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Alice Diana Charlotte Du Vivier 

Global evaluation of Os and Ca marine isotope stratigraphy and U-Pb geochronology 

of the OAE 2 

Abstract 

Oceanic anoxic events occur in response to significant climate perturbations. This 

study focuses on the late Cretaceous OAE 2, which occurred across the Cenomanian-

Turonian boundary (CTB), ~93.9 Ma. Multiple isotope proxies have reviewed the 

implications of palaeocirculation, volcanism and climate change to assess the driving 

mechanism(s) associated with global anoxia. Utilising geochemistry and geochronology (Os, 

Ca and U-Pb) this study provides a greater understanding of palaeoclimate conditions and 

assesses the global extent of anoxia. Hitherto, analyses have focussed on sections in and 

around the proto-North Atlantic. Herein, high-resolution 187Os/188Os isotope stratigraphy 

from 8 globally representative sections is presented; Portland #1 core, Site 1260, Wunstorf, 

Vocontian Basin, Furlo, Site 530, Yezo Group, and Great Valley Sequence. The Re-Os 

system is sensitive to regional and global variation in seawater chemistry on the order of the 

residence time of Os due to ocean inputs: radiogenic Os from continental weathering and 

unradiogenic Os from hydrothermal inputs. The initial 187Os/188Os (Osi) profiles present a 

globally ubiquitous trend: radiogenic Os values are attenuated by unradiogenic Os for ~200 

kyr, which then gradually return to radiogenic Os. Minor discrepancies illustrate the 

sensitivity of local water masses as a function of basin connectivity and global sea level; i.e., 

Portland, Great Valley Sequence and Yezo Group (temporally restricted basins) vs. Site 

1260 and Site 530 (open ocean).  

Furthermore, a temporal framework is developed from existing ages (from the 

Western Interior, USA) and new U-Pb zircon geochronology (Yezo Group, Japan) to 

quantify the duration of OAE 2 and volcanic activity at the Caribbean LIP. Age models are 

applied and support the revision of the stratigraphic position of the OAE 2 onset and the 

CTB in the Yezo Group. The integration of the Western Interior and Pacific geochronology 

quantitatively verifies that the OAE 2 was globally synchronous occurring at ~94.4 Ma ± 

0.15 Ma.  

In addition, marine δ44Ca records from 4 global OAE 2 sections are presented. The 

seawater mixing models reveal that δ44Ca values show no appreciable change to riverine or 

hydrothermal influx. Herein, I quantitatively demonstrate that fractionation is a parameter for 

δ44Ca isotopic variation at Portland and Pont d’Issole, which may be attributed to diagenetic 

reactions in the marl-rich lithology leading to site-specific fractionation. Therefore, marine 

δ44Ca profiles are different in each section as a function of varying fractionation factor. Ca 

isotope systematics are highly complex and so further work is crucial in order to develop our 

understanding of other parameters and to establish which, if any, is the most influential.   
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1. Thesis rationale 

1.1. Oceanic Anoxic Events 

Oceanic Anoxic Events (OAEs) stereotype distinct episodes of pelagic 

organic-rich sediment deposition that occurred across intervals of approximately one 

million years during the Jurassic and Cretaceous periods. Schlanger et al. (1976) 

characterised these occurrences as episodes “during which global marine waters were 

relatively depleted in oxygen, and deposition of organic matter, derived from both 

terrestrial and planktonic sources, was widespread”. They suggested, “bacterial 

consumption of this organic matter favoured the development of poorly oxygenated 

mid- to late Cretaceous waters in which many of the characteristic facies of the 

Period were deposited.”  

This thesis focuses on the OAE 2, which occurred across the Cenomanian-

Turonian boundary (CTB) ~93.90 Ma. The main questions that I address are: 

1) What ocean-atmosphere processes were responsible for driving OAE 2 to 

become synchronously widespread in multiple basinal environments in the world’s 

oceans? 

2) Can key stages and the duration of OAE 2 be quantitatively constrained? 

3) Was OAE 2 a truly ‘global’ event? 

The abundance of organic-rich material deposited during an anoxic event 

provides valuable information on the global stratigraphic record and as such there 

have been many studies that evaluate the distribution, structure and composition of 

organic-rich sediments (ORS), which aim to assess the depositional processes 

responsible for the development of anoxia. In some cases ORS have economic 

potential as a source for the generation of petroleum deposits, e.g., the Angola Basin. 



CHAPTER 1. INTRODUCTION     

 

Page | 3  
 

However, this study focuses on the palaeoclimatic implications of the depositional 

record.  

Numerous sections worldwide (Fig 1.1) have undergone analyses to identify 

the potential characteristic features of OAE 2. 

 

Figure 1.1 Global distribution of OAE 2 sites during the late Cretaceous (modified from 
Trabucho-Alexandre et al., 2010). 
 

The palaeomap illustrates the concentration of OAE 2 sites studied 

throughout the Atlantic, Tethys and Western Interior basins. The study of OAE 2 is 

limited in the Pacific Ocean and throughout much of the southern Hemisphere. As 

such this global study of the OAE 2 includes 2 sections of the proto-Pacific (Yezo 

Group, Hokkaido, Japan and Great Valley Sequence, California, USA), and one from 

the proto-South Atlantic (DSDP Site 530; Fig. 1.2). 
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Figure 1.2 Palaeomap of the late Cretaceous. The sites analysed in this thesis are; P – 
Portland #1 Core, GVS – Great Valley Sequence, 1260 – ODP Site 1260 Demerara Rise, 530 
– DSDP Site 530, W – Wunstorf, VB- Vocontian Basin, F – Furlo, YG – Yezo Group, HWR 
– Highwood River (Appendix). The location of the Caribbean (CLIP) and High Arctic Large 
Igneous Province, and the Ontong Java Plateau are marked on in red.  
 

OAE 2 is characterised by organic-rich marl/shales, which have been 

deposited and preserved, and interbedded by lighter marl/limestone. The distribution, 

abundance and consistency of biozones are commonly limited and there is little 

bioturbation, which restricts the reliability of correlation based purely on 

biostratigraphy. As such, biostratigraphy is combined with lithostratigraphy and δ13C 

isotope chemostratigraphy to identify the onset of oceanic anoxic events, which are 

typically characterised by a 2 – 4‰ excursion in the δ13Corg and δ13Ccarb record.  
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Figure 1.3 Image of the Portland #1 core. Illustrates a characteristic lithological sequence 
of OAE 2. 
 

OAE 2 sections are identified by a multitude of disciplines: perturbations in 

the marine carbon isotope record, extinctions in the biostratigraphic record and the 

deposition of organic-rich sediments (Fig. 1.3). Since the classification of OAEs 

there has been an increase in the analysis of isotopic proxies to evaluate the 

relationship of multiple factors influencing the ocean and the atmosphere at the time 

of formation, which facilitate our understanding of the mid- to late Cretaceous 

environment. Other proxies include neodymium, strontium, phosphorus, TEX86, 

calcium, osmium, lead, lithium and uranium (Arthur et al., 1987; Kerr, 1998; 

McArthur et al., 2004; Forster et al., 2007; MacLeod et al., 2008; Turgeon and 

Creaser, 2008; Voigt et al., 2008; Montoya-Pino et al., 2010; Blättler et al., 2011; 

Kuroda et al., 2011; Mort et al., 2011; Martin et al., 2012; Pogge von Strandmann et 

al., 2013, Zheng et al., 2013). Although the OAE 2 has been well studied, the driving 

mechanisms remain poorly constrained, as is the onset and global extent. The 

proposed mechanisms responsible for driving oceanic anoxia are enhanced 
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volcanism and CO2 output, increased land and sea surface temperatures, an 

accelerated hydrological cycle, sea level rise and increased rates of ocean circulation, 

and changes in nutrient supply and productivity (Jenkyns, 1980; Arthur et al., 1987; 

Arthur and Sageman, 1994; Erbacher et al., 1996; Jones and Jenkyns, 2001; Mort et 

al., 2007; Forster et al., 2007; Turgeon and Creaser, 2008; Jenkyns, 2010; Martin et 

al., 2012).  

A climatic shift and transgressive pulse are associated processes driving OAE 

2 (Jenkyns, 1980; Schlanger et al., 1987; Jenkyns, 2010). The late Cretaceous was 

particularly warm, with atmospheric and sea surface temperatures reaching a 

maximum that has not been recorded since (≥33°; Clarke and Jenkyns, 1999; Jenkyns 

et al., 2004; Forster et al., 2007). The high temperatures were responsible for an 

accelerated hydrological cycle, which led to an increase in global weathering and the 

influx of nutrients into the ocean. In addition, the contemporaneous sea-level change 

over the CTB interval mobilised organic-rich terrestrial material to the sea and 

enhanced marine productivity (Jenkyns, 1980; Haq et al., 1988; Erbacher et al., 1996; 

Leckie et al., 2002; Pearce et al., 2009). The abundance of organic-rich material led 

to large-scale burial of organic matter, which accelerated the drawdown of pCO2 that 

began to saturate the ocean and increase the capacity of the oxygen minimum zone 

(OMZ, Erbacher et al., 1996). The combined effect of transgression and the 

subsequent expansion of the OMZ led to the widespread development of anoxia. The 

positive excursion in the δ13C isotope record identifies the climatic perturbation, the 

most significant of all OAEs (Schlanger et al., 1987; Jenkyns, 1980; Keller and 

Pardo, 2004; Erbacher et al., 2005; Gale et al., 2005; Grosheny et al., 2006; Jarvis et 

al., 2006; Voigt et al., 2008; Takashima et al., 2011).  

 



CHAPTER 1. INTRODUCTION     

 

Page | 7  
 

1.2. Osmium isotope stratigraphy 

As the abundance of organic-rich material in seawater escalates during OAE 

2, ORS are readily deposited. Rhenium and osmium are sequestered simultaneously 

into ORS during accumulation. Though we are unclear of the exact mechanism 

involved during rhenium and osmium sequestration, it is considered that under 

oxygen limiting conditions the Re-Os system becomes insoluble and ORS are 

typically enriched in Re (tens of ppb) and Os (tens to hundreds of ppt) relative to the 

continental crust (~ 1.26; Esser & Turekian, 1993; Colodner et al., 1993; Crusius et 

al., 1996). Sequestration is thought to occur just below the sediment-water interface 

by diffusion, reducing pore water to the solid phase (Colodner, 1991). Evidence from 

other redox sensitive elements such as Ni and Mo suggest that Re and Os enrichment 

in ORS is a function of sedimentation rate (Lewan and Maynard, 1982; Kendall et 

al., 2009). However, recent work in riverine systems has shown that Re-Os are 

present in sediments in an oxic water column, and where Re-Os abundances are 

below crustal levels they are hydrogenous and isochronous (Cumming et al., 2012).  

Following organic capture, the Re-Os systematics are not disturbed by post-

depositional effects such as diagenesis, hydrocarbon maturation and low-grade 

metamorphism (Rooney et al., 2010). However, evidence from veining infers that the 

systematics are affected by high temperature fluid flow (Selby et al., 2003; Lawley 

and Selby, 2012). Consequently the Re-Os system can be utilised as a 

geochronometer, combined with biostratigraphy, to calibrate geological timescales 

(e.g., the Devonian-Mississippian boundary of the Exshaw Formation, Selby and 

Creaser, 2005; Selby et al., 2009). The isochron method yields the initial 187Os/188Os 

composition (Osi) at the time of deposition, but this can also be directly calculated 
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using the present day Re and Os isotope ratios and the 187Re decay constant (Selby 

and Creaser, 2005; Kendall et al., 2004).  

An evaluation of Osi provides valuable information on the geochemistry of 

seawater that reflects the variable inputs of osmium associated with continental 

weathering, meteoritic impact, and hydrothermal alteration (Fig. 1.4; Ravizza & 

Turekian, 1992; Peucker-Ehrenbrink et al., 1995; Cohen et al., 1999). Our 

understanding is that the 187Os/188Os isotope composition of seawater is 

predominantly controlled by two end-member Os isotope components: weathered 

continental crust (~1.4) and mantle inputs (0.13) (Fig. 1.4; Peucker-Ehrenbrink and 

Ravizza, 2000). These end-member values, coupled with the short residence time of 

Os in seawater (≤10 kyr; Oxburgh, 2001), make 187Os/188Os values excellent 

chemostratigraphic monitors for global stratigraphy (Turgeon and Creaser, 2008; 

Cohen et al., 1999; Cohen, 2004; Bottini et al., 2012). Furthermore, the evolution of 

seawater chemistry is indicative of palaeoclimatic and palaeoceanographic changes 

in the geological record (Ravizza and Turekian, 1992; Ravizza and Esser, 1993; 

Peucker-Ehrenbrink and Ravizza, 2000; Cohen, 2004), particularly across the CTB 

where there is evidence for accelerated continental weathering and an abundance of 

submarine volcanic activity (Sinton and Duncan, 1997; Snow et al., 2005; Frijia and 

Parente, 2008; Turgeon and Creaser, 2008).  
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Figure 1.4 Schematic cross-section of the input and output sources of 187Os/188Os 
(modified from Peucker-Ehrenbrink and Ravizza, 2000). 

 

Magmatism is a significant driving force for modifications in 187Os/188Os 

seawater chemistry (Cohen et al., 1999; Peucker-Ehrenbrink et al., 1995; Cohen & 

Coe, 2002; Snow et al., 2005; Ravizza & Peucker-Ehrenbrink, 2003; Turgeon & 

Creaser, 2008; and Robinson et al., 2009). However, the isotopic signature depends 

on the style of volcanism: terrestrial (Peucker-Ehrenbrink et al. 1995; Peucker-

Ehrenbrink & Ravizza, 2000; Ravizza & Peucker-Ehrenbrink, 2003; Robinson et al., 

2009) or submarine (Cohen & Coe, 2002, 2007; Robinson et al., 2009). Unradiogenic 

Osi are a direct indicator of submarine volcanism, however as figure 1.4 suggests, 

submarine volcanism is not the only mechanism for the addition of unradiogenic Os. 

Cosmic dust with equally low isotope composition, ~0.127, has the potential to 

simultaneously affect the isotope composition of seawater (Peucker-Ehrenbrink & 

Ravizza, 2000). Despite this, there is no evidence of an extra-terrestrial impact 

during OAE 2 (i.e., no iridium spike), which excludes the implications of a meteorite 

impact on seawater chemistry at this time. 
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The OAE 2 is associated with volcanic activity from the Caribbean Large 

Igneous Province (LIP). Evidence from a previous OAE 2 Osi study suggests that the 

events were contemporaneous (Turgeon and Creaser, 2008). Furthermore, the 

evaluation of Osi isotope stratigraphy across the Triassic-Jurassic boundary (Cohen 

and Coe, 2002; Cohen, 2004) and the OAE 1a (Tejada et al., 2009; Bottini et al., 

2012) provide tenable evidence to support the synchronicity of OAE development 

and magmatism. Therefore establishing Osi profiles of ORS from multiple sites 

across the CTB interval will provide a valuable understanding of the mechanism(s) 

that initiate OAE 2 and quantify changes in global processes throughout the CTB 

interval.  

The previous study concluded that the onset of the event was initiated by 

volcanism at the Caribbean LIP based on the synchronicity of the Osi profile with the 

start of the OAE 2 (Turgeon and Creaser, 2008). However, they did not consider the 

importance of the interval prior to the onset of OAE 2, as well as the trend to 

radiogenic Osi values after the unradiogenic interval, which yield important 

implications for the CTB interval. In particular, the heterogeneous 187Os/188Os 

isotope composition prior to the onset of OAE 2 is indicative of a more complicated 

relationship between the oceanic and atmospheric environments during the 

development of anoxia. In addition, the duration and cessation of volcanic activity 

can be quantitatively constrained from the Osi profile. Therefore, a global assessment 

of depositional environments, including the representative section of the GSSP 

section (Sageman et al., 2006), the European reference section (Voigt et al., 2008) 

and two proto-Pacific sections (Takashima et al., 2011), reveal more detailed 

implications of global Os isotope stratigraphy than previously considered. 
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1.3. Application of U-Pb zircon geochronology 

Geochronology (U-Pb, Ar-Ar) of volcanogenic tuff horizons across the CTB 

plus Bayesian astrochronology, constrains a number of stratigraphic horizons, 

notably the CTB at ~93.90 Ma specifically from the Portland #1 core (Meyers et al., 

2012). In sections that are unconstrained beyond bio- and lithostratigraphy, the 

temporal framework of the Portland #1 core facilitates the correlation of OAE 2 

stratigraphic horizons. In Chapter 3 I apply the U-Pb dating technique to constrain 

the age of five volcanic tuff horizons from the Yezo Group section, Japan, in order to 

facilitate and improve the correlation of OAE 2. In addition, the U-Pb dates are used 

to evaluate the global synchronicity of the OAE 2, which is hypothesised for this 

event. A previous study produced two dates for tuff horizons in the YG section 

(Quidelleur et al., 2011). However, the recent study on the GSSP section (Meyers et 

al., 2012), which combines U-Pb, Ar-Ar and Bayesian stratigraphy, has deemed 

these ages correlatively untenable due to poor precision inherent of the LA-ICP-MS 

methodology and incorrect stratigraphic integration of ages (Chapter 3).   

The U-Pb technique is a well-established chronological tool; the refractory 

and durable nature of zircons means that despite volcanic material being altered to 

clay at the time of deposition, the crystals retain indicators that are representative of 

time. The analysis of two chronometers (238U-206Pb and 235U-207Pb) in one mineral 

provides information on closed system behaviour, i.e. radioactive decay as a function 

of time. Furthermore the detection of nominal open system behaviour can be 

inferred, i.e., Pb loss and/or inheritance. Significant developments in ID-TIMS have 

led to increased precision (Mattinson, 2005); elemental mapping of zircon structures 

and features has enabled grain selection and abrasion of the least fractured crystals, 

removing the outer rim of the crystal to avoid radiation contamination and Pb loss, 
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analytical blanks have been lowered and improved isotopic measurements with more 

efficient ionisation of single crystals, and the evaluation of the accuracy of uranium 

decay constants. Advances in pre-treatment techniques, thermal annealing and 

leaching, have proven to effectively eliminate Pb loss, with any remaining effects of 

Pb loss recognised by high-precision ID-TIMS and data points excluded from the 

calculation of the final age (Mattinson, 2005). The precision of ID-TIMS has been 

lowered to 0.1 – 0.3% and similarly the uncertainties have been reduced by analysing 

large numbers of zircons per sample and restricting analysis to single grains or 

fragments is the most proficient way to correct for inheritance problems.  

Geochronology studies have typically relied upon the 40Ar/39Ar technique 

because obtaining zircons, for U-Pb analysis, from K-rich felsic tuffs was difficult 

and their abundance in bentonite horizons is low (Obradovich et al., 1993). However, 

there has been significant improvement on accuracy and precision of dating tuff 

horizons, which was facilitated by the development of the EARTHTIME double 

spike tracer solutions (233U-235U-202Pb and 233U-235U-205Pb), which also helped 

reduce the uncertainty of mass fractionation associated with the measurements of 

isotope ratios (ET2535; Condon et al., in review; McLean et al., in review). 

Obtaining high precision U-Pb dates for tuff horizons throughout the Yezo 

Group will quantitatively constrain the section and develop the first time correlative 

section for the proto-Pacific Ocean during the OAE 2. Moreover, combining the new 

U-Pb dates with the age-depth model (Bronk Ramsey, 2008) permits the projection 

of ages from Portland #1 core and the Yezo Group section on to the Osi profiles and 

consequently facilitates inter-basin correlation. 
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1.4. Marine calcium isotope stratigraphy 

The evaluation of global Os isotope stratigraphy across the OAE 2 assesses 

the driving mechanisms for the onset of anoxia. In order to quantify the mechanisms 

(e.g., weathering, productivity or volcanism) influencing seawater chemistry during 

the CTBI it is necessary to evaluate an number of isotope systems to yield a 

comprehensive understanding of the ocean and atmosphere conditions during the 

OAE 2 interval. One of the more recent isotope systems to be evaluated as a potential 

proxy for the evolution of seawater chemistry across the OAE 2 is calcium (Blättler 

et al., 2011). Ca is a mobile element and is therefore able to move between and 

within multiple geochemical reservoirs; e.g., lithosphere, hydrosphere, biosphere and 

atmosphere, as part of the Ca cycle. In seawater, Ca is recorded as δ44Ca/40Ca, 

denoted as δ44Ca. The δ44Ca isotope composition of marine carbonates has been 

proposed as a proxy of chemical weathering and a key element involved in the long-

term carbon cycle and the marine calcium budget (De La Rocha and DePaolo, 2000; 

Gussone et al., 2003, 2005, 2006; DePaolo, 2004; Fantle and DePaolo, 2005; Farkaš 

et al., 2007b; Blättler et al., 2012; Holmden et al., 2012; Fantle and Tipper, 2013).  

The systematics for changing δ44Ca isotopic composition are dependent on 

variations in mass balance to and from the seawater through inputs: rivers (–1.03‰) 

and MORs (–0.95‰), and outputs: carbonate sedimentation (De La Rocha and 

DePaolo, 2000; Schmitt et al., 2003; Fantle et al., 2010; Blättler et al., 2012; 

Holmden et al., 2012; Fantle and Tipper, 2013; Fig. 1.5), as a function of the isotopic 

evolution of these inputs and outputs (Fantle and DePaolo, 2005; Sime et al., 2007). 

Over tens of millions of years the Ca isotopes are believed to be relatively resistant to 

diagenetic alteration, in comparison to a number of other proxies (Fantle and De 

Paolo, 2006), which would therefore enhance the capabilities of Ca isotopes over 
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million year time scales. However, on the order of the Ca residence time (~0.5 – 1 

Ma; Schmitt et al., 2003; Farkaš et al., 2007a; Fantle and Tipper, 2013), the influence 

of diagenesis on the evolution of δ44Ca in seawater is a more prevalent possibility, 

which is not well constrained (Mitchell et al., 1997; Fantle, 2010; Fantle and Tipper, 

2013).  

 

Figure 1.5 Schematic cross-section of the inputs and outputs of marine δ44Ca. 

 

The marine δ44Ca isotope system is relatively poorly understood. A multitude 

of studies have aimed to answer a number of outstanding questions with regard to 

what the Ca isotopic record is directly controlled by and recording (Nägler et al., 

2000; Gussone et al., 2003, 2005, 2006; Lemarchand et al., 2004; Böhm et al., 2006; 

Langer et al., 2007; Griffith et al., 2008b; Fantle and Tipper; 2013). Unlike isotopic 

records of Li, Mo, Nd, Os, Pb, Sr, U and trace metals (for example; Kerr, 1998; 

Snow et al., 2005; van Bentum et al., 2009; Frijia and Parente, 2008; MacLeod et al., 

2008; Jenkyns, 2010; Montoya-Pino et al., 2010; Kuroda et al., 2011; Pogge von 

Strandmann et al., 2013; Du Vivier et al., 2014; Chapter 2, 3, this thesis) where the 
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isotopic variation of seawater is a function of known end-member inputs and outputs 

(Peucker-Ehrenbrink and Ravizza, 2000; McArthur et el., 2004), the isotopic 

variation of the δ44Ca isotope record cannot be attributed exclusively to changes in 

the isotopic composition of 2 end-members mixing (Griffith et al., 2008a; Fantle and 

Tipper, 2013). Hitherto, analysis indicates that differentiating between the primary 

inputs based on simple end-member mixing is very difficult since the end-members 

have nearly identical δ44Ca values (−0.95‰, hydrothermal and −1.03‰, riverine; 

Holmden et al., 2012), which offer little isotopic leverage for driving distinguishable 

variations in the Ca isotope composition of seawater (Schmitt et al., 2003; Holmden 

et al., 2012). In particular, during an episode of significant ocean and atmosphere 

perturbation driven by global warming and volcanic activity, such as the OAE 2. 

Furthermore, the interpretation of Ca isotopes is complicated by kinematic 

fractionation and mass dependent fractionation (Gussone et al., 2003; Fantle et al., 

2010). Consequently, due to the lack of variability, it has been assumed that the 

δ44Ca values respond to changes in fractionation factor due to an imbalance in the 

scale of input/output fluxes (De La Rocha and DePaolo, 2000; Blättler et al., 2011; 

Fantle and Tipper, 2013). The fractionation factor is a function of carbonate 

precipitation, which is primarily dependent on CaCO3 mineralogy (DePaolo, 2004; 

Blättler et al., 2012; Holmden et al., 2012; Fantle and Tipper, 2013; Ockert et al., 

2013). 

Additionally, as a result of the lack of isotopic leverage between the two end-

members, there are a number of parameters to consider during the assessment of 

δ44Ca values that potentially influence the evolution of δ44Ca ratios in seawater 

during deposition, which could be environmental and/or biological (e.g., chemical 

composition, precipitation, temperature, salinity, lithology/ carbonate mineralogy, 
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growth rate, and post-deposition diagenesis; De La Rocha and DePaolo, 2000; Farkaš 

et al., 2007b; Fantle, 2010; Blättler et al., 2012; Fantle and Tipper, 2013). 

Multiple isotopic analyses of OAE 2 reveal a synchronous shift in isotope 

composition with the onset of the OAE 2 (e.g., δ13C, Li, Mo, Nd, Os, Pb, P, Sr, U 

and trace metals; Schlanger et al., 1987; Kerr, 1998; Clarke and Jenkyns, 1999; 

McArthur et al., 2004; Snow et al., 2005; Frijia and Parente, 2008; Turgeon and 

Creaser, 2008; Macleod et al., 2008; Tsandev and Slomp, 2009; van Bentum et al., 

2009; Jenkyns, 2010; Montoya-Pino et al., 2010; Kuroda et al., 2011; Mort et al., 

2011; Pogge von Strandmann et al., 2013; Du Vivier et al., 2014; Chapter 2, 3, this 

thesis). A previous OAE 2 study (Blättler et al., 2011) revealed that the δ44/42Ca 

isotope excursion was also synchronous with the onset of OAE 2. They generated 

oceanic box models, which inferred that the variation in the δ44/42Ca isotope record 

was caused by large weathering flux imbalances to the global ocean, and was not a 

result of temperature and diagenetic factors and/or inputs from submarine volcanic 

activity did not appreciably affect the marine calcium isotope budget. However, the 

subtle trend makes justification of the negative excursion in each data set particularly 

difficult to discern.  

As indicated above, quantitative experimental data interpreted from seawater 

mixing models suggest that hydrothermal inputs are not sufficient to change the 

seawater δ44Ca ratios (Schmitt et al., 2003; Amini et al., 2008; Tipper et al., 2010; 

Blättler et al., 2011), despite the temporal coincidence between the variation in δ44Ca 

values synchronous with the onset of OAE 2 and the putative indication to 

hydrothermal inputs contemporaneous with the OAE 2. In Chapter 4, I evaluate 

δ44Ca records from 4 global sections to determine if the perturbations in the marine 

187Os/188Os record (of Chapters 2 and 3) were replicated in the δ44Ca record and if an 
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analogous cause of isotopic change is tenable in both systems. Through the 

utilisation of seawater mixing models, quantitative analysis simulates profiles of 

variable δ44Ca values in order to determine the mechanism which best replicates the 

variation in δ44Ca values compared to the record established in nature. 

 

1.5. Chapter synopsis 

The research in this thesis is presented in paper format. Each paper (chapter) 

represents a complete study, which builds a global record for both marine Os and 

marine Ca, contributing to the catalogue of isotopic proxies used to evaluate the 

OAE 2. The following sections of this introductory chapter provide a synopsis of the 

chapters within this thesis.  

 

1.5.1. Chapter 2: Marine 187Os/188Os isotope stratigraphy reveals the 

interaction of volcanism and ocean circulation during Oceanic Anoxic 

Event 2 

The chapter presents a version of the paper published in Earth Planetary 

Science Letters, 389, 23-33, 2014; co-authored by David Selby, Bradley Sageman, 

Ian Jarvis, Darren Gröcke, and Silke Voigt.  

The chapter presents high-resolution osmium (Os) isotope stratigraphy across 

the Cenomanian-Turonian Boundary Interval from 6 sections for four 

transcontinental settings producing a record of seawater chemistry that demonstrates 

regional variability as a function of terrestrial and hydrothermal inputs, revealing the 

impact of palaeoenvironmental processes. In every section the 187Os/188Os profiles 

show a comparable trend; radiogenic values in the lead up to Oceanic Anoxic Event 

2 (OAE 2); an abrupt unradiogenic trend at the onset of OAE 2; an unradiogenic 
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interval during the first part of OAE 2; and a return to radiogenic values towards the 

end of the event, above the Cenomanian-Turonian boundary. The unradiogenic trend 

in 187Os/188Os is synchronous in all sections. Previous work suggests that activity at 

the Caribbean LIP (Large Igneous Province) was the source of unradiogenic Os 

across the OAE 2 and possibly an instigator of anoxia in the oceans. Here I assess 

this hypothesis and consider the influence of activity from other LIPs, such as the 

High Arctic LIP.  

A brief shift to high radiogenic 187Os/188Os values occurred in the Western 

Interior Seaway before the onset of OAE 2. I evaluate this trend and suggest that a 

combination of factors collectively played critical roles in the initiation of OAE 2; 

differential input of nutrients from continental and volcanogenic sources, coupled 

with efficient palaeocirculation of the global ocean and epeiric seas, enhanced 

productivity due to higher nutrient availability, which permitted 

penecontemporaneous transport of continental and LIP-derived nutrients to trans-

equatorial basins.  

I undertook sample collection from the Portland #1 core, Wunstorf core, 

Vocontian Basin (outcrop) and Site 530 (core), and analysed and processed all 

samples for 187Os/188Os isotope composition at Durham University. I wrote the 

manuscript and compiled figures; improved by comments from Selby, Sageman, 

Jarvis and Voigt. Selby, Sageman, Jarvis, Gröcke and Voigt helped with sample 

collection at outcrop. Gröcke and Voigt analysed δ13Corg from Wunstorf, in Durham 

and Hanover, respectively. The USGS core repository (CO) and H. Jenkyns (Oxford) 

supplied additional samples from ODP Site 1260 and Furlo, respectively.  
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1.5.2. Chapter 3: Pacific 187Os/188Os isotope chemistry and U-Pb 

geochronology: Implications for global synchronicity of OAE 2 

A version of this chapter will be submitted to Earth Planetary Science Letters; 

co-authored by David Selby, Daniel Condon, Reishi Takashima and Hiroshi Nishi.  

The marine realm across the Cenomanian-Turonian boundary interval records 

the OAE 2. This event has been studied using a number of geochemical proxies (e.g., 

δ13C, Os, Sr, Nd, Pb, U) at several sites from the proto-Atlantic. In contrast, there are 

limited studies from the proto-Pacific. I present initial osmium isotope stratigraphy 

(Osi) from two proto-Pacific sites: the Yezo Group (YG) section, Hokkaido, Japan, 

and the Great Valley Sequence (GVS), California, USA; to evaluate the Os seawater 

chemistry of the proto-Pacific with that of the Western Interior Seaway, Tethys and 

proto-Atlantic. In addition, I present U-Pb zircon ID-TIMS geochronology from 5 

volcanic tuff horizons of the Yezo Group section to facilitate basinal integration and 

to quantitatively constrain the duration of events across the Cenomanian-Turonian 

boundary interval.  

For the YG section the Osi prior to OAE 2 are radiogenic and heterogeneous 

(~0.55 – 0.85). Synchronous with the OAE 2 onset the Osi abruptly become 

unradiogenic and remain homogenous (~0.20 – 0.30) before showing a gradual 

return to more radiogenic Osi (~0.70) throughout the middle to late OAE 2. The Osi 

data and U-Pb age(s) combined, revise the stratigraphic position of the onset of OAE 

2 in the YG section. The bed marking the onset of OAE 2 is ~24 m higher than 

previously considered based solely on the δ13Cwood analysis, which is supported by 

the U-Pb age for HK017 of 94.436 ± 0.14 Ma (adjacent to the onset of OAE 2) that 

agrees with the interpolated age of the onset ~94.38 ± 0.15 Ma, within uncertainty. In 

addition, I develop an age-depth model based on the 206Pb/238U ages to facilitate the 
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integration of Osi profiles between the YG and the Portland core. In contrast, the Osi 

profile from the GVS is disparate to the YG profile and those of several proto-

Atlantic and Tethys locations. The heterogeneous Osi values in the GVS suggest that 

seawater chemistry was influenced interchangeably by both unradiogenic and 

radiogenic Os, which infers that the Osi isotope composition is readily sensitive to 

regional variability and responds within <20 kyr to changes in ocean chemistry. The 

continuous inflections in the Osi data suggest there is frequent alternation between 

continental flux and hydrothermal pulses to the palaeobasin due to the proximity to 

the Caribbean LIP.  

Furthermore, the application of a temporal framework generates a 

quantitative model, from which the timing and onset of OAE 2 is derived and the 

duration of activity at the Caribbean LIP is estimated. The model illustrates the 

synchronous onset of OAE 2 and the contemporaneous activity at the Caribbean LIP 

in the Osi profiles from trans-Pacific sections, which concur with Osi profiles from 

OAE 2 sections worldwide (Chapter 2, this thesis). 

I undertook sample collection from the Yezo Group section during fieldwork 

in Hokkaido, Japan, helped by Takashima and Selby. Samples from the Great Valley 

Sequence, California, USA were provided by Nishi. I analysed and processed all 

samples for 187Os/188Os isotope composition at Durham University. The volcanic tuff 

horizons were also collected from the Yezo Group during fieldwork in Japan. I 

extracted zircons from the tuff samples for U-Pb zircon geochronology at NIGL 

BGS, Keyworth. I observed part of each stage of the analytical protocol for U-Pb 

zircon ID-TIMS, which was done by Nicola Atkinson at NIGL. Condon provided the 

U-Pb ages and facilitated with the OxCal age-depth model. I wrote the manuscript 

and compiled figures; improved by comments from Selby, Condon and Takashima.  
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1.5.3. Chapter 4: Calcium isotope stratigraphy across the Cenomanian-

Turonian OAE 2: Implications on the controls of marine Ca isotope 

composition  

A version of this chapter will be submitted Geochimica et Cosmochimica 

Acta; co-authored by Andrew Jacobson, Gregory Lehn, David Selby and Bradley 

Sageman.  

This chapter presents a high-precision δ44/40Ca (δ44Ca) isotope composition 

(2σ SD = ± 0.04‰) record for three OAE 2 sections from the Portland #1 core; the 

Pont d’Issole section, SE France; and the Yezo Group section, Japan; and new data 

for selected samples from Eastbourne, and compares with existing data for 

Eastbourne (previously analysed by Blättler et al., 2011). Evidence suggests that the 

isotopic leverage from inputs is insufficient to differentiate the factor driving long-

term variability in the Ca isotope composition. Whereas the affect of fractionation 

factor as a result of the removal of Ca from the ocean through carbonate deposition is 

shown to have sufficient leverage on the variability of δ44Ca values.  

A previous study represented δ44/42Ca values against numerical models 

coupled with Sr isotope curves, which were utilised to interpret the factors 

influencing the seawater chemistry (Blättler et al., 2011). The study infers that a 

transient negative excursion in the marine δ44/42Ca isotope composition across the 

onset of the OAE 2 is indicative to an increase in weathering influx (Blättler et al., 

2011). However, the δ44Ca values from this study reveal a positive excursion that is 

synchronous with the onset of OAE 2, after which the δ44Ca values gradually return 

to pre-OAE 2 values.  

Qualitative observations of the positive trend in the δ44Ca values suggest that 

the variation may be sensitive to an increase in hydrothermal flux, which is globally 
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contemporaneous with activity at submarine LIPs based on evidence from Os isotope 

stratigraphy (Chapters 2 and 3, this thesis) and other isotope proxies and trace metals, 

which may suggest that Ca and Sr are decoupled in seawater chemistry for this 

period of time. In spite of this, I utilise seawater mixing models to simulate changes 

in δ44Ca values, in order to determine the dominant factor driving δ44Ca variation. 

The models are derived from a non-steady-state permitting the mass and residence 

time of Ca in seawater to vary in order to maintain a mass-balance and return to 

steady state over time. The models demonstrate no appreciable variation in δ44Ca 

values in response to hydrothermal influx or weathering influx. The best imitation of 

the δ44Ca record from Portland and Pont d’Issole is inferred from the model that 

simulates a variable fractionation factor. In addition, I interpret the discrepancy of 

the trends between this study and Blättler et al. (2011).  

The contrasting marine δ44Ca profiles suggest that fractionation is influenced 

by the lithology of the sequence stratigraphy and therefore the positive excursion at 

Portland and Pont d’Issole is an artefact of site-specific mineralogical variation 

(Ockert et al., 2013). In this study I discuss the influence of fractionation factor 

determined by site-specific lithology and express the complexities of the marine 

δ44Ca isotopic system through the discussion of multiple parameters, which need to 

be constrained before conclusive interpretation of δ44Ca profiles can be made. The 

variation in fractionation factor may also be interpreted as consistent with ocean 

acidification, which subsequently influences the depositional composition. Whereby 

the increase in submarine volcanic activity, contemporaneous with the onset of OAE 

2, elevates the abundance of dissolved CO2 in the oceans and thus increases 

carbonate dissolution as the pH of the seawater decreases. Ultimately, the variability 

in δ44Ca values is a function of changing fractionation factor in response to 
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decreasing carbonate precipitation, stimulated by a change in seawater chemistry that 

is driven by volcanism.  

I undertook sample collection from the Portland #1 core, Pont d’Issole 

section and the Yezo Group section. I spent 5 weeks at Northwestern University to 

process and analyse all samples for δ44Ca for the Portland #1 core. Samples from 

Pont d’Issole and the Yezo Group were subsequently processed and analysed by 

Lehn at Northwestern. All 187Os/188Os isotope compositions were processed at 

Durham University (Chapters 2 and 3). I wrote the manuscript and compiled the 

figures. Jacobson provided the seawater mixing model. Selby, Jacobson, Lehn and 

Sageman provided constructive comments on the manuscript as a whole.  

