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Large-Scale Structure Tests of Cosmological Models

Ross W. F. Johnson

Abstract

We investigate the use of N -body simulations and large-scale galaxy clustering in order to test two

cosmological models: an Einstein-de Sitter model where neutrinos act as the dominant Hot Dark

Matter (HDM) component; and the standard Λ Cold Dark Matter (ΛCDM) model. We investigate

the matter power spectra and halo mass functions of the neutrino model, and of an extended model

that includes Primordial Magnetic Fields (PMFs), which have the effect of introducing ‘seeds’ into

the matter distribution. We find that neither model performs as well as ΛCDM in generating

structure, but note that the use of PMFs completely reverses the process of structure formation

in the HDM model, allowing it to progress in a bottom-up manner.

We calculate the redshift-space two-point galaxy-galaxy correlation function, ξ(s), of the Sloan

Digital Sky Survey (SDSS) Seventh Data Release (DR7) MAIN galaxy catalogue, and fit this

to both the ΛCDM model and the neutrino model. assuming a ΛCDM cosmology, we obtain a

best-fit value for the spherically averaged distance to redshift z = 015, given as DV (0.15) =

(627 ± 61Mpc)
(

rs
rs,fid

)
. This is in agreement with recent work, and is our best-fit model to

the SDSS DR7 MAIN data. We find that the correlation function from the MAIN galaxies cannot

reject an Ωm = 1 model in a cosmological ruler test, and the and the BAO peak is not pronounced

enough to significantly reject a neutrino HDM model. However, the neutrino model is rejected by

the non-linear form of the matter power spectrum, even though the magnetic version of the model

may form galaxies by the present day.
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Chapter 1

Introduction

The study of the large-scale structure of the universe, through the use of both observation and

simulation, is the primary method by which we further our understanding of the fundamental as-

pects of the universe. Through observation of the evolution of the universe over time it is possible

to formulate a description of both the origin and ultimate fate of the universe with ever increasing

precision, while study of the structure of the universe at the present day can inform us of the

underlying composition of the universe, and hint at exciting new physics such as Dark Matter

(DM) (Zwicky 1933), or Modified Newtonian Dynamics (MOND) (Milgrom 1983). Simulations of

the universe, on the other hand, serve primarily as a tool to verify and constrain various cosmo-

logical models, but can also themselves shed light on physical processes that may not otherwise

be explored, such as the various feedback processes thought to occur in galaxy formation (Benson

et al. 2003, Baugh et al. 2005, Bower et al. 2006).

The current standard model of the universe, dubbed the Lambda-Cold Dark Matter (ΛCDM)

model, has had great success in describing the large scale structure of the universe and its evolution

since cosmic inflation, accounting for effects on all astrophysical scales, from the rotation curves

of galaxies (Ostriker & Peebles 1973, Ostriker, Peebles & Yahil 1974) to the observed acceleration

of the expansion of the universe (Schmidt et al. 1998, Perlmutter et al. 1999). It has accurately

predicted the existence of Baryon Acoustic Oscillations (BAO) in the observed distribution of

galaxies (Eisenstein et al. 2005, Cole et al. 2005), an imprinting of sound waves generated in

the plasma before recombination (Peebles & Yu 1970, Sunyaev & Zel’dovich 1970). It has also

resolved many of the issues plaguing earlier cosmological models, such as observations of stellar ages

apparently greater than the age of the universe (e.g. Chaboyer 1998). However, large parts of the

model itself remain a mystery; many aspects were introduced without a firm theoretical basis (e.g.

Dark Energy, gaussian initial density fluctuations), and there is difficulty in reconciling predictions

at astrophysical scales to observations (e.g. overprediction of low-mass satellite galaxies (Klypin

et al. 1999, Moore et al. 1999)). The two most glaring problems it faces are the lack of any

detected candidate for the Cold Dark Matter particle, and the fine-tuning, to 1 part in 10120, of

2



Chapter 1. Introduction 3

the cosmological constant (Weinberg 1989). Other models attempting to avoid such extensions

can explain certain features better, but either sacrifice accuracy in other areas, or retain other

unsavoury aspects of the ΛCDM model. MOND, for instance, accurately describes astrophysical

scales, but must resort to a Λ term when describing cosmological scales (e.g. Angus 2009).

In this paper we will discuss a number of alternative models, and investigate how they perform

on various scales in order to build a fuller picture of their merits and faults. Our second chapter

focusses on a neutrino model proposed by Shanks et al. (2014). This is an Einstein-de Sitter model

where neutrinos act as a dominant dark matter component, whose underlying principle is one of

relative simplicity: as little new physics as possible. We will also discuss a possible extension to this

model, in the form of primordial magnetic fields which can generate seeds that initiate structure

formation. We will study the evolution over time of large-scale structure (LSS) in these models

through the use of N -body simulations, and note how this differs from ΛCDM. In chapter 3 we

study the large-scale structure of the observable universe in the form of galaxies out to redshift

z = 0.2. We investigate the redshift-space correlation function of galaxies in light of both the

ΛCDM and neutrino models, and discuss the capabilities of both to match observational data.

Through this discussion we hope to illuminate the difficulties faced by alternative cosmological

models when competing against the standard model in its home turf. Throughout this paper we

use the convention H0 = 100 × h km s−1 Mpc−1.

December 14, 2014



Chapter 2

Neutrino Model

2.1 Intoduction

In this chapter we assume a cosmology described by Ωm = 1, Ωb = 0.15, Ων = 0.85,

h = 0.45, where neutrinos of mass mν = 5 eV act as a Hot Dark Matter (HDM) component

of the matter density of the universe. This Einstein-de Sitter model avoids some of the problems

inherent in the concordance cosmology, such as the coincidence that ρΛ ≈ ρm at the present

day, but comes with its own set of problems. Such a mass for neutrinos is in tension with tritium

β-decay experiments, which suggest mνe < 2.2 eV (95 per cent confidence) (Aseev et al. 2011),

while setting h as low as 0.45 is required in order to allow such a high Ωbh
2, but is in disagree-

ment with a multitude of other works such as PLANCK (Planck Collabaration, Ade et al. 2014b)

(H0 = 67.3 ± 1.2 km s−1 Mpc−1) or Riess et al. (2011) (H0 = 73.8 ± 2.4 km s−1 Mpc−1).

Nonetheless, given the not insignificant difficulties faced by ΛCDM, it is worthwhile to consider a

variety of alternative models. In continuation of the work by Shanks et al. (2014), we investigate

how this neutrino model compares to the ΛCDM model in terms of the power spectrum and halo

mass functions, through the use of N -body simulations. We also explore one of the avenues sug-

gested by Shanks et al. to boost the normalization of the power spectrum; the introduction of seeds

formed by Primordial Magnetic Fields (PMF) could provide a natural means by which to amplify

structure formation in these HDM models. This is motivated in part by Wang & White (2007),

who show that any seeds formed in filaments or sheets may collapse and grow rapidly, accelerat-

ing structure growth greatly. Coles (1992) suggested that PMF could provide the initial seeds of

galaxies, which then triggers structure formation in a bottom-up fashion, similar to ΛCDM, earlier

than the traditional HDM ‘pancake collapse’ would otherwise occur. Wasserman (1978) suggested

that a PMF could have appreciable effects on the matter distribution, and Peebles (1980) further

suggested that an intergalactic PMF of B ∼ 1 nG would be enough to create a density contrast

of δ ≈ 10−3 at decoupling (z ≈ 1000).

Inspection of a theoretical temperature power spectrum from one of the proposed models, a

4



2.2. Simulation Methods 5

Figure 2.1: Theoretical temperature power spectrum for a magnetic neutrino model. Shown are: the base

temperature power spectrum for the neutrino model (solid blue line); contributions to the temperature

power spectrum from scalar modes (black solid line); contributions to the power spectrum from vector

modes (black dashed line); and contributions to the temperature power spectrum from tensor modes (red

long-dashed line).

model with nB = 2.9, demonstrates that the addition of a compensated magnetic field introduces

scalar, vector and tensor modes (see Fig. 2.1). With the assumed magnetic field strength of

Bλ = 4.7 nG, these additional modes are at too low an amplitude to be excluded by the CMB

temperature power spectrum.

