
Durham E-Theses

Adaptive Parameter Estimation of Power System

Dynamic Models Using Modal Information

GUO, SONG

How to cite:

GUO, SONG (2014) Adaptive Parameter Estimation of Power System Dynamic Models Using Modal

Information, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/10576/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/10576/
 http://etheses.dur.ac.uk/10576/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


 

 

Abstract 

Knowledge of the parameter values of the dynamic generator models is of paramount importance 

for creating accurate models for power system dynamics studies. Traditionally, power systems 

consists of a relatively limited numbers of large power stations and the values of generator 

parameters were provided by manufacturers and validated by utilities. Recently however, with the 

increasing penetration of distributed generation, the accuracy of these models and parameters 

cannot be guaranteed. 

This thesis addresses the above concerns by developing a methodology to estimate the parameter 

values of a power system dynamic model online, employing dynamic system modes, i.e. modal 

frequencies and damping. The dynamic modes are extracted from real-time measurements. 

The aim of the proposed methodology is to minimise the differences between the observed and 

modelled modes of oscillation. It should be emphasised that the proposed methodology does not 

aim to develop the dynamic model itself but rather modify its parameter using WAMS 

measurements. The developed methodology is general and can be used to identify any generator 

parameters., However, thesis concentrates on the estimation of generator inertia constants. 

The results suggest that the proposed methodology can estimate inertias and replicate the dynamic 

behaviour of the power system accurately, through the inclusion of pseudo-measurements in the 

optimisation process. The pseudo-measurements not only improves the accuracy of the parameter 

estimation but also the robustness of it. Observability, a problem when there are fewer numbers of 

measurements than the numbers of parameters to be estimated, has also been successfully tackled. 

It has been shown that the damping measurements do not influence the accuracy and robustness of 

generator inertia estimation significantly. 
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Chapter 1 Introduction 

1.1 Motivation 

The management of power system stability has been extremely challenging due to significant 

changes in power system dynamic behaviours, especially power system oscillations. Power system 

oscillations were detected as soon as synchronous generators were interconnected to provide more 

power capacity. In conventional power systems, the synchronous generators were located closely to 

each other and amortiseur windings were applied to generator rotor to prevent the increase of 

oscillation amplitudes. The amortisuer windings provide a torque which is proportional to the rotor 

speed. In normal condition the rotor speed should match the synchronous speed. However if these 

two speed deviates the amortisuer winding can absorb the associated energy, thus reduce the 

oscillation amplitudes. 

Recently, a number of issues have been identified that can change the power system dynamics 

properties, thus cause severe stability problems which may result in large area blackout. The 

changes can be due to the change in political policy, commercial strategies, current technology and 

existing infrastructure capabilities.  

 The liberation of electricity energy market: The market determines the operation status of 

generators. It can push the system to a great many operational status. Due to the 

deregulation of the electricity market, the amount of power delivered becomes 

unpredictable. The bulk power transfer over long distances has been increased. 

 Large power system interconnection: The expansion of synchronous areas can change the 

dynamic properties. For example, a growing number of oscillation modes have been 

observed in the UK power system after the connection with Scandinavian and continental 

European power systems.  
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 Integration of renewable generation: Different generation devices have different dynamic 

response. Policies have been issued to restrict the global carbon emission to promote the 

uptake of renewable generation, , to replace conventional carbon intensive generation.  

 Existing electricity delivery infrastructure: Increasing electricity demand pushes the existing 

power system to operate closer to its limits. The tie line connecting two distant areas are 

normally heavily loaded, which increases potential risks. 

 Plant-Grid separation: Due to commercial reasons, limited information is shared between 

parties. Dynamic testing and control tuning are restricted. 

 Improper control tuning and system islanding: Improper control tuning can deteriorate 

existing oscillations. System islanding method is considered as an innovative approach in 

preventing further spread of wide area blackouts. However, the existing algorithms are 

based on historic system model that is an inaccurate representation of the current system.  

 Increase penetration of distributed generation: the model accuracy and parameters cannot 

be guaranteed. This raises the need for a methodology that can estimate the parameters of 

generators utilising on-line measurements.  

Measurement-based techniques have been implemented to diagnose problems related to 

oscillatory stability. These techniques aim to detect the location of the sources through poorly 

damped oscillatory modes. Through the usage of statistics, plants or network bottlenecks that 

degrade the oscillatory stability. This approach can be restricted due to the limited number of 

measuring devices in the network. If there are sources outside the observed network that 

degrades the stability, it can be very difficult to diagnose. Model-based methods are powerful. 

They help us understand the underlying conditions and assist the design of damping controllers. 

However, they are not always reliable. This thesis inspects possible model update schemes that 

can reconstruct near-real-time dynamic network models whilst retaining the network topology. 

The concept under investigation is to combine both model and measurement based methods to 



3 

 

create a linear dynamic model from noisy phasor measurements. The concept could be applied 

to update internal, external network models and generator parameters used by system 

operators. The ability to derive a near-real-time dynamic model that adapts to observed system 

conditions is thought to be a valuable addition to the management of system dynamics with 

large interconnection. This would provide a wider view of the system stability for the operators, 

and enable them to conduct Dynamic Security Assessment (DSA). The estimated parameters can 

also be useful for modelling or design purposes. 

1.2 Research Objectives 

The research objectives of this thesis focus on the follows: 

 Introduce the ‘model update’ concept into power system engineering. The concept aim to 

estimate generator parameters in near-real-time base, and thus to update generator models. 

 Develop the theory of model update technique. The update of generator inertia constants 

are used as an example to demonstrate the proposed methodology. However, the 

methodology is general and can be used to identify other generator parameters. 