 

1.5.4. Chapter 5: Conclusions and Future work 

This chapter summarises the main conclusions and implications of this thesis 

and documents future work that could be undertaken to address any outstanding 

issues associated with this project area. 

 

1.6. Synopsis 

This thesis aims to investigate marine Os and Ca isotope stratigraphy of 

organic-rich deposits, with the intention of improving our understanding of the late 

Cretaceous through the analysis of multiple global OAE 2 sections. The δ13C isotope 

curves, that characterise OAEs, have been combined with new high-resolution Osi 

isotope profiles to better understand the relationship between the ocean-atmosphere 

systems during a turbulent interval of the geological past. Re-Os provide a unique 

tool to infer the global extent of the OAE 2, to assess the mechanism(s) driving 

fluctuations in seawater 187Os/188Os and quantitatively determine the change in flux 
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to the oceans, and by inference assess the changeability of palaeocirculation 

associated with OAE 2. The fluctuation of Osi data suggests that 187Os/188Os isotope 

stratigraphy might provide a more dynamic fingerprint for seawater chemistry during 

the OAE 2 (and other OAEs) compared to the δ13C isotope data. Therefore the Osi 

profiles facilitate section correlation and can quantitatively constrain the duration of 

volcanism associated with the OAE 2. The U-Pb zircon geochronology of 

volcanogenic tuff horizons enable stratigraphic integration of a Pacific OAE 2 

section with the GSSP section and confirm the validity of the globally synchronous 

OAE 2.  

The application of marine δ44Ca to elucidate the Ca cycle during the CTBI 

combined with seawater mixing models shows that the input required to change the 

Ca isotopic composition of the ocean, riverine and/or hydrothermal, is insufficient 

during the OAE 2. I use seawater mixing models to simulate the causes of δ44Ca 

isotopic variation. The simulated models for increased hydrothermal and riverine 

influx both show no appreciable change in δ44Ca values and reveal that fractionation 

factor drives the variability of seawater δ44Ca ratios. Fractionation factor is 

dependent on the carbonate composition of the sediment precipitating. I illustrate the 

relationship between modelled fractionation factor and data recorded and conclude 

that instantaneously changing the fractionation factor at the onset, consistent with a 

change in lithology, produces a positive excursion in the δ44Ca record at Portland and 

Pont d’Issole; however, there are a number of other depositional and post 

depositional factors associated with the fractionation factor that must be considered. 

Overall, I suggest that Ca isotope systematics are complex and the marine δ44Ca 

profiles are regionally disparate on a global scale as a function of varying 
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fractionation factor. Further work is crucial in order to develop our understanding 

and to establish which parameter(s), if any, is the most influential.  
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1. Introduction 

The Cenomanian-Turonian boundary (CTB) OAE 2 records an extensive 

period of global anoxia, represented worldwide by sections containing organic-rich 

marine sedimentary rocks. Strata marking the onset of OAE 2 are globally correlated 

by a 2 to 4‰ positive excursion in the carbon stable isotope composition of organic 

matter (δ
13

Corg) and marine carbonates (δ
13

Ccarb), which are interpreted to reflect the 

onset of massive organic carbon burial and widespread oxygen deficiency in the 

oceans (Jenkyns, 1980; Schlanger et al., 1987). The OAE 2 has been studied using 

numerous proxies (e.g. carbon, strontium, osmium, calcium, neodymium, lithium, 

uranium, TEX86 and phosphorus; Arthur et al., 1987; McArthur et al., 2004; Forster 

et al., 2007; Mort et al., 2007; MacLeod et al., 2008; Turgeon and Creaser, 2008; 

Voigt et al., 2008; Montoya-Pino et al., 2010; Blättler et al., 2011; Pogge von 

Strandmann et al., 2013; Zheng et al., 2013) to determine the driving mechanisms for 

organic carbon burial and anoxia. Among the processes thought to play a role are: 

enhanced volcanism and CO2 output; increased land and sea surface temperatures; an 

accelerated hydrological cycle, sea level rise and increased rates of ocean circulation; 

and changes in nutrient supply and productivity. These have all been supported by 

different proxy studies (e.g. Jenkyns, 1980; Arthur et al., 1987; Arthur and Sageman, 

1994; Mort et al., 2007; Turgeon and Creaser, 2008; Martin et al., 2012).  

In this study, we present high-resolution initial osmium isotope (
187

Os/
188

Os; 

Osi) stratigraphy of the upper Cenomanian to lower Turonian from 4 transcontinental 

sections, and the Osi data from two previously analysed representative sections of the 

proto-North Atlantic and Tethyan margin (Fig. 2.1; ODP Site 1260 and Furlo; 

Turgeon and Creaser 2008) with additional analysis to enhance resolution. These 

data are predominantly controlled by the mass balance of two end-member Os 
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isotope components: weathered continental crust (~1.4) and mantle inputs (0.13) 

attributed to enhanced submarine volcanism (Peucker-Ehrenbrink and Ravizza, 

2000). This, coupled with the short residence time of Os in seawater (≤10 kyr; 

Oxburgh, 2001), makes 
187

Os/
188

Os composition an excellent monitor of 

palaeoceanographic changes in the geological record (Peucker-Ehrenbrink and 

Ravizza, 2000; Cohen, 2004), particularly across the CTB where there is evidence 

for accelerated weathering, as well as evidence of submarine volcanic activity (Snow 

et al., 2005; Frijia and Parente, 2008; Turgeon and Creaser, 2008; Pogge van 

Strandmann et al., 2013).  

 Analysis of osmium isotope trends recorded from different sites provides 

information about changes in these inputs to the marine realm, as well as the 

interconnectivity of oceanic water masses with epeiric seas. The Osi data reported 

from the previous study show similar profiles, and suggest that for at least ~700 kyr 

of the late Cenomanian-early Turonian the ocean basins were relatively well 

connected. The Osi data also show that a major pulse of volcanism interpreted to be 

associated with activity from Large Igneous Provinces (LIPs), i.e., Caribbean and 

High Arctic (Fig. 2.1; Snow et al., 2005; Tegner et al., 2011) occurred at or just prior 

to the onset of OAE 2. However, the High Arctic LIP is largely understudied due to 

lack of exposure. Since constraints on timing and duration of activity from LIP 

volcanism are ambiguous (Tegner et al., 2011; Zheng et al., 2013), we associate the 

Osi data presented here with activity from the better temporally constrained 

Caribbean LIP (Turgeon and Creaser, 2008). 

The Osi stratigraphic profiles across the CTB in this study are from (Fig. 2.1): 

the Portland #1 core, which is representative of the Global Stratotype Section and 

Point (GSSP) near Pueblo, Colorado (Western Interior Seaway (WIS); Kennedy et 
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al., 2000); the Wunstorf core in Germany, a representative section in the NW 

European pelagic shelf sea (Voigt et al., 2008); the Vocontian Basin, south east 

France (Western Tethys; Grosheny et al., 2006; Jarvis et al., 2011); and DSDP Site 

530 (proto-South Atlantic; Forster et al., 2008). The Portland #1 core has the most 

refined temporal control for the studied interval based on detailed biostratigraphy, 

new radioisotopic dating, astrochronology, and chemostratigraphy (Sageman et al., 

2006; Meyers et al., 2012a; Ma et al., 2014), and provides a critical framework for 

global correlation. The Wunstorf core has a similarly good age control based on bio-, 

chemo-, and cyclostratigraphy and can be correlated to the Portland #1 core 

succession (Voigt et al., 2008). Based on the GSSP time scale, and confirmed by 

additional estimates from different OAE 2 sites, the duration of the 
13

C isotope 

excursion that characterises the OAE 2 is between 500-600 kyr (Meyers et al., 

2012b).  

In this study we investigate the Osi stratigraphy of multiple sections over an 

interval of ~1.8 Myr from the late Cenomanian to the early Turonian and 

demonstrate that Osi values show some differences prior to OAE 2 depending on 

geographic location and depositional setting. These variations are interpreted to 

reflect differential water mass exchange between epeiric settings and the open ocean 

modulated by sea-level change, as well as changes in terrigenous weathering rates 

due to enhanced global warming, which may have also affected nutrient fluxes and 

primary production levels. These results suggest that epeiric seas, like the WIS or the 

European shelf sea, may have played an important role in the driving mechanism for 

OAE 2.  

Additionally, we show that in comparison to the pre-OAE 2 interval, the syn-

OAE 2 Osi values from Site 1260 and Furlo combined with Portland, Wunstorf, the 
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Vocontian Basin and Site 530 are remarkably similar. Coupled with the new 

geochronology from the WIS (Meyers et al., 2012a) a refined timing for the onset 

and duration of LIPs and its temporal association with OAE 2 is developed. 

Furthermore, our interpretation of the Osi profile concurs with the hypothesis of 

increased ocean circulation based on analysis of neodymium (Nd) isotopes (Martin et 

al., 2012; Zheng et al., 2013).  

 

  

 

Figure 2.1 Palaeogeographic map of the CTB showing locations of analysed sites. P – 

Portland and Pueblo GSSP; 1260 – ODP Site 1260, Demerara Rise; W – Wunstorf; VB – 

Vocontian Basin; F – Furlo; 530 – DSDP Site 530. The location of the Caribbean LIP and 

High Arctic LIP (Large Igneous Province) are also shown. 

 

  

2. OAE 2 section geology  

2.1.  Portland #1 Core, Colorado, USA 

The studied interval was sampled from the USGS Portland #1 core (32˚ 22.6 

`N, 105˚ 01.3 `W; Dean and Arthur, 1998; Meyers et al., 2001; Fig. 2.1). This core 

was taken about 40 km west of the site near Pueblo, CO that was ratified as the 
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GSSP for the CTB (Kennedy et al., 2005), and its stratigraphy has been correlated, 

essentially bed for bed, to the GSSP section (Sageman et al., 2006).  The Pueblo 

region was ratified as the GSSP site because the boundary interval contains abundant 

biostratigraphic index taxa, several options for geochronologic calibration, shows no 

obvious signs of condensation or significant disconformity, and has various 

stratigraphic markers that can be correlated over tens of thousands of square km 

(Hattin, 1971; Elder et al., 1994; Kennedy et al., 2005).  

Within the Portland core, the Cenomanian-Turonian Boundary Interval 

(CTBI) was studied in a 17.7 m-thick section of the Bridge Creek Limestone (~12 m) 

and Hartland Shale (~12.6 m) Members of the Greenhorn Formation (Cobban and 

Scott, 1972). These units include organic-rich calcareous shales and rhythmically 

interbedded couplets of shale and fossiliferous biomicritic limestone. The 

stratigraphy is also characterised by four bentonite units of 1 to 20 cm that have been 

regionally correlated (Elder, 1988). Recent sanidine 
40

Ar/
39

Ar and zircon 
206

Pb/
238

U 

geochronology integrated with astrochronology constrain the CTB at 93.90 ± 0.15 

Ma (Meyers et al., 2012a). The CTBI contains a variety of fossil taxa useful for 

biostratigraphy (e.g., Gale et al., 1993; Kennedy et al., 2000, 2005; Keller and Pardo, 

2004; Keller et al., 2004; Cobban et al., 2006) some of which have intercontinental 

distributions; however, their transcontinental synchronicity is limited.  The dominant 

foraminifera species spanning the CTBI are Rotalipora cushmani, Whiteinella 

archaeocretacea and Helvetoglobotruncana helvetica (Eicher and Worstell, 1970).  

The FO (first occurrence) of the ammonite Watinoceras devonense (Fig. 2.2; 

Kennedy et al., 2000) marks the basal Turonian, recorded at the base of bed 86 of the 

Bridge Creek Limestone (Meyers et al., 2001; bed numbers are based on Cobban and 

Scott, 1972). The FO of W. devonense coincides with the FO of Mytiloides 
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puebloensis (Kennedy et al., 2000), which can be traced through both Tethyan and 

Boreal regions (Kennedy et al., 2005).  

The onset of OAE 2 is identified by an abrupt 2-3‰ VPDB δ
13

Corg positive 

shift from values of ~ -27‰ in the upper Hartland Shale, 4.3 m below the CTB (Fig. 

2.2; Table 2.1a; Sageman et al., 2006).  The positive excursion is characteristic of the 

isotopic response during OAE 2 and, although many localities record increased 

organic carbon deposition at this level (e.g., Tsikos et al., 2004), sites within the WIS 

do not.  Here the onset is characterised by organic-poor interbedded limestones and 

shales that are generally bioturbated. Shale interbeds in the upper half of the OAE 2 

interval, however, do become enriched in TOC in the WIS. The end of OAE 2 is 

expressed by a gradual fall in δ
13

Corg back to ~-27‰ (Sageman et al., 2006).  

A high-resolution time scale for the study interval has been developed in 

recent years based on integration of new radioisotopic dates and astrochronological 

methods (Meyers et al., 2001, 2012a; Sageman et al., 2006; Ma et al., 2014). The 

astrochronological techniques yield a more accurate interpolation of time for the 

intervals between dated tuff horizons because they include evolutive assessment of 

changes in linear sedimentation rate (not corrected for compaction). Both 

radioisotopic and astrochronologic methods indicate a duration for OAE 2 of ~600 

kyr measured from the δ
13

Corg onset. 

 

2.2.  Wunstorf, NW Germany 

The Wunstorf section was sampled from drill core from 52˚ 24.187 `N, 09˚ 

29.398 `E and represents the European type section for the CTBI (Fig. 2.1; Voigt et 

al., 2008). The CTBI succession (Hesseltal Formation) at Wunstorf was deposited in 

the distal Lower Saxony Basin, which was part of the western European shelf sea 
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(Wilmsen, 2003). The 26.5 m-thick Hesseltal Formation comprises cyclically 

interbedded couplets of organic-carbon rich shales, marls and limestones interpreted 

to represent nine short eccentricity cycles based on spectral analytical results (Voigt 

et al., 2008). Accordingly, OAE 2, as defined by the δ
13

Ccarb curve, includes 4.3 short 

eccentricity cycles or 21.2 precession cycles, respectively, indicating a duration of 

430-445 kyr (Voigt et al., 2008).  

The biostratigraphy of the Hesseltal Formation is established by zonation 

with inoceramids, ammonites, acme occurrences of macrofossils and planktonic 

foraminifera (Ernst et al., 1984; Lehmann, 1999; Voigt et al., 2008). The ammonite 

and inoceramid zonation can be compared to that of the GSSP in detail. Although no 

macrofossils are recorded directly from the Wunstorf core, a series of index taxa can 

be placed based on a bed-by-bed correlation between the Lower Saxony Basin and 

the Munsterland Cretaceous Basin (Voigt et al., 2007, 2008). The FO of the 

ammonite Metoicoceras geslinianum is equivalent to the FO of Sciponoceras gracile 

at the GSSP (Gale et al., 2005, 2008), which corresponds to the base of the Hesseltal 

Formation at Wunstorf (Lehmann, 1999). The FO of W. devonense, the index taxon 

for the CTB (Fig. 2.2; Kennedy et al., 2005), is located in the Wunstorf core at 37.5 

± 1 m (Lehmann, 1999, Voigt et al., 2008).  

Previously, the stratigraphic extent of OAE 2 was constrained by δ
13

Ccarb 

(Voigt et al., 2008). Here we present δ
13

Corg for the Wunstorf section, which shows 

frequent oscillations from -25 to -27‰ VPDB prior to OAE 2 (Fig. 2.2; Table 2.1b). 

A facies change depicts the onset throughout the European shelf (Voigt et al., 2007). 

This change records an initial positive excursion in the δ
13

Corg, consistent with the 

δ
13

Ccarb, followed by a second more distinct increase in the δ
13

Corg. At Wunstorf, 

δ
13

Corg only clearly records the second increase; however OAE 2 initiation 
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corresponds to the first increase. The duration of OAE 2 at Wunstorf was estimated 

to be ~435 kyr based on spectral analysis of lithological cyclicity (Voigt et al., 2008), 

which differs from the astrochronological and radioisotopic derived duration at the 

GSSP (~600 kyr; applied in this study). Voigt et al. (2008) discussed several options 

for this discrepancy as the possible lack of strata, different definitions of onset and 

termination of OAE 2 in the Portland #1 and Wunstorf cores, and incorrect orbital 

frequency assignment to the dominant cycle length. The new organic δ
13

Corg curve of 

this study (Fig. 2.2) shows five distinct cycles close to the short eccentricity filter of 

Voigt et al. (2008). Such a reinterpretation would reduce the temporal discrepancy 

and is consistent with the recently documented stronger obliquity control during 

OAE 2 (Meyers et al., 2012).  Further spectral analytical research is needed to fully 

address this question.  

 

2.3.  Vocontian Basin (Pont d’Issole and Vergons), SE France  

The Vocontian Basin was part of the western gulf in the European Alpine 

region of the NW Tethys Ocean ~30°N (Jarvis et al., 2011; Fig. 2.1). High rates of 

subsidence throughout the mid-Cretaceous provided accommodation space for thick 

rhythmically bedded bioturbated limestone-marl successions, where the variable 

facies are indicative of a fluctuating hemipelagic depositional environment of 

moderate depth. Different depositional and structural processes dependent on their 

location in the basin have affected CTB sections within the Vocontian Basin; e.g. the 

Vergons section is affected by syn-sedimentary slumping in the uppermost 

Cenomanian, but otherwise exposes a continuous Upper Albian – Lower Turonian 

succession, while the thinner Pont d’Issole section is complete through the CTBI. A 

~20 m thick package of black organic-rich calcareous shales, termed the “Niveau 
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Thomel” (Takashima et al., 2009; Jarvis et al., 2011), characterise the CTBI. 

Detailed biostratigraphy has been obtained for the 24 m Pont d’Issole section 

(Grosheny et al., 2006; Jarvis et al., 2011). The distribution of index taxa R. 

cushmani and H. helvetica, coupled with complete 
13

Corg and 
13

Ccarb records (Fig. 

2.2; Jarvis et al., 2011), permits bed-scale correlation with the GSSP near Pueblo. 

Above the onset of OAE 2, samples were taken from Pont d’Issole, whereas below 

the onset some of the samples (n=4) came from Vergons (Table 2.2d), which is 

correlated with Pont d’Issole based on litho-, bio-, and stable-isotope stratigraphy 

and is undisturbed by faulting in the pre-OAE 2 interval. 

The OAE 2 in the Pont d’Issole section includes a distinct facies change to 

finely laminated black shales (total organic carbon, TOC 0.3 – 3.5 wt.%) that occurs 

about a metre below the distinctive positive 
13

Corg excursion (3‰) that marks the 

base of OAE 2 (Fig. 2.2; Table 2.1d; Jarvis et al., 2011). High-frequency fluctuations 

in the 
13

Corg record, up to 1‰ in magnitude, occur throughout OAE 2, associated 

with the alternation of lithological units. The termination of OAE 2 is recorded by a 

gradual return to ~ -26‰. 

 

2.4.  DSDP Site 530, Hole 530A, South Atlantic 

Palaeotectonic reconstruction situates Site 530 at 37 °S, 38 °W (Forster et al., 

2008; Fig. 2.1). Site 530 is located on the abyssal floor of the Angola Basin, 4645 

metres below sea level (mbsl) and approximately 150 km west of the base of the 

continental slope of SW Africa with a 3-4 degree incline. Drilling penetrated to a 

final depth of 1121 metres below sea floor (mbsf) after encountering durable basalt 

at 1103 mbsf (Forster et al., 2008). The
13

Corg excursion marking OAE 2 occurs 

within a 49 m section of the CTBI. Low sample resolution due to poor core recovery, 
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and thus limited nannofossil data, only provide an approximate stratigraphic 

identification of the CTB. 

Lithology in the CTBI includes interbedded shales, clays and mudstones, 

some of which are pyritiferous. The organic matter in the black shales is of marine 

origin, but includes a significant fraction of terrigenous material (Forster et al., 

2008). The black shales are highly laminated and relatively undisturbed by 

bioturbation. The 
13

Corg record is incomplete due to poor core recovery and low 

sample yield, but an excursion signifying OAE 2 is recorded: a 0.5‰ VPDB 

negative shift immediately precedes the 4‰ positive excursion, from -27.7 to -

23.7‰ (Fig. 2.2; Table 2.1f; Forster et al., 2008). The characteristic excursion spans 

~2 m of finely interbedded shales and mudstones. Throughout OAE 2, the 
13

Corg 

values fluctuate between ~ -23.5‰ to -27.5‰. The maximum enrichment in the 


13

Corg is at 1035.75 mbsf, ~3.52 m into OAE 2 (Forster et al., 2008). 

 

2.5.  ODP Site 1260, Hole 1260B, Demerara Rise and Furlo, Italy  

In an effort to augment the understanding of seawater chemistry prior to OAE 

2 provided by Turgeon and Creaser (2008), additional samples (n = 12 [ODP] and n 

= 6 [Furlo]; Fig. 2.1) were analysed and the resolution of the Osi profiles was 

increased.  

 The facies at Site 1260 include a mixture of terrigenous detritus and 

carbonates, with high organic contents up to ~23 wt.%. The δ
13

Corg positive 

excursion reaches a maximum enrichment of -22.1‰ VPDB and the entire excursion 

is 1.2 m thick (Fig. 2.2; Table 2.1c; Forster et al., 2007).  

In the Furlo section the CTBI lies within the Scaglia Bianca Formation, 

which includes abundant biosiliceous limestone. The Livello Bonarelli is a 1m thick 
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condensed interval of millimetre-laminated black shale and brown radiolarian sand 

that represents the sedimentary expression of part of OAE 2 (Arthur and Premoli 

Silva, 1982). Up to 20 m beneath the Bonarelli level there are numerous centimetre 

scale organic-rich shale layers (Jenkyns et al., 2007). The δ
13

Corg record has a narrow 

variation in background values prior to OAE 2, ~ -25.9 to -26.5‰. The characteristic 

positive excursion in δ
13

Corg is a 4‰ shift, from -27.2 to -23.1‰, occurring within 

<0.5 m (Fig. 2.2; Table 2.1e). 

  

3. Methods 

In this study we have applied δ
13

Corg and Re-Os methodologies to determine 

the geochemical signatures of OAE 2 related strata. We have used published 

analytical protocols (e.g., Selby and Creaser, 2003; Jarvis et al., 2011), which are 

described in detail in the following sub-sections, together with our sampling protocol 

from core and outcrop. 

 

3.1. Sampling Protocol 

The collection of samples at outcrop was undertaken with care in order to 

avoid areas of high surface weathering. Where erosion and weathering was obvious 

the samples were dug out from 10-20 cm beneath the exposure surface. Fresh 

samples would prevent sample exposure to isotopic alteration through chemical and 

physical weathering and/ or diagenesis. At each section samples were collected at 10 

– 50 cm intervals; with the highest resolution through periods of most interest, e.g., 1 

– 2 m prior to the onset of organic-rich laminated facies and throughout the first 2 – 

3 m of these facies (which commonly mark the OAE intervals). 
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Core samples, each of ~50 g, were collected from the cores for Re-Os isotope 

analysis. Portland #1 core samples were collected from within every shale interval, 

approximately every 30-50 cm, with the exception of ~1 m below the marker bed 63, 

where the sample interval was 10 cm to yield a higher resolution Re-Os data over the 

onset interval of the OAE 2. For the Wunstorf core, samples were collected at 50 cm 

intervals. Above the onset of the OAE 2 samples were taken every 30 cm over ~2 m. 

From the Vocontian Basin samples were collected every 20-50 cm and from the Site 

530 core, samples were taken at ~50 cm intervals. Sampling intensity was designed 

within each shale interval with Os residence time in mind (<10 kyr; Oxburgh, 2001). 

In order to establish a better understanding of the ocean-climate system prior 

to the onset of the OAE 2, additional samples from Site1260 and Furlo were 

analysed (see Table 2.2c and 2.2e) to enhance the resolution of the existing record by 

Turgeon and Creaser (2008).  

 

3.2. Re – Os Isotope analysis of organic-rich sediment (ORS)  

Prior to being powdered, all the samples were polished to remove any minor 

drill marks and weathered material. Samples were powdered in a Zr dish. A dried 

sample weight of ≥30 g was powdered in order to homogenise the Re and Os within 

the sample (Kendall et al., 2009). The Re-Os analysis ORS was conducted using 

Carius tube digestion in a 0.25 g/g CrO3 4N H2SO4 reagent at 220°C for 48 hrs, with 

the Re and Os isolated from the acid medium using solvent extraction, micro-

distillation and anion chromatography methodology (Selby and Creaser, 2003). In 

brief, 0.5 to 1 g of sample powder was loaded in a Carius tube with a known amount 

of mixed tracer solution, 
190

Os + 
185

Re, with 8 ml of CrO3-H2SO4 solution. The 

sealed Carius tubes are then placed in an oven at 220 ˚C for 48 hrs. Osmium is 
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isolated and purified using solvent extraction (CHCl3) and microdistillation methods. 

Anion chromatography is used to purify the Re from 1 ml of the CrO3-H2SO4 

solution (Selby and Creaser, 2003). The purified Re and Os fractions were loaded 

onto Ni and Pt filaments, respectively (Selby and Creaser, 2003) with the addition of 

~0.5 µl BaNO3 and BaOH activator solutions, respectively. Isotope compositions 

were measured using negative thermal ion mass spectrometry (NTIMS; Creaser et 

al., 1991; Volkening et al., 1991) via faraday cups for Re and electron multiplier 

(SEM) in peak hopping mode for Os. Osmium isotopic ratios were calculated 

relative to 
188

Os and corrected for mass fractionation using a 
192

Os/
188

Os value of 

3.08261 (Nier, 1937). The oxide corrected 
185

Re/
187

Re was normalised using a 

185
Re/

187
Re value of 0.59738 (Gramlich et al., 1973). Total procedural blanks for Re 

and Os during this study are 13.3 ± 1.8 ppt and 0.32 ± 0.17 ppt, respectively, with 

187
Os/

188
Os value of 0.19 ± 0.12 (1 SD, n = 2). Uncertainties for 

187
Re/

188
Os and 

187
Os/

188
Os are determined through full propagation of uncertainties in Re and Os 

mass spectrometer measurements, blank abundances and isotopic compositions, 

spike calibrations and reproducibility of standard Re and Os isotopic values (Table 

2.2). In-house standard solutions (DROsS and Re Std) were run repeatedly 

throughout each batch of samples to monitor mass spectrometer reproducibility. The 

Re standard yields an average 
187

Re/
188

Re of 0.59795 ± 0.0016 (1 SD, n = 20). The 

Os standards (AB-2 and DROsS) yields an 
187

Os/
188

Os average of 0.10682 ± 0.00012 

(1 SD, n = 26) and 0.16094 ± 0.00015 (1 SD, n = 22). The isotope compositions of 

these Re and Os solutions are consistent within uncertainty to those published by 

Selby et al. (2009) and Nowell et al. (2008). 

A black shale reference sample, SDO-1, was used continuously throughout 

geochemical analysis, in order to determine analytical reproducibility. SDO-1 is a 
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reference sample used by the USGS principally for trace element analysis of black 

shale units. It is Devonian-Mississippian, collected from the Huron Member of the 

Ohio Shale near Morehead, Kentucky (Kane et al., 1990). In this study 12 analysis of 

SDO-1 yielded an average 
187

Re/
188

Os of 1166.0 ± 88.1 (2 SD) and 
187

Os/
188

Os of 

7.831 ± 0.568 (2 SD). The average Re and Os abundance for SDO-1 is 75.5 ppb ± 

11.3 (2 SD) and 626.1 ppt ± 101.8 (2 SD). The average Osi (calculated at 366 Ma) is 

0.70 ± 0.04 (2 SD; Table 2.3). Based on the reproducibility of the calculated Osi for 

SDO-1, we only consider variations in Osi to be of geological significance when the 

difference between samples is >0.04. For samples analysed from the Portland, 

Wunstorf and Site 530 cores and the Vocontian Basin initial 
187

Os/
188

Os (Osi) were 

calculated using 93.90 Ma with the 
187

Re decay constant of Smoliar et al. (1996). 

The Osi values of Turgeon and Creaser (2008) were recalculated with the new date 

(93.90 Ma) to allow a direct comparison.  

  

3.3. Organic δ
13

C analytical protocol 

The organic carbon δ
13

C analysis (Table 2.1) was conducted at Durham 

University (UK) and in the Federal Institute for Geosciences and Natural Resources, 

Hannover (Germany) using similar methodologies in both laboratories on the 

Wunstorf samples. The Hanover δ
13

Corg record is of higher resolution and includes 

the isotopic composition of limestones in the OAE 2 succession. The Durham δ
13

Corg 

record, instead, covers a longer stratigraphic interval. Here, we combine both records 

to obtain the best definition of the datum levels ‘A’, ‘B’ and ‘C’ (Fig. 2.2; black – 

Hanover; grey – Durham). At Durham, aliquots of the powdered samples used for 

Re- Os isotope analysis were used for δ
13

Corg determination. Prior to analysis 

samples were decalcified: ~1 g of powder was mixed with 3 M HCl and left for 24 
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hrs. Samples were then thoroughly washed using Milli-Q water until acid was 

neutralised before being dried down in an oven at 60˚C for 48 hrs. The samples were 

ground down to homogenise the decalcified residue and finally loaded into tin caps. 

Carbon isotope data was obtained using a Costech EA coupled to a ThermoFinnigan 

Delta V Advantage. At Hanover, the decalcified samples were measured with an 

elemental analyzer (Thermo-Electron Flash EA 1112) coupled to an isotope-ratio 

mass-spectrometer (Finnigan DeltaPlus). Ratios are corrected for 
17

O contribution 

(Craig, 1957) and stated in standard delta (δ) notation in per mil (‰) comparative to 

the VPDB scale. δ
13

Corg data is calibrated against a range of in-house standards, 

which are stringently calibrated against international standards (e.g., USGS 40, 

USGS 24, IAEA 600, IAEA N1, IAEA N2). Typically, analytical uncertainty for 

δ
13

Corg is better than ± 0.1‰ for replicate analyses of the international standards and 

typically <0.2‰ on replicate sample analysis in both laboratories.   

 

 

 

Figure  2.2 (next page 50) δ
13

Corg (black) and Osi (red) vs. stratigraphic height/depth. 

Initial 
187

Os/
188

Os calculated at 93.90 Ma. δ
13

Corg data from: Portland #1 Core, Sageman et 

al. (2006); Site 1260, Forster et al. (2007); Wunstorf (this study); Vocontian Basin, Jarvis et 

al. (2011); Furlo, Jenkyns et al. (2007); Site 530, Forster et al. (2008). Sites correlated using 

datum levels on the carbon isotope profiles (A, B, C; see text for details); where ‘A’ is the 

positive δ
13

Corg excursion marks the onset of the OAE 2 (Pratt et al., 1985), ‘B’ is the trough 

of relatively depleted values following the initial positive excursion in δ
13

Corg, and ‘C’ is the 

last relatively enriched δ
13

Corg value before the trend back to pre-excursion values (Tsikos et 

al., 2004). The positioning of the datum levels is determined for each site based on: Sageman 

et al., 2006 (Portland #1 Core); Forster et al., 2007 (Site 1260); this study (Wunstorf); Jarvis 

et al., 2011(Vocontian Basin); Jenkyns et al., 2007 (Furlo); Forster et al., 2008 (Site 530). 

Biostratigraphic horizons are labelled: FO - first occurrence, LO – last occurrence; 1 – LO R. 

cushmani; 2 – FO N. juddii; 3 – FO W. devonense; 4 – FO H. helvetica; 5 – LO T. 

greenhornensis; 6 – FO Q. gartneri. The biozones illustrate low-resolution and inconsistent 

global distribution, which restricts correlation. Dashed red lines represent intervals of pore 

core recovery. Note that symbol size is greater than the measured uncertainty. Carbon and 

osmium isotope data are reported in Tables 2.1 and 2.2.
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3.4. OAE 2 correlation  

To date, the CTBI has been correlated ‘globally’ using biostratigraphy and 

carbon isotope chemostratigraphy. Typically, characteristic peaks and troughs in the 

δ
13

C record are combined with key bioevents to establish correlation. The six 

sections presented here (Fig. 2.2) are correlated according to this method using 

points ‘A’, ‘B’ and ‘C’ of the δ
13

Corg curve that are similar to those first defined by 

Pratt et al., (1985) in the Western Interior and used later by Tsikos et al. (2004).  For 

this correlation method, ‘A’ represents the last value of relatively depleted δ
13

Corg 

before the first major shift to positive values (typically -24 to -22‰). This shift 

marks the base of δ
13

Corg excursion defined as OAE 2 (reference respective of 

location). ‘B’ defines a trough of depleted values following the initial positive 

excursion that occurs prior to the second positive shift (Pratt et al., 1985). ‘C’ is the 

last relatively enriched δ
13

Corg value before the trend back toward pre-excursion 

values, or the end of the so-called “plateau” (Tsikos et al., 2004). 

In order to establish a common chronostratigraphic framework for comparing 

Osi data from distant localities, the chemostratigraphic method described above, 

confirmed by available biostratigraphic data, is used to extend the Pueblo GSSP 

timescale from the Portland #1 core (Meyers et al., 2012a) to the other sites. The 

Portland core record has the highest resolution CTB timescale based on integration 

of new radioisotope dates (Ar-Ar and U-Pb) and astrochronology (Meyers et al., 

2012a), and new work (Ma et al., 2014) has extended this timescale further down 

section into the Cenomanian. As a result, our new Osi data and Osi results from a 

previous study (Turgeon and Creaser, 2008), can be plotted relative to individual 

timescales created for each section by exporting temporal information from the 
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Portland #1 core (Fig. 2.3). Timescale development is based on the following steps 

(see Table 2.4): 

i. The new geochronology for the CTBI (Meyers et al., 2012a) employs a short 

eccentricity band pass to more accurately interpolate the age datum levels 

between dated tuff horizons. Based on this method, the stage boundary is 

constrained to 93.90 ± 0.15 Ma 

ii. The ages of the ‘A’, ‘B’ and ‘C’ markers defined by the δ
13

Corg record of the 

Portland core are also precisely determined using this approach (Fig. 2.2; Table 

2.4). 

iii. Nominal ages for the ‘A’, ‘B’, and ‘C’ markers are exported to the ‘A’, ‘B’ and 

‘C’ datum levels of the δ
13

Corg curve in the other sections (Fig. 2.2), allowing 

calculation of local linear sedimentation rate values between the datum levels 

(Table 2.4). A variable sedimentation rate is more realistic over such time 

frames, i.e., ~100 kyr. In some sections there is a distinct decrease in rate in the 

B-C interval, which likely reflects condensation related to global sea-level 

highstand. Thus, the linear sedimentation rate calculated for A-B is applied to 

develop a timescale below the ‘B’ datum, and a linear sedimentation rate for B-

C is used for the sections above the ‘B’ datum (Table 2.4). 

iv. Each timescale is developed using the onset of ‘A’ as the temporal datum set to 

0 kyr (Fig. 2.3). This creates a coherent global framework using the onset of 

δ
13

Corg excursion as the key datum level.  

 

Although our methodology increases resolution and reduces uncertainty in 

the time scales for each section, it cannot eliminate uncertainty (e.g., constant 

sedimentation rates are still assumed for time scale segments). For the purpose of 
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comparing δ
13

Corg and Osi records between different localities, however, we believe 

the chronostratigraphic framework is sufficient to recognise differences in the timing 

of key events. 
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3.5. Initial 
187

Os/
188

Os (Osi)  

The Osi values in this study were determined from Re-Os data and the 
187

Re 

decay constant (1.666e
-11

a
-1

; Smoliar et al., 1996; Table 2.2a-f) using the CTB age of 

93.90 ± 0.15 Ma that was determined from astrochronologic interpolation between 

volcanic ash ages (based on both 
40

Ar/
39

Ar and 
206

Pb/
238

U determinations; Gradstein 

et al., 2012; Meyers et al., 2012a). Analytical uncertainty for individual calculated 

Osi is ≤0.01. The reproducibility of calculated Osi, based on 12 analyses of the USGS 

rock reference material SDO-1 (Devonian Ohio Shale), was ~0.04 (2 SD; Table 2.3). 

This uncertainty was used to account for the maximum uncertainty in the sample set 

for the calculated Osi. Calculated Osi ratios assume closed system behaviour after 

deposition with respect to both rhenium and osmium. Furthermore, the 
187

Os/
188

Os 

ratios reflect the isotope composition of the local seawater and are unaffected by 

mineral detritus.  

 

4. Results 

4.1.  Re-Os Abundance 

Across the onset of OAE 2 there is a dramatic shift to very high values in Os 

isotope concentration. At Portland Os concentration increases by ~1000 ppt within 

~10 cm; at Wunstorf an increase of ~1000 ppt within ~30 cm; Site 1260 increases by 

~1000 ppt in <60 cm; in the Vocontian Basin there is an increase of ~ 3500 ppt 

within 50 cm. In both Furlo and Site 530 there are very considerable changes in the 

Os concentration; >10000 ppt within 10 cm and 40 cm, respectively. Conversely, Re 

abundance is relatively constant at each section, therefore the dramatic difference 

between the Re and Os abundance produce a similar profile in 
187

Re/
188

Os to the Osi 
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profile, with an abrupt decrease in the 
187

Re/
188

Os directly associated with the abrupt 

increase in Os.  

 

4.2.  187
Os/

188
Os isotope stratigraphy 

The Osi profiles for all six sections show a similar trend; highly radiogenic 

values that suddenly become unradiogenic, before gradually returning to radiogenic 

values (Figs 2.2, 2.3; all Osi data presented in full in Table 2.2). At Portland the Osi 

values show some distinct fluctuations prior to the onset of OAE 2 (point ‘A’ on the 

δ
13

Corg curve). The Os trend from ~1.0 to 0.9, briefly return to ~1.0, and then drop 

abruptly to ~0.7 at ~ -237 kyr (below ‘A’). The trend toward unradiogenic values 

then reverses back toward the radiogenic end member up until the major shift to 

unradiogenic Osi at ‘A’.  