This chapter is organised as follows: we describe the N -body simulations, and the analysis

performed in § 2.2; we present the results of our analyses for our neutrino models, followed by our

magnetic models, in § 2.3; finally, we present a discussion of our results in § 2.4.

2.2 Simulation Methods

2.2.1 Initial Conditions

We make use of the Tree-SPH code gadget-2 (Springel 2005) to carry out our N -body simulations.

We use Npart = 2 × 2563 particles in our simulations, and use boxes of size L = 150 h−1 Mpc

to probe the halo mass function and power spectrum at different scales. In addition to these

simulations, we perform two other sets: a set of simulations with Npart = 2 × 1283 to check

December 14, 2014



2.2. Simulation Methods 6

for the presence of numerical artefacts in our neutrino simulations; and a set of simulations with

L = 50 h−1 Mpc, to constrain the power spectra and mass functions of the magnetic model

simulations at small scales. We begin all simulations at z = 7, and apply perturbations to an

initial glass configuration of particles.

Unphysical perturbations in density can occur if additional thermal velocities are applied to the

initial conditions, although the exact mechanism of generation is unclear. These are increasingly

problematic the earlier the simulations are begun (e.g. Power 2013, Coĺın et al. 2008), as the

magnitude of the additional thermal velocities approaches the free streaming velocity, and we find

that even starting our simulations at z = 7 with free-streaming produces these spurious features.

We therefore do not include free-streaming in our models, instead treating neutrinos as collisionless

dark matter.

The perturbations applied to our initial load are calculated according to the Zel’dovich approx-

imation from an initial power spectrum generated by the boltzmann code camb (Lewis, Challinor

& Lasenby 2000), suitably modified where required to account for magnetic seed generation (Shaw

& Lewis 2010). These modifications provide, in addition to the base power spectrum, the contri-

butions due to the magnetic field power spectrum, defined as

PB(k) = AknB , (2.1)

where A is some amplitude term dependent on the variance of the magnetic field strength, B2
λ, on

scales λ = 1 Mpc:

A =
(2π)

nB+5
B2
λ

2Γ
(
nB+3

2

)
knB+3
λ

. (2.2)

We investigate the effects of 3 values of nB on the matter power spectra: nB = − 2.0, -2.9 and

-3.3, with Bλ = 4.7 nG.

For our non-magnetic models we run additional simulations with renormalized P (k) in order

to see the minimum increase required to allow structure to form. We do this by increasing σ8, the

mass variance in spheres of radius 8 h−1 Mpc used to normalize P (k), from 0.22 to 0.52 and 0.82.

We plot our matter power spectra, along with ∆2(k) ∝ k3P (k), in Figs. 2.2 and 2.3. The

dashed horizontal line on the plots of ∆2(k) denote ∆2(k) = 1, which signifies order unity density

perturbations, and thus the onset of spherical collapse for wavenumbers about k. All magnetic

spectra exceed ∆2(k) = 1 by the present day, and hence do not require renormalization, but even

the renormalized neutrino-only power spectra remain less than 1. These models must therefore

undergo some other non-linear processes in order to produce structure by the present day, but this

is expected given that structure in these models forms from the top down, and not due to the

spherical collapse model as in ΛCDM.

December 14, 2014



2.2. Simulation Methods 7
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Figure 2.2: Theoretical z = 0 P (k) (left panel) and ∆2(k) (right panel) for the neutrino models. Shown

are spectra normalized to: σ8 = 0.22 (solid line); σ8 = 0.52 (dashed line); and σ8 = 0.82 (dotted line).

The horizontal dashed line in the ∆2(k) plot denotes ∆2(k) = 1.
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Figure 2.3: Theoretical z = 0 P (k) (left panel) and ∆2(k) (right panel) for the magnetic neutrino

models. Shown are spectra with: nB = − 2.0 (solid line); nB = − 2.9 (dashed line); and nB = − 3.3

(dotted line). The horizontal dashed line in the ∆2(k) plot denotes ∆2(k) = 1.
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2.2. Simulation Methods 8

2.2.2 Measuring P(k)

We make use of the free program powmes1 (Colombi et al. 2009) to calculate our power spectrum

for our simulation outputs. powmes measures the power contained in fourier modes of multiples

of 2π/L, and gives as output Prough(k),

Prough(k) = PV (k) +
1

Npart
, (2.3)

where PV (k) = P (k)/L3, and 1/Npart is the systematic shot noise contribution from the

discrete nature of the simulations. This correction is unnecessary when analysing the spectra of

the initial conditions, as these are essentially still a perturbed glass. powmes also provides an

estimate of the fractional errors on Prough(k) due to the finite number of modes per k bin:

(
∆Prough(k)

Prough(k)

)2

=
1

C(k)
, (2.4)

which translates to fractional errors on the shot-noise corrected PV (k) as

(
∆PV (k)

PV (k)

)2

=
1

C(k)

(
1 +

2

NpartPV (k)
+

1

(NpartPV (k))
2

)
, (2.5)

where this wavenumber discreteness is taken into account by the C(k) term. There are two

other sources of systematic error, both arising from the process of Taylor expansion in the code.

The first of these is due to the order of the Taylor expansion, taken into account within the code

itself. The final source stems from imposing a grid upon the particle distribution in order to

calculate the fast-fourier transform, and makes itself manifest when the Nyquist frequency of the

grid, kNy, is approached. We limit our probing of P (k) to wavenumbers below kNy/2, thus avoiding

this problem, although this scale is above what can be probed accurately due to the resolution of

our simulations.

2.2.3 Halo Mass Function

We use the Friends-of-Friends (FoF) algorithm to identify collapsed structures in our simulations.

This identifies particles within some distance b of the mean interparticle spacing as belonging to

the same halo, although this can result in unspherical halos, and some overestimation of the masses

of small halos. To remedy this we apply the correction to the number of particles in a halo, NH ,

derived by Warren et al. (2006):

NH,corr = NH
(
1−N0.6

H

)
. (2.6)

This assumes b = 0.2, which we therefore use in our identification process. The halos we find

are all of a single particle type, and so we apply an additional correction to the masses of the halos

to account for the missing particle species. This is given by

1Available for free at www.projet-horizon.fr
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2.3. Results 9

MH = MDM
Ωm

Ωm − Ωb
, (2.7)

where MDM is the mass of the dark matter-only halos.

Wang & White (2007) discussed the formation of unphysical halos in HDM simulations due

to discreteness in the simulations. The mechanism for the production of these features is unclear,

but it appears that at multiples of the mean interparticle spacing small, unphysical perturbations

form that act as seeds for the formation of larger halos. The authors propose a lower limit for the

mass of halos that can be confidently assumed to be ‘true’ halos, given by

Mlim = 10.1× ρ̄dk−2
peak, (2.8)

where d is the mean interparticle spacing, and kpeak the wavenumber at which ∆2(k) is maxi-

mum. They determine the factor 10.1 for their own HDM model, and suggest that this may depend

upon the exact shape of the power spectrum; in the absence of a rigorous formulation of this de-

pendence we find this factor suffices for our models too. This can be used as a hard lower-limit

on the masses of halos found in the simulation, but Schneider et al. (2013) interpret this instead

as a lower bound, below which unphysical halos dominate. They argue that the mass function

may still be probed below this scale, if one can subtract the contribution from these numerical

artefacts. They therefore apply a power law fit to those halos that clearly (by visual inspection) lie

above Mlim, and subtract this fit from the entire mass function. This produces the characteristic

downturn at low masses expected in hot or warm dark matter models. We use this method in our

investigations into the halo mass function for our neutrino models, however, we must note that we

have extrapolated the form of this correction to larger masses in order to apply it. This therefore

reduces the amplitude at intermediate scales, but all salient features are retained (as shown in

their fig. 4). We do not apply this method to our magnetic models, as ∆2(k) > 1 by the present

day.