 Implement known sensitivity analysis technique for mode selection 

 Investigate and evaluate different methods that could be used in model update scheme. 

 Demonstrate the application of model update scheme using simulation studies. 

 Execute comparative studies on different methods in model update scheme and outline 

their advantages and disadvantages. 

 Draw conclusions and suggest future research. 

1.3 Contributions 

The contributions of this thesis are summarised as follows: 
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 The introduction of a novel concept, ‘model update’ to improve the management of power 

system stability. The concept is based on the application WAM which is captured by Phasor 

Measurement Units (PMUs) placed in different locations of the grid. 

 The sensitivity analysis technique assist the selection of oscillatory modes.  

 Several novel algorithms have been developed to update the parameters of power system 

dynamic models in near-real-time, using minimum system information, such as modal 

frequency and modal damping. These algorithms also present possible state estimation 

approaches to circumvent the problems of  lack of measurements. 

 The methodology presents a new way for the condition monitoring of a wider network. 

Model update schemes developed based on sensitivity analysis and model update 

algorithms can help to achieve more accurate power system models.  

 External dynamic equivalents derived by model update scheme provides TSOs a whole 

picture of the system condition during normal operation and/or fault.  

 The proposed method can be applied to model validation for network operators. 

1.4 Outline 

This thesis is organised as follows. Chapter 2 will introduce the background knowledge of power 

system dynamics and stability. The phenomena of power system oscillations will also be addressed. 

The modelling of synchronous generators and multi-machine system will also be included in this 

chapter. Chapter 3 introduces the techniques used for power system extraction. The two most 

commonly used methods are ringdown methods and ambient-signal methods. Dynamic equivalent 

methods are extensively discussed in Chapter 4. Conventional model reduction methods and 

measurement-based methods will be discussed within this chapter. Chapter 5 will describe the 

concept of ‘model update’. Two simulation models are used to demonstrate the methodology. In 

chapter 6, the methods that depend on modal measurements will be discussed, and simulation tests 

are executed for different scenarios. Methods in Chapter 7 include pseudo-measurements along 
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with modal measurement. Conclusions and future work are presented in Chapter 8 and Chapter 9 

respectively. 

  



6 

 

Chapter 2 Background  

2.1 Power System Dynamics 

Power system dynamics can be classified into four time dependent groups. These are shown in 

Figure 2.1 [1], 

 

Figure 2. 1 classification of power system dynamics based on time frame [1] 

The electromechanical phenomena  has high relevance to power system oscillations is the prime 

concern in this thesis. 

2.2 Power System Stability 

Power system can be defined as a set of first-order nonlinear ordinary differential equations, 

                    (2. 1) 

                   (2. 2) 

where   indicates system states and   is input variables. 

A general nonlinear system is stable in certain state space regions and unstable in others. Stability 

issues can be addressed as equilibrium points using Lyapunov theory reproduced in Figure 2.2. The 

origin of the state space is always at an equilibrium point, however multiple equilibrium points can 

exist. 
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 Stable: The origin is considered as a stable equilibrium point if for any given value     

there exists a scalar           such that if          , then the resultant motion 

satisfies          for any     . 

 Asymptotically Stable: The origin is considered as an asymptotically stable equilibrium point 

if it is stable and there exists a scalar         such that           the resultant motion 

satisfies          as    . 

 

Figure 2. 2 definition for stability of nonlinear system in sense of Lyapunov [1] 

Power system stability is the ability to regain an equilibrium point after subjected to a disturbance. 

For different stability study purposes, power system can be described differently by modelling 

corresponding variables. Classification of power system stability was produced in CIGRE Report No. 

325 as shown in Figure 2.3. 

 

Figure 2. 3 classification of power system stability [2] 



8 

 

Due to nonlinear characteristics of power system, rotor angle stability and voltage stability can be 

further divided into two groups dependent on the size of disturbance. Rotor angle stability with 

small disturbance is the main concern of this research. 

2.3 Stability Analysis Methods 

Regarding to the size of a signal, the input signals to power systems are mainly recognised as small 

signal and ring-down signal. 

 Constant perturbations are identified in power operation. These perturbations are mainly 

caused by random load variation and named small signal. During small signal perturbations, 

the system state stays around its original equilibrium points. The advantage of using small 

signal stability analysis is that the system studies can be executed online near real time.  

 Ring-down signal is introduced to the system when a fault occurs. It pushes the system state 

from its origin to another equilibrium point. 

2.4 System Linearisation and Modal Analysis 

2.4.1 System Linearisation 

Nonlinear system can be linearised at an equilibrium point under small disturbance, which can 

dramatically reduce numerical computation burden and reveal the system nature in a linear form. 

The linear model can be represented in state space form, 

                (2. 3) 

               (2. 4) 

In Equation (2.3) and (2.4),       and   are the matrices of derivatives of functions     with 

respect to   and  .   is the state matrix;   is the input matrix;   is the output matrix;   is the 

feedforward matrix. 
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2.4.2 Modal Analysis 

Matrix   which indicates state matrix plays an important role in system modal analysis. The 

eigenvalues of the state matrix   determines the stability characteristics of a system and any 

eigenvalue   must satisfy, 

          (2. 5) 

where the non-zero column   is referred to as the right eigenvector regarding to  . 

(2. 5) can be rewritten as, 

                         (2. 6) 

A full expression is derived as, 

          (2. 7) 

               is a square matrix whose columns are the right eigenvectors of state matrix  . 