In the Site 1260 record, a trend from ~0.6 to 1.0 in the lowest samples is 

followed by a shift in the opposite direction, toward the unradiogenic end-member, 

but the values are variable and some spikes to >1 (radiogenic) persist. From -157 kyr 

there is a consistent trend toward unradiogenic Osi reaching a minimum value of ~0.2 

at the ‘A’ datum. At Wunstorf the rock units prior to ‘A’ are bereft of Re and Os. 

The Vocontian Basin record shifts to radiogenic Osi values (>0.9), before a gradual 

decrease to ~0.76 followed by a brief increase to ~0.82. A few metres below the 

positive excursion a major shift to <0.3 occurs. The Osi values at Furlo remain stable 

at ~0.55 then shift suddenly to ~0.65. Above this horizon there are no samples until 

‘A’ when the Osi is unradiogenic <0.3. Site 530 has Osi values of ~0.70 before 

showing a 0.2 decrease. The trend reverses to ~0.7, then the major unradiogenic shift 

to <0.2 at ‘A’. Importantly, the Osi record in the Portland core (Fig. 2.3) is 
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significantly different between ~ -230 kyr and ~ -50 kyr relative to the other 4 sites 

(no data for Wunstorf).  

From ‘A’ through to the lower Turonian, the Osi profiles and values are very 

similar across Portland, Furlo, Site 530 and Wunstorf, progressively trending from 

unradiogenic (~0.2) to radiogenic values (~0.6 to 0.7; Fig. 2.3) within ~350 kyr. The 

Osi values from point ‘A’ remain unradiogenic for ~200-250 kyr before becoming 

progressively more radiogenic (Fig. 2.3). The majority of the Osi data from the 

Vocontian Basin, from slightly before the onset of the positive δ
13

Corg excursion 

through the initial ~200 kyr are unradiogenic at ~0.2, with some fluctuation to ~0.4. 

In contrast to other sites that show a progressive return to radiogenic Osi values, the 

Vocontian Basin remains at values of ~0.4 for an additional 200 kyr and then 

becomes radiogenic (0.94) very rapidly (within ~80 kyr; Fig. 2.3). This abrupt 

change could indicate a minor hiatus during the latter part of OAE 2. The Osi values 

at Site 530 remain unradiogenic (0.12 - 0.25) for ~145 kyr, returning to radiogenic 

values after ~270 kyr. However, due to poor core recovery there is a ~125 kyr gap in 

the Osi record (Fig. 2.3).  

Figure 2.3 (next page 57) Osi data calculated at 93.90 Ma relative to 

chemostratigraphically integrated timescale (kyr). 0 kyr marks the onset of OAE 2 

(~94.38 Ma) that is equal to the onset of the positive δ
13

Corg excursion and defined as datum 

‘A’. The δ
13

Corg profile also includes markers ‘B’ and ‘C’. These datum levels provide the 

basis for chemostratigraphic correlation within the OAE 2 interval. The green dashed line 

shows the CTB. The blue shaded area from 0 to 600 kyr illustrates the duration of OAE 2 

(Sageman et al., 2006), and the red dashed line represents the upper limit of the event. The 

initial onset of CLIP volcanism ‘i’ is at ~94.58 Ma, with the major pulse ‘ii’ at ~94.41 Ma 

and main cessation at ~94.13 Ma (CLIP – Caribbean LIP). Uncertainty on all ages is 

nominally < ± 0.2 Ma (Meyers et al. 2012a). The open red squares are the additional samples 

analysed for Site 1260B and Furlo in this study, the remainder of the data for these localities 

are from Turgeon and Creaser (2008). The grey hatched sections represent hiatuses: Portland 

hiatus just prior to the onset of OAE 2 is minor and has an un-quantified duration (Ma et al., 

2014). The hiatus at Site 1260 is based on core images and the δ
13

Corg profile (this study, see 

section 5.3. for discussion). Vertical lines at Osi values 0.2 (green) and 0.5 (pink) facilitate 

comparison of absolute values between profiles; Osi values <0.2 represent a predominantly 

hydrothermal source, >0.5 represent a predominance of continental weathering. Note that 

individual Osi uncertainty is <0.01 and thus symbol size is greater than the measured 

uncertainty. Uncertainty is shown based on 2 SD of 12 analyses of SDO-1 is <0.04. 
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5. Discussion 

5.1.  Heterogeneous seawater 
187

Os/
188

Os prior to OAE 2 

Overall the Osi profiles from each section show similar variability in Osi 

values and in the 
187

Re/
188

Os composition before and during OAE 2. Combined with 

previous Os isotope stratigraphy (Turgeon and Creaser, 2008) and detailed litho-, 

bio-, and chemostratigraphy, the sections are interpreted to be reliable records of the 

CTBI.  

The Osi values for all sites in the WIS, western Tethys and proto-North 

Atlantic from -800 kyr to -210 kyr are radiogenic, and range from ~0.5 to ~1.0, 

illustrating that the seawater 
187

Os/
188

Os ratio during this time was not homogeneous, 

but was controlled by the 
187

Os/
188

Os composition of the fluxes entering the 

individual basins (Figs 2.1, 2.3). The radiogenic heterogeneity and high Osi values at 

Portland are attributed to the influence of weathered crustal components from the 

Sevier Orogenic Belt and the Canadian Shield, the major sources of weathered 

material to the basin. Recent seawater Os isotope studies during glacial episodes in 

the last 200 kyr demonstrate how regional variation is correlated to the 

heterogeneous flux of material into proximal basins (Paquay and Ravizza, 2012). 

This hypothesis is supported by the observed radiogenic Osi values for >500 kyr 

prior to ‘A’ at Portland and elsewhere (Fig. 2.3). We therefore infer that water 

masses were reasonably well connected until ~ -210 kyr, but the 
187

Os/
188

Os 

composition of the seawater in the individual basins was strongly influenced by 

regional factors (Figs 2.1, 2.3). In addition, the heterogeneity of the 
187

Os/
188

Os data 

may provide information on vertical mixing as a function of depth and circulation; 

the variations may indicate that seawater was not always well mixed.  
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5.1.1. Implications of basin connectivity 

Between ~ -300 and -200 kyr, Osi values at Portland in the WIS reverse 

toward more radiogenic values. A similar pattern is observed at Site 1260, Vocontian 

Basin, Furlo and Site 530, although in each of these sites the radiogenic Osi 

inflection is brief (only a single data point) before the decline in Osi values (Fig. 2.3). 

There are two possible mechanisms that could contribute to produce an Osi signal of 

this type within a shallow epeiric seaway: increased input of weathered material and 

restriction of the connection to the open ocean, which would allow a radiogenic 

(weathering input) signal to dominate (e.g., Portland and the Vocontian Basin). In 

contrast, it is assumed that deep water sites preserve a signal more consistently 

representative of the open ocean (e.g., Site 1260 and 530).  

The shallow epeiric setting at Portland would certainly have become 

restricted from the global ocean during sea-level lowstands. However, the degree of 

sea level fall necessary to produce restriction is difficult to know. There is evidence 

of a small hiatus and a bone bed within the uppermost Hartland Shale, and two 

seaward stepping parasequences in the Dakota Formation of SW Utah correlate 

basinward to a level just below this hiatus (Elder et al., 1994), suggesting that a 

minor relative sea-level fall may have occurred (Gale et al., 2008). Subsequently, the 

lowermost beds of the Bridge Creek Limestone contain a diverse marine fauna with 

many Tethyan taxa (Kauffman, 1984), and there is strong evidence for transgression 

during the deposition of the basal limestone bed (Arthur and Sageman, 2005). Thus, 

the onset may have been immediately preceded by a relative fall in sea level that 

could have briefly reduced or shut down exchange of water masses with the global 

ocean, followed by a rapid sea-level rise.  
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Basin restriction may also provide an explanation for the delayed return to 

pre-OAE 2 Osi values in the Vocontian Basin. Osi values return to ~0.3 at ‘B’ 

comparable to other sections (Fig. 2.3). Yet between ‘B’ and ‘C’ the Osi values 

fluctuate around ~0.4 for an additional ~200 kyr relative to other sites, which 

suggests that mixing with the rest of the proto-North Atlantic was temporarily 

limited.  

 

5.1.2. Implications of enhanced weathering rates 

To explain the radiogenic pre-OAE 2 Osi values, a continuous radiogenic 

continental input into the ocean is required (Peucker-Ehrenbrink and Ravizza, 2000). 

Hence, the other mechanism resulting in radiogenic Osi values is a significant 

increase in the flux of weathered material to a basin. Interpreted increases in 

temperature before ‘A’ indicate a period of significant warming (Clarke and Jenkyns, 

1999; Forster et al., 2007; Jenkyns et al., 2004; Barclay et al., 2010), an 

intensification of the hydrological cycle, and more extensive flooding in continental 

interiors, which led to the build-up of terrestrially derived nutrients and organic-rich 

sediments in shallow basin water masses immediately prior to ‘A’. The radiogenic 

Osi prior to ‘A’ reflects sequestration of hydrogenous Os derived from the continent 

as a result of high weathering rates. If, in fact, the WIS did become briefly restricted, 

the influence of local weathering inputs and changes in mixing between basins would 

be amplified in the seawater chemistry.  

Additionally, there is evidence that increased input of weathered material 

influenced the Os chemistry of the shallow bathyal Site 1260 and the abyssal Site 

530 before ‘A’. Continental turbiditic sediments deposited on the continental slope at 

Site 1260 produce an oscillating Osi profile before the onset. At Site 530, 
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comparatively less radiogenic Osi values prior to ‘A’ (Fig 2.3) suggest that juvenile 

turbidites were sourced from juvenile detritus from the Walvis Ridge.  

The high rates of weathering produced waters enriched in micro-nutrients that 

led to an increase in productivity coincident with OAE 2, which is supported by bulk 

rock enrichments of Si, P, Ba, Cu, Mo, Ni and Zn in black shales at Demerara Rise 

ODP sites (Jimenez Berrocoso et al., 2008). In addition, enhanced weathering is 

inferred from Sr isotope trends, which despite possessing a longer residence time (1 - 

4 Ma) have been interpreted to reflect global warming prior to, and during OAE 2 

(Frijia and Parente, 2008).  

 

5.2.  Caribbean Large Igneous Province and OAE 2 

In contrast to the elevated radiogenic Osi values just before ‘A’ at Portland, 

the Osi values of Site 1260, Vocontian Basin, Furlo and Site 530 show a progressive 

trend to unradiogenic Osi values (0.75 to 0.55) over ~155 kyr (Fig. 2.3) suggesting 

that hydrothermal input dominated Os chemistry in the open oceans. Within the WIS 

the stratigraphic evidence for sea-level rise is coincident with an abrupt shift of 

radiogenic Osi values to very unradiogenic values at Portland ~50 kyr prior to ‘A’. 

Therefore the trend to almost homogeneous unradiogenic Osi recorded in all sites at 

‘A’ requires a sustained source of unradiogenic Os input to the ocean.  

Basaltic igneous provinces release unradiogenic Os, close to chondritic 

values (~0.13; Cohen and Coe, 2002). There are two potential sources of volcanism: 

the Caribbean LIP and the High Arctic LIP. The eruption history from the High 

Arctic remains poorly constrained (Tegner et al., 2011) and trends interpreted at this 

stage are relatively ambiguous (Zheng et al., 2013). Consequently, the abrupt 

unradiogenic trend is interpreted to reflect an episode of submarine mafic volcanism 
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from the Caribbean LIP (Fig. 2.3), sufficient to influence the global Os isotope 

budget (Turgeon and Creaser, 2008).  

The high-resolution of the Osi data presented here make an important 

contribution to the discussion of Caribbean LIP onset and cessation. Evidence 

supports the hypothesis that an influx of unradiogenic Os in the marine Os record is a 

direct consequence of volcanism (Ravizza and Peucker-Ehrenbrink, 2003). From ~ -

50 kyr all sites show a synchronous abrupt trend towards unradiogenic Osi values 

(Fig. 2.3). Based on the trend to unradiogenic Osi values at Site 1260, Vocontian 

Basin, Furlo and Site 530 we suggest that the initiation of volcanism was at least 

~200 kyr prior to ‘A’ (~94.58 Ma; Fig. 2.3, CLIP i), with the major pulse of 

submarine volcanism happening at ~ -30 kyr (94.41 Ma; Fig. 2.3, CLIP ii), where all 

locations possess near mantle-like Osi values. The timing of Caribbean LIP ii is 

supported by the rapid change in Os concentration (section 4.2; Table 2.2) in all 

sections with the exception of Wunstorf where there is no record (Fig. 2.3). The 

sudden and high increase in Os concentrations occurs within 1 metre of deposition, 

which equates to <20 kyr at Furlo and Site 530, and <10 kyr at Portland, Site 1260 

and Vocontian Basin. The increase in concentration is directly synchronous with the 

abrupt decrease to very low seawater Osi values and is contemporaneous with ‘A’ 

within <20 kyr. 

The trend recorded in the new sections studied here is consistent with the 

pattern observed in the previous work by Turgeon and Creaser (2008), where there 

was a clear and large increase in Os concentration at the onset of OAE 2. As 

discussed, high weathering rates across the CTB released large amounts of organic-

rich material to the oceans, which sequester hydrogenous Os (Peucker-Ehrenbrink 

and Ravizza, 2000). The trend therefore implies that within <20 kyr the amount of 
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unradiogenic dissolved Os to seawater significantly reduced the influence of 

radiogenic Os (Cohen and Coe, 2002, 2007; Ravizza and Peucker-Ehrenbrink, 2003).  

Therefore, the observed regional variations in the data support the short residence 

time of Os in seawater and confirm the capability of Os to detect short-term forcing 

mechanisms, such as activity from LIPs. 

The interaction of both volcanism and enhanced global weathering on Osi 

means that quantifying the magnitude and isolating the extent of the two signals is 

problematic, since the putative weathering influence on seawater chemistry is 

attenuated by the inputs from the Caribbean LIP to the global ocean. We can only 

estimate the Os contribution to seawater chemistry using a mixing model and 

assumed abundances. If we assume that the average seawater 
187

Os/
188

Os prior to the 

LIP onset was ~0.8, and use an average Os abundance in seawater of 10 ppq (based 

on the present-day average; Peucker-Ehrenbrink & Ravizza, 2000), a basalt 

187
Os/

188
Os of 0.13 (Meisel et al., 2001) and an average Os abundance, we can 

evaluate the approximate Os contribution from the Caribbean LIP to the global ocean 

using a progressive mixing model (Faure, 1986, eqs. 9.2 and 9.10). The progressive 

mixing model assumes the starting Osi was 0.93 (pre-OAE 2 seawater composition) 

with an average seawater abundance of 10 ppq (based on present day average; 

Peucker-Ehrenbrink and Ravizza, 2000), mixing with mantle derived 
187

Os/
188

Os 

(~0.13; Meisel et al., 2001) and Os abundance of basalts and in volcanic gases. We 

note that there are no published Os data for the Caribbean LIP and therefore we use 

typical mantle 
187

Os/
188

Os data (Meisel et al., 2001). Basalts can have variable Os 

abundances (1 to 600 ppt; Martin, 1991, Crocket and Paul, 2008); typical values 

range from 1 to 30 ppt (e.g., Shirey and Walker, 1998; Allégre et al., 1999; Dale et 

al., 2008; Yudovskya et al., 2008). Using an Os abundance for a basalt of 30 ppt 
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would require 75% Os contribution from the LIP to yield the least radiogenic Osi 

observed at all locations. Considerably less Os input from the LIP (25%) is needed if 

the LIP basalts possess higher Os abundances (100 ppt) and if the Os contribution to 

seawater also occurred through the addition of gas known to be enriched 20 times 

that of the basalt (e.g., Yudovskya et al., 2008).   

If we assume the emplacement and weathering of the LIP are direct indicators 

of volcanic activity (Cohen and Coe, 2002, 2007), we can estimate the duration of 

volcanism at the Caribbean LIP based on the marine 
187

Os/
188

Os record. During the 

emplacement of the LIP we assume that growth of the plateau does not continue to 

affect the Os isotope composition (Robinson et al., 2009), since the Osi values are 

homogeneous (~0.2; Fig. 2.3). The subsequent trend to radiogenic Osi values ~200 

kyr after ‘A’ potentially represents the cessation of volcanism. If we consider that the 

predominant 
187

Os/
188

Os of the ocean prior to the Caribbean LIP was 0.8, the 

influence of Os abundance and isotopic composition from the Caribbean LIP was 

less than 5% once the seawater 
187

Os/
188

Os had reached ~0.50, which occurred ~450 

kyr after the onset (until ~94.13 ± 0.15 Ma; Fig. 2.3, vertical pink line).  

 

5.3.  Hiatuses identified during the CTBI  

At Portland the ~17 kyr hiatus above ‘B’ was previously identified by Meyers 

and Sageman (2004), and the hiatus just before ‘A’, though quantitatively 

unconstrained, is equally minor based on site comparison (Elder et al., 1994; Ma et 

al., 2014). This study has identified one hiatus in the higher part of the OAE 2 at Site 

1260. At Site 1260 Erbacher et al. (2005) suggested that ~150 kyr is missing from 

Site 1258, yet present at Site 1260. However, distinct lithological breaks in the core 

images at 425.19 m and the δ
13

Corg record indicate that the hiatus may also be present 
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in the latter section. A 150 kyr hiatus is inferred here from the Os isotope profile 

(Fig. 2.3).  

 

5.4.  Palaeocirculation across OAE 2 

A model of quasi-estuarine circulation that was proposed for the WIS, which 

includes surface outflows causing deeper Atlantic/Tethyan water masses to be 

advected into the basin (Slingerland et al. 1996), is also suggested as a means to 

import Caribbean LIP influenced proto-Pacific waters into the proto-Atlantic and 

Tethys (Trabucho-Alexandre et al., 2010). The similar shape of the Osi profiles (from 

~ -50 kyr until ~200 kyr into OAE 2) suggest that unradiogenic Os-bearing water 

was rapidly transported from the proto-Pacific into and across the proto-North 

Atlantic/Tethys, and into the WIS (Fig. 2.4). This model is consistent with the 

hypothesis that palaeocirculation was not sluggish, as also indicated by climate 

models (Trabucho-Alexandre et al., 2010) and data from Nd isotopes. The latter 

suggest a dynamic deep/bottom-water circulation (MacLeod et al., 2008; Martin et 

al., 2012); the synchronous Nd positive excursion at Eastbourne and Site 1260 is 

consistent with a volcanic influx that is interpreted to reflect the relationship between 

bottom-water sources, climate, ocean anoxia, and circulation (Martin et al., 2012; 

Zheng et al., 2013).  
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Figure 2.4 Palaeocirculation pattern during the Cenomanian-Turonian boundary 

interval. Blue arrows represent the direction of palaeocirculation interpreted based on this 

study, Slingerland et al. (1996) and Trabucho-Alexandre et al. (2010). 

 

6. Conclusions 

Submarine volcanism alone cannot be the sole driving mechanism for OAEs, 

especially OAE 2. Osi data from 6 transatlantic and epeiric sections demonstrate that 

OAE 2 resulted from a combination of interacting factors. An influx of nutrients 

from the continents preconditioned the oceans and helped to trigger OAE 2 through 

increased productivity and, similarly to Jones and Jenkyns (2001), we infer that 

rising sea level may have been the tipping point for the development of widespread 

anoxia. The Osi profile at Portland suggests that the restriction of the epeiric WIS 

during the pre-OAE 2 interval amplified the affects of high weathering rates as 

abundant organic-rich sediments sequestered radiogenic Os derived from the ancient 

continental crust. The close similarity of Osi profiles from ~50 kyr prior to the OAE 

2 and throughout the syn-OAE 2 interval indicates that transgression progressed to a 

point where a homogeneous global seawater signal was delivered to multiple proto-

transatlantic basins by active ocean circulation. Furthermore, the synchronicity of the 

unradiogenic Osi pattern suggests that the magnitude of Caribbean LIP volcanism 
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was sufficient to simultaneously influence the seawater chemistry of each basin; the 

abundance of organic-rich sediments added to the water column as a result of 

enhanced continental weathering permitted sequestration of hydrogenous 

unradiogenic Os from the contemporaneous Caribbean LIP. The temporal 

coincidence provides empirical evidence for the duration of the Caribbean LIP of 

~450 kyr. 

 

REFERENCES 

Allegre, C. J., Birck, J. L., Capmas, F., Courtillot, V., 1999. Age of the Deccan traps using 

187
Re – 

187
Os systematic. Earth Planet. Sci. Lett. 170, 197-204. 

Arthur, M. A., Sageman, B.B., 1994. Marine black shales: Depositional mechanisms and 

environments of ancient deposits. Annu. Rev. Earth Planet. Sci. Lett. 22, 499-551. 

Arthur, M. A., Schlanger, S. O., Jenkyns, H. C., 1987. The Cenomanian/Turonian Oceanic 

Anoxic Event, II: Palaeoceanographic controls on organic matter production and 

preservation, in Marine Petroleum Source Rocks, edited by J. Brooks and A. J. Fleet, 

Geol. Soc. London Spec. Publ. 26, 401–420.  

Arthur, M.A., Premoli Silva, I., 1982. Development of widespread organic carbon-rich strata 

in the Mediterranean Tethys, in Nature and Origin of Cretaceous Carbon-Rich Facies, 

edited by S. O. Schlanger and M. B. Cita, pp. 7 –54, Academic, London. 

Arthur, M.A., Sageman, B.B., 2005. Sea level control on source rock development: 

Perspectives from the Holocene Black Sea, the mid-Cretaceous Western Interior Basin 

of North America, and the Late Devonian Appalachian Basin, In Harris, N.B. (ed.), 

The Deposition of Organic Carbon-rich Sediments: Models, Mechanisms and 

Consequences, SEPM Spec. Publ. 82, 35-59.     

Barclay, R. S., McElwain, J. C., Sageman, B. B., 2010. Carbon sequestration activated by a 

volcanic CO2 pulse during Oceanic Anoxic Event 2. Nature Geoscience 3, DOI: 

10.1038/NGEO757. 

Blättler, C. L., Jenkyns, H. C., Reynard, L. M., Henderson, G. M., 2011. Significant 

increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by 

calcium isotopes. Earth Planet. Sci. Lett. 309, 77-88. 

Clarke, L. J., Jenkyns, H. C., 1999. New oxygen isotope evidence for long-term Cretaceous 

climatic change in the Southern Hemisphere. Geology 27, 8; 699-702. 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 68  

 

Cobban, W., Walaszczyk, I., Obradovich, J.D., McKinney, K.C., 2006. A USGS zonal table 

for the Upper Cretaceous Middle Cenomanian - Maastrichtian of the Western Interior 

of the United States based on ammonites, inoceramids, and radiometric ages. USGS 

Open-File Report 2006−1250. 

Cobban, W.A., Scott, G. R., 1972. Stratigraphy and ammonite fauna of the Graneros Shale 

and Greenhorn Limestone near Pueblo, Colorado. U.S. Govt. Print. Off. 

(Washington), 101-368-424. 

Cohen, A. S., 2004. The rhenium-osmium isotope system:  Applications to geochronological 

and palaeoenvironmental problems. J. Geol. Soc. London 161, 729-734. 

Cohen, A., Coe, A., 2002. New geochemical evidence for the onset of volcanism in the 

Central Atlantic magmatic province and the environmental change at the Triassic–

Jurassic boundary. Geology 30, 267–270. 

Cohen, A., Coe, A., 2007. The impact of the Central Atlantic Magmatic Province on climate 

and on the Sr- and Os-isotope evolution of seawater. Palaeogeog. Palaeclimatol. 

Paleoecol. 244, 374–390. 

Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-

spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133-149.  

Creaser, R.A., Papanastassiou, D.A., Wasserburg, G.J., 1991. Negative thermal ion mass 

spectrometry of osmium, rhenium and iridium. Geochim. Cosmochim. Acta 55, 397-

401. 

Crocket, J. H., Paul, D. K., 2008. Platinum-group elements in igneous rocks of the Kutch rift 

basin, NW India: implications for relationships with the Deccan volcanic province. 

Chem. Geol. 248, 239-255. 

Dale, C. W., Luguet, A., Macpherson, C. G., Pearson, D.G., Hickey-Vargas, R., 2008. 

Extreme platinum-group element fractionation and variable Os isotope compositions 

in Philippine Sea Plate basalts: Tracing mantle source heterogeneity. Chem. Geol. 

248, 213-238. 

Dean, W.E., Arthur, M.A., 1998. Geochemical expression of cyclicity in Cretaceous pelagic 

limestone sequences: Niobrara Formation, Western Interior Seaway in: Dean, W.E., 

and Arthur, M.A., eds., Stratigraphy and Paleoenvironments of the Cretaceous 

Western Interior Seaway, U.S.A. SEPM, Concepts Sedimentology, Paleontology 6, 

227- 255. 

Eicher, D.L., Worstell, P., 1970. Cenomanian and Turonian foraminifera from the Great 

Plains, United States. Micropaleontology 16, 269-324. 

Elder, W. P., 1988. Geometry of Upper Cretaceous bentonite beds: implications about 

volcanic source areas and paleowind patterns, western interior, United States. Geology 

16, 835-838. 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 69  

 

Elder, W.P., Gustason, E.R., Sageman, B.B., 1994. Correlation of basinal carbonate cycles to 

nearshore parasequences in the Late Cretaceous Greenhorn Seaway, Western Interior, 

U.S.  Geol. Soc. Am. Bull. 106, 892-902.    

Erbacher, J., Friedrich, O., Wilson, P. A., Birch, H., Mutterlose, J., 2005. Stable organic 

carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western 

tropical Atlantic. Geochem. Geophys. Geosyst. 6, Q06010, 

doi:10.1029/2004GC000850. 

Ernst, G., Wood, C. J., Hilbrecht, H., 1984. The Cenomanian-Turonian boundary problem in 

NW-Germany with comments on the north-south correlation to the Regensburg area. 

Bull. Geol. Soc. Denmark 33, 103–113. 

Faure, G., 1986. Principles of Isotope Geology. Second edition. John Wiley & Sons, Inc., 

ISBN 0-471-86412-9. 

Forster, A., Kuypers, M. M. M., Turgeon, S. C., Brumsack, H-J., Petrizzo, M. R., Sinninghe 

Damste, J. S., 2008. The Cenomanian/Turonian oceanic anoxic event in the South 

Atlantic: New insights from a geochemical study of DSDP 530A. Palaeogeog. 

Palaeoclimatol. Palaeoecol. 267, 256 – 283. 

Forster, A., Schouten, S., Moriya, K., Wilson, P.A., Sinninghe Damsté, J.S., 2007. Tropical 

warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic 

event 2: Sea surface temperature records from the equatorial Atlantic. 

Paleoceanography 22, PA1219. doi:10.1029/2006PA001349. 

Frijia, G., Parente, M., 2008. Strontium isotope stratigraphy in the upper Cenomanian 

shallow-water carbonates of the southern Apennines: Short-term perturbations of 

marine 
87

Sr/
86

Sr during the oceanic anoxic event 2. Palaeogeog. Palaeoclimatol. 

Palaeoecol.  261, 15-29. 

Gale, A. S., Jenkyns, H. C., Kennedy, W. J., Corfield, R. M., 1993. Chemostratigraphy 

versus biostratigraphy: Data from around the Cenomanian-Turonian boundary. J. 

Geol. Soc. 150, 29–32. 

Gale, A. S., Voigt, S., Sageman, B. B., Kennedy, W. J. 2008. Eustatic sea-level record for 

the Cenomanian (Late Cretaceous) – Extension to the Western Interior Basin, USA. 

Geology 36, 859-862.  

Gale, A.S., Kennedy, W.J., Voigt, S., Walaszczyk, I., 2005. Stratigraphy of the Upper 

Cenomanian-Lower Turonian Chalk succession at Eastbourne, Sussex, UK: 

ammonites, inoceramid bivalves and stable carbon isotopes. Cretaceous Research 26, 

460 – 487. 

Gradstein, F.M., Ogg, J.G., Schmitz, M., eds., 2012. The Geologic Time Scale 2012, 2-

volume set. Elsevier.  



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 70  

 

Gramlich, J.W., Murphy, T.J., Garner, E.L., Shields, W.R., 1973. Absolute isotopic 

abundance ratio and atomic weight of a reference sample of rhenium. J. Res. Natl. 

Bur. Stand. 77A, 691– 698. 

Grosheny, D., Beaudoin, B., Morel, L., Desmares, D., 2006. High-resolution biostratigraphy 

and chemostratigraphy of the Cenomanian/Turonian boundary event in the Vocontian 

Basin, southeast France. Cretaceous Research 27, 629-640. 

Hattin, D. E., 1971. Widespread, synchronously deposited, burrow-mottled limestone beds in 

Greenhorn Limestone (Upper Cretaceous) of Kansas and central Colorado. Am. 

Assoc. Petroleum Geologists Bull. 55, 412-431. 

Jarvis, I., Lignum, J. S., Grocke, D. R., Jenkyns, H. C., Pearce, M. A., 2011. Black shale 

deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-

Turonian Oceanic Anoxic Event. Paleoceanography 26, PA3201, 

doi:10.1029/2010PA002081. 

Jenkyns, H. C., Matthews, A., Tsikos, H., Erel, Y., 2007. Nitrate reduction, sulfate reduction, 

and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic 

anoxic event. Paleoceanography 22, PA3208, doi:10.1029/2006PA001355. 

Jenkyns, H.C., 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. 

London 137, 171–188.  

Jenkyns, H.C., Forster, A., Schouten, S., Sinninghe Damste, J.S., 2004. High temperatures in 

the Late Cretaceous Arctic Ocean. Nature 432, 888 -892. 

Jimenez Berrosoco, A., MacLeod, K. G., Calvert, S. E., Elorza, J., 2008. Bottom water 

anoxia, inoceramid colonization, and benthopelagic coupling during black shale 

deposition on Demerara Rise. Paleoceanography 23, PA3212, 

doi:10.1029/2007PA001545. 

Jones, C. E., Jenkyns, H. C., 2001. Seawater strontium isotopes, oceanic anoxic events, and 

seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci. 301, 112 – 

149.  

Kane, J.S., Arbogast, B.F., and Leventhal, J.S., 1990. Characterization of Devonian Ohio 

Shale SDO-1 as a USGS geochemical reference sample: Geostandards Newsletter 14, 

169-196. 

Kauffman, E.G., 1984. Paleobiogeography and evolutionary response dynamic in the 

Cretaceous Western Interior Seaway of North America, in Jurassic-Cretaceous 

Biochronology and Paleogeography of North America, G. E. G. Westermann, ed., 

Geol. Assoc. Canada Spec. Paper 27, 273 – 306. 

Keller, G., Berner, Z., Adatte, T., Stueben, D., 2004. Cenomanian–Turonian and δ
13

C, and 

δ
18

O, sea level and salinity variations at Pueblo, Colorado. Palaeogeog. 

Palaeoclimatol. Palaeoecol. 211, 19–43. 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 71  

 

Keller, G., Pardo, A., 2004. Age and paleoenvironment of the Cenomanian/Turonian global 

stratotype section and point at Pueblo, Colorado. Mar. Micropaleontol. 51, 95–128. 

Kendall, B., Creaser, R. A., and Selby, D., 2009, 
187

Re-
187

Os geochronology of Precambrian 

organic-rich sedimentary rocks. Geol. Soc. London Spec. Pub. 326, 85-107. 

Kennedy, W.J., Walaszcyk, I., Cobban, W.A., 2005. The Global Boundary Stratotype 

Section and Point for the base of the Turonian Stage of the Cretaceous: Pueblo, 

Colorado, USA. Episodes 28, 93–104. 

Kennedy, W.J., Walaszezyk, I., Cobban, W.A., 2000, Pueblo, Colorado, USA, candidate 

Global Boundary Stratotype Section and Point for the base of the Turonian Stage of 

the Cretaceous and for the base of the middle Turonian Substage, with a revision of 

the Inoceramidae (Bivalvia). Acta Geologica Polonica 50, 295–334. 

Lehmann, J., 1999. Integrated stratigraphy and palaeoenvironment of the Cenomanian-

Lower Turonian (Upper Cretaceous) of Northern Westphalia, North Germany. Facies 

40, 25–70. 

Ma, Chao, Meyers, S.R., Sageman, B.B., Singer, B.S., Jicha, B.R., 2014. Testing the 

astronomical time scale for Oceanic Anoxic Event 2, and its extension into 

Cenomanian strata of the Western Interior Basin. Geol. Soc. Am. Bull. doi: 

10.1130/B30922.1 

MacLeod, K. G., Marin, E. E., Blair, S. W., 2008. Nd excursions across the Cretaceous 

oceanic anoxia event 2 (Cenomanian-Turonian) in the tropical North Atlantic. 

Geology 36, 811-814.  

Martin, C. E., 1991. Osmium isotopic characteristics of mantle-derived rocks. Geochim. 

Cosmochim. Acta 55, 1421 – 1434. 

Martin, E. E., MacLeod, K. G., Jimenez Berrocso, A., Bourbon, E., 2012. Water mass 

circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes. Earth 

Planet. Sci. Lett. 327-328, 111-120. 

McArthur, J.M., Howarth, R.J., Bailey, T., 2004. Strontium isotope stratigraphy. In: 

Gradstein, F., Ogg, J., Smith, A., (Eds.) A Geological Time Scale 2004. Cambridge 

University Press, Cambridge, U.K., pp. 96–105. 

Meisel, T., Walker, R. J., Irving, A. J., Lorand, J., 2001. Osmium isotopic compositions of 

mantle xenoliths: A global perspective. Geochim. Cosmochim. Acta 65, 1311-1323. 

Meyers, S.R, Sageman, B.B., Arthur, M.A., 2012b. Obliquity forcing and the amplification 

of high-latitude climate processes during Oceanic Anoxic Event 2. Paleoceanography 

27, PA3212, doi:10.1029/2012PA002286.  

Meyers, S.R., Sageman, B.B., 2004. Detection, quantification, and significance of hiatuses in 

pelagic and hemipelagic strata. Earth Planet. Sci. Lett. 224, 55 – 72. 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 72  

 

Meyers, S.R., Sageman, B.B., Hinnov, L.A., 2001. Integrated quantitative stratigraphy of the 

Cenomanian-Turonian Bridge Creek Limestone member using Evolutive Harmonic 

Analysis and stratigraphic modelling. J. Sed. Res. 71, 628-644. 

Meyers, S.R., Siewert, S.E., Singer, B.S., Sageman, B.B., Condon, D.J., Obradovich, J.D., 

Jicha, B.R., Sawyer, D.A., 2012a. Intercalibration of radioisotopic and 

astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western 

Interior Basin, USA. Geology 40, 7-10. 

Montoya-Pino, C., Weyer, S., Anbar, A.D., Pross, J., Oschmann, W., van de Schootbrugge, 

B., Arz, H.W., 2010. Global enhancement of ocean anoxia during Oceanic Anoxic 

Event 2: A quantitative approach using U isotopes. Geology, 38, 315-318. 

Mort, H., Jacquat , O., Adatte, T., Steinmann, P., Follmi, K., Matera, V., Berner, Z., Stuben, 

D., 2007. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and 

Spain: enhanced productivity and/or better preservation? Cretaceous Research 28, 597 

- 612. 

Nier, A. O., 1937. The isotopic constitution of osmium. Physics Reviews 52, 885. 

Nowell, G. M., Luguet, A., Pearson, D. G., Horstwood, M. S. A., 2008. Precise and accurate 

186
Os/

188
Os and 

187
Os/

188
Os measurements by multi-collector plasma ionisation mass 

spectrometry (MC-ICP-MS) part I: Solution analyses. Chem. Geol. 248, 363-393. 

Oxburgh, R., 2001, Residence time of osmium in the oceans. Geochem. Geophys. Geosyst. 

2, 2000GC000104. 

Paquay, F. S., Ravizza, G., 2012. Heterogeneous seawater 
187

Os/
188

Os during the Late 

Pleistocene glaciations. Earth Planet. Sci. Lett. 349 – 350, 126 – 138.  

Peucker-Ehrenbrink, B. and Ravizza, G. 2000. The marine osmium isotope record. Terra 

Nova 12, 205-219. 

Pogge von Strandmann, P.A.E., Jenkyns, H.C., Woodfine, R.G., 2013. Lithium isotope 

evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature 

Geoscience, doi:10.1083/NGE01875 

Pratt, L.M., Kauffman, E.G., Zelt, F.B., 1985. Fine-grained deposits and biofacies of the 

Cretaceous Western Interior Seaway: evidence for cyclic sedimentary processes. Soc. 

Econ. Paleont. Miner. Field Trip Guidebook 4, 1985 Midyear Meeting, Golden, 

Colorado. 

Ravizza, G., Peucker-Ehrenbrink, B., 2003. Chemostratigraphic evidence of Deccan 

volcanism from the marine osmium isotope record. Science 302, 1392–1395. 

Robinson, N., Ravizza, G., Coccioni, R., Peucker-Ehrenbrink., B, Norris, R., 2009. A high-

resolution marine 187Os/188Os record for the late Maastrichtian: Distinguishing the 

chemical fingerprints of Deccan volcanism and the KP impact event. Earth Planet Sci. 

Lett. 281, 159–168. 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 73  

 

Sageman, B.B., Meyers, S.R., Arthur, M.A., 2006. Orbital time scale and new C-isotope 

record for Cenomanian–Turonian boundary stratotype. Geology 34, 125–128. 

Schlanger, S.O., Arthur, M.A., Jenkyns, H.C., Scholle, P.A. 1987. The 

Cenomanian/Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of 

organic carbon-rich beds and the marine δ
13

C excursion. In: Brooks, J. & Fleet, A.J. 