2.3 Results

In this section we detail the main results of our investigations. We begin by considering the power

spectra and halo mass functions recovered from our neutrino simulations, which we compare to

z = 0 ΛCDM predictions, and study their evolution over time. We perform this same analysis

for our three magnetic seed models.

2.3.1 Neutrino Model

Power Spectra

We show the z = 0 power spectra recovered from our neutrino simulations, alongside both

ΛCDM and theoretical predictions from camb for comparison, in Fig. 2.4 . We note that as the

December 14, 2014



2.3. Results 10

normalization of the initial neutrino spectrum is increased, the deviations from the expected z = 0

spectra at high-k also increase. We attribute this increase in power to non-linear effects, and also

note that the power spectrum of the σ8 = 0.22 model drops below zero after k = 0.3 h Mpc−1,

indicating that this simulation remains essentially an unperturbed glass. As the theoretical z = 0

∆2(k) remains well below one at all scales, we remain unsurprised that the final simulation does

not differ significantly from the initial conditions.

In the three panels of Fig. 2.5 we plot the redshift-evolution of the spectra for each individual

model, with errors given by eqs. 2.4 and 2.5 denoted by the shaded areas, alongside the predicted

P (k) from camb. We note that as the normalization of each spectrum is increased, the deviations

from the expected z = 0 spectra at high-k also increase. This effect begins earlier in each model,

with z = 2 exhibiting small non-linear effects in the σ8 = 0.82 model. For all models, P (k)

drops below zero after z = 7, and only the σ8 = 0.82 model remains above zero for all measured

k at z = 0. This suggests that all models remain essentially unperturbed glasses after z = 7,

with only the two higher-normalized models deforming appreciably by redshift z = 0. As such,

we will not apply the 1/Npart corrections to all models for z > 0, and for the σ8 = 0.22 model

for all redshifts.

The discontinuities observed at k = 2.68 h Mpc−1 appear to be numerical artefacts, as they

occur in each model. In order to test this, we perform the same simulations with Npart = 1283. In

Fig. 2.6 we show the lower resolution P (k), which displays the same upturns at the same locations,

suggesting instead an error in the powmes code. We plot the raw output of powmes for the

z = 0, σ8 = 0.22 simulations, as well as output from powmes with kmax = 1024, and

with the resolution of the fast-fourier transform grid set to 300 (from 512 and 256 respectively),

in Fig. 2.7. We find that changing kmax has no effect on the discontinuity, but changing the

resolution of the grid changes the wavenumber of this discontinuity from kL/2π = 64 to 75; this

is a numerical error arising from the fast-fourier transform applied in powmes, and not due to

either the initial conditions, or gadget-2. We conclude that powmes results cannot be trusted

for integer wavenumbers greater than a quarter of the resolution of the grid for these models, and

so we will exclude them from our results.

We present the final P (k) for the neutrino models, with 1/Npart corrections withheld as dis-

cussed above, in Fig. 2.8. The increasing non-linearity as the normalization is increased is now

readily apparent, and we also observe a smoothing of P (k) in all models, suggesting the start of

some non-linear processes. These effects are far too small to suggest the presence of structure,

however, and so we do not expect to find structure in any model earlier than z = 1, and certainly

not in the σ8 = 0.22 model. The upturns just before kL/2π = 64 seem to be related to the

discontinuities mentioned earlier, but as the scale at which they begin (kL/2π = 29) is unrelated

to the resolution of the fast-fourier transform grid, we include these wavenumbers.
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Figure 2.4: The z = 0 P (k) of the three neutrino models, alongside theoretical spectra, in grey. The

recovered P (k) are shown as the solid, coloured lines, and are from top to bottom: σ8 = 0.82, σ8 = 0.52

and σ8 = 0.22. Theoretical spectra from correspond to camb predictions, and are: ΛCDM (solid);

σ8 = 0.22 (dashed); σ8 = 0.52 (dot-dashed); and σ8 = 0.82 (dotted). Errors on the measured P (k)

are the shaded grey areas about the solid lines.
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Figure 2.5: The redshift-evolution of the three neutrino models: a) σ8 = 0.22; b) σ8 = 0.52; c)

σ8 = 0.82. Recovered P (k) are shown as the solid lines, and from top to bottom in each figure, the

redshifts displayed are z = 0, 1, 2 and 7. Theoretical spectra from camb are shown as the dashed, grey

lines, and errors on the measured P (k) are the shaded grey areas about the solid lines.

December 14, 2014



2.3. Results 12

10-2 10-1 100

k [h Mpc-1 ]

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105
106

P(
k)
 [h

-3
M
pc

3
]

a)

10-2 10-1 100

k [h Mpc-1 ]

b)

10-2 10-1 100 101

k [h Mpc-1 ]

c)

Figure 2.6: As Fig. 2.5, but for the low-resolution simulations. Particle distributions are treated as the

initial loads in all models for z > 0, and for the σ8 = 0.22 model for all redshifts.
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Figure 2.7: The raw output of powmes, Prough(k), for the z = 0 σ8 = 0.22 model. The spec-

tra displayed correspond to: a simulation with Npart = 2563 particles (solid line); a simulation with

Npart = 1283 particles (dashed line); the output from powmes with kmax = 1024 (dot-dashed line);

and he output from powmes with the fast-fourier transform grid resolution set to 300 (dotted line) We

also display the the Nyquist frequencies of the two simulations as grey vertical lines.
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Figure 2.8: As Fig. 2.5, but with particle distributions treated as the initial loads in all models for z > 0,

and for the σ8 = 0.22 model for all redshifts. P (k) is displayed up to kL/2π = 64, as powmes introduces

errors from the fast-fourier transform grid below this scale.

Halo Mass Function

We present the recovered cumulative mass functions from our simulations in Fig. 2.9. We have

applied corrections for the FoF method and the single particle-species halos, as discussed in § 2.2.3,

and display the mass functions corrected for the presence of unphysical halos separately in Fig. 2.10.

The grey solid lines represent the Jenkins et al. (2001) predictions for a ΛCDM model, plotted for

reference. Structure formation in all models begins late, and follows the characteristic HDM trend

of increased large-scale structure and lack of small scale structure relative to ΛCDM. The presence

of a large plateau suggests that very little structure is present between the scale Mlim, given by

Eq. 2.8, and a mass scale characteristic of the cosmology. The σ8 = 0.52 model in particular

displays two large steps at high masses, which suggests that very little structure has formed even

at these scales. The majority of structures found, in fact, seem to consist of those unphysical halos

found at low masses, although those found at high masses are unlikely to arise from numerical

processes, and so we can be sure that true structure formation has commenced.

The low-mass cut-off scale is Mlim = 1.5 × 1 −13 h−1 M� for Npart = 1283 and

Mlim = 3.0 × 1−13 h−1 M� for Npart = 2563. This correction has successfully removed the

low-mass upturn, although some small fluctuations remain in the Npart = 2563 simulation of the

σ8 = 0.82 model; this creates a discrepancy at the low-mass end of the downturn, but the mass

functions from the two different resolutions are otherwise in agreement.
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Figure 2.9: The cumulative mass functions for the two models that produced structure by z = 0: a)

σ8 = 0.52; and b) σ8 = 0.82. Solid lines show simulations with Npart = 1283, and dashed show

Npart = 2563, while dotted lines show power-law fits to the upturn at low scales. The grey solid line

represents the Jenkins et al. (2001) predictions for a ΛCDM model.
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Figure 2.10: The cumulative mass functions for the two models that produced structure by z = 0,

corrected for he presence of numerical artefacts as described in § 2.2.3. Solid lines show simulations with

Npart = 1283, and dashed show Npart = 2563, while dotted line show power-law fits to the upturn at

low scales from the uncorrected mass functions. The grey solid line represents the Jenkins et al. (2001)

predictions for a ΛCDM model.
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2.3.2 Magnetic Neutrino Models

Power Spectra

Fig. 2.11 shows the same as Fig. 2.5 for the magnetic P (k), for L = 150 h−1 Mpc and 50 h−1 Mpc

boxes. We observe some deviation from the theoretical spectra at higher wavenumbers for the

nB = − 2.0 model. These persist in the smaller box, suggesting that this is a ‘true’ physical

effect. We note, however, that these discrepancies are also present in the initial conditions P (k).