It indicates the relative activity of the state variables when a particular mode is excited, and thus is 

called mode shapes [3]. Right eigenvectors are not unique and may be scaled by a factor. The 

eigenvectors correspond to eigenvalues as complex conjugate pairs should be the same after scaled 

one by the selected factor. 

  is a diagonal matrix contains eigenvalues of state matrix  . 

   

     
     
    
     

      (2. 8) 

Pre-multiplying (2.7) by     gives, 

          (2. 9) 
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where        

  

  

 
  

  is also a square matrix whose rows are the left eigenvectors of  . 

An eigenvalue can be described in a general complex form, 

           (2. 10) 

The modal frequency is defined as below, 

  
 

  
      (2. 11) 

The modal damping is determined by the real part of the eigenvalue. A damping ratio definition is 

presented in (2.12), 

   
 

      
     (2. 12) 

The damping conditions of a mode can be classified in terms of the damping ratio  , 

 Undamped: When    , the mode response displays as    . 

 Underdamped: When    , the mode response decays exponentially with oscillation, as 

        
. 

 Overdamped: When    , the response decays exponentially without oscillsation. 

 Critical damped: When    , this is the border between overdamped and underdamped. 

The stability of the linear system is determined by the real part of the eigenvalue. It is interpreted by 

Lyapunov as: 

 Stable:    , for all modes 

 Asymptotically stable:    , for all modes 

For a linear system, asymptotic stability is independent of initial conditions, and if a linear system is 

asymptotically stable, it is globally asymptotically stable.  
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2.5 Synchronous Generator Models 

Synchronous generator models have been comprehensively illustrated in [1] and [4]. Generally, 

synchronous generator models are categorised as low-order and high-order synchronous generator 

models. Classical model and sixth-order model are briefly introduced in this section. 

2.5.1 Classical Model 

Classical synchronous generator model is derived from the swing equation, 

               (2. 13) 

           (2. 14) 

where    is the rotor speed deviation, 

  is the rotor angle, 

     which is the generator inertia constant, 

   is the mechanical power input to the generator inertia, 

   is the electrical power output from the generator, 

  is the damping coefficient. 

Single-machine infinite bus system shown in Figure 2.4, can be rewritten in the form of state space, 

   

   
   

   

 
 

 
 

 

 

  
 

  
     (2. 15) 

where         is rated speed in electrical rad/s,  

The eigenvalues of the state matrix in (2.15) were derived [1], 

      
 

  
   

 

 
  

 

  
      (2. 16) 
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Thus the real part and imaginary part can be represented as, 

   
 

  
 ,    

 

 
  

 

  
      (2. 17) 

   is the synchronising torque coefficient given by, 

  
   

  
          (2. 18) 

  and    are generator end voltage and infinite bus voltage respectively;    is the line reactance;    

is the voltage angle difference between generator bus and infinite bus. 

The natural undamped frequency is 

     
  

 
     (2. 19) 

and the damping ratio is 

  
 

      
     (2. 20) 

From (2.19) and (2.20), it can be seen that as   increases, the natural frequency increases whilst the 

damping ratio decreases. The damping ratio increases due to the increase of damping coefficient. An 

increase in inertia constant decreases both natural frequency and damping ratio. 

 

Figure 2. 4 Single-machine infinite bus system 

 

2.5.2 Sixth-Order Model 

The sixth-order model in state space form is given, 

           (2. 21) 
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where           
    

    
     

   
 

, and state matrix, 

  

 
 
 
 
 
 
 
 

       

 
  

 
 

 

 
          

         
             

          
  

  
        

         
              

         
   

  
         

 
 
 
 
 
 
 

   (2. 22) 

The notations in the above matrix are defined as, 

        
       

    

  
                (2. 23) 

        
       

    

  
                (2. 24) 

        
        

     

  
                 (2. 25) 

        
        

     

  
                 (2. 26) 

           

   
             (2. 27) 

         
       

    

   
      (2. 28) 

         
       

    

   
       (2. 29) 

         
         

     

   
          (2. 30) 

          
        

     

   
      (2. 31) 

           

   
             (2. 32) 

         
       

    

   
      (2. 33) 

         
       

    

   
       (2. 34) 

         
        

     

   
      (2. 35) 

          
   

  
    

     

   
                (2. 36) 

where   
  and   

  are transient emfs behind the transient reactances   
  and   

 ; 
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   and   

   are subtransient emfs behind the transient reactances   
   and   

  ; 

  and   are current in q-axis and d-axis armature circuit; 

   
  is the q-axis transient open-circuit time constant; 

   
  is the d-axis transient open-circuit time constant; 

   
   is the q-axis subtransient open-circuit time constant; 

   
   is the d-axis subtransient open-circuit time constant. 

2.6 Multi-Machine Power System Models 

Based on (2.15), a multi-machine system is presented in (2.37) using classical synchronous generator 

model, 

 
 
 
 
 
 
 
 
 

  
 

    
 
  
 

   
 

 
  

 

     
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

         

 
   

  
 

  

  
  

   

  
   

   

  
 

        
         

 
   

  
   

   

  
 

  

  
  

   

  
 

        
         

 
   

  
   

   

  
   

   

  
 

  

   
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  

   

 
  

   

 
  

    
 
 
 
 
 
 
 

  (2. 37) 

The multi-machine system can be also represented by sixth-order generator model, but this will not 

be presented within this thesis. 

2.7 Power System Oscillations 

The oscillatory modes can be classified by frequency ranges and oscillation source [3].  

 Inter-area modes: 0.1-0.7 Hz. A group of generators located in different coherent area are 

involved. 
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 Local modes: 0.7-2.0 Hz. One or more generators located in the same coherent area are 

involved. 