(eds) Marine Petroleum Source Rocks. Geol. Soc. London, Spec. Publ. 26, 371–399. 

Selby, D., Creaser, R.A., 2003. Re-Os geochronology of organic rich sediments: an 

evaluation of organic matter analysis methods. Chem. Geol. 200, 225–240. 

Selby, D., Mutterlose, J., Condon, D.J., 2009. U–Pb and Re–Os geochronology of the 

Aptian/Albian and Cenomanian/Turonian stage boundaries: Implications for timescale 

calibration, osmium isotope seawater composition and Re–Os systematics in organic-

rich sediments.  Chem. Geol. 265, 394 – 409.  

Shirey, S.B., Walker, R.J., 1998. The Re-Os isotope system in cosmochemistry and high-

temperature geochemistry. Annual Review Earth Planet. Sci. Lett. 26, 423-500. 

Slingerland, R., Kump, L. R., Arthur, M. A., Fawcett, P. J., Sageman, B. B., Barron, E. J., 

1996. Estuarine circulation in the Turonian Western Interior seaway of North 

America. Geol. Soc. Am. Bull. 108, 941-952. 

Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996. Re-Os ages of group IIA, IIIA, IVA, and 

IVB iron meteorites. Science 23, 1099 – 1102. 

Snow, L. J., Duncan, R. A., Bralower, T. J., 2005. Trace element abundances in the Rock 

Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their 

relationship to Caribbean plateau construction and oxygen anoxic event 2. 

Paleoceanography 20, PA3005, doi:10.1029/2004PA001093. 

Takashima, R., Nishi, H., Hayashi, K., Okada, H., Kawahata, H., Yamanaka, T., Fernando, 

A. G., Mampuku, M., 2009. Litho-, bio- and chemostratigraphy across the 

Cenomanian/Turonian boundary (OAE 2) in the Vocontian Basin of southeast France. 

Palaeogeog. Palaeoclimatol. Palaeoecol. 273, 61-74. 

Tegner, C., Storey, M., Holm, P.M., Thorarinsson, S.B., Zhao, X., Lo, C.-H., Knudsen, M.F., 

2011. Magmatism and Eurekan deformation in the High Arctic Large Igneous 

Province: 
40

Ar – 
39

Ar age of Kap Washington Group volcanics, North Greenland. 

Earth Planet. Sci. Lett. 303, 203-214. 

Trabucho-Alexandre, J., Tuenter, E., Henstra, G.A., van der Zwan, K.J., van de Wal, R.S.W., 

Dijkstra, H.A., de Boer, P.L., 2010. The mid-Cretaceous North Atlantic nutrient trap: 

Black shales and OAEs. Paleoceanography 25, PA4201, doi:10.1029/2010PA001925. 

Tsikos, H., Jenkyns, H.C., Walsworth-Bell, B., Petrizzo, M.R., Forster, A., Kolonic, S., 

Erba, E., Premoli-Silva, I.P., Baas, M., Wagner, T., Sinninghe Damsté, J.S., 2004. 

Carbon-isotope stratigraphy recorded by the Cenomanian - Turonian Oceanic Anoxic 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 74  

 

Event: correlation and implications based on three key localities. J. Geol. Soc. London 

161, 711-719.  

Turgeon, S.C., Creaser, R.A., 2008. Cretaceous anoxic event 2 triggered by a massive 

magmatic episode. Nature 454, 323–326. 

Voigt, S., Aurag, A., Leis, F., Kaplan, U., 2007. Late Cenomanian to Middle Turonian high-

resolution carbon isotope stratigraphy: New data from the Munsterland Cretaceous 

Basin, Germany. Earth Planet. Sci. Lett. 253, 196–210. 

Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese, F., Wilmsen, M., 

Wonik, T., 2008. The Cenomanian-Turonian of the Wunstorf section (North 

Germany): global stratigraphic reference section and new orbital time scale for 

Oceanic Anoxic Event 2. Newsl. Stratigr. 43, 65-89. 

Volkening, J., T. Walczyk, et al., 1991. Osmium isotope ratio determinations by negative 

thermal ion mass spectrometry. International Journal of Mass Spectrometry Ion 

Processes 105, 147-159. 

Wilmsen, M., 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian stage 

in northern Germany. Cretaceous Research 24, 525–568. 

Yudovskaya, M. A., Tessalina, S. G., Distler, V.V., Chaplygin, I.V., Chugaev, A.V., Dikov, 

Y.P. 2008. Behaviour of highly-siderophile elements during magma degassing: A case 

study at the Kudryavy volcano. Chem. Geol. 248, 318-341. 

Zheng X-Y., Jenkyns, H.C., Gale, A.S., Ward, D.J., Henderson, G.M., 2013. Changing 

ocean circulation and hydrothermal inputs during Oceanic Anoxic Event 2 

(Cenomanian-Turonian): Evidence from Nd-isotopes in the European shelf sea. Earth 

Planet. Sci. Lett. http://dx.doi.org/10.1016/j.epsl.2013.05.053i 

http://dx.doi.org/10.1016/j.epsl.2013.05.053i


CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 75  

 

Data Tables 

 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 76  

 

 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 77  

 

 

  



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 78  

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 79  

 

 

 

 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 80  

 

 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 81  

 

 

 

 

 

  

 

 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 82  

 

 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 83  

 

 

 

 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 84  

 

 

 

 

 

 

 

  



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 85  

 

  



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 86  

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 87  

 

 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 88  

 

3 Pacific 
187

Os/
188

Os isotope chemistry and U-Pb 

geochronology: Implications for global 

synchronicity of OAE 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A version of this chapter will be submitted to Earth and Planetary Science Letters; 

co-authored by David Selby of Durham University, Dan Condon of NIGL BGS 

Keyworth, UK, Reishi Takashima and Hiroshi Nishi of Tohoku University, Sendai, 

Japan. 

 



CHAPTER 2. MARINE 187Os/188Os ISOTOPE STRATIGRAPHY DURING OAE 2   

 

Page | 89  

 

1. Introduction 

Oceanic anoxic events (OAEs) are a consequence of an imbalance to a 

sensitive global ocean-atmosphere system, which results in episodes of oxygen 

depletion in the oceans (Schlanger et al., 1987). They are characterised by the 

accumulation of organic-rich material, often associated with biodiversity and/or 

extinctions in the biostratigraphic record, and typically identified by a 2 – 4‰ shift 

in the δ
13

Corg and δ
13

Ccarb record (Schlanger et al., 1987). Such characteristics are 

representative of OAE 2, which occurred during the late Cretaceous across the 

Cenomanian-Turonian boundary (CTB 93.90 Ma) and is hypothesised to have 

influenced basinal environments on a global scale (Jenkyns, 1980). This theory is 

based on studies that have predominately focussed on a globally narrow region, e.g., 

the proto-Atlantic, Tethyan and Western Interior Sea (WIS). To date, analysis of 

OAE 2 sections recording deposition from basins of the Cretaceous World’s largest 

water mass, the proto-Pacific, are extremely limited and have predominately 

focussed on δ
13

C records in comparison to the multi-element/isotope studies of the 

proto-Atlantic, Tethyan and WIS (Kaiho et al., 1993; Hasegawa and Saito, 1993; 

Hasegawa, 1995, 1999; Tamaki and Itoh, 2008; Takashima et al., 2004, 2011; 

Quidelleur et al., 2011). The main reasons for the limited studies are the poor 

preservation and the uncertainty of stratigraphic location of the OAE 2 record. Two 

sites that represent a complete record of OAE 2 from deposition in the proto-Pacific 

are the Yezo Group (YG) section, Hokkaido, Japan and the Great Valley Sequence 

(GVS), California, USA (Fig. 3.1). Herein we report and discuss the implications of 

the Os isotope data (YG and GVS) and U-Pb zircon geochronology (YG only) for 

these sites.  
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Figure 3.1 Palaeogeographic map illustrating sample locations. In RED: YG – Yezo 

Group, Hokkaido, Japan; GVS – Great Valley Sequence, California, USA; P – Portland #1 

core, Colorado, USA; WIS – Western Interior Seaway; CLIP – Caribbean Large Igneous 

Province. In GREEN previously studied sections (Turgeon and Creaser, 2008; Du Vivier et 

al., 2014; Chapter 2, this thesis): W – Wunstorf, Germany; VB – Vocontian Basin, SE 

France; F – Furlo, Italy; 1260 – Site 1260 B, Demerara Rise, North Atlantic; 530 – Site 530, 

Angola Basin, South Atlantic. Modified from: 

www.odsc.de/odsn/services/paleomap/paleomap.html 

 

The correlation of OAE 2 is fundamentally based upon the carbon isotope 

record combined with biostratigraphy and subordinate radio-isotopic dating. Here we 

apply the traditional δ
13

C datum levels for correlation to both the YG and the GVS 

sections, where peaks and troughs in the δ
13

C record are associated with bioevents 

and changes in lithology. The sections are correlated according to this method using 

points ‘A’, ‘B’ and ‘C’ of the δ
13

C curve that are similar to those first defined by 

Pratt et al. (1985) in the WIS for the GSSP and refined later by Tsikos et al. (2004); 

where ‘A’ represents the last value of relatively depleted δ
13

C before the first major 

shift to positive values; the base of the excursion marks the onset of OAE 2 (Pratt et 

al., 1985); ‘B’ marks the trough of depleted values following the positive excursion 

http://www.odsc.de/odsn/services/paleomap/paleomap.html
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in the δ
13

C record (Pratt et al., 1985); and ‘C’ denotes the end of the ‘plateau’, the 

last relatively enriched value prior to the δ
13

C trending back to pre-OAE 2 values 

(Tsikos et al., 2004). However, since the discovery of OAEs, isotopic analysis has 

revealed a number of isotopic proxies that are sensitive to the chemical perturbations 

that occur during these events (e.g. carbon, strontium, osmium, calcium, neodymium, 

phosphorus, lead, lithium, uranium; Arthur et al., 1987; McArthur et al., 2004; 

Forster et al., 2007; MacLeod et al., 2008; Turgeon and Creaser, 2008; Voigt et al., 

2008; Montoya-Pino et al., 2010; Blättler et al., 2011; Kuroda et al., 2011; Mort et 

al., 2011; Pogge von Strandmann et al., 2013; Du Vivier et al., 2014; Chapter 2, this 

thesis), which have improved correlation and facilitated the understanding of the 

driving mechanisms of oceanic anoxia.  

Osmium isotope stratigraphy has shown the potential of global correlation 

throughout many proto-Atlantic and Tethyan basins (Turgeon and Creaser, 2008; Du 

Vivier et al., 2014; Chapter 2, this thesis), but work so far has not been extended into 

the proto-Pacific. Here we apply initial osmium (
187

Os/
188

Os – Osi) isotope 

stratigraphy from the YG section, Japan and the GVS, USA (Fig. 3.1). In addition, 

existing studies have utilised isotope profiles as time correlation markers (Forster et 

al., 2007; MacLeod et al., 2008; Turgeon and Creaser, 2008; Voigt et al., 2008; 

Blättler et al., 2011; Mort et al., 2011; Martin et al., 2012; Du Vivier et al., 2014; 

Chapter 2, this thesis), but the majority of sites are unsupported by absolute dating. 

An exception is in the WIS where volcanic tuff horizons from multiple locations 

throughout the WIS have been integrated to nominally constrain the geochronology 

of the Portland #1 core (Meyers et al., 2012a). Similarly the YG section is 

interbedded with tuff horizons, which we utilise for U-Pb zircon geochronology to 
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support and develop integration of the YG section with other OAE 2 sites, 

specifically the Portland #1 core. As a result we compare the Os isotope composition 

of seawater from the proto-Pacific with that of the WIS, proto-Atlantic and the 

Tethyan realm to evaluate if similar trends observed are correlative, and/or 

temporally identical, and therefore assess the truly global extent of OAE 2 on ocean 

chemistry.  

Existing U-Pb zircon geochronology of two tuff horizons from the 

Cenomanian-Turonian boundary interval (CTBI) of the YG produced imprecise ages 

and dates, which limits their application (Quidelleur et al., 2011). The latter study 

reported a LA-ICP-MS U-Pb zircon date of 92.9 ± 1.3 Ma (n = 16; HKt002) for a 

tuff located above the last occurrence of R. cushmani (Upper Cenomanian), whereas 

the stratigraphically younger tuff (HKt003) generated a U-Pb multi-grain ID-TIMS 

age of 94.3 ± 0.3 Ma (n = 7; MSWD = 1.5). The accuracy of the existing U-Pb dates 

for the YG are problematic based on the 
40

Ar/
39

Ar calibrated age model of the OAE 

2 from the WIS, which constrains the CTB to 93.90 ± 0.15 Ma (Meyers et al., 

2012a). Therefore given the OAE 2 temporal constraints the dated horizon HKt002 

and HKt003 of the YG should be > 93.9 Ma (see discussion).  

To permit integration with the OAE 2 section of the Portland #1 core we 

provide accurate and precise temporal constraints of the OAE 2 of the YG section via 

U-Pb (zircon) ID-TIMS analysis ages from 5 volcanic tuff horizons. In addition to 

using the most current analytical protocols (e.g., chemical abrasion-isotope dilution 

thermal ionisation, CA-IDTIMS: Mattinson, 2005) we also use the EARTHTIME U-

Pb tracer solutions (Condon et al., 2007; Condon et al., in review; McLean et al., in 

review) to provide absolute temporal constraints for the YG to present a potential 
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OAE 2 reference section for the proto-Pacific Ocean. We use the U-Pb zircon ages to 

help constrain the sediment accumulation rate for the YG section OAE 2 interval, 

which in turn permits a quantitative estimate for the duration of events across the 

CTBI. Furthermore we use an age-depth model (OxCal; Bronk Ramsey, 2008) to 

interpolate dates between the dated tuff horizons and additionally integrate the 

40
Ar/

39
Ar-based ages from the integrated age model of the WIS (Meyers et al., 

2012a) on to the YG section in order to objectively compare the Osi and carbon 

isotope profiles. 

The Caribbean LIP is contemporaneous with OAE 2 and regarded as a 

fundamental mechanism in the development of the event based on evidence from 

trace metals, oxidation of metals and an influx of biolimiting metals increasing 

oxygen consumption, radiometric 
40

Ar/
39

Ar dating, and Os isotope stratigraphy 

(Sinton and Duncan, 1997; Leckie et al., 2002; Snow et al., 2005; Turgeon and 

Creaser, 2008; Du Vivier et al., 2014). The Osi profiles across the OAE 2 (Du Vivier 

et al., 2014; Chapter 2, this thesis) demonstrate the response of seawater chemistry 

due to submarine volcanism, and infer the significance of water mass exchange in the 

transfer of nutrients and the development of anoxia in the proto-Atlantic, Tethys and 

the WIS. Here we combine the U-Pb data with the Osi to provide evidence of water 

mass exchange and efficient palaeocirculation in the Pacific Ocean during the CTBI.  

 

2. Geological setting and stratigraphy 

2.1.  Yezo Group (YG), Hokkaido, Japan 

The YG was deposited along an active continental margin in an arc-trench 

system at ~45°N along the Eurasian margin during the late Mesozoic (Tamaki and 
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Itoh, 2008; Fig. 3.1). The 300 km N-S trending trench acted as a depositional basin 

for the YG and the sediments accumulated at shallow marine-bathyal depths in a 

continental slope environment (Kaiho et al., 1993; Takashima et al., 2004). Post 

deposition the YG was compacted and then tilted by the late Tertiary rotation of the 

Japan Sea back-arc basin (Tamaki and Itoh, 2008).  

The YG records a conformable sequence determined through bioevents and 

sedimentary structures (Kaiho et al., 1993). The OAE 2 section of the YG is part of 

the Saku Formation and outcrops on the Hakkin River, at Oyubari, on Hokkaido at 

~142° 9’ 27” E, 43° 2’ 44” N. The 300 m exposed OAE 2 section of the Saku 

Formation is represented in part by the Hakkin muddy-sandstone member and 

comprises dark-grey terrigenous sandy siltstone, bedded conglomeritic turbidites and 

finely laminated pyrite-rich green-grey mudstone (Fig. 3.2; Takashima et al., 2004). 

In addition, multiple thick and thin (0.02 – 2 m) felsic volcanic tuffs are interbedded 

throughout the sequence (Fig. 3.2; Takashima et al., 2004; Takashima et al., 2011), 

which are locally altered to bentonite (Takashima et al., 2004). Bioturbation is 

inconsistent yet intensifies up sequence and is abundant after the facies change in to 

the Hakkin muddy-sandstone Member, which demonstrates a change in depositional 

environment to shallow bathyal slope (Hasegawa and Saito, 1993). Despite the lack 

of true ‘black shales’, due to siliciclastic dilution, a high sedimentation rate (~16 

cm/kyr) and a high voluminous influx of terrigenous detritus, the organic-rich 

sediments have a higher TOC content, ~0.5 – 1.2 wt.% (Takashima et al., 2004), than 

some European Pelagic Shelf carbonate-rich sections, e.g., Eastbourne and Wunstorf. 

The sediment accumulation rate of the YG was high relative to other OAE 2 
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sections, because of the shoreface-inner shelf depositional setting at an active 

continental margin (Takashima et al., 2004). 

The Oyubari YG section contains sufficient stratigraphic indicators for high-

resolution global correlation of OAE 2, making it a key regional reference section for 

the NW Pacific (Hasegawa 1995). Global correlations of planktonic foraminifera 

illustrate a moderately diversified assemblage (Hasegawa 1999; Takashima et al., 

2010): LO (last occurrence) of R. cushmani and R. greenhornensis, and FO (first 

occurrence) of H. helvetica and M. schneegansi, associated with the CTBI in the 

lower Saku Formation (Fig. 3.2; Hasegawa 1999). The aforementioned species are 

correlative in Portland, SW England and Poland (Hasegawa 1995), where H. 

helvetica is the datum biozone for the basal Turonian (Hasegawa 1999). Worldwide 

correlation and the identification of the CTBI in this instance is dependent upon the 

identification of W. archaeocretacae. However, the absence of W. archaeocretacae 

and the rare occurrence of H. helvetica means the FO of M. schneegansi identifies 

the base of the Turonian (Fig. 3.2; Takashima et al., 2010). The Hakkin muddy-

sandstone member is characterised by radiolarians dominating 90% of the bio-grains 

within the grey siltstone (Hasegawa and Saito, 1993). Near to the CTB the diversity 

in faunal assemblages indicate higher dissolved O2 than in the Atlantic region (Kaiho 

et al., 1993). However, the reduction of dissolved O2 coincides with the extinction 

event at the CTB, and is reflected by the decrease in diversity and abundance of 

species (Kaiho et al., 1993).  

This study revises the stratigraphic position of the OAE 2 onset from -39 m to 

-16.15 m (Fig. 3.3), facilitated by radiolarian stratigraphy, which will be discussed 

further in this paper based on Osi and U-Pb data. The δ
13

Cwood is presented as a 5-
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point moving average curve to smooth out the highly variable scatter, which may be 

a result of vital or diagenetic affects (Takashima et al., 2011). By averaging out the 

scatter, the δ
13

Cwood record is correlated with the Pont d’Issole section of the 

Vocontian Basin through ‘B’ and ‘C’ (Takashima et al., 2011). The revised 

stratigraphic position of ‘A’ demonstrates the characteristic positive excursion 

associated with the OAE 2 -16.15 m below the facies change to the Hakkin Muddy-

Sandstone Member, from -25.3‰ to -19.4‰ VPDB (Fig. 3.3). The ~6‰ positive 

excursion is identified as the onset of OAE 2 (Fig. 3.3; this study). The δ
13

Cwood 

reaches a maximum of -19.3‰ (Fig. 3.3; Takashima et al., 2011) before the decline 

in δ
13

Cwood values to ‘B’. The δ
13

Cwood values across the ‘plateau’ up to ‘C’ are less 

enriched in this section compared to other OAE 2 sites (e.g., GVS; Takashima et al., 

2011). As such the profile records a continuous gradual trend to pre-OAE 2 δ
13

Cwood 

values, which could be a reflection of the homogeneous nature of the deposits 

throughout the duration of OAE 2.  
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Figure 3.2 Stratigraphic columns for Yezo Group, Japan and Great Valley Sequence, 

California, USA. Cenomanian-Turonian boundary identified based on biozones. CTB’ 

denotes the CTB according to Takashima et al. (2011). CTB’’ denotes the CTB according to 

U-Pb ages (see section 5.1 for discussion). Volcanic tuff horizons for U-Pb zircon dating are 

marked on the Yezo Group section (red arrows). The OAE 2 interval is shaded in orange. 
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2.2.  Great Valley Sequence (GVS), California, USA 

Similar to the YG, the GVS was deposited along an active continental 

margin: ~30-40°N on the North American continental fore arc margin in upper 

bathyal depths (Fernando et al., 2011), along the western border of the Sacramento 

Valley (Fig. 3.1). The Budden Canyon Formation records sedimentary deposition 

from the Berriasian to the Turonian and is made up of 7 mappable units throughout 

road cuttings 122°33'02"W, 40°26'30"N in California (Murphy et al., 1969; Fernando 

et al., 2011); the youngest and uppermost unit is the Gas Point Member, ~730 m 

thick, which records the CTB and the OAE 2. Excursions in preliminary TOC results 

led to the recent identification of the OAE 2 in the GVS (Fernando et al., 2011) with 

similarly high TOC values as in the YG section. The OAE 2 interval is dominated by 

dark-grey terrigenous mudstone with some thinly bedded turbidites and minor 

conglomerate sandstone horizons becoming more frequent up sequence (Murphy et 

al., 1969; Takashima et al., 2011). The sediment accumulation rate of the GVS is 

estimated to be faster than at the sections along passive pelagic margins (Takashima 

et al., 2011). A high rate (from ~20 to 62 cm/kyr) is due to the active bathyal setting 

and the exceptionally high influx of terrigenous continental run-off (Fernando et al., 

2011). 

The palaeogeographic location of the GVS in comparison to other OAE 2 

sites; i.e., the WIS is an epeiric sea, whereas the GVS is deposited in a fore arc basin 

(Fernando et al., 2011); results in the absence and/ or variability in abundance, 

distribution and duration of biozone horizons. The biostratigraphic record facilitates 

dating and correlation of the sequence; nannofossils are used for trans-basinal 

correlation and radiolarian zones are correlated to ammonite and foraminifera 
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bioevents of European age (Fernando et al., 2011). Ammonites and planktic 

foraminifera are used to estimate the stratigraphic level of the CTB; P. japonicum 

(Cenomanian), P. californicum (Turonian); and R. cushmani (Cenomanian), H. 

helvetica (Turonian), respectively. The identification of the LO of L. acutus 

nannofossil correlates the Pacific with Tethyan and Boreal Seas. The LO of R. 

cushmani is identified 80 m in to the OAE 2 interval and the FO Q. gartneri is the 

basal Turonian marker and ~315 m above the OAE 2 onset (Fig. 3.2; Takashima et 

al., 2011).  

In this section the δ
13

Cwood curve is presented like YG as a 5-point moving 

average (Fig. 3.3). However, the record is less variable than the YG δ
13

Cwood record 

and depicts a more typical convex trend despite the subtle 1.2‰ VPDB positive 

excursion (Fig. 3.3; Takashima et al., 2011). As a result of the lower variability of 

the δ
13

Cwood curve, correlation with the Pont d’Issole section through datum levels 

‘A’, ‘B’ and ‘C’ is more robust than for the YG section. The excursion marks the 

onset of OAE 2 at datum level ‘A’ (49 m; Fig. 3.3) from -24.5‰ to -23.3‰. The 

trough at ‘B’ is followed by a gradual enrichment to -20.8‰, where the ‘plateau’ of 

enriched δ
13

Cwood values continues up to ‘C’. In the GVS the OAE 2 is recorded 

throughout an expanded section, ~201 m; after datum level ‘C’ the δ
13

Cwood values 

return to pre-OAE 2 values of ~ -23.5‰ (Fig. 3.3; Takashima et al., 2011).  
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Figure 3.3 δ
13

Cwood and δ
13

Corg section correlation. δ
13

Cwood (black) from Yezo Group, 

Japan; Great Valley Sequence, California, USA; and δ
13

Corg Portland #1 core, Colorado, 

USA. The δ
13

Cwood values represent a 5-point moving average. Initial 
187

Os/
188

Os profiles are 

in red. The blue lines correlate stratigraphic horizons inferred from a combination of litho-, 

bio-, and chemostratigraphy (see text for details). 
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3. Sampling and Analytical methodology 

3.1.  Sampling and preparation 

The YG outcrops in a section along the Hakkin River on Hokkaido, Japan. 

Samples of ~50 g were collected at 2 – 4 m intervals throughout the section. H. Nishi 

collected samples from the GVS, California, from outcrop approximately every 

meter. Both sections are considerably expanded and are therefore sampled at a lower 

spatial resolution relative to the Portland #1 core. 

The bulk rock sample was cut and polished to remove any weathered exterior 

material. A dried sample weight of ≥30 g was powdered in order to homogenise the 

Re and Os within the sample (Kendall et al., 2009). A portion of sample, 0.2 – 1 g, 

was used for Re-Os analysis.  

 

3.2.  Re-Os geochemistry 

All Re-Os analysis was conducted at DGC (Durham Geochemistry Centre; 

previously NIGLT, Northern Centre for Isotope Elemental Tracing) in TLSRG&G 

(TOTAL Laboratory for Source Rock Geochronology and Geochemistry).  

The Re-Os analysis of the organic-rich sediments was conducted using Carius 

tube digestion in a 0.25 g/g CrO3 4N H2SO4 reagent, with the Re and Os isolated 

from the acid medium using solvent extraction, micro-distillation and anion 

chromatography methodology (Selby and Creaser, 2003). In brief, 0.2 to 1 g of 

sample powder was loaded in a Carius tube with a known amount of mixed tracer 

solution, 
190

Os + 
185

Re, with 8 ml of CrO3-H2SO4 solution. The sealed Carius tubes 

were then placed in an oven at 220˚C for 48 hrs. Osmium was isolated and purified 

using solvent extraction (CHCl3) and micro distillation methods. To purify the Re 
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fraction 1 ml of the CrO3-H2SO4 solution was evaporated to dryness, with the Re 

extracted using solvent extraction methodology of NaOH and acetone (Cumming et 

al., 2012). The Re fraction was further purified using anion chromatography (Selby 

and Creaser, 2003). The purified Re and Os fractions were loaded onto Ni and Pt 

filaments, respectively (Selby and Creaser, 2003) with the addition of ~0.5 µl BaNO3 

and BaOH activator solutions, respectively. Isotope compositions were measured 

using negative thermal ion mass spectrometry (NTIMS; Creaser et al., 1991; 

Völkening et al., 1991) via faraday cups for Re and electron multiplier (SEM) in 

peak hopping mode for Os.  

Osmium isotopic ratios were calculated relative to 
188

Os and corrected for 

mass fractionation using a 
192

Os/
188

Os value of 3.08261 (Nier, 1937). The oxide 

corrected 
185

Re/
187

Re was normalised using a 
185

Re/
187

Re value of 0.59738 (Gramlich 

et al., 1973). Total procedural blanks for Re and Os during this study are 13.3 ± 1.8 

pg/g and 0.32 ± 0.17 pg/g, respectively, with 
187

Os/
188

Os value of 0.19 ± 0.12 (1 SD, 

n = 2). Uncertainties for 
187

Re/
188

Os and 
187

Os/
188

Os are determined through full 

propagation of uncertainties in Re and Os mass spectrometer measurements, blank 

abundances and isotopic compositions, spike calibrations and reproducibility of 

standard Re and Os isotopic values. In-house standard solutions (DROsS and Re Std) 

are run repeatedly throughout each batch of samples to monitor mass spectrometer 

reproducibility. The Re standard yields an average 
187

Re/
188

Re of 0.59760 ± 0.0011 

(1 SD, n = 37). The Os standard (DROsS) yields an 
187

Os/
188

Os average of 0.16091 ± 

0.00020 (1 SD, n = 35). The determined isotope compositions of these Re and Os 

solutions are consistent within uncertainty to those determined at the Durham 
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Geochemistry Centre (Nowell et al., 2008; Cumming et al., 2012 and references 

therein). 

 

3.3.  Initial 
187

Os/
188

Os (Osi)  

The Osi values in this study were determined from Re-Os data and the 
187

Re 

decay constant (1.666e
-11

a
-1

; Smoliar et al., 1996) using the CTB age of 93.90 Ma 

(Meyers et al., 2012a; Gradstein et al., 2012). Analytical uncertainty for individual 

calculated Osi is ≤0.02. As an in-house standard we use USGS rock reference 

material SDO-1 (Devonian Ohio Shale; Kane et al., 1990) as recorded by Cumming 

et al. (2014) and Du Vivier et al. (2014; Chapter 2, this thesis). The reproducibility of 

calculated Osi is ~0.04 (2 SD; Du Vivier et al., 2014; Chapter 2, this thesis). This 

uncertainty was used to account for the maximum uncertainty in the sample set for 

the calculated Osi. Calculated Osi ratios assume closed system behaviour after 

deposition with respect to both rhenium and osmium. Furthermore, the 
187

Os/
188

Os 

ratios reflect the isotope composition of the local seawater and are unaffected by 

mineral detritus (Selby and Creaser, 2003). In this study the SDO-1 Re-Os analysis 

yield average values (at the 2 SD level, n = 4) consistent with accepted values of 

SDO-1 (Du Vivier et al., 2014; Chapter 2, this thesis; Re of 79.8 ppb ± 12.9; Os of 

659.3 ppt ± 101.0; 
187

Re/
188

Os of 1171.1 ± 38.6; 
187

Os/
188

Os of 7.860 ± 0.243; and 

Osi at 366 Ma of 0.70 ± 0.03 (2 SD); see Table 3.1). 

 

3.4.  U-Pb zircon geochronology 

All U-Pb zircon geochronology preparation, analysis and processing was 

conducted at NERC Isotope Geosciences Laboratory (NIGL), UK. 
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3.4.1. Zircon Mineral Separation 

For this study, samples have been obtained from 5 tuff horizons throughout 

the YG succession (Fig. 3.4). To liberate zircons from the soft and porous tuff 

samples they were submerged in water to completely disaggregate the matrix. This 

material was then passed through a 355 µm wet sieve. The first density separation 

was achieved using a Rogers shaking table. The collected heavy fraction was dried at 

60ºC before magnetic separation using a FRANTZ isodynamic magnetic separator. 

The non-magnetic fractions of each sample were then density separated using 

methylene iodide. Cathodoluminescence techniques were used to investigate the 

zircon morphology. The images were gathered using a Scanning Electron 

Microscope (SEM); grains with the least cracks and inclusions were handpicked in 

ethanol for U-Pb zircon CA-ID-TIMS analysis. 
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 Figure 3.4 Illustrates the stratigraphic height of the U-Pb dated tuff horizons from the 

Yezo Group, Japan on the Osi (red) and δ
13

C (black) profiles. 
206

Pb/
238

U weighted mean 

ages are labelled with analytical uncertainties (2) and with total uncertainties (2; 

analytical+tracer+
238

U decay constant; Jaffey et al., 1971; Condon et al., in review). The 

existing U-Pb ages for the Yezo Group are in green with total uncertainties (2; Quidelleur 

et al., 2011). The ages on the Portland #1 core are weighted mean 
40

Ar/
39

Ar ages with total 

uncertainties (2; Tuff A, B, C; Meyers et al., 2012a) and recalculated 
40

Ar/
39

Ar ages (D and 

E; Adams et al., 2010). The correlated datum level ‘A’, the extrapolated age of the onset of 

OAE 2 (Du Vivier et al., 2014; Chapter 2, this thesis), and the CTB, are shown in blue. See 

text for discussion.  
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3.4.2. U-Pb Zircon ID-TIMS 

In order to eliminate Pb-loss all the analysed zircon crystals were subjected to 

the chemical abrasion pre-treatment technique: thermal annealing and subsequent 

leaching (Mattinson, 2005). To anneal the zircons the crystals were put in to quartz 

beakers that were placed in a muffled furnace at 900°C for ~60 hrs before SEM 

imaging and/or visual inspection. Selected crystals/fragments were photographed in 

transmitted light and transferred in to 300 μl Teflon FEP microcapsules and placed in 

a Parr bomb, and leached in a ~10:1 mix of 29 M HF + 30% HNO3 for 12 hrs at 

~180°C. Subsequent to leaching the acid solution was removed from the zircon 

fractions which were then rinsed in 30% HNO3, then fluxed on a hotplate at ~80°C 

for >1 hr in 6 M HCl, cleaned for an hour in an ultrasonic bath, then fluxed again for 

a further 30 minutes. The HCl solution was then removed and crystals were spiked 

with a mixed 
202

Pb-
205

Pb-
233

U-
235

U tracer solution (ET2535; Condon et al., 2007; 

Condon et al., in review; McLean et al., in review). The zircon crystals were 

dissolved in ~120 μl of 29 M HF with a trace amount of HNO3, in microcapsules that 

were placed in Parr bombs at ~220°C for >60 hrs. The samples were then dried down 

to fluorides, converted to chlorides by adding 3 M HCl at ~180°C in microcapsules 

in Parr bombs. U and Pb for all zircons were then separated through standard HCl-

based anion-exchange chromatographic procedures (Mattinson, 2005). 

Isotope ratios were measured using TIMS on a Triton Mass Spectrometer. U 

and Pb were loaded on a single Re ribbon filament in a silica gel/phosphoric acid 

mixture. U ratios were made in static Faraday mode. Pb was measured in peak-

hopping in a single SEM detector.  
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All U-Pb dates (ID-TIMS) were calculated using the 
238

U and 
235

U decay 

constants of Jaffey et al. (1971).  The 
238

U/
235

Uzircon value of 137.818 ± 0.045 (Hiess 

et al., 2012) was used in the data reduction calculations for ID-TIMS dates. Data 

reduction was carried out using U-Pb REDUX (McLean et al., 2011). 

 

4. Results 

4.1.  Re-Os Abundance  

Across the onset of OAE 2 there is a noticeable shift to an increase Os 

abundance (Table 3.2). In the YG the Os concentration increases by ~220 ppt from 

11.45 ppt to 236.71 ppt in ~1 m and within 20 m returns to 35.19 ppt. In the GVS the 

Os concentration is more variable, with the increase in Os abundance occurring 

simultaneously with unradiogenic Osi values (discussed below). Conversely, Re 

abundance is relatively constant at both sections, but are typically higher before the 

onset of OAE 2. The Re abundance ranges from ~0.20 - ~1.60 ppb at YG and from ~ 

0.25 - ~3.75 ppb at GVS. The dramatic difference between the Re and Os abundance 

produce a similar profile in 
187

Re/
188

Os to the Osi profile, with an abrupt decrease in 

the 
187

Re/
188

Os directly associated with the abrupt increase in Os abundance.  

 

4.2.  Initial osmium (Osi) 

The initial osmium isotope data obtained for the two trans-Pacific locations: 

YG, Japan and the GVS, California are presented in Figure 3.3 and Table 3.2 (3.2a 

YG; 3.2b GVS).  
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4.2.1. Osi stratigraphy of the Yezo Group, Japan 

Prior to ‘A’, the onset of OAE 2, the Osi values are radiogenic and 

moderately heterogeneous: 0.66 – 0.80. The Osi show a brief and abrupt trend to a 

less radiogenic value of 0.52, ~47 m prior to the onset of the event, before returning 

to radiogenic values (Fig. 3.3). The Osi values remain radiogenic up to ~4 m before 

the onset of the OAE 2 when the Osi data rapidly become unradiogenic. This 

dramatic trend from 0.69 to 0.19 coincides with the onset of OAE 2 at ‘A’ and is 

characteristic of all Osi profiles for the OAE 2 (Turgeon and Creaser, 2008; Du 

Vivier et al., 2014; Chapter 2, this thesis). The Osi values remain unradiogenic for 

~10 m, before they abruptly return to radiogenic Osi at ‘B’ (0.50). For the remainder 

of OAE 2 and after the end of the event, the Osi data are radiogenic and relatively 

homogeneous, 0.50 – 0.63 (Fig. 3.3).  

 

4.2.2. Osi stratigraphy of the Great Valley Sequence, USA 

In the GVS the Osi values are highly variable. The radiogenic trend recorded 

in the YG (and all other OAE 2 sequences) before ‘A’ is interrupted in the GVS by 

frequent oscillations to unradiogenic Osi values, 0.95 to 0.32 (Fig. 3.3). The most 

radiogenic Osi value recorded 15 m before the onset of OAE 2, marks the initiation 

of the unradiogenic trend in Osi values to ‘A’. At ‘A’ the unradiogenic Osi values, 

0.13, are close to chondritic basaltic values (Peucker-Ehrenbrink and Ravizza, 2000). 

There are two rapid and short-lived trends to radiogenic values (~0.75) within the 

first 10 m of OAE 2 (Fig. 3.3). The Osi values remain unradiogenic for a further ~20 

m, where at ‘B’ the Osi value is 0.12. The Osi values then exhibit a less sudden return 

from 0.12 (‘B’) at ~80 m, to pre-OAE 2 values at ‘C’, where the Osi is 0.61. 
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Despite the more variable nature in the Osi data of the GVS the overall trend 

is akin to the Portland core, the YG (Fig. 3.3) and other sites (Du Vivier et al., 2014; 

Chapter 2, this thesis; Fig. 3.1). The key difference is that the GVS is characterised 

by more radiogenic Osi values than the YG section before and after the OAE 2 

interval.  