We believe that this is due to some error while generating the initial conditions for this model.

We will not discuss this model further, as any conclusions drawn from inspection of either the

recovered P (k) or the HMF would be meaningless.

We also observe deviations from theoretical predictions in the nB = − 2.9 model in the larger

box. The initial conditions spectra are the exceptions; as the initial conditions are essentially a

slightly perturbed glass, the 1/Npart correction is not applicable. Removing this correction from the

later spectra improves the agreement between the two box sizes significantly, as as Fig. 2.12 shows.

We conclude from this that these later snapshots are still little more than perturbed glasses, and as

such, we do not discuss the HMF from this box size for this model. We observe no discontinuities

such as those discussed above in any P (k) presented here, and so show wavenumbers up to the

Nyquist frequency of the simulation.

We note that the recovered P (k), after corrections have been applied, all match the theoretical

predictions well, which suggests that no non-linear structure formation has occurred. Rather, any

growth of structure can be adequately described by linear growth of the initial seeds introduced

by the primordial magnetic fields.

Halo Mass Function

The redshift-evolution of the cumulative mass functions recovered from the magnetic neutrino

models are shown in Fig. 2.13. As discussed, we do not apply the power law correction to these

models as ∆2(k) = 1 is expected to occur by at least the present day. We also only present mass

functions for simulations whose power spectra we are sure of, as discussed in § 2.3.2.

The mass functions recovered from all magnetic models have a much steeper gradient than

concordance cosmology, and display an excess of structure at the low-mass end. Due to the

presence of the initial magnetic seeds the HMF is a lot smoother, not showing any of the traditional

features of a HDM model. It is interesting to note that the mass functions at z = 2 and 1 for the

nB = − 3.3 model converge at Mh ≈ 3× 1010 h−1 M�. We take this to be the scale that the

seeds produced by the primordial magnetic fields form. Due to the presence of mergers, the z = 0

mass function drops below the earlier mass functions at these scales, and we also find a reduced

amount of large-scale structure with respect to these neutrino models (cf. Fig. 2.9). This, coupled

with the lack of any plateau, suggests that all structure formation has proceeded in a bottom-up

manner, as in ΛCDM.
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Figure 2.11: The redshift-evolution of the three magnetic neutrino models: a) nB = − 2.0; b)

nB = − 2.9; c) nB = − 3.3. Recovered P (k) are shown as the solid lines (L = 150 h−1 Mpc), and

dot-dashed lines (L = 50 h−1 Mpc), and from top to bottom in each figure the redshifts displayed are

z = 0, 1, 2 and 7. Theoretical spectra from a suitably modified version of camb are shown as the dashed,

grey lines, and errors on the measured P (k) are the shaded grey areas about the solid and dot-dashed

lines.
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Figure 2.12: The redshift-evolution of the corrected power spectrum for the two successful magnetic

neutrino models: a) nB = − 2.9; and b) nB = − 3.3. Recovered P (k) are shown as the solid lines

(L = 150 h−1 Mpc), and dot-dashed lines (L = 50 h−1 Mpc), and from top to bottom in each figure the

redshifts displayed are z = 0, 1, 2 and 7. Theoretical spectra from a suitably modified version of camb

are shown as the dashed, grey lines, and errors on the measured P (k) are the shaded grey areas about the

solid and dot-dashed lines.
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Figure 2.13: The redshift-evolution of the cumulative mass functions for the two successful magnetic

neutrino models: a) nB = −2.9; and b) nB = −3.3. Solid lines show simulations with L = 150 h−1 Mpc,

and dot-dashed show L = 50 h−1 Mpc. The grey solid lines represents the Jenkins et al. (2001) predictions

for a ΛCDM model. The mass functions displayed are for redshifts z = 0, 1 and 2, from top to bottom.

2.4 Discussion

The power spectra presented in Figs. 2.5 and 2.4 for the un-normalized models can all be described

well by linear predictions until late times; the earliest noticeable non-linear behaviour is observed

at redshift z = 1 in the σ8 = 0.82 model. This is supported by the mass functions (Fig. 2.10),

which do not show structure earlier than z = 0 for all neutrino models. In fact, as the structure

found is primarily spurious for both models that do display it, it would seem that all non-linearities

expressed in the power spectra are due to this unphysical excess.

This is problematic for the models, as the driving principle behind them is ‘what you see is what

you get’, but without aid they fail to produce appreciable amounts of structure before the present

day, and what they do produce is very sparse indeed. With quasars, for example, observed reliably

past z = 2 (e.g. Pâris et al. 2012), this effectively rules out these models as valid descriptions of

the observed universe.

The neutrino models fare better in comparison: the introduction of seeds generated by the PMF

has caused structure formation to proceed in a bottom-up manner, as in ΛCDM. All structure

produced seems to be a true product of the models, in that there are no observed preferred scales

that scale with resolution. Contrary to the results of Kahniashvili et al. (2013), we find that the

inclusion of PMF has increased the quantities of low-mass halos observed in these models, which

agrees with predictions from e.g. Shaw & Lewis (2012), or Coles (1992). This is due to the fact

that this is a HDM model; while including magnetic fields may have the effect of increasing the
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critical overdensity needed for spherical collapse (Shibusawa et al. 2014), the seeds introduced by

the PMF still generate far more structure at lower masses than seen in a typical HDM model.

The increased number of lower-mass halos with respect to ΛCDM is problematic, as ΛCDM

by itself already overpredicts abundances of low-mass galaxies. The lower quantities of high-mass

halos formed is also troublesome, as these fall behind even ΛCDM predictions for lower redshifts.

The HMF of the nB = − 2.9 model certainly shows too few large mass structures to be a true

competitor with the ΛCDM model, and while the nB = − 3.3 model is a closer match to ΛCDM,

the more extreme low-mass end of the HMF is its ultimate let-down. In the end, these models are

affected too strongly by the flaws inherent in a bottom-up picture of structure formation, although

the fact that these HDM models have been coaxed into generating structure without any major

compromises to the basic premise can be viewed as a limited success.
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Chapter 3

Baryon Acoustic Oscillations

3.1 Introduction

The Sloan Digital Sky Survey (SDSS) is now in its fifteenth year and fourth iteration, and in

that time has imaged more than a third of the sky in unprecedented detail, obtaining detailed

information on the Milky Way, extragalactic supernovae, and galaxies and quasars out to redshift

z = 3.5 (Frieman et al. 2008, Eisenstein et al. 2011). The catalogue of galaxies created by the

SDSS has been used extensively to investigate structure on the largest scales in a bid to develop

and constrain the underlying cosmological model describing the universe.

More recently, the Baryon Oscillation Spectroscopic Survey (BOSS) (Dawson et al. 2013) was

explicitly assigned the task of probing the large-scale structure of galaxies in an effort to detect the

BAO signal in the real- and fourier-space matter distribution. They have published results from

three data releases of the SDSS, and have detected the BAO feature at greater than 7σ in their 11th

Data Release (Anderson et al. 2014a). This is a striking success, and they have made extensive

use of a variety of techniques in order both to improve the signal-to-noise ratio of their data and

to quantify the errors in their measurements in order to prove the robustness and accuracy of their

result.

Previous surveys have also had success in detecting the BAO feature. The seventh data release

(DR7) (Abazajian et al. 2009) of the SDSS in particular had great success when combining the

magnitude limited, low-redshift MAIN galaxy sample with the higher redshift, near-volume limited

Luminous Red Galaxy (LRG) sample. Percival et al. (2010) detected the BAO in the power

spectrum of this combined dataset, and subsequent work on the DR7 data has confirmed the

detection in both the power spectrum and the correlation function (e.g. Chuang, Wang & Hemantha

2012, Chuang & Wang 2013). New York University keeps a catalogue of this data release, the

New York University Value Added Catalogue(NYU-VAGC) 1 (Blanton et al. 2005, Padmanabhan

et al. 2008), specifically designed to facilitate invesigations of galaxy formation and evolution, and

1available at http://sdss.physics.nyu.edu/vagc/
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providing spectroscopic and photometric data covering 10,417 deg2 of the sky. We will make use

of this catalogue to conduct our own study of the DR7 MAIN galaxy sample, searching for the

BAO feature in redshift-space correlation function of this sample, and testing our neutrino model

discussed in chapted 2 against observational data.