 Control modes: 0.1- 50Hz. This mode is caused by control devices, such as speed governor, 

AVR, HVDC converters, SVC and etc.. 

Inter-area modes are of particular concern, since they indicate that oscillations are not caused by 

high loading of a particular generator or generators, but a certain power flow pattern in tie-lines 

connecting two areas [3]. Factors that can influence inter-area oscillations are discussed extensively 

in [5] and categorised as: 

 System structure 

 Operation conditions 

 Excitation systems 

 System loads 

 DC links 

2.8 Power System Dynamics Analysis 

Generally, power system analysis methods include model-based methods and measurement-based 

methods.  

2.8.1 Measurement-Based Methods 

The measurement-based methods are prevailing after WAMS are widely installed in power systems. 

The main advantage of these methods are no prior information is required on the power system and 

all analysis are based on the measurements gathered by the WAMS. Neglecting the system model, 

measurement-based methods focus on first-hand information captured by the measuring devices, 

and implements signal processing techniques and intelligent identification to detect the sources of 

problems. However, these methods give rise to a number of problems: 
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 System physics is not provided. Rather than detecting problems through investigating 

physical systems, these methods analyse system conditions directly through sensor data. 

 Accurate data measurement are required. Large measurement errors restrict decision 

making. Cyber attacks may also reduce the reliability of using measurement-based methods. 

 A large amount of data is needed for statistical analysis. However, in practice, the lack of 

system information is common. 

 Full system condition cannot be described by incomplete system data.  

2.8.2 Model-Based Methods 

Model-based methods aim to reveal the system's natural characteristics though the construction of 

an equivalent model. As interconnection of large modern power systems increases, it becomes very 

time-consuming to model each individual electrical element. Computer programs have been 

developed to aid the research on large power systems. However, difficulties still exist in 

computational analysis due to the complexity of system.  

Power system model equivalencing methods are widely used to approximate unknown network 

models. The necessity to construct equivalent large interconnected power systems has been 

extensively explained in [1]. As a mature technique, the methodology of dynamic equivalencing has 

been comprehensively discussed in [1] and [4]. To derive power system dynamic equivalents, 

generally, methods can be classified into two categories: 

 Modal-based dynamic equivalents: This method derives external network equivalents using 

modal analysis. 

 Coherency-based dynamic equivalents:  Dynamic aggregation of generator components, 

control devices and buses is proposed in this method by using transient stability analysis. 

The limitation of conventional model-based approaches are as follows: 
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 Model validation is required -Parameter tuning is compulsory based on off-line analysis, 

which means real-time and/or near-real-time analysis for online studies cannot be 

conducted. 

 Rather than small signal analysis, equivalents are developed for transient analysis. These can 

be only developed when a large disturbance is applied to excite certain modes in the system. 

 Detailed and accurate prior knowledge on modal data and rotor angle is essential for 

coherency-based equivalencing -This prior knowledge may be out of date and cannot 

represent current system configuration. 

 Equal or nearly equal eigenvalues are not cannot be differentiated in conventional modal-

based methods [6]. 

 Simplified model equivalents are produced -As a consequence of simplicity, problems 

associated with real complex power system may not be detected. 

2.9 Conclusions and Discussions 

This chapter introduced the fundamental definitions of power system dynamics, stability and 

modelling. Measurement-based and model-based techniques are well established for power system 

analysis and stability management. However, the existing techniques have significant limits in 

dealing with practical problems. 

This thesis aims to investigate a novel method which can circumvent the proposed difficulties and is 

more practically applicable.  
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Chapter 3 Power Dynamics Extraction 

3.1 Introduction 

Power system oscillations are observed relatively easily through the measurement of power flow, 

voltage angles and system frequency within certain time frame, using existing measuring devices. 

However, oscillatory modes information such as modal frequencies, damping and mode shapes 

cannot be captured directly. These information are of paramount importance to indicate power 

system stress [7]. Modal data thus provides critical information to make control decisions and 

operate power systems.  

Power Dynamics Extraction (PDX) techniques were developed to extract information on the power 

system oscillations through the use of real-time or field test measurements. Typical measurement 

data can be divided into three types [8], ringdown algorithms, ambient-signal algorithms and 

probing-signal algorithms. It should be noted that the former two are the most commonly used 

methods. Probing-signal is difficult to generate. Experiments have designed to achieve useful 

measurements to estimate using the probing-signal method. [9] and [10] described the two methods 

which utilises probing signal for the mode estimation. Both ringdown approaches and ambient-signal 

approaches will be discussed later in this chapter due to the lack of feasibility of practical application. 

3.2 Ringdown Techniques 

Ringdown techniques utilises ringdown signals generated from large system disturbance. These 

techniques are normally performed to estimate modal data after a system event when ringdown 

signal is available. However, it does not provide the feasibility to conduct continuous modal 

estimation. 
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3.2.1 Prony Method 

Prony method [11-15] is a technique widely used to extract modal information directly from a given 

signal. It was developed centuries ago, but the practical use occurred with the birth of digital 

computer. It has been employed to estimate the modal information of power system oscillations 

from ringdown signals. It aims to fit a linear combination of exponential terms to a measured signal 

which consists of equally spaced samples. For a signal with   evenly spaced samples, Prony method 

fits a function shown in (3.1) to the observed signal      in a least squares sense [16]. This method 

allows the identification of low order linear system [17, 18].  

         
    

        (3. 1) 

where    is the signal residue associated with the mode   , and   is the number of desired modes. 

(3.1) can be written in the discrete form if the signal   is sampled at a constant time period, 

          
  

        (3. 2) 

where is         represents the z-transform operator. 