 

4.3.  U-Pb analysis 

For each volcanic tuff sample we identify the population of youngest 

concordant zircon U-Pb analyses and calculate a 
206

Pb/
238

U weighted mean age as an 

approximation for the eruption age of the ash layer (Table 3.3a, 3.3b; Fig. 3.5). The 

coherence of the youngest population is assessed via the MSWD value, each of 

which is within the acceptable range for the given number of analyses (Wendt and 

Carl, 1991). In each case the mean age is based on three to five individual 
206

Pb/
238

U 

dates that include the youngest 
206

Pb/
238

U date in each sample. The assumption made 

here is that zircon was crystallising in the magma chamber immediately prior to 

eruption such that the youngest zircons/zircon domains will yield 
206

Pb/
238

U dates 

that approximate the eruption age and inferentially the absolute age of the 

stratigraphic level sampled. As such older zircon 
206

Pb/
238

U dates are interpreted as 

reflecting crystallisation in a magmatic system prior to eruption and/or the inclusion 

of older materials during explosive volcanism and/or ash deposition. Alternative 

ways to interpret the distribution of 
206

Pb/
238

U dates from an ash bed are possible, for 

example, using only the youngest 
206

Pb/
238

U date as the best approximation of the 

youngest zircon in the ash bed, and inferentially the eruption age (e.g., Schoene et 

al., 2010), and our age model using OxCal (Bronk Ramsey, 2008; Fig. 3.6B). This 
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approach requires that the youngest 
206

Pb/
238

U date accurately represents the 

youngest zircon in the ash bed and such an interpretation will be impacted by any 

minor Pb-loss, and must consider the fact that even if there were a single age 

population in the ash bed, sampling of this population will result in a normal 

distribution of 
206

Pb/
238

U dates around the true age; ad hoc selection of the youngest 

date could result in an age that is on the young side of the distribution. To counter 

this effect we chose a ‘youngest coherent’ population of 
206

Pb/
238

U dates as 

considered to best approximate the time elapsed since eruption and deposition, 

having considered the potential for minor Pb-loss and mitigation via pre-treatment 

methods employed (Mattinson, 2005), inheritance and recycling. We report preferred 

206
Pb/

238
U weighted mean ages of 95.114 ± 0.048/0.12 Ma (AD175), 94.591 ± 

0.031/0.11 Ma (CT041), 94.436 ± 0.093/0.14 Ma (HK017), 94.530 ± 0.170/0.21 Ma 

(CT103) and 93.920 ± 0.031/0.11 Ma (HK018) with MSWD values ranging between 

0.4 to 2.0, values that are acceptable for a single population of the given sample size 

(Table 3.3b; Fig. 3.5; Wendt and Carl, 1991). The uncertainties reflect the following 

sources: analytical/analytical + tracer solution + decay constants; the latter value is 

the total uncertainty in each case which should be used when comparing these dates 

to other non-U-Pb derived dates (i.e., the age model for the CTB from Meyers et al., 

2012a that are largely based upon 
40

Ar/
39

Ar data), the former is to be used when 

quantifying differences between dates in this study. Figure 3.5 shows the 

stratigraphic sequence of tuff horizons in the YG section with the U-Pb zircon dates 

of this study and those of Quidelleur et al. (2011) are presented on Figure 3.4 for 

comparison. 
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Figure 3.5 Lithostratigraphy and biostratigraphy of the Yezo Group section, Japan 

with CA-ID-TIMS 
206

Pb/
238

U single zircon and interpreted weighted mean ages. 
206

Pb/
238

U weighted mean ages, bold red squares, are plotted with analytical uncertainties 

(2) and with total uncertainties (2; analytical+tracer+
238

U decay constant; Jaffey et al., 

1971; Condon et al., in review). Analyses excluded from weighted mean calculation for 
206

Pb/
238

U (i.e., Pb loss; inheritance) are indicated by opaque red squares (see text for 

discussion). The MSWD and the number of single zircon analyses included for each sample 

are also shown (see text for discussion, Wendt and Carl, 1991).  
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The age-depth model (Fig. 3.6B) graphically illustrates the temporal 

relationships of the tuff horizons relative to depth. The model demonstrates that the 

206
Pb/

238
U ages obey superposition; with the exception of CT103 the tuff horizons 

get stratigraphically younger within uncertainty (Fig. 3.5, 3.6B). The model therefore 

graphically demonstrates the uncertainty of the CT103 age (Fig. 3.6B; see discussion 

section 5.1).  

 

 

 

 

 

 
Figure 3.6 (next page 114) Lithostratigraphy and Tuff ID of the Yezo Group section (A) 

vs. OxCal age-depth model (B) vs. Chemostratigraphy of the Yezo Group section (C). 

OxCal age-model (Bronk Ramsey, 2008) authenticates the weighted mean 
206

Pb/
238

U zircon 

ages in the stratigraphy. The light grey areas represent the distribution for single calibrated 

dates. The dark grey areas demonstrate the marginal posterior distribution (Bronk Ramsey, 

2008; see text for discussion, section 5.1; Table 3.6). The Yezo Group section 
13

Cwood 

(black) and Osi (red) profiles are plotted against stratigraphic height. 
206

Pb/
238

U weighted 

mean ages are given with total uncertainties (2; analytical+tracer+
238

U decay constant): 

HK018 = 93.92 ± 0.031/0.11 Ma; CT103 = 94.53 ± 0.17/0.21 Ma; HK017 = 94.44 ± 

0.093/0.14 Ma; CT041 = 94.59 ± 0.031/0.11 Ma; AD175 = 95.11 ± 0.048/0.12 Ma. The 

Bayesian age of the CTB 93.90 ± 0.07/0.15 Ma is from Meyers et al. (2012a). Ages between 

dated tuff horizons can be interpolated from both the WIS and the Yezo Group, which can be 

projected on to the isotope profiles of the Portland core and the Yezo Group section, 

respectively. Equally, stratigraphic datum levels (pink stars ‘B’ and ‘C’) or isotope values 

(yellow star) can be projected from 3.6C on to the age model to clarify trans-basin 

integration (see text for discussion, section 5.3.1 and 5.3.2, respectively).  
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5. Discussion 

5.1.  OAE 2 correlation   

Traditionally the onset of OAE 2 is identified by a positive excursion in the 

δ
13

C record (‘A’, Pratt et al., 1985; Schlanger et al., 1987; Jenkyns, 1980). The 

development of Osi profiles for Atlantic, WIS and Tethyan OAE 2 sections exhibit 

an abrupt shift from radiogenic (~0.7 to 1.0) to unradiogenic values (~0.20 to 0.30) 

~50 kyr prior to the onset of OAE 2 (Fig. 3.7; Turgeon and Creaser, 2008; Du Vivier 

et al., 2014; Chapter 2, this thesis). The change in Os isotope composition relates 

directly to a major pulse of volcanic activity that was associated with the Caribbean 

LIP that was contemporaneous with the onset of OAE 2 (Fig. 3.7; Snow et al., 2005; 

Turgeon and Creaser, 2008; Du Vivier et al., 2014; Chapter 2, this thesis). 

Previously, the onset of the OAE 2 in the two Pacific sections was tentatively 

identified by Takashima et al. (2011) based on the δ
13

Cwood; however, it was 

uncertain due to a lack of definitive biostratigraphic and in particular additional 

chemostratigraphic data, which would facilitate with the identification of the onset 

horizon from the variable δ
13

Cwood. Figure 3.3 shows the height of the original 

interpretation of the onset of OAE 2 in the YG section, ‘red line’ (Takashima et al., 

2011). This position of the OAE 2 is ~24 m below the unradiogenic trend in Osi, 

which contrasts to the similarity between δ
13

C and Osi from all other OAE 2 sites 

(Du Vivier et al., 2014; Chapter 2, this thesis). The unradiogenic trend at the onset of 

OAE 2 coincides with the simultaneous increase (~220 ppt) in Os concentration, an 

increase that is observed in the Osi record from all other sections. In addition, despite 

the lack of additional isotopic analyses (i.e., Nd, Pb, Sr, P, U) compared to sites such 

as Portland and the Vocontian Basin, if we integrate on going research on δ
13

Cwood, 
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litho-, bio-, and chemostratigraphy (Takashima, pers comm.) with the interpretation 

of the Osi trend from other global sites (Fig. 3.7; Du Vivier et al., 2014; Chapter 2, 

this thesis), the onset of OAE 2 occurs at -16.15 m (Fig. 3.3) in the YG section.  

Absolute evidence to support the correlation of the onset of OAE 2 comes 

from U-Pb ages in the YG section (Table 3.3b; Fig. 3.5) relative to 
40

Ar/
39

Ar and U-

Pb and cyclostratigraphy based age-model from the Portland #1 core (Fig. 3.4; 

Meyers et al., 2012a). The WIS temporal framework is based on an integrated 

approach, which combines U-Pb (zircon) and 
40

Ar/
39

Ar (sanidine) radio-isotopic data 

with astrochronology using Markov Chain Monte Carlo simulations (Meyers et al., 

2012a). In this approach a high-resolution floating astrochronology based timescale 

is based upon orbitally influenced rhythmic strata, which is constrained in an 

absolute temporal sense by a dataset of 
40

Ar/
39

Ar (sanidine) and subordinate U-Pb 

(zircon) dating. The accuracy of these radio-isotopic dates are based upon their 

respective calibrations, the age of the Fish Canyon sanidine (FCs) at 28.201 Ma for 

the 
40

Ar/
39

Ar dates, and the gravimetric calibration of the EARTHTIME mixed U-Pb 

tracer for the zircon U-Pb dates. Although there is potential for bias between the 

geochronological systems, particularly related to the choice of an age of 28.201 Ma 

for FCs, a suite of new U-Pb (zircon) and 
40

Ar/
39

Ar (sanidine) data for the 

Cretaceous Niobara Formation in the WIS suggest no resolvable bias (Sageman et 

al., 2014). We therefore apply the WIS integrated age-model (Meyers et al., 2012a), 

which is based upon 
40

Ar/
39

Ar and subordinate U-Pb dates for comparison with the 

age-model we have developed for YG (Fig. 3.6B). However, it is worth noting that 

the WIS age-model is based upon a number of radio-isotopic dates from across the 

WIS that are then correlated into the Portland #1 core stratigraphy (Meyers et al., 
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2012a) and uncertainty in biostratigraphy correlation is not included (see Sageman et 

al., 2014 for further discussion). Consequently, the integrated chronostratigraphy of 

the CTBI utilises the derived age model for the Portland core (Meyers et al., 2012a) 

and determines the age of the onset of OAE 2 at ~94.38 ± 0.15 Ma (Du Vivier et al., 

2014; Chapter 2, this thesis).  

Utilising the integrated age model justifies the revised stratigraphic 

correlation based on the modification of stratigraphic horizons. Hence the tuff unit 

HK017 in the YG section occurs at -16.10 m, adjacent to the first least radiogenic Osi 

value, which is 0.05 m above the onset of the excursion in the δ
13

Cwood record. The 

HK017 U-Pb (zircon) systematics yield a date that is nominally equal (and overlaps 

within uncertainty; 94.44 ± 0.14 Ma) to the date of the onset of OAE 2 established 

from the WIS (~94.38 ± 0.15 Ma). As a result, these dates justify the revision of the 

OAE 2 onset in the YG, and confirm the trend in the Osi profiles to unradiogenic Os 

values as globally contemporaneous (Fig. 3.7), as proposed by Du Vivier et al. 

(2014; Chapter 2, this thesis). Furthermore, the age of HK018, 93.92 ± 0.031/0.11 

Ma, implies that the CTB (dated at 93.90 ± 0.15 Ma, Meyers et al., 2012a) is present 

in the horizon directly above or below the tuff since the date for HK018 is 

statistically indistinguishable from the date of the CTB. As such we amend the 

stratigraphic height of the CTB, previously determined by the FO of M. schneegansi 

(Hasegawa, 1995; Takashima et al., 2011; see Fig. 3.2, CTB”; Fig. 3.5). 

Figure 3.7 (next page 118) Global correlation of δ
13

Corg and δ
13

Cwood (black) and Osi (red) 

vs. stratigraphic height (m). Initial 
187

Os/
188

Os calculated at 93.90 ± 0.15 Ma. δ
13

C data from: 

Portland #1 Core, Sageman et al. (2006); Site 1260, Forster et al. (2007); Wunstorf (Chapter 2, 

this thesis); Vocontian Basin, Jarvis et al. (2011); Furlo, Jenkyns et al. (2007); Site 530, Forster 

et al. (2008); Yezo Group, Takashima et al. (2010); Great Valley Sequence, Takashima et al. 

(2010). Sites correlated using datum levels on the δ
13

C record (A, B, C; see text for details), ‘A’ 

denotes the onset of the OAE 2. Dashed lines represent intervals of pore core recovery. Note that 

symbol size is greater than the measured uncertainty. Osmium isotope data are reported for YG 

and GVS in Table 3.2 and for the other sites in Chapter 2 (this thesis; Du Vivier et al., 2014). 
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The age-depth model (Fig. 3.6B) is generated using OxCal (Bronk Ramsey, 

2008) in order to graphically illustrate the 
206

Pb/
238

U zircon dates and justify inter 

basinal integration. The model permits the interpolation of ages between the dated 

tuff horizons for the YG section and thus allows objective comparison of the YG and 

WIS sections based on the stratigraphy, δ
13

C and the Osi profiles they contain (Bronk 

Ramsey, 2008). On Figure 3.6B the light grey areas represent the distribution for 

single calibrated dates, i.e., the likelihood of distribution derived from the actual 

dated values, and the dark grey areas demonstrate the marginal posterior distribution, 

which considers the depth model (Bronk Ramsey, 2008). The U-Pb zircon dates, 

with the exception of CT103 (Fig. 3.4; 94.53 ± 0.21 Ma), conform to stratigraphic 

order (Fig. 3.5). The model therefore demonstrates the uncertainty of the CT103 age 

(Fig. 3.6B – light grey area of sample) but forces superposition to be upheld (Fig. 

3.6B – dark grey area of sample). The high uncertainty (± 0.17/0.21 Ma) enables 

CT103 to be manipulated in the model since it takes more of its weight from the 

other more precise zircon 
206

Pb/
238

U dates from above and below, such that the date 

of CT103 has no weight in the resultant age-model (section 5.2; Fig. 3.9). For CT103 

it is likely that the zircons either record inheritance and/or crystallisation in the 

magmatic chamber a period of time prior to eruption since the sample yields a date 

older than zircons from tuff units below CT103, e.g., HK017 (94.44 ± 0.093 Ma). 

Nonetheless, Figure 3.6B shows that the age-depth model fits the remaining 

206
Pb/

238
U ages within uncertainty. The projection of Tuff A, B and C from the WIS 

on to the YG stratigraphy illustrates the integration of the YG and WIS records and 

supports the interpretation of HK018 revising the CTB, and HK017 revising the 

onset of OAE 2. As such we optimise the integrated chronostratigraphy of the YG 
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Pacific data with the high-resolution initial osmium isotope profile of the Portland #1 

core (Du Vivier et al., 2014; Chapter 2, this thesis) and the age-model from the WIS 

(Tuff A, B and C; Meyers et al., 2012a) in order to provide integration between the 

two sites, and the first understanding of Pacific Ocean chemistry during OAE 2. 

The pre-existing dates from 2 dated tuff horizons (Quidelleur et al., 2011) are 

indicated on Figure 3.4 in green. The sample HKt002 is at the same stratigraphic 

height as the onset of the OAE 2 (-16.15 m) but the LA-ICP-MS analysis produced a 

206
Pb/

238
U date of 92.9 ± 2.1 Ma, which is nominally >1.5 Myr younger than the 

onset of OAE 2 defined in the WIS (94.38 Ma) and the age of HK017; 94.44 ± 0.14 

Ma. In addition to the stratigraphic disparity with the dated tuffs (Meyers et al., 

2012a; and this study) and the Osi profile, HKt002 has a significant uncertainty (± 

2.1 Ma). The uncertainty is intrinsic to the analytical method therefore we discount 

the utility of the HKt002 date for integration at the sub 0.5 Ma level. 

Furthermore, analysis of the degree of pyritization (DOP) in addition to Os 

isotope stratigraphy records a sudden increase synchronous with the first 

unradiogenic Osi value just after the onset of OAE 2 in the YG section (DOP peak 1; 

Fig. 3.8A; Table 3.4; Takashima et al., 2011). The isochronous onset of OAE 2 

throughout the proto-Pacific is supported by a similarly synchronous increase in 

DOP in the GVS (DOP peak 1; Fig. 3.8B), which supports the revised position of the 

onset of OAE 2 in the YG section (Fig. 3.7). A high DOP is indicative of dysoxic to 

euxinic conditions, such as during the syn-OAE 2 interval (Takashima et al., 2011). 

For the application of DOP to be a useful tool it ought to be applied to multiple 

sections to establish the enrichment of sulphides and hence the development of 
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euxinia. As a result a global application could determine the level of anoxia in 

different basinal settings. 

 

Figure 3.8 Degree of Pyritization (DOP) vs. Osi in Yezo Group, Japan and Great Valley 

Sequence, California, USA. Figure 3.8A shows YG DOP (green) and Osi (red) vs. 

stratigraphic height (m) in the top figure and below vs. temporal timescale (kyr). Figure 3.8B 

shows GVS DOP (green) and Osi (red) vs. stratigraphic height (m) in the top figure and 

below vs. temporal timescale (kyr). The peaks in the DOP profile are indicated by blue 

arrows, labelled ‘DOP’. 
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5.2.  Temporal framework 

The U-Pb dates for the YG provide an absolute timescale for the CTB. We 

therefore use these dates to constrain sedimentation rates (cm/kyr) for each section 

(Table 3.5) and calculate a temporal model (Table 3.2) in order to quantitatively 

assess the duration of events occurring across the CTBI based on the Osi profile, and 

potentially reduce the discrepancy observed in stratigraphic correlations based solely 

on δ
13

C records. Du Vivier et al. (2014; Chapter 2, this thesis) established a common 

chronostratigraphic framework relative to individual timescales created for each 

section by exporting temporal information, based on the integration of radio-isotope 

dates (Ar-Ar and U-Pb) and astrochronology (Meyers et al., 2012a) and new work 

(Ma et al., 2014), from the Portland #1 core (Du Vivier et al., 2014; Chapter 2, this 

thesis). 

We apply the timescale model from Du Vivier et al. (2014; Chapter 2, this 

thesis) to the GVS based on the integrated information from the GSSP section 

(Meyers et al., 2012a), whereby the sections without radio-isotopic dates are 

correlated according to the characteristic peaks and troughs in the δ
13

C record, 

combined with key bioevents to establish datum levels ‘A’, ‘B’ and ‘C’ of the δ
13

Corg 

curve that are the same as those first defined by Pratt et al., (1985) in the Western 

Interior and revised by Tsikos et al. (2004). The age of the ‘A’, ‘B’ and ‘C’ datum 

levels of the δ
13

Corg curve are derived from the nominal ages for the ‘A’, ‘B’ and ‘C’ 

markers from the GSSP (Fig. 3.3), allowing calculation of linear sedimentation rate 

values between the datum levels (Table 3.5). Thus, the linear sedimentation rate 

calculated for A-B is applied to develop a timescale below the ‘B’ datum, and a 

linear sedimentation rate for B-C is used for the section above the ‘B’ datum (Table 
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3.5). Conversely, the YG section δ
13

C excursions are not well defined and the U-Pb 

zircon dates from this study constrain the stratigraphy through the CTBI, as 

discussed in section 5.1. Therefore the dates are utilised to derive the YG temporal 

framework using the same methodology as facilitated for the GSSP framework (Du 

Vivier et al., 2014; Chapter 2, this thesis). A linear sediment accumulation rate 

(cm/kyr) is calculated between each 
206

Pb/
238

U age for each tuff interval; HK018-

HK017, HK017-CT041, and CT041-AD175 (Table 3.5), and utilised to develop a 

thousand year timescale (kyr; Table 3.2). However, a variable linear sediment 

accumulation rate is more realistic over such time frames, i.e., hundreds of thousands 

of years. The established global framework utilises the onset of OAE 2 as the 

temporal datum ‘A’, which is set to 0 kyr (Fig. 3.3). The revised onset of OAE 2 in 

the δ
13

Cwood excursion for the YG section is applied, based on Osi profile (this study). 

Our temporal constraints, based upon U-Pb zircon dates from ash beds in the 

YG section permit integration of YG data with data from the Portland #1 core and 

objective comparison of the Osi profiles from both sections (see section 5.3.1). 
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Figure 3.9 (next page 125) Osi profiles from Yezo Group (black) and Portland #1 Core 

(grey) vs. temporal timescale (kyr). Red stars mark the U-Pb dated tuff horizons from this 

study in the Yezo Group section. Green stars mark the weighted mean 
40

Ar/
39

Ar ages in the 

WIS, Meyers et al. (2012a). CTB based on the Portland timescale. Figure 3.9B shows the Osi 

profile having applied a varied sedimentation rate to the stratigraphy between HK018 (see 

text for discussion), inferred from integration based on U-Pb dated tuffs. The yellow markers 

(D and E) on the Portland Osi profile in Figure 3.9B are recalculated 
40

Ar/
39

Ar ages (Adams 

et al., 2010). 
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5.3.  Interpreted Osi correlation based on the temporal framework and age model  

5.3.1. Correlation of OAE 2 interval 

Figure 3.9 shows the Osi profiles of the YG section and the Portland #1 core 

versus the temporal timescale (kyr), determined using the linear interpolated 

sediment accumulation rate. The tuff horizons are marked on; red stars for YG and 

green stars for Portland. The position of the CTB (Fig. 3.9) is based on the well-

constrained astrochronological timescale of the Portland core (Meyers et al., 2012a). 

Figure 3.9A illustrates the discrepancy in age integration. The age of HK018 (93.92 

± 0.11 Ma) is nominally analogous with the age of the CTB (93.90 ± 0.15 Ma) as 

shown by the age-depth model (Fig. 3.6B). However, based on the temporal 

timescale for the YG, the HK018 tuff horizon is concomitant with Tuff B in the WIS 

age-model, which is ~200 kyr older (94.10 ± 0.27 Ma; Fig. 3.9A).  

The sedimentation rates for the integrated timescale of the Portland core are 

supported by astrochronology. Therefore we propose that the discrepancy in 

correlation of the Portland core and YG is a function of the linear sedimentation rate, 

which is a key parameter of the temporal model presented. As explained in section 

5.2, the linear sedimentation rate is derived from the ages of the tuff horizons, as 

such a constant sedimentation rate is assumed between the tuff horizons. The similar 

analytical dates, including uncertainty, of tuff horizons of the WIS and the YG 

suggest that the sedimentation rate between tuff horizons of the YG was considerably 

more variable than is assumed (Fig. 3.9A, Table 3.5).  

The onset of OAE 2 in Portland and the YG agree within ~150 kyr supported 

by the integration of 
40

Ar/
39

Ar and U-Pb dates, respectively, which is also supported 

by the age-depth model (Fig. 3.6B; as discussed in section 5.1). Subsequently, the 
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unradiogenic interval at Portland and elsewhere (Fig. 3.7) lasts for ~180 kyr (based 

on the integrated timescale Du Vivier et al. (2014); Chapter 2, this thesis; and also in 

agreement with the short eccentricity cycles in Meyers et al. (2012b)); however, in 

the YG section the Osi values abruptly return to radiogenic values ~100 kyr after ‘A’ 

based on the timescale using a linear interpolated sediment accumulation rates (Fig. 

3.9A). As such we propose that the sedimentation rate between HK017 and HK018 

was not constant, which is consistent with the facies change from mudstone to 

muddy-sandstone between the two horizons, respectively. We use the age-depth 

model to support the proposed variation of the sedimentation rate. Where the first 

least unradiogenic Osi is immediately adjacent to HK017 and dated 94.44 ± 0.093 

Ma, subsequently the return to radiogenic Osi is interpolated from the age-depth 

model at ~94.25 ± 0.10 Ma (Fig. 3.6B). The difference is ~180 kyr, thus the duration 

of the unradiogenic interval concurs with the global trend of ~180 kyr (Du Vivier et 

al., 2014; Chapter 2, this thesis). As a result we apply a slower sedimentation rate at 

the onset of OAE 2, ~3 cm/kyr, before it increased to the calculated rate of ~7 

cm/kyr (Table 3.5), which expands the section (Fig. 3.9B). Therefore the 

unradiogenic interval after the onset of OAE 2 is analogous to the globally correlated 

duration (Fig. 3.7), and the dated tuff horizon HK018 is integrated with the CTB 

(Fig. 3.9B), which is quantified by the age-depth model (Fig. 3.6B). 

Furthermore the age-depth model ascertains the age of the datum levels ‘B’ 

and ‘C’ in the YG section (Fig. 3.3). Figure 3.6B illustrates two pink stars labelled 

‘B’ and ‘C’ on the age model, interpolated from 3.6C, that yield ages of ‘B’ ~94.15 ± 

0.11 Ma and ‘C’ ~93.90 ± 0.11 Ma. Both dates concur within uncertainty with the 

integrated ages for the ‘B’ (~94.23 ± 0.20 Ma) and ‘C’ (~93.95 ± 0.20 Ma) datum 
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levels in the Portland core (derived from Meyers et al., 2012a; Table 3.5; Du Vivier 

et al., 2014; Chapter 2, this thesis). Consequently we further verify the correlation of 

the YG section with the WIS facilitated by the integration of the temporal 

framework.  

 

5.3.2. Pre-OAE 2 Yezo Group section, western Pacific 

The heterogeneous Osi profile prior to the onset of OAE 2 in the YG is 

directly comparable to the profile recorded in the WIS at Portland (Fig. 3.4, 3.8). The 

Osi values are interpreted to reflect weathering of the radiogenic continental crust 

(Peucker-Ehrenbrink and Ravizza, 2000; Cohen, 2004). For the YG section the Osi 

are marginally less radiogenic than at Portland, indicative that the isotopic 

composition of the weathered material from which the hydrogenous Os was derived; 

i.e., the western Pacific interior was less isotopically evolved (Mesozoic forearc; 

Tamaki and Itoh, 2008) than the continental mass of the Archean Canadian Shield 

weathering into the WIS. 

The brief trend to less radiogenic Osi values ~330 kyr before the onset of 

OAE 2 in the YG section (Fig. 3.9A) is identical to the trend recorded at Portland; 

where the short-lived perturbation is indicative of the initial pulse of volcanism from 

the Caribbean LIP (Sinton and Duncan, 1997; Snow et al., 2005; Turgeon and 

Creaser, 2008; Du Vivier et al., 2014; Chapter 2, this thesis). However, the timing of 

the trend is not directly synchronous; at Portland it occurs at ~240 kyr before OAE 2, 

but records the same amount of change (~0.2). Therefore, it is probable that the 

unradiogenic source and its portion controlling the Osi in the YG section was similar 

to that for Portland (i.e. the Caribbean LIP). 
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Prior to the onset of OAE 2 in the Portland core there are two 
40

Ar/
39

Ar ages 

from the WIS that yield recalculated dates of 94.67 ± 0.61 Ma and 94.83 ± 0.53 Ma 

(using the 28.201 Ma age for the FCs; Fig. 3.4: D and E; Obradovich, 1993; 

recalculated in Adams et al., 2010), and a recently dated bentonite ~27 m below Tuff 

A in the Lincoln limestone, which yields an 
40

Ar/
39

Ar date of 95.39 ± 0.18 Ma (Ma 

et al., 2014). These 
40

Ar/
39

Ar dates provide time markers that can be used to 

nominally correlate the Osi profiles. Further utilising these ages generates an 

identical temporal model to that determined by the stratigraphy (Ma et al., 2014). 

In the WIS the 
40

Ar/
39

Ar date constrains the non-radiogenic inflection to 

~94.68 ± 0.61 Ma (Fig. 3.9B marker ‘D’; Adams et al., 2010). An identical age 

within uncertainty is determined for the same point in the Osi profile for the YG 

section from the age-depth model (~94.70 ± 0.11 Ma; Fig. 3.6B, 3.6C, yellow star). 

Consequently, based on the inference that the source of the non-radiogenic inflection 

is contemporaneous, the Osi record infers that the sedimentation rate was faster than 

calculated (Table 3.5) in the YG section before the onset of OAE 2. As a result the 

application of a varied sedimentation rate facilitates the correlation of the non-

radiogenic trend at ~250 kyr prior to the onset of OAE 2 by condensing the Osi 

profile (Fig. 3.9B). As discussed in section 5.2, the temporal model is established 

using a constant sedimentation rate between tuff horizons. Accordingly, a constant 

sedimentation rate over 600 kyr between AD175 and CT041 is derived from the 

model. Therefore it is reasonable to suggest the timing of the non-radiogenic 

perturbation may be affected by variable sedimentation rates.  

Moreover, despite the long-term transgression to highstand in the early 

Turonian, sea level was frequently oscillating short-term (Haq et al., 1988; Leckie et 
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al., 2002; Takashima et al., 2010). As a result, the interval prior to anoxia implies 

that brief basin restriction permitted the radiogenic continental flux of Os to 

dominate the composition of organic-rich deposits (Du Vivier et al., 2014; Chapter 2, 

this thesis) during the short-term regression (Haq et al., 1988). The maximum 

atmospheric and sea surface temperatures during this interval meant that weathering 

rates were also at a maximum (Forster et al., 2007), which led to an abundance of 

nutrients that boosted productivity and ultimately primed the ocean system for the 

development of anoxia as rising sea levels facilitated the distribution of the build up 

in nutrients. As nutrients became prolific, CO2 drawdown increased and expanded 

the oxygen minimum zones throughout the global basins (Erbacher et al., 1996; 

Jones and Jenkyns, 2001; Du Vivier et al., 2014; Chapter 2, this thesis). Sea level 

transgression, which started immediately prior to the OAE 2 and continued up to the 

lower Turonian highstand, permitted the distribution of unradiogenic Os and elevated 

Os concentrations derived from activity at the Caribbean LIP, in to the basin. 

Consequently the Osi profiles from all sections infer that the trend to unradiogenic 

Osi values was penecontemporaneous (Fig. 3.7, 3.9) and interpreted to reflect the 

major onset of volcanic activity at the Caribbean LIP.   

 

5.4. Great Valley Sequence, eastern Pacific 

The Osi data for the GVS do not record the same pre-OAE 2 trend as Portland 

and Japan (Fig. 3.10). Instead the rapidly oscillating radiogenic to unradiogenic Osi 

values recorded in the GVS are indicative to a highly sensitive ocean basin during 

the ~220 kyr interval before the onset of OAE 2. The frequency of the perturbations 

in the Osi record every 20 – 30 kyr supports the short residence time of Os in 
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seawater (Oxburgh, 2001; Du Vivier et al., 2014; Chapter 2, this thesis), and suggests 

that the Os isotope composition was sensitive to unradiogenic Os from hydrothermal 

inputs at the Caribbean LIP (Turgeon and Creaser, 2008; Du Vivier et al., 2014; 

Chapter 2, this thesis) in addition to radiogenic Os from continental weathering 

inputs. The sporadic variability in the Os concentration is consistent with the rapidly 

changeable Osi profile of the GVS. The data show that there is a correlation between 

unradiogenic Os isotope composition and high Os concentration, which may be 

indicative to the high frequency of changing seawater chemistry in the basin as a 

result of alternating sea level and accelerated weathering rates. The high terrigenous 

component of the GVS lithology coupled with the radiogenic Osi suggests that the 

main flux of material is derived from the continent. This may have been the result of 

an increase in marginal and intercontinental weathering driven by the 

aforementioned peak in global temperatures and fluctuating sea level in the lead up 

to OAE 2 (Jones and Jenkyns, 2001).  

 

 

 

 

 

 

 

 

Figure 3.10 (next page 132) Osi vs. temporal timescale (kyr). ‘A’, ‘B’ and ‘C’ represent 

the δ
13

C correlative datum levels. The onset (‘A’) of OAE 2 is in blue and the Cenomanian-

Turonian boundary (CTB) is in green. The duration of the OAE 2 is in yellow (~600 kyr; 

Meyers et al., 2012b). The tuff horizons in the Yezo Group are labelled and the adjacent Osi 

data point filled in black. The duration of the Caribbean LIP is in shaded pink (~450 kyr), 

derived from Chapter 2 and this study (see text for discussion). The 2 minor hiatuses in the 

Portland #1 core are marked on as black hashes. The uncertainty of each analysis is <0.04. 
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While the GVS record is indicative to regional basin factors controlling Osi 

prior to the OAE 2, the more open ocean Osi signal becomes more unradiogenic, e.g., 

Site 1260, Site 530, Furlo, Vocontian Basin (Fig. 3.7), as the water column is more 

sufficiently mixed. By the onset of OAE 2 rising sea levels to the approaching 

highstand (in the Turonian, Haq et al., 1988; Leckie et al., 2002; Forster et al., 2007) 

facilitated the growth of the oxygen minimum zone (Erbacher et al., 1996). As water 

mass exchange became more efficient the contemporaneous unradiogenic Os derived 

from the Caribbean LIP was readily transferred to the GVS basin and influenced the 

isotopic composition of seawater prior to and in the first ~50 kyr of OAE 2 (Fig. 

3.10). Overall the variability of the Os isotope composition throughout the CTBI is 

indicative of a dynamic palaeocirculation and highlights the sensitivity of the 

seawater chemistry in the GVS as a function of proximity to the Caribbean LIP.  

Neodymium isotopes also assess water mass exchange and ocean circulation, 

whereby the Nd record exhibits a positive excursion at the onset of OAE 2 at 

Demerara Rise (Macleod et al., 2008), which implies a change in the source of 

circulation and input to the ocean (i.e., hydrothermal processes associated with the 

Caribbean LIP: Macleod et al., 2008; Martin et al., 2012). Evidence from the Nd 

record at Eastbourne exhibits a synchronous positive excursion with Demerara Rise 

(Zheng et al., 2013).  Therefore, a vigorous deep ocean circulation throughout the 

late Cretaceous combined with transgression permitted the exchange of Pacific 

seawater into the Atlantic and European Pelagic Shelf basins across the CTB 

(Trabucho-Alexander et al., 2011; Martin et al., 2012), which reflects the concurrent 

emplacement of the Caribbean LIP with the global Osi record (Fig. 3.7; Du Vivier et 

al., 2014; Chapter 2, this thesis). 
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5.5.  Longevity of the Caribbean Large Igneous Province 

The Osi isotope stratigraphy records an unradiogenic influence associated 

with submarine volcanism at the Caribbean LIP (Sinton and Duncan, 1997; Snow et 

al., 2005; Turgeon and Creaser, 2008; Du Vivier et al., 2014; Chapter 2, this thesis). 

The period of formation of the Caribbean LIP is estimated to be ~450 kyr (Du Vivier 

et al., 2014; Chapter 2, this thesis). At ~240 kyr prior to the onset of anoxia the trend 

in Osi values represents an initial pulse, followed by a major pulse ~50 kyr prior to 

the onset. Subsequently, the return to radiogenic Osi values (>0.5) ~210 kyr after the 

OAE 2 onset indicates the cessation of activity at the Caribbean LIP, and as a result 

the re-equilibrium of seawater chemistry. The time frame recorded in the YG is 

identical to the Osi record from the Atlantic, Tethyan and WIS regions (Fig. 3.10; Du 

Vivier et al., 2014; Chapter 2, this thesis).  

As discussed in section 5.4, the continual variability of the Os isotope 

composition throughout the CTBI highlights the sensitivity of the seawater chemistry 

in the deposits at the GVS, which could be associated with the high TOC levels and 

the process of sequestration; following the build-up of Os from pulses of volcanic 

activity, the drawdown of Os was rapid as a result of the abundance of organic-rich 

material from pre-OAE 2 weathering and CO2 drawdown. As a result the section 

could be used to improve the nominal constraint on the duration of activity at the 

Caribbean LIP, given the basin proximity to the oceanic plateau (Fig. 3.1). From the 

start of the Osi record in the GVS the Osi oscillates dramatically from radiogenic 

(~0.9) to unradiogenic (~0.4; Fig. 3.3, 3.9) within ≤30 kyr until the early part of OAE 

2. The Osi values remain unradiogenic up to datum level ‘B’ when at ~180 kyr the 

Osi values become more radiogenic (Fig. 3.10) as the influence of volcanically 
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derived Os decreased. The trend to more radiogenic values reveal a more abrupt 

cessation of the Caribbean LIP, yet the timing is concurrent within uncertainty with 

Atlantic, Tethyan and WIS sites and supports the same interpretation of duration as 

Du Vivier et al. (2014; Chapter 2, this thesis; ~450 kyr). Therefore circulation was 

not stagnant and was sufficient to re-equilibrate seawater chemistry of palaeobasins 

adjacent to the Caribbean LIP and at the peripheral margins of the oceans worldwide 

(Trabucho-Alexander et al., 2011; Du Vivier et al., 2014; Chapter 2, this thesis).  

 

6. Summary  

The high-resolution Osi profiles for two proto-Pacific sections demonstrate 

the changes in global ocean chemistry across the OAE 2. The Osi stratigraphy 

facilitates the traditional method of correlation and integration of stratigraphic 

successions using δ
13

C isotopes, and we use the 
206

Pb/
238

U zircon ages to show the 

synchronous onset of OAE 2 and assess the contemporaneity of the Caribbean LIP. 

The use of U-Pb ages (Fig. 3.5) has permitted the application of a temporal 

model to both Pacific sections (Fig. 3.9), which has revised the definition of the 

onset of OAE 2 and the position of the CTB in the YG section, and quantitatively 

constrained the onset of OAE 2 and the duration of the Caribbean LIP. Furthermore, 

the age-depth model (Fig. 3.6B) supports the objective integration of the Osi profiles 

(Fig. 3.6C) and synchronicity of changes in the seawater Os isotope composition. 

The improved correlation and integration of the proto-Pacific with the WIS across 

the CTB has created a nominal correlation to the GSSP in the WIS. 

