0| =

| − a1t+ (b1 − a0) + (b0 − b1)t−1 + (−b0 − b1)t−2 + (−b0 + b1)t
−3 + . . . | (36)

and set as many coefficients as possible = 0 to get

a1 = 0

b1 − a0 = 0

b0 − b1 = 0.

Solving the system of linear equations gives us

b0 = a0

b1 = a0,

and thus
a1t+ a0
b1t+ b0

=
1

t+ 1
.
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Thus, if we wanted p0(t), q0(t) ∈ Z[t] of degree at most 1 such that∣∣∣∣f(t)− p0(t)

q0(t)

∣∣∣∣
has as small a degree as possible, then the minimal solution would be p0(t) = 1 and
q0(t) = t+ 1.

Note that, plugging our values for the ai and bi, we get that the first term with a
nonzero coefficient in equation (36) would be t−2.

Now, combining equations (36) and (31), we get that∣∣∣∣f(t)− 1

t+ 1

∣∣∣∣ = ∣∣−2t−2 + 2t−6 − 2t−8 + . . .
∣∣ .

5.26 Proposition. The following rational function

t2 − 2

t3 + t2

is a nice approximation of f(t) with degree (at most) 3.

Proof. If we wanted to approximate f(t) by a rational function with numerator φ3(t) and
denominator ψ3(t) of degree at most 3, we would consider∣∣∣∣f(t)− a3t

3 + a2t
2 + a1t+ a0

b3t3 + b2t2 + b1t+ b0

∣∣∣∣
and thus obtain

|b3t3f(t) + b2t
2f(t) + b1tf(t) + b0 − a2t3 − a2t2 − a1t− a0| =

| − a3t3 + (−a2 + b3)t
2 + (−a1 + b2 − b3)t+ (−a0 + b1 − b2 − b3) + (b0 − b1 − b2 + b3)t

−1+

(−b0 − b1 + b2 − b3)t−2 + (−b0 − b1 − b2 + b3)t
−3 + . . . |.

To find the solution to the above system of equations, we need to find the reduced row

72



echelon form of the following matrix, where the columns are (b0|b1|b2|b3|a0|a1|a2|a3):

0 0 0 0 0 0 0 −1
0 0 0 1 0 0 −1 0

0 0 1 −1 0 −1 0 0

0 1 −1 −1 −1 0 0 0

1 −1 −1 1 0 0 0 0

−1 −1 1 −1 0 0 0 0

−1 −1 −1 1 0 0 0 0


After some calculations, we obtain the following reduced row echelon form, which

gives us the required correspondences between the ai and bi:

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 −1 0

0 0 0 0 1 0 2 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1


Thus, we have

a1 = a3 = b0 = b1 = 0, a0 = −2a2, b3 = a2, b2 = a2,

and hence
φ3(t)

ψ3(t)
=
a2t

2 − 2a2
a2t3 + a2t2

=
t2 − 2

t3 + t2
.

We have these two good functional approximations to f , and now we want to use
them to find good approximations of the values of f(t) for specific values of t - in other
words, we want to use them to obtain good approximations by numbers of f(t). For this
purpose, we would like to find an estimate for how well φ1(t)/ψ1(t) approximated f(t).
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∣∣∣∣f(t)− 1

t+ 1

∣∣∣∣ = ∣∣∣∣ 1

t+ 1

∣∣∣∣
∣∣∣∣∣(t+ 1)

∑
n>1

(−1)2θn t−n − 1

∣∣∣∣∣
=

∣∣∣∣ 1

t+ 1

∣∣∣∣
∣∣∣∣∣∑
n>3

(−1)2θn t−n+1 +
∑
n>2

(−1)2θn t−n
∣∣∣∣∣

6

∣∣∣∣ 2

t2(t+ 1)

∣∣∣∣
∣∣∣∣∣∑
n>0

t−n

∣∣∣∣∣
=

∣∣∣∣ 2

t2(t+ 1)(t− t−1)

∣∣∣∣
=

∣∣∣∣ 2

t(t2 − 1)

∣∣∣∣ .
Thus, in short, ∣∣∣∣f(t)− 1

t+ 1

∣∣∣∣ 6 ∣∣∣∣ 2

t(t2 − 1)

∣∣∣∣ . (37)

Note that this is a general estimate, so it will also hold true if we substitute t2n for t:∣∣∣∣f(t2n)− 1

t2n + 1

∣∣∣∣ 6 2

t2n(t2n+1 − 1)
. (38)