(3.2) is then expanded as (3.3) for   data samples, 

 

    
    

 
      

   

    
       

    
  

     
      

   

  

  

  

 
  

    (3. 3) 

As a necessary condition,   satisfies (3.4), 

                              (3. 4) 

where               is a set of unknown coefficients, 

(3.5) can be achieved if a left vector,                           , is left multiplied to (3.3), 
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   (3. 5) 

Then, the set of unknown coefficients can be obtained by solving (3.5).    and   can also be 

determined by solving (3.4) and (3.3) respectively. 

Conventional Prony method is a signal identification approach that is not suitable for transfer 

functions estimation. Transfer functions are necessary for control design and mode shape estimation. 

Prony method is further extended to transfer function analysis [19-23]. The general idea is to extend 

Prony analysis by analysing multiple signals simultaneously to improve the accuracy of modal 

estimates.  

Other identification techniques similar to Prony method were also used in the estimation of modal 

content. Matrix Minimal Realisation (MMR) was employed to identify modal data in transient 

simulation [24, 25]. MMR method is very similar to Prony method. The Hankle matrix in MMR [24] is 

almost identical to the linear prediction matrix in Prony method [19]. [16] addressed the similarity 

between Eigenvalue Realisation Algorithm (ERA) [26]. 

3.2.2 Matrix Pencil Method 

Matrix Pencil (MP) method introduced in [27, 28] extracts modal data    from a given signal      is. 

The method defines two matrices, 
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        (3. 7) 

where   is the pencil parameter [29]. 
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   and    then can be rewritten as, 

             (3. 8) 

                (3. 9) 

where, 

   

 
 
 
 

    
       

    

  
       

  
       

   
       

 
 
 
 
   (3. 10) 

   

 
 
 
 
       

     

      
     

    

      
     

 
 
 
 
 

    (3. 11) 

                       (3. 12) 

                      (3. 13) 

The matrix pencil is defined as, 

                                                                     (3. 14) 

where   is identity matrix. 

 Matrix   contains the actual measured data with noise is defined in (3.15). The eigenvalues can be 

extracted from the roots of this matrix. Significant modes can be determined by applying Singular 

Value Decomposition (SVD) to  . The roots of (3.15) can then be found as the generalised 

eigenvalues of the matrix pair        . 

   

             
               

    
                     

                                   (3. 15) 

3.2.3 Hankel Total Least Square Method 

Hankel Total Least Square (HTLS) method is applied to extract modal data  [30]. The Hankel matrix is 

factorised by a noise-free signal as shown(3.2), 
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                   (3. 16) 

where   and   are Vandermone matrices defined in [30]. 

The following relationship can be found by applying SVD to the Hankel matrix, 

                (3. 17) 

where the superscript   denotes the operator, complex conjugate transpose. 

Total least square method is then utilised to solve for the eigenvalues. The same method is used to 

determine the residues    as that in Prony method. 

[30] also executed a comparison study between Prony method, MP method and HTLS method to 

estimate modal data. The simulation results indicated that all three methods had similar accuracy 

when estimating modal frequency, while MP and HTLS performed better at the identification of 

modal damping. 

3.3 Ambient-Signal Techniques 

Ambient-signal-based mode estimation can be carried out in both time domain and frequency 

domain. Time domain estimation methods operate directly on the data samples, while power 

spectral density has to be calculated for frequency domain estimation [7]. 

Estimation methods are divided into two categories in [7]: 

 Block processing methods:  

Block processing method estimates modes from data framed by a time window. The 

estimates are updated for each new window of data.  

 Recursive methods: 
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The recursive estimation methods are updated for every new sample of data. The new 

estimates are based on previous mode estimates and new data sample.  A forgetting factor 

is introduced to enable current data to have a greater weight than previous. 

3.3.1 Yule-Walker Method 

Yule-Walker (YW) method was first implemented in block processing [31] to estimate system modes 

using an Autoregressive (AR) model. An AR model is defined as, 

                                           (3. 18) 

Consider a lag of ‘ ’ by multiplying        to the two sides of (3.18), 

                            
 
                       (3. 19) 

The following can be achieved by taking the expectance of (3.19), 

                                
 
               (3. 20) 

Given in [31], the estimated autocorrelation matrix is, 

   

               
               

    
                 

             (3. 21) 

The estimated correlation vector is, 

                                    (3. 22) 

Thus, the relationship shown in (3.23) can be formed, 

                   (3. 23) 

where               
 

 

Defining, 

                                    (3. 24) 

After the roots of (3.24) has being determined, the modes can then be found. 

The Modified Yule-Walker (MYW) method was used to estimate an Autoregressive Moving Average 

(ARMA) model in [32]. In [33], YW was extended to multiple signals. 
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3.3.2 Subspace Method 

Subspace identification methods have also been implemented in online estimation of 

eletromechanical modes using ambient signals, such as Canonical Variate Algorithm (CVA) [34] and 

Subspace State Space System Identification (N4SID) [9].  

Subspace method is applied to a discrete stochastic state-space model as shown in (3.25) and (3.26), 

                  (3. 25) 

                (3. 26) 

where       is the discrete time state vector;    is the output vector;    and    are white noise. 

The method suggested the inclusion of the outputs in a Hankel matrix as two subspaces, ‘past’ and 

‘future’. The method aims to determine the state matrix   in (3.25) and thus the eigenvalues 

(modes). 