The YG and GVS sections are at the western and eastern periphery of the 

proto-Pacific ocean, respectively. The discrepancy between the Osi profiles 
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illustrates the extent of regional variability of inputs to basinal environments (Paquay 

and Ravizza, 2012) and basin restriction comparable to the WIS, as well as the 

proximity to the source of the Caribbean LIP combined with sea-level change 

continually influencing local water masses at the GVS. Despite the variability of the 

Osi values the overall trend of the Osi profiles; radiogenic – unradiogenic – return to 

radiogenic Osi, are characteristic of the OAE 2 with respect to the correlation of Os 

isotope stratigraphy throughout the proto-Atlantic, Tethys and WIS (Du Vivier et al., 

2014; Chapter 2, this thesis). Therefore, with the addition of the high-resolution Os 

isotope stratigraphy from both proto-Pacific sections and U-Pb dates from the YG 

section, we conclude that the OAE 2 was an isochronous event with worldwide 

basinal dispersion and penecontemporaneous with the major pulse of volcanism at 

the Caribbean LIP. 
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1. Introduction 

Calcium is highly abundant in the Earth’s crust and has the ability to move as 

an element (Ca2+) between the lithosphere, biosphere, hydrosphere and atmosphere 

reservoirs as part of the Ca cycle. The mobility through the Ca cycle influences the 

Ca isotope composition of geochemical reservoirs, which provides an important link 

between tectonics, climate and the carbon cycle, and has the potential to simulate the 

evolution of Ca isotope composition in seawater (DePaolo, 2004; Fantle and 

DePaolo, 2005; Fantle, 2010). This study presents and discusses the marine δ44/40Ca 

(δ44Ca) values across the Oceanic Anoxic Event (OAE) 2.  

The OAE 2 brackets the Cenomanian-Turonian boundary (CTB) ~93.90 Ma 

(Meyers et al., 2012a), for ~600 kyr (Meyers et al., 2012b). OAEs are episodes of 

disequilibrium between the ocean and atmosphere systems. During this interval the 

oceans become sub-oxic to anoxic and an abundance of organic-rich material 

accumulated in ocean basins. The onset of OAEs are characterised by the enhanced 

burial of organic material and the drawdown of CO2, which produce a positive 

excursion in the δ13C record (Jenkyns, 1980). More recently the onset of OAE 2 is 

characterised by an abrupt trend to unradiogenic Osi, which is synchronous 

worldwide (Du Vivier et al., 2014; Chapter 2, 3, this thesis). There have been many 

studies that have utilised numerous isotope proxies (e.g., carbon, strontium, lead, 

lithium, neodymium, osmium, phosphorus; Schlanger et al., 1987; Clarke and 

Jenkyns 1999; McArthur et al., 2004; MacLeod et al., 2008; Turgeon and Creaser, 

2008; Kuroda et al., 2011; Mort et al., 2011; Martin et al., 2012; Pogge von 

Standmann et al., 2013; Zheng et al., 2013; Du Vivier et al., 2014) in order to assess 

the factors driving changes in seawater chemistry across the OAE 2. The catalogue 
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of data have facilitated in determining the driving mechanisms of anoxia and the 

causes of variable climatic conditions across the CTB.  

Calcium is a key element involved in the long-term carbon cycle. Many 

studies have addressed the factors controlling the δ44Ca evolution of seawater (De La 

Rocha and DePaolo, 2000; Gussone et al., 2003, 2005, 2006; DePaolo, 2004; Böhm 

et al., 2006, 2009; Farkaš et al., 2007a, 2007b; Griffith et al., 2008; Fantle, 2010; 

Blättler et al., 2012; Holmden et al., 2012; Fantle and Tipper, 2013). Calcium isotope 

values are typically stable throughout the modern and historical oceans, and marine 

calcium isotope ratios are reported relative to a normalised standard as δ44/40Ca = 

[(44Ca/40Ca)sample/(44Ca/40Ca)std – 1]*1000. The oceanic mass balance of the marine 

budget largely reflects the mass flux and isotopic evolution of inputs from rivers and 

mid-ocean ridges, and outputs through the precipitation of calcium carbonate (De La 

Rocha and DePaolo, 2000; Schmitt et al., 2003; DePaolo, 2004; Fantle and DePaolo, 

2005; Sime et al., 2007; Blättler et al., 2012; Fantle and Tipper, 2013). In order to 

maintain a steady-state isotopic composition in the ocean, i.e., a net mass balance of 

zero, the influx and removal of elements occurs at the same rate. The evaluation of 

inputs and outputs has shown that overall the output flux of Ca into carbonate 

sediments exceeds the flux of Ca from riverine or hydrothermal inputs (Holmden et 

al., 2012).  

The inputs and outputs are influenced by a number of physical and biological 

controls, such as, rainfall, temperature, salinity, lithology/CaCO3 mineralogy, and 

growth rate (De La Rocha and DePaolo, 2000; Farkaš et al., 2007b; Fantle, 2010; 

Blättler et al., 2011; Kisakurek et al., 2011; Pretet et al., 2013). Examination to date 

suggests that seawater δ44Ca values are often influenced by the fractionation of Ca 

isotopes during precipitation of CaCO3 as a consequence of solution chemistry and 
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the mineralogy of the sediment flux (DePaolo, 2004; Fantle and DePaolo, 2005; 

Fantle, 2010; Fantle and Tipper, 2013; Ockert et al., 2013). Therefore unlike the 

other isotopic and elemental studies (Os, Sr, Nd), where the isotopic composition 

varies from the mixing of predetermined end-members as a function of the source 

(e.g., Os; Peucker-Ehrenbrink and Ravizza, 2000), the evaluation of variability for 

Ca isotope studies is made more complicated due to the additional effect of mass 

dependent fractionation from source to sink (Gussone et al., 2003; Fantle, 2010; 

Fantle and Tipper, 2013). In addition, simple end-member mixing cannot 

differentiate the factor influencing the δ44Ca values since the isotopic values of input 

fluxes are very similar (–0.95‰ for hydrothermal and –1.03‰ for riverine; Amini et 

al., 2008; Holmden et al., 2012). The long residence time of Ca ~0.5 – 1 Ma (Schmitt 

et al., 2003; Farkaš et al., 2007a; Holmden et al., 2012; Fantle and Tipper, 2013) 

permits the examination of weathering and climate and facilitates the correlation of 

events over long time scales of a million years (Fantle, 2010); however, geologically 

instantaneous events can be recorded if the magnitude of the event is sufficiently 

large, i.e., OAE 2 (Blättler et al., 2011). To date, studies assessing the variability of 

marine δ44Ca values do not resolve the absolute causes of δ44Ca variability (De La 

Rocha and DePaolo, 2000; DePaolo, 2004, Fantle and DePaolo, 2005). 

A number of the aforementioned isotope proxies suggest that an accelerated 

hydrological cycle prior to the onset of OAE 2 was responsible for delivering an 

abundance of nutrient-rich material to the ocean from the continent, which boosts the 

abundance of organic-rich material and increased productivity in seawater. As a 

result the deposition of organic-rich material sequestered carbon from CO2, which 

subsequently led to the development of oceanic anoxia (Jones and Jenkyns, 2001). In 

addition, a number of proxies imply that hydrothermal input influenced seawater 
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chemistry contemporaneously with the onset of OAE 2 (Jones and Jenkyns, 2001; 

Erba, 2004; Frijia and Parente, 2008; Turgeon and Creaser, 2008; Jenkyns, 2010; Du 

Vivier et al., 2014; Chapter 2, 3, this thesis). However, the extent to which the input 

from hydrothermalism influences the Ca budget of seawater is poorly understood. 

We endeavour to evaluate if the dramatic unradiogenic trend in Osi associated with 

volcanism at the Caribbean LIP is recorded by δ44Ca values, or if we can quantify the 

increase in flux of riverine Ca due to weathering as previously proposed (Blättler et 

al., 2011) that begins prior to the onset of OAE 2, and if this continues for the 

duration of OAE 2. 

In order to differentiate between the increase in input fluxes and determine 

the dominant factor driving δ44Ca variation we utilise a seawater mixing model. The 

model is derived from modern parameters calculated under a non-steady-state; where 

the mass and residence time of Ca in seawater is allowed to vary in order to maintain 

a mass-balance and return to steady-state over time. In order to establish the 

conditions that best simulate the δ44Ca values recorded in nature the input and output 

fluxes are changed, thus constraining the principal factor that is influencing the 

evolution of seawater chemistry across the OAE 2.  

Our understanding of OAE 2 predominately comes from sites throughout the 

Atlantic, Tethys and Western Interior basins, which is now supported by two sites in 

the palaeo-Pacific (Chapter 3, this thesis). This study adds to the proxy data 

repository of research intending to constrain the parameters controlling the marine 

Ca isotope cycle, through the evaluation of sections from three globally 

representative OAE 2 sites: Portland #1 core, USA (WIS), the Yezo Group section, 

Japan (proto-Pacific Ocean), and the Pont d’Issole section, SE France (Western 

Tethys Ocean; Fig. 4.1). The Portland #1 core is the representative core for the lower 
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Turonian GSSP Pueblo Rock Canyon, Colorado, which was ratified through bed-by-

bed correlation of chemo-, bio-, and litho- stratigraphy, and age constrained by radio-

isotopic dating of tuff horizons (Fig. 4.2; Sageman et al., 2006; Meyers et al., 2012a, 

2012b). The Yezo Group is integrated with the WIS timescale using new 206Pb/238U 

ages from tuff horizons (Fig. 4.2; Chapter 3, this thesis) and the Pont d’Issole section 

has a complete record of correlative bio- and litho- stratigraphy (Fig. 4.2; Grosheny 

et al., 2006; Jarvis et al., 2011). Site selection was based on stratigraphic features 

with respect to each site, but also based on the synchronicity of the Osi profiles. This 

study employed a new high-precision MC-TIMS method (Lehn et al., 2013) to 

measure δ44Ca values in the Portland #1 core, Pont d’Issole and YG section. We also 

analysed a subset of samples from the Eastbourne section previously analysed by 

Blättler et al. (2011).  

 

 
 
Figure 4.1 Palaeogeographic map of the late Cretaceous. Three study sections are 
representative of global palaeo-basins. P - Portland #1 Core, Colorado, USA (Western 
Interior Seaway); PdI - Pont d’Issole, SE France (Western Tethys); YG - Yezo Group, Japan 
(Pacific Ocean). E – Eastbourne, UK (North Atlantic; samples from Blättler et al., 2011); 
CLIP is the location of the Caribbean Large Igneous Province. 
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1.1.  Previous marine δ44Ca isotope OAE 2 study 

A previous study used a MC-ICP-MS method to measure δ44/42Ca values in 

two OAE 2 sections: Eastbourne, UK and South Ferriby, UK (Blättler et al., 2011), 

are reported as δ44/42Ca = [(44Ca/42Ca)sample/(44Ca/42Ca)std – 1]*1000. The sections are 

dominated by chalk-limestone lithologies; Eastbourne is an expanded and complete 

sequence through the CTBI, whereas South Ferriby has a significant undetermined 

stratigraphic gap that eliminates the onset and much of the initial OAE 2 interval 

(Blättler et al., 2011).  

Blättler et al. (2011) used a simple seawater mixing model to illustrate and 

interpret the δ44/42Ca data. However, it is important to note the large uncertainty (± 

0.07‰) on the measurements from Eastbourne and that the data varies on the same 

order as external reproducibility, which makes the trend and excursion subtle. It is 

difficult to draw firm conclusions from the South Ferriby dataset because the 

stratigraphic gap obscures the interval of interest, and the trends in the Eastbourne 

dataset are extremely subtle. Nevertheless, the authors infer the data to record a 

negative excursion (Eastbourne ~0.04 ± 0.07‰, South Ferriby ~0.14 ± 0.06‰) at the 

onset of OAE 2 (Fig. 4.5A), which they attribute to enhanced chemical weathering 

and delivery of terrestrial Ca to the oceans. The hypothesis is inconsistent with the 

interpretation of other isotopes at the correlative interval of the onset of OAE 2; e.g., 

unradiogenic Nd and Os, which suggests that the seawater was dominated by mantle-

like Nd and Os derived from the Caribbean LIP (Turgeon and Creaser, 2008; Martin 

et al., 2012; Du Vivier et al., 2014; Chapter 2, 3, this thesis). Blättler et al. (2011) 

eliminate volcanism as a factor controlling the Ca isotope evolution of seawater 

because model evidence reveals that unreasonably large volcanic input fluxes are 

required to significantly shift marine δ44Ca values. However, there are additional 



CHAPTER 4. MARINE CALCIUM ISOTOPES 

 

Page | 154  
 

factors that influence the marine Ca isotope cycle, including residence time, isotopic 

ratios of input fluxes, the initial Ca isotope ratio of seawater, the calcium carbonate 

fractionation factor, and abundance of Ca in seawater, which are discussed here 

(section 5) and need to be understood further before interpretation of the apparently 

complex marine δ44Ca isotope system can be made.  

 

2. Location and Geological background 

The following provides detail on litho-, bio- and chemostratigraphy for the 4 

sections analysed in this study (Fig. 4.2).  

 

2.1. Portland #1 Core, Colorado, USA 

The USGS Portland #1 core was taken from ~40 km west of the Global 

Stratotype Section and Point (GSSP) for the Cenomanian-Turonian boundary, near 

Pueblo, CO (32˚22.6`N, 105˚01.3`W; Dean and Arthur, 1998; Meyers et al., 2001; 

Fig. 4.1), which can be correlated, bed for bed, to the GSSP section (Hattin, 1971; 

Elder et al., 1994). The Portland core contains the Cenomanian-Turonian Boundary 

Interval (CTBI) within a 17.7 m-thick section of the Bridge Creek Limestone (~12 

m) and Hartland Shale (~12.6 m) Members of the Greenhorn Formation (Cobban and 

Scott, 1972). Both units include organic-rich calcareous and rhythmically 

interbedded shale and fossiliferous biomicritic limestone couplets (Fig. 4.2). In 

addition the stratigraphy is characterised by four regionally correlative bentonite 

units of 1 to 20 cm. Recent sanidine 40Ar/39Ar and zircon 206Pb/238U geochronology 

integrated with Bayesian astrochronology constrains the CTB at 93.90 ± 0.15 Ma 

(Meyers et al., 2012a) and is used to correlate sections worldwide (e.g. Yezo Group, 

Japan; Du Vivier et al., 2014; Chapter 2, 3, this thesis). 
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The CTBI contains a variety of foraminifera species useful for 

biostratigraphy, e.g., Rotalipora cushmani, Whiteinella archaeocretacea and 

Helvetoglobotruncana helvetica (Fig. 4.2; Eicher and Worstell, 1970; Kennedy et al., 

2000, 2005; Keller and Pardo, 2004; Keller et al., 2004; Cobban et al., 2006). The 

FO (first occurrence) of the ammonite Watinoceras devonense (Kennedy et al., 2000) 

is indicative to the basal Turonian recorded at the base of bed 86 of the Bridge Creek 

Limestone (Fig. 4.2; Meyers et al., 2001; bed numbers are based on Cobban and 

Scott, 1972). A number of taxa have intercontinental distributions; however, their 

transcontinental synchronicity is limited.  

The onset of OAE 2 is identified by an abrupt positive δ13Corg shift of 2-3‰ 

(VPDB), 4.3 m below the CT boundary (Fig. 4.3; Sageman et al., 2006). The end of 

OAE 2 is expressed by a gradual change in δ13Corg back to ~ -27‰ (Sageman et al., 

2006). In addition, the onset of OAE 2 coincides with the abrupt change in Osi from 

~0.75 to ~0.20 (Du Vivier et al., 2014; Chapter 2, this thesis). The abundance of 

CaCO3 is ~20-60 wt.% throughout the sequence; however before and after the OAE 

2 interval there are horizons with >70 wt.% CaCO3 (Sageman et al., 2006).  
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Figure 4.2 Section stratigraphy. Representative stratigraphy for each section: Portland #1 
Core, Colorado, USA (modified from Sageman et al., 2006); Pont d’Issole, SE France 
(modified from Jarvis et al., 2011); Yezo Group, Japan (modified from Takashima et al., 
2011); Eastbourne, UK (modified from Blättler et al., 2011). The first and last occurrences of 
correlative and well-known biozones are marked. The stratigraphic thickness of the OAE 2 
interval is shaded in yellow across each section. 
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2.2. Pont d’Issole, SE France  

The Vocontian Basin was part of the NW Tethys Ocean ~30°N in the 

European Alpine region (Jarvis et al., 2011; Fig. 4.1). The 24 m Pont d’Issole section 

is complete through the CTBI and a ~20 m thick package of black organic-rich 

calcareous shales, termed the “Niveau Thomel” (Takashima et al., 2009; Jarvis et al., 

2011), characterise the interval (Fig. 4.2). The rest of the section includes thick 

rhythmically bedded bioturbated limestone-marl successions (Fig. 4.2), where the 

variable facies are indicative of a fluctuating hemipelagic depositional environment 

of moderate depth. Detailed biostratigraphy permits bed-scale correlation with the 

GSSP near Pueblo (Grosheny et al., 2006; Jarvis et al., 2011); where the distribution 

of foraminifera index taxa R. cushmani and H. helvetica, is coupled with complete 

 δ13Corg and δ13Ccarb records (Jarvis et al., 2011). 

In the Pont d’Issole section a distinct facies change to finely laminated black 

shales of the Niveau Thomel (total organic carbon, TOC 0.3 – 3.5 wt.%) is indicative 

to the onset of OAE 2 that occurs about 1 metre below the distinctive positive δ13Corg 

excursion (3‰; Fig. 4.3; Jarvis et al., 2011). The facies change coincides with the 

abrupt radiogenic to unradiogenic trend in Osi (~0.80 to ~0.20), which is indicative 

to the onset of OAE 2 (Du Vivier et al., 2014; Chapter 2, this thesis). High-frequency 

fluctuations in the  δ13Corg, up to 1‰ in magnitude, occur throughout the OAE 2 

interval, which is also associated with the alternation of lithologic units. The δ13Corg 

record gradually returns to ~ -26‰ at the end of OAE 2 (Fig. 4.3). The CaCO3 

content of the sequence is comparable to Portland, ~20-60 wt.%, with higher values 

of >70 wt.% before and after the OAE 2 interval (Jarvis et al., 2011).  
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2.3.  Yezo Group section, Hokkaido, Japan 

The Yezo Group (YG) accumulated at shallow marine-bathyal depths in a 

continental slope environment (Kaiho et al., 1993; Takashima et al., 2004; Tamaki 

and Itoh, 2008; Fig. 4.1). The OAE 2 section of the YG is recorded by the Saku 

Formation and outcrops on the Hakkin River, at Oyubari, on Hokkaido at ~142°135’ 

E, 43°054’N (Fig. 4.1). The Saku Formation is a 300 m exposed section, which 

contains the Hakkin muddy-sandstone member. The unit comprises dark-grey 

terrigenous sandy siltstone and finely laminated pyrite-rich green-grey mudstone, 

and multiple thick and thin-bedded conglomeritic turbidites that are interbedded with 

volcanic felsic tuffs (Fig. 4.2; Takashima et al., 2004; Takashima et al., 2011).  

The YG section is a key regional reference section for the NW Pacific and 

contains sufficient biostratigraphic (Hasegawa, 1995) and radio-isotopic (Chapter 3, 

this thesis) indicators for high precision global correlation of OAE 2. International 

correlations with Portland, SW England and Poland (Hasegawa, 1995) from 

planktonic foraminifera illustrate a moderately diversified assemblage (Hasegawa, 

1999): LO (last occurrence) of R. greenhornensis and R. cushmani, and the FO H. 

helvetica and M. schneegansi near to the C-T boundary. The basal Turonian was 

previously identified by the FO of M. schneegansi (at ~40 m; Fig. 4.2), however 

recent U-Pb zircon geochronology of volcanic tuff horizons has modified the height 

of the CTB to ~25 m (Fig. 4.3; Chapter 3, this thesis).  

The onset of OAE 2, datum level ‘A’, is identified by a ~6‰ positive 

excursion in the δ13Cwood record, -16.15 m below the facies change to the Hakkin 

muddy-sandstone member (Fig. 4.3; Du Vivier et al., 2014; Chapter 2, 3, this thesis). 

In addition, evidence from the YG Osi record illustrates the abrupt trend from ~0.75 - 

~0.20, characteristic of the OAE 2 (Du Vivier et al., 2014; Chapter 2, 3, this thesis). 
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The OAE 2 spans ~68 m of stratigraphy and has a maximum enrichment of -19.3‰ 

(Takashima et al., 2011). From datum level ‘C’ the return to pre-OAE 2 δ13Cwood 

values is gradual (Fig. 4.3), which is a reflection of the homogeneous nature of the 

deposits throughout the duration of OAE 2. The organic-rich sediments contain a 

high voluminous influx of terrigenous detritus and have a higher TOC content than 

some European Pelagic Shelf and Atlantic sections, ~0.5 – 1.2 wt.% (Takashima et 

al., 2004). The section yields a low CaCO3 abundance, <1 wt.%.  

 

2.4. Eastbourne, UK 

We measure δ44/40Ca values for 11 samples previously analysed by Blättler et 

al. (2011; by Nu Instruments MC-ICP-MS). The geology of the Eastbourne section is 

fully described by Gale et al. (2005). In brief, the Eastbourne section is a carbonate-

rich sequence dominated by chalk comprising marly (10-20% clay) carbonates of the 

Plenus Marls, which are overlain by nodular limestones of the White Chalk that 

contain an abundance of coccoliths and calcispheres (Fig. 4.2; Paul et al., 1999; Gale 

et al., 2005). The section was deposited in the shallow epicontinental sea that 

submerged NW Europe, a pelagic shelf-sea environment, and is regarded as the most 

expanded CTBI section in the Anglo-Paris basin (Jarvis et al., 2006). The section 

which has exemplary bio-, litho- and chemostratigraphy is well constrained (Tsikos 

et al., 2004; Gale et al., 2005; Jarvis et al., 2006), inferred to be stratigraphically 

complete, and affected by minimal diagenesis; consequently it is proposed as a 

reference locality for the CTBI.  

 As a result of the dominant chalk lithology and consequently the high 

abundance of carbonate, it is challenging to obtain a high-resolution δ13Corg record 

throughout the Eastbourne section. Therefore the highest resolution curves are based 
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on δ13Ccarb (Tsikos et al., 2004; Jarvis et al., 2006, 2011). Figure 4.3 correlates the 

high-resolution δ13Ccarb record (Jarvis et al., 2006) through datum levels ‘A’, ‘B’ and 

‘C’. The onset of OAE 2 is identified by positive shift in δ13Ccarb that starts at ‘A’, 

~2.7 to ~4.5‰. ‘B’ identifies the trough in the δ13Ccarb data after the first build-up 

phase and ‘C’ denotes the end of the plateau (Fig. 4.3), both characteristics of the 

OAE 2 δ13C curves. The abundance of CaCO3 throughout the sampled section is >75 

wt.%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 (next page 161) Stratigraphic correlation of δ13C vs. stratigraphic height. 
The blue lines correlate stratigraphic horizons through ‘A’, ‘B’ and ‘C’ inferred from a 
combination of litho-, bio-, and chemostratigraphy (see text for details). Portland #1 core 
δ13Corg data from Sageman et al. (2006), Pont d’Issole δ13Corg data from Jarvis et al. (2011), 
Yezo Group δ13Cwood data from Takashima et al. (2011), and Eastbourne δ13Ccarb data from 
Jarvis et al. (2006).  
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3. Methods 

3.1. Sample preparation 

Aliquots of powdered samples from the Portland #1 core, Pont d’Issole and 

YG sections are taken from the previous Os isotope studies (Du Vivier et al., 2014; 

Chapter 2, 3, this thesis), conducted at Durham Geochemistry Centre (Durham 

University). All samples prior to crushing were collected from core or outcrop and 

cleaned to remove any core drill marks or weathered material. Samples were dried 

overnight, and ≥30 g of bulk rock was crushed and homogenised in a Zr dish 

(Kendall et al., 2009). Powdered aliquots of the previously analysed samples from 

Eastbourne were obtained from H. Jenkyns (Blättler et al., 2011).  

 

3.2. Analytical protocol 

Calcium isotope ratios (44Ca/40Ca; Table 4.1) were measured using an 

optimised 43Ca-42Ca double-spike MC-TIMS technique recently introduced by Lehn 

et al. (2013). All analyses were made in the Radiogenic Isotope Clean Laboratory at 

Northwestern University using a Thermo Fisher Triton MC-TIMS. Approximately 5 

mg of powdered sample was loaded into acid-cleaned Teflon vials and dissolved in 

10 mL 5% HNO3 overnight at room temperature. Solutions were passed through 

acid-cleaned 0.45 µm polypropylene filters to remove insoluble residue. Calcium 

concentrations in the filtered samples were measured by ICP-OES, and aliquots 

containing 50 µg of Ca were weighed into acid-cleaned Teflon vials and spiked. The 

vials were capped and gently heated at ~60ºC overnight to ensure complete sample-

spike equilibration. The mixtures were eluted through Teflon columns packed with 

Bio-Rad AG MP-50 cation exchange resin to isolate Ca from matrix elements. After 

drying the purified fractions, two drops of 35% H2O2 were added to oxidise organic 
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compounds, and two drops of concentrated 16N HNO3 were added to convert Ca to 

nitrate form. Approximately 10 – 16 µg of Ca was loaded onto single filaments 

assemblies containing degassed Ta ribbon, and 0.5 µg of 10% H3PO4 was added 

before drying at 3.5 amps. Ultrapure reagents were used for all steps and procedural 

blanks were negligible. Sample to blank ratios were ~500:1 or better. In the mass 

spectrometer, a 20V 40Ca ion beam was attained after a 0.5 hr warm-up, and 

40Ca/42Ca, 43Ca/42Ca, and 43Ca/44Ca ratios were measured with a three-hop collector 

cup configuration for a total of 90 duty cycles requiring an additional 2.5 hr. The 41K 

beam was monitored during the first hop to ensure that 40K did not isobarically 

interfere with 40Ca. No corrections were required. The internal precision of the 

measurements is ± 0.02‰ (2 SEM). At Northwestern University, OSIL Atlantic 

Seawater (SW) is employed as the normalizing standard for the delta equation. Long-

term accuracy for the method is continuously monitored by repeated analyses of the 

following standards (Table 4.2), which are interspersed among samples during an 

analytical session: OSIL SW [δ44Ca = 0.000 ± 0.003‰ (2 SEM), n = 159], NIST 

SRM 915a [δ44Ca = −1.862 ± 0.006‰ (2 SEM), n = 55], and NIST SRM 915b 

[δ44Ca = −1.132 ± 0.004‰ (2 SEM), n = 104]. These data correspond to a global 

long-term, external reproducibility of ± 0.04‰ (2 SD; Lehn et al., 2013), which is 

the uncertainty adopted for the present study.  

 

3.3.  Section correlation  

The correlation of the three sections analysed is based on traditionally 

identified trends of the δ13C isotope curves combined with the interpretation of Osi 

profiles (Fig. 4.3; Du Vivier et al., 2014; Chapters 2, 3, this thesis), which have 

improved global correlation. The 3 datum horizons are typically defined: ‘A’ the 
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onset of OAE 2 as construed by Pratt et al. (1985) through work at the GSSP section 

and facilitated by Takashima et al. (2011) and Chapter 3 (this thesis) at the Yezo 

Group section, ‘B’ the trough in the δ13C record following the initial positive 

excursion, and ‘C’ the last most enriched value in the δ13C record, the end of the 

‘plateau’ as defined by Pratt et al. (1985) and refined by Tsikos et al. (2004) (see Fig. 

4.3). The correlation of sections based on δ13C records coupled with Ar-Ar and U-Pb 

geochronology, from Portland and Japan respectively, quantitatively constrains the 

CTBI (Chapter 3, this thesis) 

 

4. Results 

Table 4.1 presents the δ44Ca values (a. Portland, n = 52; b. Pont d’Issole, n = 

13; c. Yezo Group, n = 25; d. Eastbourne, n = 11). Overall the δ44Ca data for each 

site have different values and profiles, however some similarities and relationships 

are observed at the onset of OAE 2 (as discussed below).  

 

4.1.  Portland δ44Ca values 

The main feature of the δ44Ca values is the positive excursion from −1.58 to 

−1.38‰, which is synchronous with the onset of OAE 2, datum level ‘A’ (Table 

4.1a; Fig. 4.4). The excursion is brief, ~2.20 m and between ‘A’ and ‘B’, three 

samples known to contain diagenetic carbonate (Kennedy et al., 2005), display 

higher δ44Ca values around −1.30‰. Subsequently, δ44Ca values return to relatively 

low δ44Ca values contemporaneous with datum level ‘B’, which are similar to or 

slightly lower than the pre-excursion values, ~−1.60‰. One sample above datum 

level ‘C’ is also known to contain diagenetic carbonate (Kennedy et al., 2005) and 

displays an anomalously high δ44Ca value (Table 4.1a; Fig. 4.4).  
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4.2.  Pont d’Issole δ44Ca values 

Compared to the Portland core, δ44Ca values for Pont d’Issole are lower 

resolution. However, the data display a similar magnitude positive shift at the onset 

of OAE 2, −1.45 to −1.40‰ (Table 4.1b; Fig. 4.4). The δ44Ca values after ‘A’ trend 

to a high of −1.37‰, at which point the δ44Ca values trend to lower δ44Ca values 

consistent with the pattern displayed by the Portland data. The trend continues to 

datum level ‘B’, where the δ44Ca values are lower than pre-OAE 2 values ~−1.50‰ 

(Fig. 4.4). A single data point before datum level ‘C’ reverts to a higher δ44Ca value, 

similar to pre-OAE 2 values −1.45‰ (Table 4.1b; Fig. 4.4). 

 

4.3.  Yezo Group δ44Ca values 

The δ44Ca values for the YG are considerably more heterogeneous than 

Portland and Pont d’Issole (Table 4.1c). Before and after ‘A’, the variability in the 

δ44Ca data oscillates within the 2 SD uncertainty of the δ44Ca data (± 0.04‰) with no 

appreciable trend (Table 4.1c; Fig. 4.4). Coincident with the sudden trend to 

unradiogenic Osi values at the onset of OAE 2 there is nominal excursion from −1.26 

to −1.13‰ (Fig. 4.4). After horizon ‘A’ the δ44Ca values remain more positive than 

the pre-OAE 2 values, and oscillate about a mean of ~−1.15‰. The δ44Ca values do 

not trend back to lower δ44Ca values like at Portland and Pont d’Issole (Table 4.1c; 

Fig. 4.4).  
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Figure 4.4 δ44/40Ca vs. stratigraphic height. δ44Ca values from Portland #1 core, Pont 
d’Issole, Yezo Group and Eastbourne presented are calculated relative to OSIL SW, 
normalising standard utilised by the Radiogenic Isotope Clean Laboratory at Northwestern 
University. The error bars correspond to a global long-term, external reproducibility of ± 
0.04‰ (2 SD; Lehn et al., 2013), which is the uncertainty adopted for the present study. The 
blue lines illustrate the correlative stratigraphic datum levels from Figure 4.3, where A 
denotes the onset of OAE 2.  
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4.4. Eastbourne δ44Ca values  

The δ44Ca values for the Eastbourne section are relatively low resolution, 1 

sample per metre, compared to the Portland and Pont d’Issole data (Table 4.1d). The 

δ44Ca data produce a variable record (Fig. 4.4). At the onset of OAE 2, ‘A’, a 

negative shift is identified from −1.16 to −1.19‰; the same trend described by 

Blättler et al. (2011). The δ44Ca ratios decrease over ~3 m to −1.27‰ and then return 

to −1.17‰ within 1 m (Table 4.1d; Fig. 4.4). After which the δ44Ca values trend to 

more negative values (−1.24‰) and return to less negative values than prior to the 

onset of OAE 2 (−1.08‰). A transient negative trend is exhibited by the δ44Ca 

values. 

 

5. Discussion 

5.1.  Analytical comparison and justification 

As discussed in section 2.4 and presented in section 4.4 we re-analysed 

samples from Blättler et al. (2011) using a MC-TIMS method. Blättler et al. (2011) 

used a Nu Instruments MC-ICP-MS to measure δ44/42Ca values relative to 915a (Fig. 

4.5). While it is possible to calculate δ44/40Ca values assuming all isotopic variation is 

mass dependent, the authors did not report results for other commonly analysed 

standards, such as OSIL SW and 915b, so it is not possible to account for 

measurement biases that naturally occur for different instruments. Thus, to compare 

the two datasets, we first converted our δ44/40Ca values to the 915a scale by 

subtracting −1.86‰, which is the value the Northwestern Laboratory obtains for 

915a relative to OSIL SW. Next we multiplied these data by 0.488 to calculate 

δ44/42Ca values (Fig. 4.5B). This assumes that Ca isotope fractionation in nature and 

the mass spectrometer follows a kinetic, as opposed to equilibrium, mass 
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fractionation law (e.g., Holmden et al, 2012; Schiller et al., 2012). Note that 

converting δ44/40Ca values to δ44/42Ca reduces the uncertainty by a factor of 0.488 to 

0.02‰ (2 SD). Figure 4.5 shows the results. On average, the δ44/42Ca values reported 

in Blättler et al. (2011) are ~0.20‰ lower than the values we obtained for the same 

samples. This cannot be explained by the assumption of kinetic mass fractionation. 

Even if an equilibrium law is assumed, the conversion factor is only 0.476 (Young et 

al., 2002). While the origin of the discrepancy is unclear, several potential 

explanations exist. First, following established convention (Hippler et al., 2003), the 

Northwestern Laboratory has adopted the standard deviation (SD) of repeated 

standard analyses as the measure of external reproducibility, whereas Blättler et al. 

(2011) employed the standard error of the mean (SEM). A recent review paper 

(Fantle and Tipper, 2013) has argued that the latter, based on duplicate or triplicate 

analyses, is more appropriate because standards often have simple matrices that 

obviate the need for column chemistry and that the more complex matrices presented 

by real samples can translate into outlier measurements. We process OSIL SW (a 

matrix-rich standard) through column chemistry and have observed no outlier data, 

which shows that the column chemistry does not fractionate and appreciably affect 

the Ca isotope composition. The duplicate analyses reported in Table 4.2 similarly 

reveal no cause for concern. The SEM reveals how well a given delta value is 

known, but in our view, it incorrectly portrays analytical reproducibility because the 

magnitude decreases as the number of measurements increases. Clearly, we do not 

think the repeatability of our OSIL SW analyses is 0.003‰. Blättler et al. (2011) 

reported a 2 SEM of 0.06‰, presumably for five replicates. This translates into a 2 

SD of 0.13‰, or effectively half of the observed difference between the datasets. (It 

is worth noting that uncertainty, whether SD or SEM, increases by a factor of 2.05 
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(1/0.488) when δ44/42Ca data are converted to δ44/40Ca, so the difference between 

directly measuring δ44/40Ca values by TIMS versus calculating them from ICP-MS 

measurements is rather significant). Second, there is issue of inter laboratory biases 

as mentioned above. A recent compilation in Holmden et al. (2012) shows that 

δ44/42Ca differences between seawater and 915a range up to 0.10‰, also half of the 

difference. Third and finally, 915a appears to be isotopically heterogeneous and may 

contain a mixture of Ca fractionated by kinetic and equilibrium processes (Simon 

and DePaolo, 2010; Schiller et al, 2012). Using 915a as the normalizing standard 

likely introduces discrepancies when inter-converting δ44/40Ca values measured by 

TIMS and δ44/42Ca values measured by ICP-MS. In general, we agree with the 

assertion that 915a should be abandoned in favour of 915b (Schiller et al, 2012). 

  

 

Figure 4.5 δ44/42Ca from Eastbourne and South Ferriby, UK and conversion of δ44/40Ca 
to δ44/42Ca (this study). Fig. 4.5A presents the δ44/42Ca data from Blättler et al. (2011) vs. 
δ13C Eastbourne (Tsikos et al., 2004) and South Ferriby (Blättler et al., 2011). Fig. 4.5B 
presents the δ44/42Ca analysis from this study; samples across the OAE 2 onset interval were 
selected (obtained from H. Jenkyns) and re-analysed for δ44/40Ca using MC-TIMS. The 
δ44/40Ca values were converted to δ44/42Ca (yellow squares) to directly compare to δ44/42Ca 
(Blättler et al., 2011; blue diamonds). We convert our data relative to OSIL to the 915a scale 
and then multiply by 0.488 to arrive at δ44/42Ca ratios. Furthermore we improve the external 
reproducibility of the δ44Ca data record (by ~0.02‰), as a result of the different 
measurement techniques. See text for discussion. 
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5.2. Relationship between marine δ44Ca and other isotope proxies 

The marine δ44Ca values obtained in this study from Portland and Pont 

d’Issole show that at the onset of OAE 2 the positive shift is directly synchronous 

with the unradiogenic trend in the Osi record, hence synchronous with the onset of 

OAE 2 (Fig. 4.6). The δ44Ca values obtained for the YG section show a negligible 

variation as a result of minimal abundance in CaCO3, which is discussed in section 

5.4.2, therefore the YG section is not discussed in this section. Qualitative 

observations suggest that there is a temporal agreement of Nd, Os, Pb, U, δ13C and 

trace metals with Ca (Snow et al., 2005; Sageman et al., 2006; MacLeod et al., 2008; 

Montoya-Pino et al., 2010; Kuroda et al., 2011; Martin et al., 2012; Pogge von 

Standmann; Zheng et al., 2013; Du Vivier et al., 2014; Chapter 2, 3, this thesis), 

which may infer that δ44Ca values are driven by volcanic activity associated with the 

Cretaceous LIPs. Here we associate volcanism with the Caribbean LIP since the 

temporal constraints for the High Arctic LIP are not well defined (Tegner et al., 

2011) unlike the Caribbean LIP (Snow et al., 2005; Du Vivier et al., 2014; Chapter 2, 

3, this thesis). Similarly marine 87Sr/86Sr isotope ratios are sensitive to volcanism 

contemporaneous to OAE 2; however, they do not temporally correlate. The 87Sr/86Sr 

values do become non-radiogenic but the trend to least non-radiogenic values 

(~0.7073) is recorded >4Myr after the onset of OAE 2 as a result of the long 

residence time of Sr (~2 – 4 Myr; Frijia and Parente, 2008; Gradstein et al., 2012).  