We omit the modulus on the right hand side, since for t > 1, the expression is positive.
We can use Proposition 5.23 to re-write this inequality as:∣∣∣∣∣ f(t)∏n

j=1

(
t2n−j − 1

) − 1

t2n + 1

∣∣∣∣∣ 6 2

t2n(t2n+1 − 1)
,

and further as ∣∣∣∣∣∣f(t)−
∏n

j=1

(
t2
n−j − 1

)
t2n + 1

∣∣∣∣∣∣ 6
2
∏n

j=1

(
t2
n−j − 1

)
t2n(t2n+1 − 1)

. (39)

(40)

This observation motivates us to make the following definition:

5.27 Definition. Define

p∗n(t)

q∗n(t)
:=

∏n
j=1

(
t2
n−j − 1

)
t2n + 1

.

We would like to show that p∗n(t)/q∗n(t) are ‘sufficiently close’ to f(t). Ideally, we
would like to show that, when evaluated at the point t = 2, they would yield convergents
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to f(2) = c; however, the ‘next best thing’ would be to show that they are bounded by
the inverse of the square of their denominators. One easy way to do this would be to use
estimate (39), and show that

2
∏n
j=1

(
t2
n−j−1

)
t2n(t2n+1−1)

< 1

(t2n+1)
2 .

5.28 Proposition. For all natural n > 1 and all t > 1, we have that

(t2
n
+1)2

∏n
j=1

(
t2
n−j−1

)
t2n(t2n+1−1)

< 1. (41)

Proof. We prove this by induction on n.
Base case: for n = 1, (41) becomes

(t2 − 1)
2
(t− 1)

t2(t4 − 1)
=

1

t

t2 + 1

t2 + t
< 1,

which holds for all t > 1.
Inductive step: suppose that, for some n > 1, we have

(t2
n
+1)

2∏n
j=1

(
t2
n−j−1

)
t2n(t2n+1−1)

< 1. (42)

Then, for n+ 1, the left-hand side of inequality (41) becomes(
t2
n+1

+ 1
)2∏n+1

j=1

(
t2
n+1−j − 1

)
t2n+1 (t2n+2 − 1)

=

(
t2
n+1

+ 1
)2 (

t2
n − 1

)∏n
j=1

(
t2
n−j − 1

)
t2n+1 (t2n+1 − 1) (t2n+1 + 1)

=

(
t2
n+1

+ 1
) (
t2
n − 1

)∏n
j=1

(
t2
n−j − 1

)
t2n+1 (t2n+1 − 1)

6

(
t2
n − 1

) (
t2
n+1

+ 2t2
n
+ 1
)∏n

j=1

(
t2
n−j − 1

)
t2n+1 (t2n+1 − 1)

=

(
t2
n − 1

) (
t2
n
+ 1
)2∏n

j=1

(
t2
n−j − 1

)
(t2n)2 (t2n+1 − 1)

6
t2
n − 1

t2n

= 1− 1

t2n
< 1,
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where the next-to-last line follows by inductive hypothesis, and the last inequality holds
for all t > 1.

5.2 Interaction Between Functional and Rational Approxima-

tions

5.29 Lemma. ∣∣∣∣f(t)− t2 − 2

t3 + t2

∣∣∣∣ 6 ∣∣∣∣ 2

t5(t2 − 1)

∣∣∣∣ .
Proof. Recalling Theorem 5.21, that θn = 1 − σn, where σn is the nth letter of the
Thue-Morse word, and after some arithmetic manipulations, we obtain∣∣∣∣f(t)− t2 − 2

t3 + t2

∣∣∣∣ = ∣∣∣∣ 1

t3 + t2

∣∣∣∣
∣∣∣∣∣t−4∑

n>0

(−1)2
θn+7

t−n + t−4
∑
n>0

(−1)2
θn+6

t−n

∣∣∣∣∣
6

∣∣∣∣ 2t−4

t3 + t2

∣∣∣∣ ∣∣∣∣ 1

1− t−1

∣∣∣∣
=

∣∣∣∣ 2

t5(t2 − 1)

∣∣∣∣ ,
as required.

5.30 Definition. We define

gn(t) :=

(
t2
n+1 − 2

)∏n
j=1

(
t2
n−j − 1

)
t2n+1 (t2n + 1)

.

5.31 Theorem. We have that

|f(t)− gn(t)| 6
1

t2n+2 (t2n + 1)2
.

For the proof of Theorem 5.31, we need the following Proposition and Lemma:

5.32 Proposition. We have that

|f(t)− gn(t)| 6
2
∏n

j=1

(
t2
n−j − 1

)
t5×2n (t2n+1 − 1)

.