Based on subspace method, [35] the combined Two-Sided Arnoldi (TSA) method and Sensitive Pole 

Algorithm (SPA) can be used to evaluate sensitive eigenvalues in large power systems. The proposed 

TSA-SPA method aims to compute sensitive modes to control parameters. Rather than focusing on 

the whole complex plane, it reduces the computational burden considerably by only concentrating 

on a particular region of interest, providing more flexibility in stability analysis. 

A revised subspace method was proposed in [36]. The proposed method reduces the computation 

complexity through the introduction of reference channels into the conventional subspace method. 

Mode shapes can also be assessed along with modal frequencies and damping. 

3.3.3 Recursive Methods 

As stated, recursive methods implements both new data sample and previous estimation to 

calculate new estimates. The recursion method has been addressed in many publications for 

parameter estimation, and is commonly applied to modal data estimation. The advantages of 
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recursive methods is that it can include the prior knowledge of the unknown modes into the 

estimation, and the impacts of missing or inaccurate raw data can be reduced.  

[37] introduces a recursive Least-Mean Square (LMS) method to estimate electromechanical modes 

using real-time measured ambient signals. A whitening filter was developed based LMS method and 

the dominant modes of the whitening filter correspond to the dominant modes of the power system. 

The following relationship was established in [37]， 

                          (3. 27） 

                                                                         (3. 28） 

                                 (3. 29） 

where      is the filter output and      is the power system data;      is a vector contains time-

varying filter weights;       is the output of the white noise filter;   is the step-size parameter. 

Then,      was obtained from the LMS process, it can then be used to determine the modes of the 

input data     . 

A Robust Recursive Least Square (RRLS) is proposed in [38]. It was advocated that RRLS method can 

identify modes from both ambient signals and ringdown signals with outliers and missing data 

without noticeable degradation in performance. This method was then extended to Regularised 

Robust Recursive Least Squares (R3LS) [8] which was used to identify the Autoregressive Moving 

Average Exogenous (ARMAX) model.  

[39] developed a novel method for electromechanical mode identification. The concept uses an 

ARMAX model to represent a linearised power system model which is normally written in the form 

of state-space. The state-space was first converted to transfer function, and then to a multichannel 
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ARMAX. The ARMAX model characterises modes and mode shapes of the system. The Two-stage 

Least Squares method is used to demonstrate this concept in [39]. 

A significant improvement was made in [40] through the estimation of both modal data and their 

variance. The proposed Recursive Maximum Likelihood (RML) method was used due to the fact that 

it provides both the recursive estimates of the electromechanical modes and the covariance matrix 

of the polynomial coefficients of an AR model. The variance of the estimates is important as it 

provides a wider picture of the estimation results, thus estimates can be used in a better sense. 

Combined with recursion, a Recursive Adaptive Stochastic Subspace Identification (RASSI) method 

was developed in [41] to identify electromechanical modes using ambient data. This method 

originated from civil engineering, and have proved to be a powerful estimation method. In [41], it 

was shown that the proposed method provides an accurate estimates of electromechanical modes. 

The recursive version also enables real-time implementation.  

[42] presents a Recursive Least Squares algorithm based on the Inverse QR Decomposition (IQRD-

RLS) with an exact initialisation procedure. The method estimates electromechanical modes using 

ambient signals. It was also compared with LSM algorithm. Unlike LSM, IQRD-RLS method is 

independent of the selection of an initial weights vector through the addition of an exact 

initialisation procedure. 

3.3.4 Hilbert Transform Method 

[43-45] introduces modal identification techniques based on Hilbert Transform (HT) [46] and 

Empirical Mode Decomposition (EMD) [47]. The HT         of a signal      is defined as, 

        
 

  
      

 

 
 

    

   
  

 

  
 

 

 
 

      

 
  

 

  
   (3. 30) 
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The HT of      is the convolution of      with the signal     . It can be seen that HT is the response 

to      of a linear time-invariant filter having impulse response     . Further, the HT was properly 

defined as the Cauchy principle value of the integral in (3.31), 

        
 

 
         

    

   
  

   

  
 

 

  
    

   
  

     

   
    (3. 31) 

HT is normally combined with EMD (known as Hilbert-Huang transform) to identify modal content. 

For a given oscillatory signal     , EMD technique decomposes the time series into Intrinsic Mode 

Function components using temporal and structural characteristics of the data [44]. The 

decomposition is shown in (3.32), 

                  
       (3. 32) 

where   is the number of IMF components, and       is the residue of the signal. 

[48] presents a method based on EMD and Orthogonal Decomposition (OD) to extract dynamic 

information from Wide-Area Measurements (WAM). The technique valuably contributes to the 

determination of phase relationships between dominant modes and the identification of dynamic 

trends. 

Signals captured by Wide Area Measurement Systems (WAMS) is processed by Hilbert domain 

analysis. Comparison with Prony method was made in [49]. It was found that the two methods 

generates a similar accuracy. Since Prony method assumes a stationary signal, whereas the Hilbert 

Transform and EMD are able to identify non-stationary and nonlinear signal. It was suggested that 

the two methods could be used in a complementary fashion [49]. 

3.4 Other Methods 

[50] introduces an offline method, Associate Hermite Expansion (AHE) method. It allows the 

estimation of  oscillatory system performance by fitting an orthogonal polynomial expansion to 
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ringdown data. The spectrum of the data was extrapolated for the identification of the 

electromechanical modes. A sliding window technique combined with a linear prediction algorithm 

was developed to assess the damping of each mode. The method was then compared against the 

least square Prony method and the YW method. From the simulation results, it can be seen that the 

performance of the three methods under single-mode test condition are similar. However, AHE 

method and Prony method displayed high precision in mode estimation under multiple-mode test 

condition. AHE method also has superior performance in the presence of white noise. [51] also 

examined the performance of five mode estimators, including Prony method, YW method, Fast 

Fourier Transform (FFT) method, HT method and AHE method under identical test conditions. The 

results showed that Prony method has great advantages in resolving modal frequency, which is hard 

to be accomplished by using the other methods. With the presence of white noise, the AHE method 

performs much better than the other estimation methods in low signal-to-noise relationship (SNR). 