 

Figure 4.6 (next page 171) δ44Ca and Osi vs. stratigraphic height. 4.6A shows δ44Ca 
(black) and δ13C (grey) vs. stratigraphic height (m). 4.6B shows δ44Ca (black) and Osi (red) 
vs. stratigraphic height (m). δ13C data is taken from Sageman et al. (2006; Portland), Jarvis et 
al. (2011; Pont d’Issole) and Takashima et al. (2011; Yezo Group). The Osi data is from 
Chapter 2, 3 (this thesis; Du Vivier et al., 2014). The error bars on the δ44Ca values show the 
± 0.04‰ 2 SD external reproducibility. The uncertainty on the Osi values is ≤0.04. The blue 
line marks the onset of OAE 2. The yellow area denotes the interval of OAE 2, between 
datum levels ‘A’ – ‘C’. 
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Multiple OAE 2 sections have been characterised with regard to their 

187Os/188Os isotope compositions in order to characterise and determine the driving 

mechanism of OAE 2 (Turgeon and Creaser, 2008; Du Vivier et al., 2014; Chapter 2, 

3, this thesis). In general the development of oceanic anoxia is a function of the 

impact of a period of intensive weathering and submarine volcanism, which are 

responsible for the input of nutrients to the global ocean basins. In all cases 

worldwide the initial 187Os/188Os (Osi) profiles from the onset to the end of OAE 2 

are broadly homogeneous and show a dramatic trend from radiogenic Osi values 

(>0.7) to unradiogenic Osi values (<0.3) within 50 kyr, and after ~180-200 kyr the 

Osi values gradually return to pre-OAE 2 radiogenic values (as in Fig. 4.6). The 

perturbation to the Osi isotope profiles indicate that the dominant source of 

hydrogenous Os was from the continents and the sudden transition to unradiogenic 

Osi values are indicative of volcanic activity at the Caribbean LIP contemporaneous 

with OAE 2 (Du Vivier et al., 2014; Chapter 2, 3, this thesis). In addition two 

sections, Portland #1 core and ODP Site 1260, show distinct Osi profiles prior to the 

onset of OAE 2, which are indicative of basin restriction and regional variations in 

seawater chemistry (Du Vivier et al., 2014; Chapter 2, 3, this thesis).  

Isotope proxies, namely Nd, Os, Pb, trace metals and even Sr suggest that 

hydrothermal inputs were influencing seawater chemistry at or just prior to the onset 

of OAE 2. However, the assessment of marine calcium systematics is relatively 

limited and recent work presents δ44/42Ca across the OAE 2 that suggest inputs to 

seawater derived from volcanic activity were not observed in the calcium isotope 

record (Blättler et al., 2011). From the transient negative trend in the δ44/42Ca profile 

(Fig. 4.5) and quantitatively from seawater modelling, the study infers that volcanic 

activity would need to increase by an unrealistic ~500% to cause a perturbation in 
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the marine Ca system (Blättler et al., 2011). Conversely in this study the δ44/40Ca 

values across the CTBI are more negative and trend towards less negative values 

(e.g., 0.02‰ shift) at the onset of OAE 2 and the positive trend may be the result of 

either hydrothermal inputs or riverine inputs, −0.95‰ and −1.03‰ respectively, to 

the ocean (Amini et al., 2008; Holmden et al., 2012). 

In order to quantitatively constrain the predominant controls on the isotopic 

evolution of the marine δ44Ca record we derive a seawater model equation to produce 

a mixing model to illustrate how the isotope composition of seawater evolves as a 

function of variable inputs and outputs. We can therefore model Ca against realistic 

variations in the Sr system, given the comparable geochemical systematics of Sr and 

Ca. The model parameters and discussion are detailed in the following section 5.3. 

 

5.3. Evolution of δ44Ca isotope composition, seawater mixing model 

5.3.1. Model parameters and steady-state simulation 

Here, we use a simple box model of the marine Ca isotope cycle to identify 

mechanisms that caused the temporal variations preserved in the Portland and Pont 

d’Issole records. The change in the number of moles of calcium in the ocean (N
Ca

) 

over time (t) is given by the equation:  

 

dN
Ca

dt
= F

R
+ F

G
+ F

H
!
N

Ca

"
Ca  , (1) 

where F
R

,F
G

, and F
H  are input fluxes (moles/yr) from riverine, groundwater, and 

hydrothermal sources, and !
Ca

is the residence time of Ca in seawater (Myr). 

Collectively, the term N
Ca
/!

Ca
 represents the marine carbonate output flux 

(moles/yr). The corresponding mass-balance for the isotope composition of Ca in 

seawater  (!
SW

) is given by the equation: 
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where !
R

, !G
, and !

H
represent the isotope composition of riverine, groundwater, 

and hydrothermal sources, and !
C

is the isotope composition of marine carbonate, 

which is calculated with the equation: 

 !
C
= !

SW
+ "

C , (3) 

where !
C

is the carbonate fractionation factor.  

At steady-state ( dN
Ca
/ dt = 0 ), equation (2) can be analytically solved to yield: 

 
!
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C
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0
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C
) $e

t /%

,  (4) 

where !
0

is the initial isotope composition of seawater, and !
in

is the weighted 

average of the input fluxes: 

 
!
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=

"
i

(F
i
!
i
)

"
i

(F
i
)

. (5) 

The steady-state assumption implies that !
Ca

must change to accommodate changes to 

the input fluxes. Because N
Ca

and !
Ca

have an inverse relationship in equation (1), 

equivalent results can be obtained by fixing !
Ca

and allowing N
Ca

to vary. The steady-

state assumption has no implications for our interpretations. As shown below, 

numerically solving equations (1) and (2) when dN
Ca
/ dt ! 0  yields the same results 

as equation (4), provided !
Ca

is allowed to vary as N
Ca

varies. 

 Nearly all box models of seawater isotope records are conducted on a relative 

basis. The ocean is assumed to be in isotopic steady-state prior to the onset of a 

temporal shift, and key parameters, usually the riverine flux, are estimated by setting 

all other unknowns equivalent to modern values (Hippler et al., 2003; Schmitt et al., 

2003; Tipper et al., 2010; Holmden et al., 2012; Fig. 4.7A). Determining !
0

requires 
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application of !
C

, yet !
C

 is variable (Fantle and Tipper, 2013) and may have 

changed through time (Hippler et al., 2003; Fantle, 2010). Thus, for simplicity, we 

base our model on the modern Ca isotope cycle, with the assumption that the present 

provides a reasonable analogue for the past (Table 4.3; Fig. 4.7A). While this 

approach limits our ability to reproduce the exact delta values of our dataset, we can 

introduce perturbations to simulate relative variations. Table 4.3 provides the initial 

conditions, which were taken from Milliman (1993) and Holmden et al. (2012). For 

the modern N
Ca

of 1.44×1019 moles (Fantle and Tipper, 2013), the fluxes in Table 4.3 

indicate that !
Ca

equals 450,000 yr. Implementing higher values forN
Ca

and !
Ca

, such 

as those that likely occurred during the Cretaceous (Blättler et al., 2011), would only 

delay the response time of the model to a given perturbation. By adopting minimum 

estimates for N
Ca  and !

Ca
, we maximize the model’s sensitivity (Fig. 4.7A). 

Nonetheless, as we demonstrate below, these parameters are not particularly critical 

for our interpretation. 
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 The timescale applied to the mixing model is based on the integrated 

timescale for the Portland #1 core (Meyers et al., 2012a; Du Vivier et al., 2014; 

Chapter 2, this thesis). For the model, 0 kyr equals the onset of OAE 2 (i.e. the onset 

of the carbon isotope excursion) and runs for the duration of the OAE 2 ~600 kyr 

(according to Sageman et al., 2006; Meyers et al., 2012b). The time steps increment 

by 100 kyr for 1 Myr.  

 

5.3.2. Hydrothermal influx model simulation 

 To quantitatively simulate the effect of a hydrothermal flux, which is 

influencing seawater chemistry based on evidence from a number of other isotope 

proxies (as discussed in section 5.2), the FH parameter is adjusted whilst all other 

parameters remain at steady-state (Fig. 4.7B). The FH is based on evidence from the 

Os progressive seawater mixing model (Du Vivier et al., 2014; Chapter 2, this 

thesis), which infers a 75% increase at the onset of OAE 2 for 200 kyr, after which 

the influx decreases to 25% up to 300 kyr, subsequently the influx ceases as activity 

at the Caribbean LIP terminates. Therefore we apply a FH factor of 1.75 from the 

onset of OAE 2 up to 200 kyr, 1.25 up to 300 kyr and then back to 1 for the 

remaining 700 kyr. The model shows no appreciable shift to more positive δ44Ca 

values (0.004‰, Fig. 4.7B). The effect on the Sr values is also negligible (a slight 

shift to non-radiogenic values of ~0.001). But the shift in Sr occurs ~200 kyr yrs 

after the OAE 2 onset, which is not recorded in nature. Evidence from the revised 

short-term Sr isotope curve from the Apennines across the CTB shows that the 

negative excursion follows a positive shift just after the onset, after which the values 

start to decrease >400 kyr after the onset of OAE 2 (Frijia and Parente, 2008), which 

is not supported by other isotope proxies (see section 5.3.3). 
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Although the model suggests no appreciable shift in the δ44Ca values, 

submarine hydrothermal activity is recognised as a source for the marine Ca budget 

(Amini et al., 2008), e.g., the Logatchev Hydrothermal Field suggests that a volcanic 

flux affects the isotope composition of δ44Ca seawater as Ca is released from the 

oceanic crust during water-rock interactions (Amini et al., 2008) and possibly from 

direct volcanic gas injections, as proposed for Os (Du Vivier et al., 2014; Chapter 2, 

this thesis). Hydrothermal inputs transform seawater to a hydrothermal solution and 

the Ca concentration increases from 10 mM to 32 mM, as such the seawater adopts a 

δ44/40CaHydEnd of −0.95 ± 0.07‰ relative to the δ44Ca initial isotope ratio of seawater 

−0.003‰ (Amini et al., 2008). In addition, evidence from hydrothermal vent fluids 

in both the Mid-Atlantic and the East Pacific Rise result in an average δ44/40CaHydEnd 

of −0.96 ± 0.19‰ (Schmitt et al., 2003). Therefore it is inferred that water-rock 

interactions in hydrothermal systems impact the mass balance of the ocean due to the 

addition or removal of chemical elements over time (Berner and Berner, 1996). 

Consequently increasing the FH by a factor of 3.2 produces a measurable change in 

the δ44Ca values, ~0.01‰, but not the change recorded in the sections studied here. 

However, the analysed sections are not adjacent to submarine activity and as such the 

influence of volcanism may be diluted in peripheral basins.  
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Figure 4.7 Seawater mixing models. Simulated δ44Ca (red) and Sr (blue) values vs. Time 
(Myr). A shows steady-state (section 5.3.1). B shows the effect of increased hydrothermal 
flux (section 5.3.2). C shows the effect of increased weathering flux (section 5.3.3); D shows 
the effect of fractionation factor (section 5.3.4). E demonstrates numerically modelled 
values: red and green curves illustrate how allowing τCa to vary as NCa varies produces the 
discrepancy with the numerical blue curve similar to Blättler et al.’s (2011) model (see 
section 5.3.3). F illustrates the model data scaled to the Portland data to demonstrate the 
analogous trend, which implicates fractionation as the driving factor for variable marine 
δ44Ca isotope composition (section 5.3.4). Orange area denotes the duration of OAE 2. 
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The Portland and Pont d’Issole records suggest that δSW increased by ~0.15 – 

0.20‰. While the direction of change appears consistent with an elevated input of 

hydrothermal Ca with δH = –0.95‰, an unreasonably large value for FH is required 

to achieve the observed magnitude. In order to record an equivocal shift, the FH flux 

would need to increase by a factor of 50, NCa = 1.50 e14 moles in the ocean. As a 

result, the response in the 87Sr/86Sr record is unfeasible as unrealistic unradiogenic 

values (0.7043) are calculated, as noted by Blättler et al. (2011). Thus the model 

implies that the scale of input required to impact the δ44Ca record and replicate the Sr 

record is not achieved from the Caribbean LIP during OAE 2 based on a quantitative 

seawater mixing model (Fig 4.7B). Conversely, evidence from high-temperature 

fumerolic condensates suggest that the enrichment of Ca is >200 times that of Sr 

(Taran et al., 1995). Therefore, it may be possible that Ca and Sr are decoupled as a 

result of sublimation and so the influence on seawater chemistry may not be 

ubiquitous under high hydrothermal influx conditions, as inferred by the model (Fig. 

4.7B). The quantitative extent of submarine activity at LIPs contemporaneous with 

the OAE 2 is unverified, but the influence on seawater chemistry is supported by 

multiple isotopic proxies and trace metals (Kerr, 1998; Snow et al., 2005; Turgeon 

and Creaser, 2008; MacLeod et al., 2008; Montoya-Pino et al., 2010; Kuroda et al., 

2011; Pogge von Strandmann et al., 2013; Zheng et al., 2013; Du Vivier et al., 2014; 

Chapter 2, 3, this thesis). However, simple end-member mixing cannot detect the 

change due to lack of isotopic leverage (Holmden et al., 2012). Alternatively, other 

factors are driving the variability of δ44Ca values in seawater, which we discuss 

below. 
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5.3.3. Riverine influx model simulation 

We agree that enhanced hydrothermal activity cannot fully explain the 

evolution of seawater δ44Ca record values across OAE 2, but we reach a different 

conclusion with respect to the riverine flux. To explain the Eastbourne and South 

Ferriby datasets, Blättler et al. (2011) concluded that the enhanced chemical 

weathering increased FR by a factor of three at the onset of OAE 2. To the extent that 

the modern marine Ca isotope cycle represents the Cretaceous, we first note that any 

increase in FR should increase, rather than decrease, δSW. Blättler et al. (2011) also 

found that increasing FR by a factor of three produces an initial negative isotope 

excursion that eventually dampens if the perturbation is maintained longer than !
Ca

. 

Equation (4) does not predict this type of behaviour. Equation (4) shows that a 

sufficiently large perturbation to FR, or for that matter, !
C  or any of the variables 

that affect δin, should permanently shift δSW until the perturbation is relaxed. Our 

model divides the terrestrial input between riverine runoff and submarine 

groundwater discharge, whereas Blättler et al. (2011) effectively considered these 

inputs as one term. To address this point, we added the values for FR and FG in Table 

4.3 and calculated a flux-weighted δ44Ca value. The combined flux of 2.90×1013 

moles/yr and δ44Ca value of –1.14‰ are higher and lower, respectively, than the 

parameters adopted by Blättler et al. (2011; 2.3×1013 moles/yr and –1.06‰). The 

discrepancy arises because Blättler et al. (2011) treated !
Ca

as a fixed parameter. To 

illustrate this point, we increased the combined flux by a factor of three and 

numerically solved equations (1) and (2) while holding !
Ca

constant. The output 

shown in Figure 4.7E (blue curve) slightly differs from the model results presented in 

Blättler et al. (2011) because we adopted different input parameters, but the overall 

pattern is identical. If we numerically solve the same equations while allowing τCa to 
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vary as NCa varies (Fig. 4.7E, green curve), then the output matches that obtained 

with equation (4) (Fig. 4.7E, red curves). Our analytical models show that in a non-

steady-state model, instantaneously increasing an input flux must decrease residence 

time for a given initial reservoir size in order to maintain mass balance. The only real 

difference between steady-state and non-steady-state approaches to modelling the Ca 

isotope evolution of seawater is that the former assumes instantaneous shifts in τCa 

(or NCa), whereas the latter allows τCa and NCa to change with time until steady-state 

occurs.  

Using the above parameter of increased FR, the Sr model (Fig. 4.7C) shows a 

radiogenic trend ~200 kyr after the onset of OAE 2, which Blättler et al. (2011) 

utilise to support their conclusion. However, the increase in Sr values modelled in 

Figure 4.7C is concurrent with secular profiles from other isotope proxies (e.g., Nd, 

Os, Pb, U and trace metals) as discussed in section 5.2 and 5.3.2, which are clearly 

indicative of hydrothermal flux. Furthermore, evidence suggests that seawater 

chemistry is affected by enhanced weathering before the onset of OAE 2. It is 

therefore likely a result of the Sr residence time (~2 – 4 Myr) that the weathering 

influence is recorded in the OAE 2 interval. Nonetheless, increasing FR by a factor of 

three in our model generates a minimal positive change in δ44Ca values (0.02‰; Fig. 

4.7C). 

 

5.3.4. Fractionation factor model simulation 

Both hydrothermal and riverine fluxes increased across the OAE 2 yet our 

δ44Ca data combined with the simulated models derived from the aforementioned 

parameters illustrate that neither increased to levels sufficient to influence the marine 

Ca cycle. As a result the variable marine δ44Ca ratios throughout multiple palaeo-
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basins across an isochronous event are more tenably explained by other factors 

(Fantle and Tipper, 2013). 

This leaves a change in carbonate fractionation factor (ΔC) as the principal 

explanation for the Portland and Pont d’Issole records (Fig. 4.7D, 4.7F). Calcium is 

extracted from seawater due to the precipitation of calcium carbonate. In short, light 

calcium isotopes are preferentially removed during uptake into carbonate through the 

active transport of Ca ions, which leaves seawater depleted and the solid carbonate 

phase enriched in 40Ca (DePaolo, 2004; Holmden et al., 2012; Nielsen et al., 2012; 

Fantle and Tipper, 2013). The extent of isotopic variation is a function of the 

intensity of inputs and outputs, depending on the source and sink (De La Rocha and 

DePaolo, 2000; DePaolo, 2004; Fantle, 2010). When the mass flux of inputs is 

ubiquitous, the variability of δ44Ca values is a function of the fractionation of 

precipitating carbonate (Fantle, 2010; Fantle and Tipper, 2013). Therefore the 

abundance of precipitating carbonate from seawater influences the ΔC. 

As shown in Figure 4.7D, instantaneously decreasing the magnitude of ΔC by 

0.10 – 0.15‰ (i.e., from –1.12 to –1.02 and –0.98‰; Jacobson and Holmden, 2008; 

Holmden et al., 2012) closely simulates the trend to less negative values observed at 

the onset of OAE 2. While changing ΔC permanently shifts δSW, the carbonate record 

shows more complex behaviour (Fantle, 2010). At timescales shorter than τCa, δC is 

initially offset from seawater by an amount equivalent to ΔC, but at timescales longer 

than τCa, seawater adjusts to the change in ΔC such that δC returns to its starting value 

(Fantle, 2010). At the onset of OAE 2, decreasing ΔC drives δSW to lower values, 

while causing a temporary increase in δC. We note that stratigraphically higher δ44Ca 

values in the Portland and Pont d’Issole records appear to decrease to levels below 

the starting values. We think this could represent return of ΔC to the initial value 
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prior to OAE 2. As shown in Figure 4.7D, instantaneously changing ΔC back to the 

original value of –1.12‰ shifts δSW to higher values while causing a temporary 

decrease in δC. As such the model (Fig. 4.7D) best replicates the δ44Ca values 

recorded in this study, which is illustrated in Figure 4.7F. The modelled data scaled 

to the Portland record implies that the variation in δ44Ca isotope composition is a 

function of the ΔC (Fig. 4.7F). 

Additionally, we observe that the nominal negative trend in the δ44Ca record 

at Eastbourne and South Ferriby suggests that the ΔC at the onset of OAE 2 is 

behaving differently (Fig. 4.5). However, at Eastbourne the low resolution of the 

δ44Ca record could potentially mask the full extent of δ44Ca variability over the onset 

of OAE 2 (Fig. 4.4, 4.5). In comparison, at Portland and Pont d’Issole the positive 

shift to less negative δ44Ca values is recorded within ~1.5 m of the onset of OAE 2 

(Fig. 4.4). After ~1.5 m the δ44Ca values are equivalent to those recorded just before 

the onset of OAE 2. Hence the shift occurs over a condensed interval of stratigraphy, 

which might not be recorded in the Eastbourne section and the nominal negative 

trend is an artefact of the low-resolution data, one sample per ~1 m. In terms of 

South Ferriby the undetermined duration of the stratigraphic gap indicates that the 

onset of OAE 2 is not recorded in this section, therefore the main event is not 

recorded (Fig. 4.5). 

 

5.4.  Further variables of marine δ44Ca composition  

The models discussed throughout section 5.3 infer that ΔC is the primary 

factor controlling the δ44Ca seawater record. However fractionation is a variable 

sensitive to a number of other factors, e.g., precipitation and ocean acidification 
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(seawater pH), diagenesis, lithology, and temperature, which may also attenuate the 

primary seawater signal. 

  

5.4.1. Precipitation and ocean acidification (seawater pH) 

Our analysis combined with the simulated mixing model suggests that a 

decrease in ΔC proves the best explanation for the patterns preserved in the Portland 

and Pont d’Issole Ca isotope records (Fig. 4.7D). We suggest that the variability of 

δ44Ca values across the OAE 2 is a function of ocean acidification potentially driving 

variation in the ΔC. At an atomic level, a decrease in the ΔC is consistent with 

decreasing carbonate growth rates, decreasing fluid saturation states, and higher 

Ca:CO3 ratios in seawater, all of which drive crystal growth toward isotope 

equilibrium with aqueous Ca (Nielsen et al., 2012; DePaolo, 2011; Fantle and 

Tipper, 2013). At chemical equilibrium, !
C

 is very close to zero (Fantle and 

DePaolo, 2007; Jacobson and Holmden, 2008). While the exact mechanism 

underlying these changes is unclear, we suggest that a decrease in ΔC is consistent 

with an elevated abundance of dissolved CO2 and enhanced Ca input associated with 

submarine volcanism, which decreased the pH of seawater leading to ocean 

acidification (Payne et al., 2010). As discussed above (section 5.3.2) the injection of 

Ca from volcanism could have been significant, yet the system appears to be 

insensitive to reasonable change in volcanic Ca inputs since end-member mixing is 

nominally equivalent. Only modelling using a factor of >50 produces an appreciable 

change, without involving fractionation. However the addition of Ca may contribute 

to the change in ΔC via the Ca:CO3 ratios. 

Previous studies evaluate the development of ocean acidification during 

oceanic anoxic events and attribute the change in ocean chemistry to excessive 
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volcanic activity (Marriott et al., 2004; Mort et al., 2007; Robinson et al., 2009; Dias 

et al., 2010; Erba et al., 2010; Jenkyns, 2010; Keller et al., 2011; Kuroda et al., 

2011). Prior to the onset of OAE 2 elevated levels of atmospheric CO2 led to global 

warming, which enhanced continental weathering. Consequently the flux of 

continental material to the ocean increased carbonate deposition (Payne et al., 2010). 

At the onset of OAE 2 evidence from multiple isotope analyses; for example Li, Mo, 

Nd, Os, U, and many trace metal proxies, show that seawater was affected by a 

significant shift in ocean chemistry (Kerr, 1998; Snow et al., 2005; van Bentum et 

al., 2009; MacLeod et al., 2008; Jenkyns, 2010; Montoya-Pino et al., 2010; Pogge 

von Strandmann et al., 2013; Zheng et al., 2013; Du Vivier et al., 2014; Chapter 2, 3, 

this thesis) associated with contemporaneous volcanic activity derived from either 

the Caribbean LIP or the High Arctic LIP (Sinton and Duncan, 1997; Snow et al., 

2005; Tegner et al., 2011; Zheng et al., 2013; Du Vivier et al., 2014; Chapter 2, 3, 

this thesis). In addition, global transgression facilitated the distribution of nutrients 

and hydrothermal inputs worldwide. Therefore the injection of CO2 and SO2 from 

submarine volcanism combined with enhanced palaeocirculation increased the 

concentration of dissolved CO2 (Erba et al., 2010; Jenkyns et al., 2010), which lowers 

seawater pH and consumes the abundance of deposited CO3 and facilitates the 

chemical and isotopic phenomena noted above. As a result the δ44Ca values and the 

ΔC decreases as precipitation of CaCO3 is attenuated due to sufficient mixing of 

surface waters with carbonate depleted deep waters (Payne et al., 2010). Carbonate 

dissolution therefore acts to buffer seawater chemistry.  

Subsequently, evidence from the aforementioned isotope proxies suggest that 

the influence from hydrothermal inputs on seawater chemistry progressively 

decreases as activity from the Caribbean LIP ceases after ~200 kyr (Du Vivier et al., 
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2014, and references therein; Fig. 4.4, 4.6). As a result the ΔC returns to the original 

value and δ44Ca values return to pre-OAE 2 ratios (Fig. 4.4). The positive trend at the 

onset of OAE 2 and the subsequent transient decrease in δ44Ca isotope composition 

from both Portland and Pont d’Issole support the proposed hypothesis.  

Previous Ca isotope studies focusing on the Permo-Triassic boundary support 

the relationship between ocean acidification and ΔC, associated with the variation in 

seawater δ44Ca values. The evaluation of δ44Ca values across the Permo-Triassic 

boundary proposed that excessive activity from the Siberian Traps acidified seawater 

to the extent that net carbonate dissolution occurred (Payne et al., 2010). However 

the impact of the Siberian Traps was much larger than Cretaceous LIPs. Given that 

the buffering capacity of seawater must be exhausted before the dissolution of 

carbonate sediment occurs, it is reasonable to expect that different ocean 

acidification events will manifest in the marine Ca isotope record in different ways. 

Furthermore, by analogy with OAE 1a, the implications of ocean 

acidification may be inferred from the abrupt changes in fossil assemblages, where 

communities dependent on the abundance of carbonate for biomineralisation became 

extinct (Erba et al., 2010), coincident with high ion activity ratios in seawater 

(Nielsen et al., 2012). The excursions in δ44/42Ca data from two sections of OAE 1a 

(Site 866, Resolution Guyot, Pacific and Coppitella, Gargano, Italy; Blättler et al., 

2011) are inferred to be negative, which is interpreted from a single more negative 

value that coincides with the onset of OAE 1a. The negative excursion could be an 

artefact of low resolution and lithology, which is similar to Eastbourne: dominated 

by limestone. Therefore the interval is susceptible to diagenesis (see discussion 

below, 5.4.3). We suggest that the overall trend across the syn-OAE 1a interval is 
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positive (see Blättler et al., 2011) and as such support the hypothesis discussed 

above.  

 

5.4.2. Diagenesis and lithology 

The effect of diagenesis is not well understood. Chalk-rich stratigraphy has 

an abundance of pore spaces, which are susceptible to cementation and represent an 

open system, whereas the marl-rich beds retain the depositional structure and form a 

closed diagenetic system. The formation of cement modifies the palaeoceanographic 

isotopic signal and reflects the bulk carbonate δ13C composition, whilst the marls are 

unaltered (Paul et al., 1999). Evaluation of the lithology of the Eastbourne and South 

Ferriby sections shows that the stratigraphy is broadly homogeneous; chalk-

limestone infrequently interbedded by organic-rich marls, in comparison to the more 

variable sequence stratigraphy in the Portland core and Pont d’Issole (Fig. 4.2, 4.4, 

4.5). However, studies suggest that despite minor modification of carbon-isotope 

records as a result of carbonate cementation, the geochemical data for Eastbourne 

and South Ferriby remain undisturbed (Jenkyns et al., 1994; Paul et al., 1999). It is 

with this reasoning that Blättler et al. (2011) discount the influence of diagenesis. 

A recent study by Ockert et al. (2013) discusses the influence of fractionation 

during Ca exchange on clay minerals in seawater. They find that in marine porewater 

environments the magnitude of marine δ44Ca fractionation between light Ca2+ ions 

preferentially adsorbed in to clay and the Ca2+ dissolved into seawater, has a wide 

range. The adsorption of Ca2+ in varying minerals has a variable ΔC (Ockert et al., 

2013). In addition, adsorption is coupled with the velocity of diffusion, which is a 

function of carbonate deposition. Therefore, fractionation is mineral-specific and 

dependent on the rate of the depositing mineralogy (Ockert et al., 2013), which may 
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explain the contrasting data between the sites analysed here. Therefore, the trend 

recorded in the δ44Ca values of Portland and Pont d’Issole may be an artefact of site-

specific fractionation of the depositing sediment as a function of the mineralogical 

composition; whereas at Eastbourne and South Ferriby the fractionation remains 

consistent and thus the variation in δ44Ca values is nominal. 

The effect of varying lithology is broadly unknown. As shown ΔC is 

associated with carbonate precipitation; as such there may be potential to interpret a 

relationship based on isotopic trends that are coincident with the section lithology. 

The modelled change in ΔC, which produces the positive excursion in the Portland 

and Pont d’Issole δ44Ca profiles, is consistent with a change in lithology and the site-

specific fractionation alluded to above; whereas the nominal change in the δ44Ca 

profiles at Eastbourne and South Ferriby suggest that the predominately chalk-rich 

lithology is unaffected by ΔC. 

Figure 4.8 illustrates that relationship between the abundance of CaCO3 

versus δ44Ca isotope composition of seawater. The positive excursion in the δ44Ca 

values, synchronous with the onset of OAE 2, concurs directly with the change in 

lithology and an increase in CaCO3 abundance (Fig. 4.8). However, overall the 

trends imply a non-correlative relationship; despite the coincident change in 

lithology and the positive trend in δ44Ca values, the former is not causing the latter 

since overall the wt.% CaCO3 data remain high, whereas the δ44Ca values show a 

long-term decrease after the initial positive excursion. It is worth noting that the 

sharp excursions to the least negative values in Portland and YG (Fig. 4.8) directly 

correlate with the highest CaCO3 values abundance of >70 wt.%, which are horizons 

known to be affected by diagenetic carbonate (Fig. 4.2, 4.8; Kennedy et al., 2005).  
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Figure 4.8 CaCO3 (red) and δ44Ca (black) vs. stratigraphic height. Illustrates the 
carbonate abundance (wt.%) for Portland #1 core, Pont d’Issole, Yezo Group and 
Eastbourne. The CaCO3 abundance shows a non-correlative relationship with the δ44Ca 
values (see section 5.4.2 for discussion). 
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Global comparisons of other isotope records reveal that minor global 

discrepancies are indicative to regional variation in seawater geochemistry (Paquay 

and Ravizza, 2012; Du Vivier et al., 2014; Chapter 2, 3, this thesis); however, δ44Ca 

values are inferred to record the net change in global reservoirs only. Yet, the global 

distribution of variable marine δ44Ca excursions is consistent with the heterogeneity 

of the lithological sequences, respectively. As such by association the ΔC is a 

function of mineralogy and thus local inputs (Ockert et al., 2013). Therefore 

contrasting δ44Ca records imply, like many other isotopes (e.g., 187Os/188Os), that the 

system is also sensitive to regional variation of local water masses (Schmitt et al., 

2003; Paquay and Ravizza, 2012; Owens et al., 2013).  

 

5.4.3. Temperature 

The effect of temperature on seawater δ44Ca values has been discussed at 

length (De La Rocha and DePaolo, 2000; Nägler et al. 2000; DePaolo, 2004; 

Marriott et al., 2004; Sime et al., 2005). A small temperature dependence is 

commonly reported in many analytical studies as a function of species 

(foraminifera/plankton) that result in an influence of ~0.02‰ per °C (De Paolo, 

2004) and vary according to their latitudinal distribution (Blättler et al., 2012). An 

increase in temperature is recorded by a positive excursion in the δ44Ca record; high 

temperatures lead to increased weathering and the release of 40Ca through carbonate 

and silicate weathering, which in turn leads to increased carbonate sedimentation 

(Tipper et al., 2006). Therefore ΔC is influenced by temperature, though the effect is 

small, particularly during small changes in sea surface temperatures (De La Rocha 

and DePaolo, 2000; Gussone et al., 2003, 2006, 2007; Marriott et al., 2004), such as 

during the OAE 2 (Forster et al., 2007).  
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The sections analysed here produce positive excursions in the δ44Ca records, 

~0.20‰. However, interpretations based on temperature alone would contradict the 

interpretation of temperature proxies at the start of the OAE 2; where the onset of 

anoxia initiated the feedback process, which led to a brief interval of cooling (~4ºC) 

for the first ~150 kyr of the OAE 2 (Sinninghe Damsté et al., 2010; Jarvis et al., 

2011). Conversely, the ~0.20‰ positive excursion is indicative to a ~10ºC 

temperature increase. The negative excursions in Blättler et al.’s δ44Ca data (2011; 

Fig. 4.5) are inferred to represent a partial response to the decrease in temperature. 

However, evidence suggests that atmospheric and sea surface temperatures 

throughout the palaeo-basins of the CTB were relatively consistent (Forster et al., 

2007; Dennis et al., 2013). Furthermore, the analysis of the effect of temperature on 

fractionation during adsorption is non-correlative (Ockert et al., 2013). Therefore, the 

effect of temperature can be discounted because of the contradictory trends in the 

δ44Ca values between sections. 

 

6. Summary 

The trends in the marine Ca isotope record have the potential to record the 

evolution of seawater utilising δ44/40Ca values from carbonate sedimentary 

successions. A previous study presented δ44/42Ca values against numerical models 

coupled with Sr isotope curves, which were utilised to interpret the factors 

influencing the seawater chemistry (Blättler et al., 2011). The study infers that a 

transient negative excursion in the marine δ44/42Ca composition across the onset of 

the OAE 2 is indicative to an increase in the weathering influx (Blättler et al., 2011). 

However, the δ44Ca values from this study reveal a positive excursion that is 

synchronous with the onset of OAE 2, after which the δ44Ca values gradually return 
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to pre-OAE 2 values. We evaluate the different analytical methodologies and justify 

the comparison of samples from Eastbourne re-analysed here and directly compare 

the two datasets through the conversion of δ44/40Ca to δ44/42Ca based on the standard 

915a relative to the value the Northwestern Laboratory obtains for OSIL SW. Thus, 

we confirm that the discrepancy in Ca isotope trends at the onset of OAE 2 is not an 

analytical artefact.   

Qualitative observations of the positive trend in the δ44Ca values suggest that 

the δ44Ca values may be sensitive to an increase in hydrothermal flux, which is 

globally contemporaneous with activity at submarine LIPs based on evidence from 

Os isotope stratigraphy (Du Vivier et al., 2014; Chapters 2, 3, this thesis) and other 

isotope proxies (Snow et al., 2005; Turgeon and Creaser, 2008; MacLeod et al., 

2008; Montoya-Pino et al., 2010; Kuroda et al., 2011; Pogge von Strandmann et al., 

2013; Zheng et al., 2013; Du Vivier et al., 2014). In addition, evidence from 

hydrothermal condensates may suggest that sublimation significantly enriches Ca in 

seawater compared to exsolved Sr (Taran et al., 1995). Therefore under non-steady-

state conditions Ca and Sr may be decoupled. However, our quantitative analysis is 

not consistent with such a hypothesis. 

In order to quantitatively determine the mechanism controlling changes in 

marine δ44Ca isotope composition we derive a seawater mixing model based on 

modern parameters (Milliman, 1993; Holmden et al., 2012; Fantle and Tipper, 2013). 

The models depict 4 states of the ocean; A – steady-state, B – increased 

hydrothermal flux, C – increased weathering flux, and D – variable fractionation 

factor. The models show no appreciable change in δ44Ca values as a result of 

weathering and/or hydrothermal flux since different behaviour is exhibited by δ44Ca 

records of the analysed sections compared to the weathering and hydrothermal 
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models. Therefore despite qualitative observations based on the documented increase 

in volcanic activity contemporaneous with OAE 2, quantitative evidence suggests 

that there is no appreciable change in δ44Ca values. The most tenable explanation for 

the variation in marine δ44Ca values is modelled by a change in ΔC, which varies 

depending on carbonate precipitation. From this study we infer that increased 

Ca:CO3 ratios in seawater are a function of enhanced Ca inputs as well as the 

increase in dissolve CO2 associated with isochronous volcanic activity, which leads 

to ocean acidification, thus the decrease in carbonate precipitation and decrease in 

ΔC. The contrasting trends in the δ44Ca profiles presented here demonstrate that 

carbonate and clay-rich samples are subject to varying ΔC as a function of their 

mineralogy, which may provide an explanation for the global variation in marine 

δ44Ca values in different depositional settings with varying lithological sequences.  

This study and many others show that the marine δ44Ca isotope system has 

many complexities and there are a number of parameters such as; lithology, 

diagenesis, temperature and pH, yet to be definitively constrained influencing the 

fractionation factor itself. Any interpretation of the marine δ44Ca isotope system 

ought to be considered with a broad appreciation for the complexities of the system 

and further work will facilitate our understanding of the influence of multiple 

parameters on the marine records, which appear to be globally site-specific. 
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1. Overview 

The late Cretaceous OAE 2 has been extensively studied, with the primary 

objective to understand the palaeoclimate of the period through the evaluation of 

ocean chemistry and the implications of palaeocirculation, volcanism and climate 

change to determine the controlling factors driving oceanic anoxia. In this study the 

application of isotope geochemistry and geochronology (Os, Ca and U-Pb) facilitates 

a fundamental insight into; 1) what ocean-atmosphere processes were responsible for 

driving OAE 2 to become synchronously widespread in multiple basinal 

environments in the world’s oceans; 2) if key stages and the duration of the OAE 2 

can be quantitatively constrained; and 3) to establish if OAE 2 was a truly global 

isochronous event. 