Proof. We substitute t2n for t in the estimate from Lemma 5.29 and obtain∣∣∣∣∣f(t2n)− t2
n+1 − 2

t2n.3 + t2n+1

∣∣∣∣∣ 6
∣∣∣∣ 2

t2n5(t2n+1 − 1)

∣∣∣∣ .
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Next, we can use the functional equation from Theorem 5.23 and re-write this inequality
as ∣∣∣∣∣∣f(t)−

(
t2
n+1 − 2

)∏n
j=1

(
t2
n−j − 1

)
t2n+1 (t2n + 1)

∣∣∣∣∣∣ 6
2
∏n

j=1

(
t2
n−j − 1

)
t5×2n (t2n+1 − 1)

,

which is the inequality we wanted.

5.33 Lemma.
2
∏k

j=1

(
t2
k−j − 1

)
t5×2k

(
t2k+1 − 1

) <
1

t2k+2
(
t2k + 1

)2
Proof. We prove by induction on n that

2
(
t2
n
+ 1
)∏n

j=1

(
t2
n−j − 1

)
t2n (t2n − 1)

< 1. (43)

Base case: For n = 1, inequality (43) becomes

2(t2 + 1)

t2(t+ 1)
< 1,

which can be re-written as
−t3 + t2 + 2 < 0. (44)

This polynomial has one real root at approximately t = 1.6956, after which it becomes
strictly negative. Since we are interested in values of t greater than 1.7 (we are interested
in the valuation when t = 2), we can without loss of generality assume that the inequality
holds.

Inductive step: assume that, for some n > 1, inequality (43) holds. Then for n + 1,
we have

2
(
t2
n+1

+ 1
)∏n+1

j=1

(
t2
n+1−j − 1

)
t2n+1 (t2n+1 − 1)

6
2
(
t2
n
+ 1
) (
t2
n − 1

)∏n
j=1

(
t2
n−j − 1

)
(t2n)2 (t2n − 1)

, (45)

since we added a positive term to the numerator. By the inductive hypothesis, the right-
hand side of equation (45) is less than

t2
n − 1

t2n
< 1,

as required.

Now, the proof of Theorem 5.31 follows immediately from Lemma 5.32 and Lemma
5.33. Also, from Theorem 5.31, we have that gn(t) tends to f(t) pointwise for t > 1.7,
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and in particular, gn(2) → f(2) = c. We will use this to show that c satisfies the 2-adic
Littlewood conjecture, since gn(2) has large powers of 2 in the denominator.

5.34 Definition. Define the sequence {dn}n∈N, which also tends to c, by:

dn := gn(2).

5.35 Theorem. We have that

lim inf
n→∞

n|n|2||nc|| = 0.

Proof. For this, it is sufficient to consider an appropriate subsequence of the natural
numbers, and show that for it, the expression tends to zero.

We consider the sequence
{
22

n+1 (
22

n
+ 1
)}

n∈N
, and note that

||22n+1 (
22

n

+ 1
)
c|| =

= ||22n+1 (
22

n

+ 1
)
(c+ dn − dn)||

6 ||22n+1 (
22

n

+ 1
)
(c− dn)||+ ||22

n+1 (
22

n

+ 1
)
dn||, (46)

where the inequality follows from Proposition 2.3. By the Definition 5.34, the right
summand of expression (46) is an integer, and so its norm is zero. Thus, expression 46
becomes

(46) = ||22n+1 (
22

n

+ 1
)
(c− dn)||

6

∣∣∣∣∣
∣∣∣∣∣ 22

n+1 (
22

n
+ 1
)

22n+2 (22n + 1)2

∣∣∣∣∣
∣∣∣∣∣ by Proposition 5.31

=

∣∣∣∣ 1

22n+1 (22n + 1)

∣∣∣∣ , (47)

since the fraction is between 0 and 1
2
. Note this is strictly decreasing, tends to 0 as n

goes to ∞. This gives us

lim inf
n→∞

n|n|2||nc|| 6 lim inf
n→∞

22
n+1 (

22
n

+ 1
) ∣∣∣22n+1 (

22
n

+ 1
)∣∣∣

2

∣∣∣∣∣∣22n+1 (
22

n

+ 1
)
c
∣∣∣∣∣∣

6 lim inf
n→∞

∣∣∣∣ 1

22n+1

∣∣∣∣ by Definition 4.8 and equation (47)

= 0

Therefore, the constant c satisfies the 2-adic Littlewood conjecture.
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5.3 Further Observations and Some Open Questions

There are several interesting observations related to the sequence {cn}n∈N, which were
omitted from the previous section for brevity, but can still be of interest for further
investigation, both in Number Theory and in a more general mathematical setting.