This chapter will be organised as follows: we first detail the particulars of our galaxy sample

and the methods we use to study the correlation function in § 3.2 and 3.3, respectively; we then

present the results from both our BOSS DR11 error investigation and our correlation function in

§ 3.4, and conclude this chapter with a discussion of the work carried out and the cosmological

implications of the results presented in § 3.5.

3.2 Sample

The samples held by NYU-VAGC have been constructed specifically to facilitate investigation of

galaxy clustering statistics, including galaxies out to z ≈ 0.5 selected by various criteria described

in full in Blanton et al. (2005) . We make use of their ‘safe0’ data sample, which is characterised

by a Petrosian r-band magnitude range of 14.5 < r < 17.6, and accounts for fibre collisions

by applying the redshift of the nearest neighbour. We further truncate this sample by selecting

galaxies only from the central footprint region, in order to provide a contiguous region for study,

and bounded by z < 0.20. This selection has a median redshift of 0.09, and a total area of

5790 deg2. N(z) and n(z) are shown for our sample in Fig. 3.1, where n(z) = dN(z)/dV and dV

is the comoving volume element.

3.3 Methods

We detail below the methods used to estimate the correlation function of the SDSS DR7 MAIN

galaxy sample. We also outline the analysis we perform on the extracted correlation function. We

assume a fiducial cosmology of Ωm = 0.273, Ωb = 0.040, ΩΛ = 0.727 andH0 = h× 100 km s−1 Mpc−1,

h = 1 in order to convert angular positions and redshifts into comoving distances.

3.3.1 Measuring the Correlation Function

We compute the spherically averaged two-point redshift-space correlation function, ξ(s), by sum-

ming pair counts in bins of width 10 h−1 Mpc, centered on values between 15 h−1 Mpc and

195 h−1 Mpc inclusive. We make use of the Landy-Szalay estimator (Landy & Szalay 1993) to

estimate the correlation function,

ξ(s) =
1

RR(s)
(DD(s)− 2DR(s) +RR(s)), (3.1)

where DD(s), DR(s) and RR(s) are the normalized data-data, data-random and random-random

pair-counts from our sample. Random catalogues are provided by NYU-VAGC for each sample,
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Figure 3.1: Histograms of the number (a) and number density (b) of galaxies as a function of redshift

for z < 0.20 for the SDSS DR7 MAIN galaxy sample. Bins are of width ∆z = 0.01.

and are constructed so that they have a constant surface density within the window of the survey

but outside the mask. We assign random redshifts drawn from the sample’s N(z) to each random

galaxy, and use ∼ 5 times as many randoms as data points. Weights based on n(z) are applied

when calculating the pair counts in the sample, given by

w(z) =
1

1 + 4πn(z)J3(s)
, (3.2)

where J3(s) is given by

J3(s) =

∫ s

0

ξ(s)s2ds. (3.3)

Rather than recalculate J3(s) for each separation, we use assume a constant value of 4000 h−3 Mpc3.

This weighting scheme gives our sample an effective, weighted mean redshift of zeff = 0.15.

3.3.2 Error Estimation

Due to computational constraints, we will not be making use of mock catalogues for error estima-

tion. In lieu of this, Norberg et al. (2009) advocate the use of bootstrap sampling. This involves

splitting the data into sub-areas based on their angular positions on the sky, and calculating the

mean of a resampling of these sub-areas using sampling with replacement. We select 3 × Nsub

sub-areas for each resampling, where Nsub is the number of sub-areas created, and in total we

generate Nboot = 100 resamplings of the data to calculate ξ̄, the mean correlation function. We
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Figure 3.2: Ratio of the diagonal elements of the covariance matrices for the scheme 2 and scheme 1

subsample schemes. The solid line shows the average value, 1.45.

may then calculate a covariance matrix,

Ci,j =
1

Nboot − 1

Nboot∑
n=1

(ξn(si)− ξ̄(si))(ξn(sj)− ξ̄(sj)), (3.4)

where ξn is the mean correlation function from each individual resampling, and the subscripts i

and j correspond to the ith and jth redshift-space bins respectively. We choose our sub-areas such

that the number density of galaxies is consistent across all samples. We make use of two different

sub-areas: an average area of 830 deg2, giving 7 sub-areas (scheme 1); and an average area of

386 deg2, giving 15 sub-areas (scheme 2). From Norberg et al. we expect the diagonal terms of

each covariance matrix to be consistent. This is refuted by Fig. 3.2, which shows that the ratio of

the diagonal elements of scheme 2 to scheme 1 fluctuates wildly, but is mostly greater than unity,

and has an average value of 1.45. This suggests that scheme 1 underestimates the errors in the

sample, and so we will use scheme 2 for our error analysis.

3.3.3 Cosmological Ruler

A naive way of determining cosmological parameters is to perform a standard rod test. By com-

paring the observed position, in comoving coordinates, of some standard rod at different redshifts,

it is possible to compare different cosmologies by shifting the position of the rod at each redshift

with respect to the fiducial cosmology it was observed within, and assessing how well these shifted

positions agree. We choose to compare the position of the BAO peak in our ξ(s) with that in the
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pre-reconstruction CMASS DR11 data (Anderson et al. 2014a), measured at zeff = 0.57. As

CMASS uses different redshift-space bins to us we instead compare our model against their best-fit

cosmological model: ΛCDM with Ωm = 0.274, shifted by α = 1.031 and normalized to our corre-

lation function at s ≈ 50 h−1 Mpc. For each redshift-space bin we compare ξshift(s) = ξ(s/d0.15)

against ξmodelshift (s) = ξmodel(s/d0.57), where dz = DC(z)/DC,fid(z), the ratio of comoving line-

of-sight distances to redshift z in the model of interest and fiducial cosmologies. We will perform

chi-squared minimization over the range 0.01 6 Ωm 6 1.0 in steps of ∆Ωm = 0.01 (see § 3.3.4

for details of how chi-squared is calculated).

3.3.4 Model Fitting

As a more conventional approach to model fitting, we also perform a similar analysis to e.g. Xu

et al. (2012) .When fitting models to data, one would normally be required to determine ξ(s)

separately for each different cosmological model to be fitted. This is computationally expensive,

so instead we define

α =
DV (z)

DV,fid(z)

rd,fid
rd

, (3.5)

which corresponds to a shift in the position of the BAO peak from the fiducial model, providing

the models don’t differ too much. The position of the sound horizon at the drag epoch, rd, is

calculated using eq. 6 of Eisenstein & Hu (1998), and DV combines both H0 and DA into a single

measurement: a spherically-averaged distance to redshift z,

DV (z) ≡
[
cz(1 + z)2DA(z)2

H(z)

]1/3

. (3.6)

To calculate our theoretical ξ(s) we follow the procedure discussed in, for example, Anderson et al.