The following sections provide a concise synopsis of the findings for each 

chapter presented in this thesis. Each chapter represents a single version of a 

manuscript, which at the time of this thesis submission has either been published 

(Chapter 2; Du Vivier et al., EPSL, 2014), is ready for submission (Chapter 3; 

EPSL), or being finalised for submission to a journal (Chapter 4; GCA). In addition 

to the chapter synopsis I suggest a focus for future research and further applications 

of 187Os/188Os isotope stratigraphy beyond the realm of palaeoclimate/ 

palaeoceanography, specifically in petroleum geology.  

 

2. Global marine 187Os/188Os isotope stratigraphy reveals the interaction of 

volcanism and ocean circulation during Oceanic Anoxic Event 2 

The following sections provide a summary of Chapter 2 (Marine 187Os/188Os 

isotope stratigraphy reveals the interaction of volcanism and ocean circulation during 
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Oceanic Anoxic Event 2) and Chapter 3 (Pacific 187Os/188Os isotope chemistry and 

U-Pb geochronology: Implications for global synchronicity of OAE 2) combined. 

 

2.1.  Introduction  

High-resolution osmium (Os) isotope stratigraphy across the Cenomanian-

Turonian Boundary Interval (CTBI) from 8 sections for five transcontinental settings 

has produced a record of seawater chemistry that demonstrates regional variability as 

a function of terrestrial and hydrothermal inputs, revealing the impact of 

palaeoenvironmental processes. Marine 187Os/188Os isotope stratigraphy in seawater 

changes as a function of 2 end-members mixing (Peucker-Ehrenbrink and Ravizza, 

2000). As a result, the initial 187Os/188Os (Osi) record has distinct variation, which 

can be directly linked to ocean inputs:  radiogenic Os from weathering of ancient 

continental material and unradiogenic Os from juvenile (submarine) hydrothermal 

input (Peucker-Ehrenbrink and Ravizza, 2000).  

Herein, the Osi profile of 8 selected sites (Fig. 5.1): Portland #1 core, USA 

(WIS; ratified bed-by-bed correlation to GSSP Pueblo); ODP Site 1260, Demerara 

Rise (proto-North Atlantic); Wunstorf, Germany (NW European shelf); Vocontian 

Basin, SE France (Western Tethys); Furlo, Italy (Western Tethys); DSDP Site 530, 

Angola Basin (proto-South Atlantic); Yezo Group (YG), Japan (west proto-Pacific); 

and the Great Valley Sequence (GVS), USA (east proto-Pacific) demonstrate the 

interaction of the 2 end-members and their effects on seawater chemistry during the 

OAE 2.  
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Figure 5.1 Palaeomap of the late Cretaceous. The sites analysed in this thesis are; 
P – Portland #1 Core, GVS – California, 1260 – ODP Site 1260 Demerara Rise, 530 
– DSDP Site 530, W – Wunstorf, VB- Vocontian Basin, F – Furlo, YG – Japan, 
HWR – Canada (Appendix). The location of the Caribbean (CLIP) and High Arctic 
Large Igneous Province, and the Ontong Java Plateau is marked on in red.  
 

The OAE 2 occurs as a result of a turbulent time in the ocean and atmosphere 

systems, which led to perturbations in the carbon cycle and during extreme intervals 

led to oceanic anoxic events, i.e., the OAE 2 (Jenkyns, 1980; Schlanger et al., 1987). 

Prior to OAE 2 atmospheric and sea surface temperatures were very high (≥33ºC), 

which reduced the meridional temperature gradient (Jenkyns et al., 2004; Forster et 

al., 2007). As a result of globally higher temperatures the hydrological cycle 

accelerated and resulted in increased rates of continental weathering (Jenkyns, 2010). 

Simultaneously submarine volcanic activity at the Caribbean LIP initiated, which 

increased the influx of nutrients and altered the chemical composition of the 

seawater.  

The global synchronicity of OAE 2 is a supposition of work that has 

previously focussed on sites from the North Atlantic, WIS and Tethyan regions. 

Hitherto this study the analysis of OAE 2 sections in the proto-Pacific was limited 

and consequently the global correlation of OAE 2 is not necessarily founded by 
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evidence but more broadly assumed.  Therefore this study aimed to determine the 

true extent of OAE 2 and thus the implications of proto-Pacific circulation. In 

addition, 206Pb/238U zircon geochronology was applied to from 5 volcanic tuff 

horizons from the YG section, Japan, to facilitate correlation to the Portland #1 core 

and integrate a temporal framework to quantitatively evaluate the timing and 

duration of events across the CTBI.  

 

2.2.  Temporal framework 

An integrated timescale model is developed based on the Bayesian 

stratigraphy from the Portland #1 core (Meyers et al., 2012), which is the 

representative core for the GSSP Pueblo, ratified by bed-by-bed correlation 

(Sageman et al., 2006). The 206Pb/238U zircon ages from the YG section are applied 

to verify an integrated timescale model for the Pacific, which highlights the non-

correlative perturbations in the YG that are a function of a variable sedimentation 

rate.  The timescale is utilised to derive the timing of the onset of OAE 2 (~94.38 

Ma) relative to the CTB (93.90 ± 0.15 Ma), and to determine the timing of the onset 

of OAE 2 relative to the onset of activity at the Caribbean LIP. Furthermore, the 

synchronicity of the unradiogenic Osi profile suggests that the magnitude of 

Caribbean LIP volcanism was sufficient to attenuate continental inputs and 

simultaneously influence the seawater chemistry of each basin; the abundance of 

organic-rich sediments added to the water column as a result of enhanced continental 

weathering permitted sequestration of hydrogenous unradiogenic Os from the 

contemporaneous Caribbean LIP.  
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2.3.  Implications of 187Os/188Os profiles 

In every section the 187Os/188Os profiles show a comparable trend, despite 

minor non-correlative perturbations, that is characteristic of OAE 2 sections; 

radiogenic values in the lead up to OAE 2; an abrupt unradiogenic trend at the onset 

of OAE 2; an unradiogenic interval during the first part of OAE 2; and a return to 

radiogenic values towards the end of the event, above the CTB. The unradiogenic 

trend in 187Os/188Os is synchronous in all sections, with the exception of GVS. 

Therefore the Osi data demonstrate the impact of inputs from continental weathering 

and hydrothermal input. The distinct and sudden transition from radiogenic to 

unradiogenic Os, is indicative to the onset of volcanic activity at the Caribbean LIP, 

and is contemporaneous with the onset of OAE 2. Previous work suggests that 

activity of the Caribbean LIP was possibly an instigator of anoxia in the oceans 

(Turgeon and Creaser, 2008).  

The Osi profile at Portland #1 core records a brief shift to high radiogenic 

187Os/188Os values in the Western Interior Seaway before the onset of OAE 2. It is 

suggested that the epeiric seaway was decoupled from the open ocean and the 

restriction amplified the effects of high weathering rates as abundant organic-rich 

sediments sequestered radiogenic Os derived from the ancient continental crust. The 

YG section records similar time correlative radiogenic Osi trends in the pre-OAE 2 

interval, which are inferred to be the result of basin restriction and cause local 

variation in seawater chemistry. The evaluation of this trend suggests that a 

combination of factors collectively played critical roles in the initiation of OAE 2; 

differential input of nutrients from continental and volcanogenic sources, coupled 

with efficient palaeocirculation of the global ocean and epeiric seas, enhanced 

productivity due to higher nutrient availability, which permitted 
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penecontemporaneous transport of continental and LIP-derived nutrients to 

transcontinental basins.  

The close similarity of Osi profiles from ~50 kyr prior to the OAE 2 and 

throughout the syn-OAE 2 interval indicates that transgression progressed to a point 

where a homogeneous global seawater signal was delivered to multiple proto-

transcontinental basins by active ocean circulation. Hence, it is proposed that the 

combined consequence of nutrients from continental weathering and 

hydrothermalism conditioned the oceans and helped trigger OAE 2 through an 

increase in productivity, with the late Cenomanian transgression being the tipping 

point for the development of widespread anoxia.  

With regard to the GVS, despite showing the same overall trend in the Osi 

profile, the sequence records high frequency oscillations compared to all other 

sections. The perturbations are indicative to rapidly alternating inputs; inputs from 

the continent are sequentially attenuated by transient inputs from the Caribbean LIP, 

which demonstrate the sensitivity of the Os isotope composition in seawater on the 

order of the residence time (≤10 kyr). In addition, the proximity of the GVS to the 

Caribbean LIP has the potential to reveal the extent of activity at the LIP; combined 

with the application of the integrated timescale the temporal coincidence provides 

empirical evidence that the duration of volcanic activity at the Caribbean LIP was 

~450 kyr. 

The Osi data from the Portland #1 core, Wunstorf, Vocontian Basin, Site 530, 

YG and GVS support the findings from Site 1260 and Furlo (Turgeon and Creaser, 

2008) with regard to the synchronicity of the unradiogenic Osi trend, indicative to 

activity from the Caribbean LIP. However, additional analysis of samples from Site 

1260 and Furlo combined with the 6 new sections (Fig. 5.1) illustrates the 
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significance of the pre-OAE 2 interval, and the transgression that facilitates ocean 

circulation, which led to the widespread distribution of nutrients from weathering 

and volcanism combined that instigated ocean anoxia.   

Consequently, despite regional variation, the putative seawater record 

remains robust; radiogenic Os suppressed by unradiogenic Os for ~200 kyr before 

seawater returned to radiogenic equilibrium. Hence the evidence from Osi isotope 

stratigraphy, from the Atlantic, WIS, Tethys and Pacific sections constrained by new 

U-Pb zircon geochronology (YG section), ascertains that the OAE 2 was a globally 

isochronous event.  

 

2.4.  Revised correlation and application of 187Os/188Os isotope stratigraphy 

The onset of OAE 2 at the YG was previously identified by the putative 

positive excursion in the δ13C isotope record; however, this does not correlate with 

the new high-resolution Osi isotope stratigraphy. The 206Pb/238U zircon ages (HK017 

94.436 ± 0.093/0.14 Ma and HK018 93.920 ± 0.031/0.11 Ma) facilitate correlation 

and consequently I revise the onset of the OAE 2 and, in addition, the stratigraphic 

position of the CTB (see figures Chapter 3). The revised onset of OAE 2 is 

synchronous with the unradiogenic trend in the Osi profile, and therefore 

contemporaneous with volcanic activity at the Caribbean LIP, which is consistent 

with all Osi profiles from the Atlantic, WIS and Tethys basins (i.e. Chapter 2). The 

application of an OxCal age-depth model (Bronk Ramsey, 2008) justifies the 

correlation of the Osi profiles from the YG and Portland #1 core, and the improved 

correlation of the proto-Pacific across the CTB has created a nominal correlation to 

the GSSP in the WIS.  
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3. Calcium isotope stratigraphy across the Cenomanian-Turonian OAE 2: 

Implication on the controls of marine Ca isotope composition  

3.1.  Introduction: Isotopic proxies and the OAE 2 

Chapter 4 presents δ44Ca data from 4 globally correlated OAE 2 sections; 

Portland #1 core, USA, Pont d’Issole section, SE France, and the Yezo Group 

section, Japan. As well as re-analysed data, for direct comparison with the δ44Ca data 

from this study, from the Eastbourne section, UK, previously reported by Blättler et 

al. (2011). 

The OAE 2 has been studied in detail utilising multiple isotope proxies, e.g., 

δ13C, Nd, U, Pb, P, Sr, Os, Li, and trace metals (Schlanger et al., 1987; Kerr, 1998; 

McArthur, et al., 2004; Snow et al., 2005; MacLeod et al., 2008; Turgeon and 

Creaser, 2008; Jenkyns, 2010; Montoya-Pino et al., 2010; Kuroda et al., 2011; Mort 

et al., 2011; Martin et al., 2012; Pogge von Strandmann et al., 2013; Zheng et al., 

2013; Du Vivier et al., 2014). As discussed above in section 2.3, the overall 

interpretation of these isotope records suggests that global warming prior to the OAE 

2 enhanced weathering, which led to CO2 drawdown, increased productivity and an 

abundance of organic-rich material. As such the oxygen minimum zone expanded 

and the onset of activity at submarine LIPs introduced more nutrients and CO2 to the 

seawater, which further increased the extent of the oxygen minimum zone and 

subsequently the sequestration of elements into organic-rich sediments. Global 

transgression was the tipping point for the development of widespread, global 

anoxia.  

A recent addition to the proxy catalogue assessing palaeoclimate conditions 

during the CTBI is marine Ca. Ca is a key element involved in the long-term carbon 

cycle since its mobility allows for elemental transfer through geochemical reservoirs 



CHAPTER 5. CONCLUSION     

 

Page | 216  
 

coupled with carbon to and from the ocean. As a result Ca has the potential to record 

the variability of seawater chemistry as a result of perturbations to the ocean and 

atmosphere system during intervals of climatic instability, which influence carbonate 

sedimentary successions.  

Multiple studies have aimed to establish the factors affecting the marine 

δ44Ca system (De La Rocha and DePaolo, 2000; DePaolo, 2004; Gussone et al., 

2003, 2005, 2006; Böhm et al., 2006, 2009; Farkaš et al., 2007a, 2007b; Griffith et 

al., 2008; Fantle, 2010; Blättler et al., 2012; Holmden et al., 2012; Fantle and Tipper, 

2013). The systematics of marine δ44Ca isotopes are, like many isotopes, associated 

with the inputs and outputs; riverine and hydrothermal inputs versus carbonate 

precipitation outputs. Conversely, unlike many isotopes (noted above) the variation 

in δ44Ca values cannot be determined through simple end-member mixing. The end-

members lack isotopic leverage to differentiate between the sources of the inputs (–

0.95‰ for hydrothermal and –1.03‰ for riverine; Holmden et al., 2012). The flux of 

inputs during the CTBI was higher than normal as a result of the climate 

perturbation. Therefore based on observations and interpretation from a number of 

aforementioned isotopes this study aimed to determine if the dramatic unradiogenic 

trend in Osi associated with volcanism at the Caribbean LIP (reported in Chapters 2 

and 3) is recorded by δ44Ca values, or if I can quantify the increase in flux of riverine 

Ca due to weathering as previously proposed (Blättler et al., 2011). The aim is to 

constrain the principal factor that is influencing the evolution of marine δ44Ca 

chemistry across the OAE 2. 
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3.2.  Qualitative observations and implications 

A previous study infers a negative excursion coincident with the onset of 

OAE 2, which suggests it is associated with an elevated weathering flux (Blättler et 

al., 2011). The δ44Ca values from this study show a positive excursion concurrent 

with the onset of OAE 2 at Portland and Pont d’Issole, which contradicts the inferred 

negative excursion at Eastbourne (Blättler et al., 2011). In this study I re-analysed 

select samples across the onset of OAE 2 from Blättler et al.’s (2011) record. The 

δ44Ca values show a subtle excursion and permit direct comparison with our δ44Ca 

values from Portland Pont d’Issole; the negative excursion is not an analytical 

artefact of the different analytical techniques. The analyses from the Yezo Group 

section do not produce a differentiable trend in the δ44Ca values as a result of the 

extremely low abundance of carbonate, <1 wt.%. Therefore it is unlikely that the 

δ44Ca values from the Yezo Group represent a robust seawater signal.  

The observed positive trend in the δ44Ca values from Portland and Pont 

d’Issole is synchronous with the onset of OAE 2, which is interpreted by many other 

isotopes and trace metals as a record of hydrothermal activity contemporaneous with 

OAE 2, derived from volcanic activity at the Caribbean or High Arctic LIP 

(Schlanger et al., 1987; Kerr, 1998; McArthur, et al., 2004; Snow et al., 2005; 

MacLeod et al., 2008; Turgeon and Creaser, 2008; Jenkyns, 2010; Montoya-Pino et 

al., 2010; Kuroda et al., 2011; Mort et al., 2011; Martin et al., 2012; Pogge von 

Strandmann et al., 2013; Zheng et al., 2013; Du Vivier et al., 2014). In addition, 

significant enrichment of Ca in seawater by sublimation compared to exsolved Sr 

from fumerolic condensates may be indicative to Ca and Sr temporally decoupling 

adjacent to hydrothermalism. However, despite the qualitative observations and 
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temporal agreement, quantitative analysis is indicative of other factors contributing 

to the evolution of marine δ44Ca composition. 

 

3.3.  Quantitative observations and implications 

In order to quantitatively verify the main factor influencing the δ44Ca 

composition and to resolve the discrepancy in the interpretation between the data in 

this study and in the previous record (Blättler et al., 2011), I utilised a seawater 

mixing model. Unlike Blättler et al. (2011), I apply modern parameters (Milliman, 

1993; Holmden et al., 2012) and solve the equations analytically and numerically 

(for comparison) under non-steady-state. Figure 5.2 shows the discrepancy between 

model calculations. Blättler et al. (2011) numerically derived a curve to simulate 

δ44Ca composition in seawater, with combined inputs and at a fixed residence time, 

which I model using the modern parameters (Fig. 5.2, blue curve). However, if I 

numerically solve the equation, with combined inputs while allowing τCa to vary as 

NCa varies (Fig. 5.2, green curve); the output matches our analytically derived curve 

(Fig. 5.2, red curve). The analytical models show that in a non-steady-state model, 

instantaneously increasing an input flux must decrease residence time for a given 

initial reservoir size in order to maintain mass balance. The only real difference 

between steady-state and non-steady-state approaches to modelling the Ca isotope 

evolution of seawater is that the former assumes instantaneous shifts in τCa (or NCa), 

whereas the latter allows τCa and NCa to change with time until steady-state occurs.  
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Figure 5.2 shows analytical vs. numerically derived curves. The blue curve slightly 
differs from the model results presented in Blättler et al. (2011) because I adopted different 
input parameters, but the overall pattern is identical.  
 

The models simulate steady-state and 3 other scenarios of varying inputs to 

the ocean (see Fig. 4.7 Chapter 4). A – steady-state, B – increased hydrothermal 

influx (FH), C – increased riverine influx (FR), and D – change in carbonate 

fractionation factor (ΔC). The models for B and C show no appreciable change in 

response to increased FH and/or FR since the behaviour exhibited by the modelled 

curves is dissimilar to the δ44Ca records at Portland and Pont d’Issole. As such, 
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despite the qualitative observations based on isotopic records indicative of a globally 

contemporaneous injection of volcanic activity at the onset of OAE 2, analytically 

quantitative evidence confirms that if Ca and Sr are coupled based on their similar 

geochemical characteristics, an increase in FH and/or FR is not driving the δ44Ca 

composition in seawater. The modelled δ44Ca curves suggest that the most tenable 

explanation for the variation in δ44Ca values is a change in ΔC.  

However, the ΔC is a function of other variables, which need to be 

constrained and understood before interpretation of the marine δ44Ca isotope system 

can be made. Primarily the ΔC varies depending on carbonate precipitation. From this 

study I suggest that the Ca:CO3 ratios in seawater may have increased due to 

enhanced Ca inputs as well as elevated dissolved CO2, associated with an increased 

FH, which lead to ocean acidification, which caused carbonate dissolution. Therefore 

an increased FH is not directly recorded by the δ44Ca values, as the modelled data 

shows. However, they respond to the decrease in carbonate precipitation due to 

ocean acidification and therefore a change in the ΔC.  

Finally, I surmise that the discrepancy between the trends in δ44Ca values 

from this study versus the previous study (Blättler et al., 2011) may have been 

caused by the contrasting stratigraphy; Portland and Pont d’Issole are more varied 

and marl-rich, whereas Eastbourne and South Ferriby are predominately chalk-rich 

with sparsely interbedded marl-rich horizons. Given that the ΔC is a function of 

carbonate precipitation, it seems tenable that the changeable ΔC is determined by the 

mineralogical composition of the different lithological sequences, which are a 

function of the regional seawater chemistry. Herein, I suggest that the marine δ44Ca 

profiles are regionally disparate on a global scale as a function of varying ΔC.  
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4. Future research and implications 

The data recorded in this thesis has shown the utilisation of Os isotope 

stratigraphy as a reliable palaeoproxy. The Osi profiles are valuable correlation tools 

and record regional and global variation in seawater chemistry on the order of Os 

residence time. The extent of regional variability and what factors influence local 

variation is an area for future research, which should aim to investigate the open 

ocean basins compared to restricted ocean basins; for example the Angus Core, WIS, 

USA; Tarfaya Core, proto-North Atlantic; and the Eagleford Core, WIS, USA (Fig. 

5.3).   

 

Figure 5.3 Palaeomap of the late Cretaceous, sites proposed for future work are 
in pink. Angus and Eagleford Cores in the WIS, Tarfaya Core in the proto-North 
Atlantic. GSSP – illustrates the proximity of the GSSP Pueblo (Portland #1 Core) to 
the Angus Core. 1260 – ODP Site 1260, Demerara Rise, W – Wunstorf, and YG – 
Yezo Group, Japan are left on for reference. The location of the Caribbean (CLIP) 
and High Arctic Large Igneous Province, and the Ontong Java Plateau are marked on 
in red.  

 

The application of Os as a palaeoproxy to additional sites will improve our 

understanding of Re-Os systematics in open and restricted ocean basins. Based on 

the disparate Osi isotope profiles of Portland #1 core and Site 1260 for ~200 kyr 

before the onset of OAE 2, the Osi profiles will either support, or not, the conclusion 
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that epeiric sea Osi records (e.g., Portland #1 core) are decoupled from deep/open 

ocean Osi records and may be more strongly influenced by local weathering inputs 

and changes in mixing between basins. Thus further study of other cores in the same 

setting (i.e., Angus Core and Eagleford Core in the WIS; Fig. 5.3) will empirically 

determine if the regional differences in Osi are robust. The Eagleford in particular, 

which is located at the south (the opening per se) of the WIS, could determine the 

extent of basin restriction in the WIS if the Osi record was indicative to high 

continental inputs driving the radiogenic Os signal until transgression relieved basin 

restriction. Alternatively, if the Osi record showed that seawater chemistry was 

susceptible to fluctuations analogous to the Osi profile of the GVS, important 

implications on regional palaeocirculation may be inferred given the proximity to the 

Caribbean LIP. 

The 187Os/188Os isotope composition of Site 1260 is regarded as a record for 

an open ocean site and frequently analysed to determine circulation using εNd 

isotopes. Additional analysis of the Tarfaya Core, for example, will provide further 

implications on palaeocirculation as well as Os residence time. Similarly Site 530 is 

an open ocean section, yet due to poor core recovery the sample resolution in the pre-

OAE 2 interval is limiting. An important oceanographic parameter of circulation is 

basin depth; further study within the WIS and the North Atlantic may result in 

comparatively heterogeneous Osi records relative to the sites in similar settings from 

this study. Consequently the discontinuity of Osi profiles within the basins may be 

indicative of poor vertical mixing of 187Os/188Os in seawater. 

 

This study has verified that submarine volcanic activity is globally 

contemporaneous with the OAE 2.  Herein, I infer that the unradiogenic Os is 
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derived from the Caribbean LIP. Most recently however, activity from the High 

Arctic LIP has been implicated as contemporaneous with OAE 2 (Fig. 5.3). But the 

constraints on timing and duration of activity are very broad to-date, spanning 130 – 

80 Ma, and in the most part suggest that the main pulse of activity occurred before 

the late Cretaceous (Tegner et al., 2011): why is this activity not recorded in Osi 

record throughout the Cenomanian? Currently preliminary Osi records from the 

Arctic (Greenland) confirm contemporaneous volcanic activity, synchronous with 

Osi records from this study (Herrle et al., EGU abs. 2014). Therefore the extent of 

dispersion of unradiogenic Os associated with submarine volcanism is global across 

latitude, as well as longitude. If activity from the High Arctic can be constrained the 

impact on seawater chemistry caused by the main pulses of activity will have 

implications on circulation, particularly in the WIS.  

 

Development of 187Os/188Os isotope stratigraphy combined with U-Pb zircon 

geochronology of the YG section from this study demonstrates the application of Osi 

as a palaeoproxy to transcontinental sections; where the onset of the OAE 2 and the 

CTB are revised. Future work ought to focus on improving the resolution of 

biostratigraphy and to develop the catalogue of chemostratigraphic proxies. The 

addition of higher precision and higher resolution U-Pb zircon ID-TIMS 

geochronology, compared to what was previously available for Pacific OAE 2 

sections, provides a foundation of data that has the potential to establish the YG 

section as a proposed reference section for the CTBI in the Pacific Ocean.  

 

The δ44Ca values produced in this study indicate that a change in 

fractionation factor is the principal factor influencing the evolution of δ44Ca 
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composition in seawater. I suggest that the fractionation factor is a function of ocean 

acidification associated with increased volcanic activity during the CTBI from LIPs. 

I also briefly discuss a number of other factors, temperature, lithology, diagenesis, 

which have been suggested to influence the variability of δ44Ca values. As such there 

is a large scope for more research utilising this proxy, for example, from sections 

adjacent to a hydrothermal source and/or a riverine source, also from sections out 

with the temperate zone of the Northern Hemisphere. 

 

5. Application of 187Os/188Os isotope stratigraphy to petroleum geology 

In addition to the implications of OAE 2 and the relationships between 

palaeocirculation and submarine volcanism, the Osi isotope stratigraphy presented 

here may facilitate source-oil correlation for OAE 2 sections that have generated oil. 

 Oil is derived from organic-rich source rocks, similar to the organic-rich 

sediments (ORS) of the OAE 2 horizons. The Os isotope composition is inherited 

from the source rock and captured in the oil at the time of maturation and transferred 

to the generated oil (Selby and Creaser, 2005, Selby et al., 2005, 2007; Finlay et al., 

2010; Rooney et al., 2012). Over time oil migrates to new horizons. As discussed 

above, and in Chapters 2 and 3, the OAE 2 interval possesses distinct Osi profiles. In 

addition, as a result of the units Re-Os abundances and variable Osi isotope 

composition, the OAE 2 interval will continue to possess a distinct profile at the time 

of oil generation if oil is derived from the ORS (Fig. 5.4). 
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Figure 5.4 Distinct Osi isotope profile of CTBI and after radiogenic growth. Osi 
profile at 93.90 Ma (blue) and at 20 Ma (red) vs. integrated timescale (kyr). 
 

Figure 5.4 illustrates the distinct Osi profile of the CTBI. As such if I consider 

that ORS of the OAE 2 underwent thermal maturation ~70 Myr after deposition, the 

distinct Osi profile at ~93.90 Ma (blue) remains intact at ~20 Ma (red). The trend in 

Osi data will be identical yet more radiogenic as a result of radiogenic growth. 

Consequently the unradiogenic Os isotope composition in oils from the basal OAE 2 

will be distinct from the majority of all oils generated from other Cretaceous ORS as 

the Osi is commonly radiogenic, >0.5 (see Peucker-Ehrenbrink and Ravizza, 2000; 

Gradstein et al., 2012), thus over time generating oils with Osi >1.0 (Fig. 5.4) such as 

before and after the OAE 2 interval (Finlay et al., 2011).  

Furthermore, due to the unradiogenic initial, ~0.12 (close to chondritic 

values) and low Re/Os at the onset and for ~200 kyr of OAE 2, the Osi at ~20 Ma 

will remain unradiogenic (Fig. 5.4). The syn-OAE 2 period coincides with organic 

preservation during sediment accumulation of ORS, therefore if this interval is to 

generate oil the oil will have an exclusive unradiogenic composition unlike the Osi 
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values of the pre-OAE 2 interval and after ~200 kyr of the syn-OAE 2 interval. This 

hypothesis could also be applied to similar records from OAE 1a (Bottini et al., 

2012), which may also be a useful tool for fingerprinting oil to its source. As such, 

oils from an unknown source can be linked using the Os isotope composition, a 

process known as fingerprinting (Finlay et al., 2011). For example, the Os isotope 

stratigraphy of Site 530, from the Angola Basin, South Atlantic could be combined 

with Re-Os oil geochronology and applied to evaluate the evolution of oils and 

facilitate mapping of the petroleum systems in the Angola Basin.  
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Appendix I: Highwood River, Alberta, Canada 
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1. Introduction 

This site was chosen for comparison with the other OAE 2 section in the 

Western Interior Seaway (WIS), the Portland #1 Core (Du Vivier et al., 2014; 

Chapter 2, this thesis). The worked was carried out in collaboration with G. Plint 

(Ontario) and D. Gröcke (Durham). At the time of sampling and laboratory analysis, 

the Highwood River section in Alberta, Canada was considered the most complete 

OAE 2 section in the Northern WIS, according to unpublished stratigraphic data 

(Plint). However, continued stratigraphic analysis of samples at University of 

Western Ontario from other sections in the Canadian Foreland basin yielded 

complexities previously undetermined in the Highwood River section, whilst 

samples from Highwood River were analysed for Re-Os geochemistry at Durham 

University. Consequently continued stratigraphic analysis has established that 

Highwood River is missing an undetermined amount of stratigraphy. Therefore the 

examined section to the North of Highwood River, the Bighorn River section, is a 

more suitable section to facilitate correlation of OAE 2 in the Northern WIS with the 

Portland #1 core, the representative core of GSSP Pueblo, which is ratified by bed-

by-bed correlation to the GGSP Pueblo (Sageman et al., 2006).  

In addition, detailed age control of the WIS (Meyers et al., 2012) was not 

complete at the time of sampling and laboratory analysis (in 2010). Therefore the 

correlation of Highwood River with the GSSP was based on 
13

Corg isotope data and 

existing chronology (Barker et al., 2011). The ~1.5‰ 
13

Corg excursion is 

characteristic of the onset of OAE 2, thus it was identified as the marker horizon for 

the onset of OAE 2 in Highwood River.  

The more complete section (Bighorn River) is still undergoing analysis (Plint 

and Gröcke) and remains a long way off completion. I am not permitted by 
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collaborators to use their preliminary findings based on new stratigraphy as evidence 

to support the high-resolution initial 
187

Os/
188

Os (Osi) data produced during this PhD 

study, which infers a revision to the interpretation of the 
13

Corg isotope curve and the 

timing of the OAE 2 onset. As a result of the aforementioned complexities, Plint and 

Gröcke will publish the Osi data in a paper on completion of bio, litho- and 

chemostratigraphy analysis of the Bighorn River section. The analysis is included as 

an appendix here since the analysis was undertaken during this PhD study.  

  

2. Geological background 

The Highwood River section is located southwest of Calgary, Alberta, 

Canada; 50˚ 33’428 N, 114˚20’56 W (Appendix Fig. 1). The site was chosen for 

analysis because it was believed to represent a complete carbon record with well 

constrained stratigraphy, and a dated volcanic tuff horizon. The site consists of a 25 

m long section of the Cenomanian-Turonian Boundary Interval, composed of fine 

grained muddy-shale interbedded by less fine grain marly-siltstone. The primary 

feature of this section is a 43 cm tuff horizon, the Bighorn River Bentonite, which 

has a 
206

Pb/
238

U weighted-mean age of 94.29 ± 0.28 Ma, MSWD 2.4 (Barker et al., 

2011). The recently recalculated 
40

Ar/
39

Ar age of 94.11 ± 0.14 Ma (Singer et al., 

2009) is in agreement with the U-Pb age, within uncertainty, since the 
40

Ar/
39

Ar 

radiometric methods and the astrochronologically-calibrated age of 28.201 Ma for 

the Fish Canyon sanidine standard (Kuiper et al., 2008) were used to reduce the 

discrepancy between 
40

Ar/
39

Ar and U-Pb results. The bentonite has been mapped 

extensively from the Southern Alberta Foothills and with no other large regional 

bentonite present the tuff may be time correlative with the B bentonite of the basal 

Turonian GSSP Pueblo Rock Canyon (Sageman et al., 2006; Barker et al., 2011). 
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The B bentonite has a 
206

Pb/
238

U age of 94.01 ± 0.14 Ma and 
40

Ar/
39

Ar age of 94.10 

± 0.27 Ma (Meyers et al., 2012). The 
13

Corg record expresses a ~1.5‰ positive 

excursion interpreted to represent the marker horizon of the onset of OAE2, which is 

coincident with the Bighorn River tuff. Therefore the correlation is currently based 

on carbon stratigraphy and U-Pb dating of the bentonites within uncertainty.  

Highwood river section was deposited from the Western Interior Seaway 

(WIS). In the west of the WIS the deposits are consistent with clay-rich alluvial and 

near shore facies, grading eastwards in to shallow water marine siltstones and 

claystones. The stratigraphic architecture reflects a transgressive-regressive 

sequence, where transgressive surfaces mark the upper and lower extents of these 

packages (Barker et al., 2011). There is evidence of consistent sea level rise 

preserved in depositional sequences; rusty-weathering pyritic siltstone/sandstone and 

mudstone shelf facies to finely laminated grey weathering/ calcareous siltstones and 

claystones. Biostratigraphic observations confirm body and trace fossils as typically 

marine and fluctuations in fossil abundance suggests intermittent periods of higher 

benthic oxygenation (Tsujita, 1998). 
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Appendix Figure 1 Palaeogeographic map of the late Cretaceous. Shows the location of 

the Highwood river section (HWR) in the northern region of the Western Interior Seaway. 

 

3. Results 

3.1.  Osi profile Highwood River 

 Highwood River records high radiogenic Osi values (1.1-1.3) from 50.7 – 

58.2 m (Appendix Fig. 2; Appendix Table 1). The radiogenic values are relatively 

homogeneous and have more radiogenic Osi values than other analysed sections 

(Chapter 2 and 3; Du Vivier et al., 2014). The sudden unradiogenic trend at 58.2 m 

goes from 1.2 to 0.32 within 40 cm. The unradiogenic Osi values fluctuate between 

0.31 and 0.56 up to 61 m. At this point the Osi values instantaneously return to 

radiogenic values (1.06) by ~62 m. The δ
13

Corg remains depleted (~ -26‰) during the 

trend to unradiogenic Osi values (Appendix Fig. 2; Appendix Table 2).  

The ~1.5‰ positive excursion in the δ
13

Corg, which is characteristic with the 

onset of OAE2, coincides with the return to radiogenic Osi values, at ~61.5 m 

(Appendix Fig. 2). The overall trend of the Osi profile is agreeable with other basins. 

However, the relationship between the δ
13

Corg and the Osi excursions do not correlate 
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as elsewhere, i.e., Portland (Appendix Fig. 2; Du Vivier et al., 2014; Chapters 2, 3, 

this thesis).  

 

Appendix Figure 2. Osi data (red) with δ
13

Corg (black and grey) vs. stratigraphic height 

(m). The blue lines ‘A’, ‘B’ and ‘C’ are the correlative datum levels, defined by Pratt et al. 

(1985) and Tsikos et al. (2004). ‘A’ marks the onset of OAE 2 in Portland, which does not 

correlate with Highwood River based on Osi isotope stratigraphy combined with the δ
13

Corg. 

‘B’ is also uncertain, however ‘C’ is hypothesised. 

 

4. Discussion 

The high-resolution Osi profile generated for Highwood River highlights 

issues of correlation, of which there are two significant differences between the WIS 

sections. Firstly, the unradiogenic trend in the Osi values at Highwood River is ~4 m 

below the positive excursion in the δ
13

Corg, whereas in the Portland core the 

unradiogenic Os trend is synchronous with the positive excursion in the δ
13

Corg 

record (Appendix Fig. 2). Secondly, the trend in Osi values return to radiogenic Os is 
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abrupt relative to the gradual trend at the Portland core and coincides with the 

positive excursion in the δ
13

Corg (Appendix Fig. 2).  

Based on Osi work to date the unradiogenic trend in the Osi data is interpreted 

to represent the marker horizon of the onset of OAE 2 (Du Vivier et al., 2014; 

Chapters 2, 3, this thesis) but in the Highwood River section the onset of OAE 2 is 

determined by the positive excursion in the δ
13

Corg, which coincides with the 

volcanic tuff horizon, 94.29 ± 0.28 Ma (Barker et al., 2011).  However, since the 

original interpretation of the positive excursion in δ
13

Corg record and the single grain 

U-Pb analysis (Barker et al., 2011), further geochronological analysis of the WIS 

yields a revised age control for the CTB interval (Meyers et al., 2012; Du Vivier et 

al., 2014).  

The Portland core derives the age of the onset of OAE 2 at ~94.38 ± 0.15 Ma 

(Meyers et al., 2012; Du Vivier et al., 2014; Chapter 2, this thesis), which is ~100 

kyr older than the excursion in the δ
13

Corg record and the dated Bighorn bentonite, 

94.29 ± 0.28 Ma (Barker et al., 2011). Preliminary findings from the stratigraphy at 

the Bighorn River section (Plint and Gröcke) infer that the tuff was deposited on an 

erosional flooding surface, which is indicative of a hiatus. A hiatus would explain the 

abrupt trend to radiogenic values in the Osi profile, and a dramatic artificial 

excursion in the δ
13

Corg record. Therefore by inference ~100 kyr of stratigraphy is 

missing from Highwood River, which is accounted for in preliminary evaluation of 

the Bighorn River section (Plint pers comm.). Consequently the Osi profile and 

geochronology combined with new stratigraphy imply that the onset of OAE 2 in 

Highwood River is revised.  
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5. Conclusions and future work 

The positive excursion interpreted as the onset of OAE 2 is tenable with the 

other sections based on δ
13

Corg data alone. However, based on preliminary findings 

from further stratigraphic examination combined with osmium isotope analysis and a 

revised age control of the WIS, the previously identified onset according to δ
13

Corg is 

interpreted to represent a hiatus in the Highwood River section. Therefore, the onset 

of the OAE 2 is synchronous with the trend to unradiogenic Osi values, which is 

consistent with the global hypothesis as discussed in this thesis (Chapters 2 and 3). 

The analysis presented here will be published in due course, alongside δ
13

Corg 

data gathered from multiple sites throughout the Albertan WIS (including the 

aforementioned Bighorn River section). The evaluation of the Osi profile presented 

here is not presented in Chapter 2 since the interpretation of the Osi profile is based 

on the assessment of bio- and lithostratigraphy and δ
13

Corg data from other Albertan 

OAE 2 sections. Currently, without the publication of these data I am unable to 

justify the discussion and hypothesised revision above. 
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