It should be noted that HT, FFT and YW have relatively stable performance when SNR varies, whilst 

the performance of the Prony method becomes less robust due to moving SNR. 

3.5 Conclusions 

In this chapter, two types of techniques were introduced, ringdown signal techniques and ambient-

signal techniques. The former identify electromechanical modes based on measured ringdown 

signals during a system event, while the latter can extract modal information continuously from real-

time online measurements. Prony analysis is most representative and commonly used method 

among ringdown techniques. Many new techniques uses ringdown signals based on Prony analysis. 

Various approaches have been developed using ambient-signals in both time-domain and frequency 

domain. In some comparison studies, recursive methods shows its advantages on fast converging 

and estimation accuracy.  
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Chapter 4 Dynamic Equivalent 

4.1 Introduction 

Normally, with accurate internal network information, greater interests lie upon understanding the 

external network. The internal network is defined as the network modelled in detail, whilst the 

external network is represented by a simplified model. This is due to the fact that the information of 

external network is very limited. Thus, modelling external network in great details is not feasible. 

There is a wide diversity in external network representation [52]. Two main types of methods to 

derive external network equivalents are introduced in [1], model reduction methods and 

measurement-based methods. Recently, Artificial Intelligence (AI) techniques, such as Generic 

Algorithm (GA) and Neural Networks (NN) were also introduced to solve identification problems. 

Model reduction methods require prior knowledge of the system. These methods are usually applied 

in offline studies. One of the drawbacks of the equivalent model which is derived from these 

methods is that the real-time system dynamic characteristics under various operational conditions 

cannot be revealed. Thus, the equivalent is a static model.  

Today, online Dynamic Security Assessment (DSA) becomes more prevalent in utility control centres 

[52]. DSA on modern power systems is required to be real time or near-real-time, thus dynamic 

equivalents are highly desirable to meet such requirement. 

4.2 Model Reduction Methods 

Conventionally, mathematical modelling of dynamic equivalents of large electrical power system was 

widely adopted in power system analysis, especially for stability purposes. Modal-based methods 

and aggregation methods are the two means to produce valid static equivalents. The target of 

modal-based methods is to derive an equivalent that can reflect the modes of interest. Aggregation 

methods, also known as coherency-based methods, aim to eliminate or aggregate model nodes to 

reduce the size of the model. The foundation of model reduction methods are discussed 
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comprehensively in [1, 53]. The methods were highly dependent on existing constituent system 

parameters which may be out of date. 

Three types of power system simulation equivalents were mentioned in [54] for different study 

purposes. High-frequency equivalents (HFE) were derived to simulate high-frequency transients, 

such as lightning, switching overvoltage and the effects of power electronics devices on power 

system behaviour. In HFE models, the generators in the external network are modelled as power 

frequency voltage sources which eliminate low-frequency behaviour from the model. Low-frequency 

equivalents (LFE) are developed for low-frequency electromechanical oscillation studies. In LFE, the 

generators can be modelled without stator winding transients and the transmission lines can be 

modelled as constant impedances. Wideband Equivalents (WE) are designed for investigating 

subsynchronous oscillations. In WE, turbine-generator dynamics and network transients must be 

modelled properly.  

4.2.1 Modal-based Method 

[55] and [6] specified the technical details to model dynamic equivalents using modal-based dynamic 

equivalents approach. The dynamic equivalents are achieved by neglecting the fast decaying and 

high frequency eigenvalues from the diagonalised linear external network model. In this approach, a 

large interconnected power system is divided into three parts, shown in Figure 4.1. The surroundings 

of the internal network are named as external network which is the key part for an equivalent model. 

Beyond the external network, the remainder is represented by a few equivalent generators with 

highly simplified model. 

 

Figure 4. 1 Network separation for eigenvalue-based method 
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This approach focused on constructing an electro-mechanical equivalent through eigenvalue analysis 

method. The steps are: 

1) Describe the external system by high-order nonlinear differential equations. 

2) Conduct linearization to nonlinear external network model. 

3) Diagonalise the linearised system model 

4) Neglect the fast decaying and high frequency modes. 

The method was tested on the Northeast Power Coordinating Council (NPCC) system [56]. It was also 

addressed in [56] that the reference machine in the external network for the linearization process 

must be chosen properly. 

Selective Modal Analysis (SMA) offers a systematic framework to understand, simplify and analyse 

complex linear time-invariant models of a dynamic system [57, 58]. The SMA demonstrates a linear 

system reduction approach based on selected modes. The reduced order model can adequately 

reflect the selected modes. The steps for SMA are summarised as, 

1) Separate the states associated with the selected modes from the least relevant states. The 

state space form of a linear system in (2.21) can be rewritten as, 

 
  
  
   

      

      
  

 
 
       (4. 1) 

where   are the relevant states and   are the irrelevant states.  

2) A transformation matrix needs to be determined at this step to reflect the changes of 

neglecting irrelevant states. 

It was advocated that the reduced model could always retain the physical properties of the 

selected modes. SMA was also proved to be an effective approach to the control design of 

moderate size system [59]. 
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4.2.2 Coherency-Based Method 

Coherency-based methods are well established methods widely used in power system studies to 

model external equivalents [60, 61]. This method is based on coherency of swinging generators [1, 

62-65]. The identification of coherency has been extensively illustrated in the literature. The 

procedures are: 

1) Identify coherent groups 

2) Aggregate generator terminal buses and eliminate load buses. 