(2012). We begin by generating a linear power spectrum, P lin(k), using camb, and then calculate

Pnw(k) with the BAO feature removed, making use of the procedure discussed in Eisenstein & Hu

(1998). We combine both of these spectra to produce a power spectrum with damped BAO, given

by

Pmod(k) = Pnw(k)

[
1 +

(
P lin(k)

Pnw(k)
− 1

)
e−

1
2k

2Σ2
nl

]
, (3.7)

where the Σnl is a factor that damps the BAO, accounting for non-linear structure formation in

the model. Anderson et al. (2014a) found that Σnl scales as the inverse of the effective redshift of

the sample, and so we choose to set Σnl = 9.0 h−1 Mpc. We will show in § 3.4.2 that our results

are insensitive to the exact value of Σnl. We may then calculate our model correlation function:

ξmod(s) =

∫ ∞
0

k2dk

(2π)2
Pmod(k)j0(ks)e−k

2a2 . (3.8)

When fitting models we use ξfit(s) = B2
ξ ξmod(αs), where Bξ is some amplitude factor. We

normalize Pmod(k) to our correlation function at s ≈ 50h−1 Mpc, ensuring that Bξ ≈ 1.
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We explore parameter space over the ranges 0.02 < Ωmh
2 < 0.3 and 0.5 < α < 1.5, while

marginalizing Bξ. For each combination of parameters we calculate the χ2 statistic, given by

χ2 =

Nbins∑
i,j=0

(
ξfit(si)− ξobs(si)

)
C−1
i,j

(
ξfit(sj)− ξobs(sj)

)
, (3.9)

where Nbins is the number of redshift-space bins and ξobs is the observed correlation function. We

use this statistic to calculate the likelihood, which we assume has the form L ∝ exp
(
−χ2/2

)
, and

perform markhov-chain monte-carlo analysis to find the combination of parameters that maximises

the likelihood. Flat priors are assumed for the 3 free parameters. We assume Ωbh
2 = 0.022 and

ns = 0.963, values consistent with Planck (Planck Collabaration, Ade et al. 2014a, Planck

Collabaration et al. 2014b), and we quantify the dependence of our results on these parameters in

§ 3.4.2.

We go on to compare our model to the neutrino dominated model from chapter 2. For this

analysis we assume a fiducial model of Ωmh
2 = 0.2025, Ωbh

2 = 0.0304, Ων = 0.85, and

h = 0.45. As this model is quite different to our ΛCDM fiducial model, we must re-calculate the

correlation function for our sample. In addition to comparing the neutrino model against actual

data, this also serves to extend the cosmological ruler test described in § 3.3.3, as we may now test

how specific cosmologies, structure formation history included, fit the data.

3.4 Results

The 2-point, spherically averaged correlation function extracted from the SDSS DR7 MAIN Galaxy

Sample for the concordance cosmology is presented in Fig. 3.3, along with the fiducial model used

to convert redshifts and angular positions to distances, normalised at s ≈ 50 h−1 Mpc.

Errors on the points correspond to the square root of the diagonal elements of the covariance

matrix defined in Eq. 3.4. We note that the amplitude of ξ(s) before the expected BAO scale

serves to wash out the peak somewhat. This is discussed in further detail in Labini et al. (2009),

who suggest that the MAIN sample is not ideal for such precise investigation into the galaxy

distribution. The majority of their discussion concerns various volume limited samples drawn

from this survey, but they note that increased sample sizes do produce similar effects to those

observed here.

In the rest of this section we show the results of our cosmological standard rod test, and give

our best-fit values for Ωmh
2 and α from our parameter space exploration. We go on to quantify

the robustness of our results, before finally showing the results of fitting the neutrino model.

3.4.1 Cosmological Ruler

In the left panel of Fig. 3.4 we show the best-fit model for the cosmological ruler test discussed

in § 3.3.3. This best-fit model has Ωm = 0.5 ± 0.28, with a chi-squared value of χ2 = 13.3

December 14, 2014



3.4. Results 25

0 50 100 150 200

s [h-1Mpc]

−100

−50

0

50
s2

ξ(
s)

[h
-2

M
pc

2
]

Figure 3.3: ξ(s) for the SDSS DR7 MAIN Galaxy sample at zeff = 0.15 (solid circles), along with the

normalised ΛCDM fiducial model with Ωm = 0.2726, Ωb = 0.0400, h = 0.7.

(p = 0.65 with 16 degrees of freedom). We display both the measured data and the shifted data,

which have been shifted by d(zeff )/dfid(zeff ) = 0.98. In the right panel we show the data shifted

by d(zeff )/dfid(zeff ) = 0.93, corresponding to Ωm = 1.00. The shifting of the peak in each

case is readily apparent, but it appears that the shifted models are fit well by the corresponding

shifted data, if not equally well. We quantify this in Fig. 3.5 with the chi-squared distribution

about the best-fit value. These data slightly disfavour an Ωm = 1 with ∆χ2 = 2, although using

this method we cannot reject with reasonable confidence either an Ωm = 1.0 or 0.3 model as

both are within 2σ of the best-fit value. These data therefore require more sophisticated methods

of analysis, as discussed in § 3.3.4.

3.4.2 Parameter Exploration

In Fig. 3.6 we are able to present our best-fit model with parameters Ωmh
2 = 0.142 ± 0.012

and α = 1.035 ± 0.105, and χ2 = 12.8 (p = 0.685 with 16 degrees of freedom). These

values correspond to the median values from our markhov-chain monte-carlo analysis, with errors

corresponding to the 68 % confidence level from our likelihood distribution, shown in Fig. 3.7.

For a model without the BAO feature, which we approximate by setting Σnl = ∞, we find

a best-fit ∆χ2 = 6.9, which corresponds to a 2.6σ detection of the BAO peak. This low value

is unsurprising given the amplitude of the correlation function just below the BAO scale, which

serves to wash out the peak.
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Figure 3.4: Left: the best-fit ξ(s) with Ωm = 0.50 ± 0.28 from the cosmological ruler test (solid line),

along with data shifted by d(zeff )/dfid(zeff ) = 0.98 (solid circles) and measured data (empty circles).

Right: ξ(s) with Ωm = 1.00 from the cosmological ruler test (solid line), along with data shifted by

d(zeff )/dfid(zeff ) = 0.93 (solid circles) and measured data (empty circles).
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Figure 3.5: The chi-squared distribution of the cosmological ruler test about the best-fit value. The

dashed line denotes 2σ.
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Figure 3.6: ξ(s) for the SDSS DR7 MAIN Galaxy sample at zeff = 0.15 (solid circles), along with the

best-fit concordance cosmology with parameters α = 1.035 ± 0.105 and Ωmh
2 = 0.142 ± 0.013 (solid

line).

Robustness Checks

The errors on these two best-fit parameters are reasonable (< 10 per cent), which is surprising

given the broadness of the peak recovered from our sample. We test our error estimation by

performing this same analysis procedure, but only using the diagonal covariance matrix terms for

our χ2 calculation. This reduces the measured χ2 to 12.2, and changes the model parameters to

Ωmh
2 = 0.141 ± 0.012 and α = 1.033 ± 0.106, a less than 1 per cent shift in each case, which

raises our confidence in our error estimation.

We further quantify the robustness of our results by changing Σnl, Ωbh
2 and ns as outlined in

Table 3.1: Robustness checks performed on our measurements of α and Ωmh
2. We vary three parameters:

Σnl, Ωbh
2, and ns, and truncate the range of s bins used in our analysis, and record the different values

for α and Ωmh
2 measured along with the χ2 statistic for the new combination of parameters.

Robustness Check Ωmh
2 α χ2

Σnl = 8.0 h−1 Mpc 0.144 ± 0.013 1.035 ± 0.103 13.3

Ωbh
2 = 0.032 0.169 ± 0.010 0.944 ± 0.070 11.4

ns = 1.62 0.127 ± 0.010 1.056 ± 0.091 11.2

40 < s < 160 h−1 Mpc 0.101 ± 0.016 1.142 ± 0.125 6.0
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Figure 3.7: Likelihood contours for the parameters Ωmh
2 and α are shown in the bottom-left plot, and

the probabilities associated with each parameter in the lower-right and upper plots. The best fit values

are located at the intersection of the vertical and horizontal lines in the contour plot, and the vertical lines

on the diagonal plots. Contours correspond to 1-4σ.

Table 3.1. We plot the best-fit models of the tests carried out in Fig. 3.8.