5.3.1 A Link with the Thue-Morse Word

We notice an interesting pattern connecting the binary expansion of the rational numbers
cn and the Thue-Morse sequence.

First, we explore the binary expansion of the cn’s for small n, to notice the following
interesting pattern:

c1 =
1

3
= 0.01;

c2 =
1

5
= 0.0011;

c3 =
3

17
= 0.00101101.

It seems the binary expansion is periodic, with period whose length grows by a factor of
2, and which is related to the binary expansion of the previous element of the sequence.
Moreover, the sequence of 0’s and 1’s in the repeating part seem to follow a pattern we
have seen before.

5.36 Theorem. For n ∈ N, the binary expansion of cn is periodic with period 2n.

We will prove this Theorem just a bit later, along with another one, which requires a
few preliminary definitions.

5.37 Definition. Assuming Theorem 5.36 holds, for n ∈ N, we define cn to be the word
which comprises of the first 2n numbers (considered as letters) of the binary expansion
of cn. In other words, we would have that

cn =2 0.cn

5.38 Definition. For the Thue-Morse word t ∈ AN, we define ln as the Lyndon word for
the conjugacy class of Prefn(t).

5.39 Theorem. Recall Definition 3.16 of Prefn(x). We have that Pref2n−1(cn) =

Pref2n−1(ln).
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Proof of Theorem 5.36 and Theorem 5.39. From the formula for cn+1, we obtain that

cn+1 =

∏n
j=0(2

2j − 1)

22n+1 + 1

=

∏n
j=0(2

2j − 1)

22n+1

∞∑
i=0

(
−1
22n+1

)i
=

n∏
j=0

(22
j − 1)

[
1

22n+1 −
1

(22n+1)
2 +

1

(22n+1)
3 −

1

(22n+1)
4 + . . .+

1

(22n+1)
2i−1 −

1

(22n+1)
2i + . . .

]

Grouping the sum into pairs of even and odd terms, we can rewrite the formula as:

cn+1 =
n∏
j=0

(22
j − 1)

∞∑
i=1

(
1

(22n+1)
2i−1 −

1

(22n+1)
2i

)

=
n∏
j=0

(22
j − 1)

∞∑
i=1

(
1

2(2i−1)2n+1 −
1

22i2n+1

)

=
n∏
j=0

(22
j − 1)

∞∑
i=1

(
22

n+1 − 1

22i2n+1

)

=
n+1∏
j=0

(22
j − 1)

∞∑
i=1

(
1

22i2n+1

)
.

Set

Pn =
n∏
j=0

(22
j − 1),

and note that for all n ∈ N, Pn is odd as a product of odd numbers. Thus, the numerator
and denominator are coprime. Also, noting that the 2n-th number of the binary expansion
of Pn is always 1, we see that the binary expansion of Pn gives us a period of the binary
expansion of cn+1, namely 2n. This proves Theorem 5.36.

Note that, moreover,

Pn+1 =
n+1∏
j=0

(22
j − 1) = (22

n+1 − 1)Pn = 22
n+1

Pn − Pn.

From this, it becomes obvious that the word obtained from the binary expansion of Pn is
a near-prefix of order 1 of the word of the binary expansion of Pn+1. Indeed, multiplying
a number by 22

n+1 adds 2n+1 zeroes at the end of its binary expansion, and subtracting
a number whose binary expansion is of length 2n+1 from the previous number gives us
the desired word, conjugate of a prefix of the Thue-Morse word of the appropriate length
(this follows from Definition 3.27 of the Thue-Morse word).
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5.3.2 On an Interesting Structure Arising From the Sequence {cn}n∈N

We introduce the following definitions:

5.40 Definition. Define T : R/Z→ R/Z as

T (x) := 2x mod 1.

In other words, T n(x) is multiplication of x by 2n and mapping back into [0, 1].

5.41 Definition. For α ∈ [0, 1
2
), define

I(α) := [0, α) ∪ (1− α, 1]

J(α) := I(α) ∪
⋃
n∈N

T−n(I(α)).

In other words, I(α) can be viewed as an open ball of radius α centred at 0 ≡ 1 mod 1,
and J(α) is the set of all pre-images of I(α) under multiplication by 2n in the quotient
space R/Z.

Note that for β ∈ [0, 1] \ J(α), we have that

lim inf
n→∞

||2nβ|| > α.