Our results are most robust to changes in Σnl: both Ωmh
2 and α change by less than 1 per cent,

and the data slightly disfavour this lower Σnl with ∆χ2 = 0.5. Varying the other two parameters

produces greater changes in both the best-fit Ωmh
2 and α and the χ2 for said fit. Varying Ωbh

2 by

≈ 45 per cent produces shifts of 19 and 9 per cent respectively in Ωmh
2 and α, while changing ns

by 10 per cent produces changes of 11 and 2 per cent. Both of these changes are better accepted

by the data, with ∆χ2 ≈ − 1.4 and ∆χ2 ≈ − 1.6 for changes in Ωbh
2 and ns respectively. The

best-fit models for both enjoy slight increases in the amplitude of the BAO peak, but at larger

scales are much the same as the best-fit to the concordance cosmology. From these checks we

determine that the best-fit parameters are not strongly dependent on Ωbh
2 or Σnl, but that there

is appreciable dependence of Ωmh
2 on ns, and that Ωmh

2 is the more weakly constrained of the
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Figure 3.8: The best-fit models for each of the robustness checks on ξ(s). Filled circles represent the

measured ξ(s). The solid line shows Σnl = 8.0 h−1 Mpc; the dashed line shows Ωbh
2 = 0.032; the

dash-dot line shows ns = 1.062; the dotted line shows the best fit model for bins 40 < s < 160 h−1 Mpc.

two cosmological parameters.

Finally, we test how constrained the best-fit parameters are by the detection of the BAO peak

by considering bins between 40 < s < 160 h−1 Mpc, also shown in Fig. 3.8. Doing so changes

the best-fit cosmological model considerably: α = 1.142 ± 0.125 and Ωmh
2 = 0.102 ± 0.016.

This lower Ωmh
2 increases the amplitude of ξ(s) about the peak, as well as broadening it, which

matches the data more closely than the best-fit model using the full range (χ2 = 6.0 with 9 degrees

of freedom). This goes against findings from many other sources, which suggest that the position

and amplitude of the peak are enough to constrain the cosmological model. We therefore conclude

that our best-fit parameters, even though they are a reasonable fit to the data, are constrained

more by the overall shape of the correlation function than the presence of the BAO peak, although

the peak is still detected at 2.2σ (∆χ2 = 4.8).

3.4.3 Neutrino Cosmology

The correlation function extracted from the SDSS DR7 MAIN Galaxy Sample for the neutrino

cosmology is presented in Fig. 3.9, along with the fiducial model used to convert redshifts and

angular positions to distances, normalised at s ≈ 50 h−1 Mpc.

We obtain a value for the chi-squared statistics for the neutrino model over all redshift bins

of χ2 = 964.3. This poor fit is in large part a result of the low-s bins, which are dominated by
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Figure 3.9: ξ(s) for the SDSS DR7 MAIN Galaxy sample at zeff = 0.15 (solid circles), along with the

normalised neutrino fiducial model with Ων = 0.85, Ωb = 0.15, h = 0.45.

non-linear effects not accurately accounted for in this model (see chapter 2). If the low-s bins are

excluded, and we instead examine the fit due to the large-scale clustering of galaxies, we obtain a

substantially smaller chi-squared value of χ2 = 39.8.

3.5 Discussion

Assuming our fiducial cosmology of Ωm = 0.273, Ωb = 0.040, ΩΛ = 0.727 and

H0 = 70 km s−1 Mpc−1, we have DV,fid(0.15) = 606.294 Mpc, and

rs,fid = 146.56 Mpc. We therefore measure the spherically averaged distance to z = 0.15 as

DV (0.15) = (627 ± 61Mpc)

(
rs

rs,fid

)
, (3.10)

and the ratio DV (0.15)/rd = 4.28 ± 0.42. We use our best-fit Ωmh
2 to calculate

rd = 152 ± 4 h−1 Mpc, and therefore our best-fit spherically averaged distance to z = 0.15 is

DV (0.15) = 648 ± 66 h−1 Mpc.

This is in agreement with the recent study by Ross et al. (2014), who measure the correla-

tion function and power spectrum for those galaxies with Mr < − 21.2 in the MAIN galaxy

sample. They present a best-fit ratio DV (0.15) = (664 ± 25Mpc)
(

rs
rs,fid

)
. This is a more

precise result than that presented here, due to their use of reconstruction techniques to sharpen

their BAO peak. When comparing to their pre-reconstruction, ξ(s) only measurement, we find
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Figure 3.10: The measured correlation function from the MAIN galaxy sample for this study (blue

circles) and the pre-reconstruction ξ(s) from Ross et al. (2014) (green squares).

that their error on α approaches that of ours (± 0.094), demonstrating the potential power of

reconstruction when obtaining fits. This shows strongest when determining how much the BAO

peak constrains the cosmological parameters measured: when Ross et al. (2014) use only bins

between 50 < s < 150 h−1 Mpc they measure α = 1.057 ± 0.037, a shift of only 0.1 per cent

(cf. § 3.4.2). The final point worth mentioning about these two studies is that the errors on ξ(s)

for their pre-reconstruction correlation function are larger than ours until after the BAO scale, as

shown in Fig. 3.10. We attribute this to their exclusion of fainter galaxies in their sample, which

cuts their sample size by a factor ≈ 10. This suggests that a full study of the MAIN galaxy sample

is still warranted, and that application of reconstruction etc. to the full sample could still shed

light on the expansion history of the universe.

Our best-fit Ωmh
2 is consistent with the Planck (Planck Collabaration et al. 2014b) best-fit

ΛCDM cosmology, which has Ωmh
2 = 0.14300 (68 per cent limits Ωmh

2 = 0.1423 ± 0.0029),

and DV (0.15)/rd = 4.212 ± 0.011, which we calculate by drawing Ωch
2, Ωbh

2 and H0 from

gaussian priors centered on the best-fit Planck+WMAP ΛCDM model. We display our result, along

with Ross et al. (2014), in Fig. 3.11. We also plot results from other key studies: 6dFGS (Beutler

et al. 2011), at z = 0.106; BOSS DR11 LOWZ and CMASS (Anderson et al. 2014a) at z = 0.32

and 0.57 respectively; Percival et al. (2010) at z = 0.275; WiggleZ (Kazin et al. 2014) at z = 0.44,

0.6, and 0.73; and Chuang et al. (2012) at z = 0.15, who use the DR7 LRG data to determine

DV (0.35). The 6dFGS and SDSS surveys have little overlap - only LOWZ covers the SGC at that
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Figure 3.11: Ratio of DV (z)/rd against the best-fit Planck + WMAP predictions for various studies.

The line at 1 is the Planck ratio by construction, and shaded areas show 1σ spread of (DV (z)/rd)Planck,

determined through sampling Ωch
2, Ωbh

2 and H0 from gaussians centered on the Planck + WMAP best-fit

values. The solid circle denotes the value from this study; the open pentagon shows the Percival et al.

(2010) DR7 value; solid pentagons show DR7 values for the MAIN galaxy sample and the LRG sample;

solid squares denote DR11 BOSS CMASS and LOWZ values; open squares show WiggleZ values; and the

star denotes the 6dFGS value.

redshift - and the DR7 MAIN sample is completely independent of 6dFGS, BOSS CMASS and

WiggleZ, but does overlap BOSS LOWZ.

We note that DV (0.15)/rd for the SDSS MAIN galaxies at z = 0.15 are greater than the Planck

values, whereas the other DR7 DV (z)/rd values are lower than Planck predictions. This must stem

from the inclusion of LRGs in each sample, as these other DR7 studies are not independent of each

other, either in terms of volume or sample. However, the large errors on α measured in this sample

do allow for (DV (z)/rd)/(DV (z)/rd)Planck < 1; it would be interesting to investigate what effect

reconstruction and the use of mocks for error estimation would have on the full MAIN sample

correlation function, and whether DV (z)/rd measured after application of these methods would

also remain greater than Planck predictions.

Finally, although our data preferred Ωbh
2 = 0.032 and ns = 1.062 in the robustness checks,

these value are ruled out by Planck at greater than 30σ and 10σ respectively, and so are not

included in our best-fit parameters.
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3.5.1 Alternate Cosmological Models

When performing the cosmological ruler test, we examined only the effect Ωm had on the distance

scale. This proved ineffective in distinguishing between different cosmological models, as detailed

structure formation histories were not taken into account. For example, while in this test Ωm = 0.3

and 1 were in agreement to < 2σ, the parameter exploration, which takes into account Λ and

its effect on the power spectrum, rejects an Ωm = 1 model at >> 4σ, as shown by Fig. 3.7.

However, this is not due to the presence of the BAO peak. Removing the low-s bins from the

analysis of the neutrino model improves the fit by almost two orders of magnitude, and these bins

are dominated by non-linear effects anyway (although the magnetic neutrino models did produce

some structure). While the best results of the paper are those presented above, we conclude by

saying that these data do not rule out higher Ωm models conclusively.
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Chapter 4

Conclusion

The goal of this paper was to examine the differences between Einstein-de Sitter, HDM models and

the standard ΛCDM model, through investigations into the large-scale clustering of matter in the

universe. To that end, we performed a suite of N -body simulations of a neutrino dominated model,

described by parameters Ων = 0.85, Ωn = 0.15 and h = H0 / 100 km s−1 Mpc−1 = 0.45. We

observed the Halo Mass Function of the model and the evolution over time of the power spectrum,

and found that unless P (k) is unphysically normalized to greater amplitudes, no structure can

form by the present day. The structure found in these renormalized models is primarily spurious

in nature, accounting for the non-linearities observed in the power spectra of these models at low

reshifts, but when this is taken into account the HMF produced display the characteristic plateau

at intermediate masses, caused by the collapse of pancake-like structures into large-mass halos -

the top-down picture of structure formation.

The introduction of Primordial Magnetic Fields, generated in the very early universe, but too

weak to play a direct role in structure formation at the present day, provide a natural way of seeding

HDM models with structure. This causes the models to form structure in a bottom-up manner,

as in ΛCDM, but the problems inherent in such picture of structure formation are exacerbated

here: the low-mass end of the HMF has a far greater amplitude than ΛCDM, and the high-mass

end lags considerably behind ΛCDM predictions. This is most likely due to the late beginnings of

structure formation in such a model when compared to ΛCDM, and as galaxies have been observed

past z = 2, we again must conclude that such a model cannot accurately describe the observed

universe.

Our investigation of the SDSS DR7 MAIN galaxy sample determined again that a ΛCDM

model is a better fit to observations. Although a naive cosmological rod test suggested that our

data could not reliably favour either a Ωm = 1 or 0.3 model, a parameter-space exploration rejects

a neutrino HDM model at ∆χ2 > 900, and provides best-fit values of α = 1.035 ± 0.105 and

Ωmh
2 = 0.142 ± 0.013. However, this rejection comes primarily from small scale clustering,

dominated by non-linear effects; the performance of a hot dark matter model on such scales is
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already known to be poor (despite the magnetic models producing appreciable quantities of struc-

ture). Excluding these bins, we find that the fit to the neutrino model is improved by almost two

orders of magnitude. This is a relative success for a hot dark matter model, considering that these

large scales are where LambdaCDM models excel.

We present a best-fit spherically-averaged distance to z = 0.15 ofDV (0.15) = (627 ± 61Mpc)
(

rs
rs,fid

)
,

which is in agreement with the recent study by Ross et al. (2014), who measure the power spectra

and correlation function from the same sample.

We detect the BAO peak at 2.6σ: this low significance is similar to Ross et al. (2014), who

recover α = 1.013 ± 0.094 for their pre-reconstructed sample. The size of their errors in this

sample compared to ours suggests that, if our error estimates are accurate, a full investigation

of the SDSS DR7 Main galaxy survey, including as many galaxies as possible, coupled with the

reconstruction methods utilized by Ross et al. (2014) and others, would provide valuable insight

into the nature of the universe at z = 0.15.

Ultimately, we find that the concordance cosmology is the best-fit to our data. Our work

here serves to highlight many of the difficulties faced by any alternative cosmological model when

dealing with the large-scale structure of the universe, where the ΛCDM model remains strongest.
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Coĺın, P. et al. (2008), ‘Halo mass function and the free streaming scale’, ApJ 673, 203.

Colombi, S. et al. (2009), ‘Accurate estimators of power spectra in n-body simulations’, MNRAS

393, 511.

Dawson, K. S. et al. (2013), ‘The baryon oscillation spectroscopic survey of sdss-iii’, AJ 145, 10.

Dehnen, W. (2001), ‘Towards optimal softening in three-dimensional n-body codes - i. minimizing

the force error’, MNRAS 324, 273.

Eisenstein, D. J. & Hu, W. (1998), ‘Baryonic features in the matter transfer function’, ApJ

496, 605.

Eisenstein, D. J. et al. (2005), ‘Detection of the baryon acoustic peak in the large-scale correlation

function of sdss luminous red galaxies’, ApJ 633, 560.

Eisenstein, D. J. et al. (2011), ‘Sdss-iii: Massive spectroscopic surveys of the distant universe, the

milky way, and extra-solar planetary systems’, AJ 142, 72.

Foreman-Mackey, D. et al. (2013), ‘emcee: The mcmc hammer’, PASP 125, 306.

Frenk, C. S. & White, S. D. M. (2012), ‘Dark matter and cosmic structure’, Annalen der Physik

524, 507.

Frieman, J. A. et al. (2008), ‘The sloan digital sky survey-ii supernova survey: Technical summary’,

AJ 135, 338.

Jenkins, A. et al. (2001), ‘The mass function of dark matter haloes’, MNRAS 321, 372.

Kahniashvili, T. et al. (2013), ‘Constraining primordial magnetic fields through large-scale struc-

ture’, ApJ 770.

December 14, 2014



Bibliography 38

Kazin, E. A. et al. (2014), ‘The wigglez dark energy survey: improved distance measurements to

z=1 with reconstruction of the baryonic acoustic feature’, MNRAS 441, 3524.

Klypin, A. et al. (1993), ‘Structure formation with cold plus hot dark-matter’, ApJ 416, 1.

Klypin, A. et al. (1999), ‘Where are the missing galactic satellites?’, ApJ 522, 82.

Knebe, A. et al. (2003), ‘Top-down fragmentation of a warm dark matter filament’, MNRAS

345, 1285.

Labini, F. S. et al. (2009), ‘Absence of anti-correlations and of baryon acoustic oscillations in the

galaxy correlation function from the sloan digital sky survey data release 7’, A&A 505, 981.

Landy, S. D. & Szalay, A. S. (1993), ‘Bias and variance of angular-correlation functions’, ApJ

412, 64.

Lewis, A., Challinor, A. & Lasenby, A. (2000), ‘Efficient computation of cosmic microwave

background anisotropies in closed friedmann-robertson-walker models’, Astrophysical Jour-

nal 538, 473.

Manera, M. et al. (2013), ‘The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic

survey: a large sample of mock galaxy catalogues’, MNRAS 428, 1036.

Manera, M. et al. (2014), The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic

survey: mock galaxy catalogues for the low-redshift sample. in press (ArXiv:1401.4171).

Marchesini, D. et al. (2009), ‘The evolution of the stellar mass function of galaxies from z = 4.0 and

the first comprehensive analysis of its uncertainties: Evidence for mass-dependent evolution’,

ApJ 701.

Milgrom, M. (1983), ‘A modification of the newtonian dynamics as a possible alternative to the

hidden mass hypothesis’, ApJ 270, 365.

Moore, B. et al. (1999), ‘Dark matter substructure within galactic halos’, ApJ 524, L19.

Navarro, J. F. et al. (1997), ‘A universal density profile from hierarchical clustering’, ApJ 490, 493.

Norberg, P. et al. (2009), ‘Statistical analysis of galaxy surveys i. robust error estimation for

two-point clustering statistics’, MNRAS 396, 19.

Ostriker, J. P. & Peebles, P. J. E. (1973), ‘A numerical study of the stability of flattened galaxies;

or, can cold galaxies survive?’, ApJ 186, 467.

Ostriker, J. P., Peebles, P. J. E. & Yahil, A. (1974), ‘The size and mass of galaxies, and the mass

of the universe’, ApJ 193, L1.

December 14, 2014



Bibliography 39

Padmanabhan, N. et al. (2008), ‘An improved photometric calibration of the sloan digital sky

survey imaging data’, ApJ 674, 1217.
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