This motivates us to consider the set of such points and introduce the following notion:

5.42 Definition. For a real number α ∈ [0, 1/2], define K(α) as the points in [0, 1] not
covered by J(α), in other words,

K(α) := [0, 1] \ J(α).

Now, we can make some interesting observations about the structure of ‘excluded
points’ K(α) in the case that α = cn.

5.43 Proposition. For c0 = 1
3
, K(c0) = {13 ,

2
3
}.

5.44 Note. The following proof might seem a bit laboured, but the method illustrated
via this simpler example is believed by the author to illustrate one possible method of
providing an answer to Question 2.

Proof. Indeed, {1
3
, 2
3
} ⊆ K(c0), since a simple arithmetic check shows that for all k ∈ N,∣∣∣∣∣∣∣∣2k 13

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣2k 23
∣∣∣∣∣∣∣∣ = 1

3
,
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and thus both elements of the set satisfy the membership conditions of K(c0).
Also, K(c0) ⊆ {13 ,

2
3
}.

Indeed, we can re-write K(c0) as:

Y1 = {x ∈ [0, 1] : ∀k ∈ N ||2kx|| > 1

3
}

=
⋂
k∈N

{x ∈ [0, 1] : ||2kx|| > 1

3
}.

This leads us to define intervals Ik = {x ∈ [0, 1] : ||2kx|| > 1
3
}.

Note I0 = [1
3
, 2
3
], since x ∈ I0 iff ||x|| > 1

3
.

Similarly, x ∈ I1 iff ||2x|| > 1
3
iff min{|2x − n| : n ∈ N} > 1

3
. Since we already have

I0 = [1
3
, 2
3
] and we are concerned with the intersection of I0 and I1, we only need to look

at the x ∈ I0 which will also be in I1. Thus, if x ∈ I0, we have 2x ∈ [2
3
, 4
3
], and thus only

need to consider n = 0 or n = 1 in the above min. Therefore, x ∈ I1 iff(
|2x| > 1

3

)
∨
(
|2x− 1| > 1

3

)
,

but since the first inequality is true for all x ∈ I0, we have that x ∈ I1 iff

|2x− 1| > 1⇔ x ∈ [0,
1

3
] ∪ [

2

3
, 1].

Thus, {
1

3
,
2

3

}
= I0 ∩ I1 ⊆

⋂
k∈N

Ik ⊆
⋂
k∈N

{
x ∈ [0, 1] : ||2kx|| > 1

3

}
= K(c0),

which shows the required subset relation.

Thus, K(c0) can be illustrated (in green) as:

Moreover, K(c1) can be illustated (in blue) as:
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Observation of the above graphs lead us to pose the following:

2 Question (Conjecture). For each cn, the set of rational points in K(cn) clusters at all
points of K(cn−1); in particular, the points in K(1

5
) cluster at the points 1

3
and 2

3
.

6 Conclusion

In this Thesis, we provided the necessary background for a non-trivial examination of
the Littlewood Conjecture, as well as several other conjectures which relate to it, with
a particular emphasis on the p-adic Littlewood Conjecture. In Chapter 5, we considered
the case when p = 2. We constructed a special sequence which would tend to a possible
counter-example, c, to the 2-adic Littlewood Conjecture, and justified considering it as a
possible counter-example in Theorem 5.10. We proceeded to show that in fact, the 2-adic
Littlewood Conjecture holds for this counter-example (Theorem 5.35). The method used
can be generalised to the p-adic case. Throughout Chapter 5, we also looked at some
interesting combinatorial properties of words related to the constant c, and in particular,
related to the binary or continued fraction expansions of the sequence of convergents
of c, {cn}n∈N. Moreover, investigations of the sequence {cn}n∈N provided us with other
observations in Section 5.3.2, which are of purely mathematical interest.

6.1 Various Questions for Further on

The initial hope of this disseration was to prove that the constant c is badly approximable.
However, during the course of the dissertation, Badziahin and Zorin proved the following
theorem:

6.1 Theorem ([BZ14]). The constant c is not badly approximable.

In fact, they show an even stronger property of c, namely that there is a constant
K > 0 such that for infinitely many q, the following inequality holds:

||qc|| 6 K

q(log log q)2
.
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However, a more general question still remains: is it possible to extend the methods
used in Chapter 5 to include other sequences, perhaps obtaining a smaller constant c′,
which is badly approximable? Continuing this way, perhaps we could obtain a sequence
of such bounds, which tends to 0, which would prove the 2-adic Littlewood Conjecture.
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