3) Aggregate coherent generator models and controls. 

The dynamic aggregation includes the following, 

 Equivalent bus: The generators in the same coherent group are connected to an equivalent 

bus through transformers that can match their terminal voltages and angles with those of 

the equivalent bus. The transformer ratio is complex and can be defined as, 

   
  

  
      (4. 2) 

Where    and    are the voltage phasors of the generator and the equivalent bus 

respectively. The equivalent bus voltage is chosen from the voltage of any individual bus or 

the average values of the coherent group in [4]. 

 Generating units: The aggregation of rotor dynamics is based on the identical speed of 

generators in the same coherent group. It can be represented as, 

                           (4. 3) 

It should be noted that the MVA and kV bases should be the same for each machine. 

The aggregation of the equivalent’s transient reactance and time constant are clearly 

defined in [66]. 

 Turbine governor: The equations of turbine governors in a coherent group is represented as, 

                      (4. 4) 
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Then, the aggregated equation can be written as, 

                               (4. 5) 

Least-square-error curve-fitting technique is used to identify unknown parameters in [4]. 

 Excitation systems: Similar technique is applied to aggregate excitation systems. The 

excitation system of individual machine can be represented as, 

                       (4. 6) 

Thus, the equivalent transfer function is thus written as, 

           
    

      
                  (4. 7) 

where        represents the transfer function of the excitation system of each machine, 

      is  the transfer function of the excitation system of the equivalent, 

      is the field voltage of each machine, 

     is the equivalent field voltage, 

       is the equivalent terminal voltage, 

Weighting factor       is introduced in [63]. 

It is noted that the high wind energy penetration has significantly impacted on the dynamic 

properties of the power system. Coherency-based methods are also widely implemented in the 

aggregation of large scale wind farms. The study of the effects are normally performed by the 

aggregation of individual wind generator in a large wind farm. Aggregation of a wind farm into one 

or more wind generators is a prevailing technique. [67] compares the representation of a single and 

multiple wind generator through transient stability analysis. [68-71] specifies the methods of wind 

farms aggregation with fixed-speed wind turbines. It is discussed in [72] the accuracy of the reduced 

order of the Doubly-Fed Induction Generator (DFIG) models under different operating conditions. 

A modal-coherency technique based on Modal Tree Algorithm (MTA) was presented in [73]. The 

system modes were mapped onto a tree diagram according to the number of machines involved as 

shown in Figure 4.2. The number of machines in the modal tree confirm with the rule      . 
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It was advised that the modes which involved the machines within the study area should be retained. 

The MTA provides a direct guidance on dividing coherent groups and model reduction. However, it is 

difficult to find out the machines related to a particular mode in a large power system. Moreover, 

full system eigenvalues and eigenvectors were required to derive the modal tree, is a major obstacle 

for practical application. 

 

Figure 4. 2 Modal Tree Algorithm 

4.3 Measurement-Based Equivalent 

[74] illustrated a dynamic equivalent method based on direct measurements from Phasor 

Measurement Unit (PMU), such as voltage phasors and current phasors. The principles are shown in 

Figure 4.3. Rather than to execute model reduction to coherent groups, this method simplifies 

groups of generators connected by transfer paths. The generators in the same group are 

represented by a single classical generator model without damping coefficient. Line reactance and 

generator inertia constants can be estimated through physical relationship between measurements 

and these parameters. It was addressed in the literature that a minimum of three PMUs must be 

installed, two at the terminal buses and the other one is located at the transfer path between the 

terminals. 
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Figure 4. 3 Dynamic equivalent based on direct measurement method [74] 

The solution to measurement noise was also discussed separately in [74]. Cramer-Rao bounds (CRB) 

suggested that this was to be incorporated within the problem description. It was found that the 

estimation error depends on the location of the PMU on the transfer path. Therefore, the problem is 

to find the optimal location such that the estimation error is minimised. 

This approach aggregates system model without referring to parameters of individual generator. 

However, it has high requirements for PMU locations. Corresponding inter-area modes have to be 

excited and captured in order to provide necessary information. The equivalent model is 

represented by a significantly simplified network topology and generator model. The dynamic 

characteristics cannot be reflected adequately. 

[75] and [76] introduced a voltage and frequency measurements based method to identify the 

equivalent for a distribution network. Due to increasing penetration of renewable generation 

although their size are much smaller in comparison to conventional generation, the impact on power 

grids becomes significant. However, the details of these Distributed Generators (DGs) are normally 

unknown ,thus, the dynamic modelling of the DGs is of great importance and becomes challenging. 

In [75] and [76], identification of ARX and state-space models of distribution network was conducted 
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in MATLAB identification toolbox. Nevertheless, the method has high requirements on disturbance 

locations, which makes it impractical for the industry to implement. Moreover, the methods that 

rely on measurements generated by large system disturbances cannot be used for online 

identification. 

[77] proposed an automatic online calibration method using the measured response captured by the  

PMU. The method is based on the Extended Kalman Filter (EKF). This method seeks a solution 

through the minimisation of the discrepancy between model response and the measurements 

captured by PMU. This method is mainly utilised in the validation of generator models. Real and 

reactive power at Point of Connection (POC)  were considered as the inputs. 

A grey-box approach in [78] was developed to validate the dynamic equivalent of distribution 

network cell. Similar to [77], the approach derives a dynamic equivalent through the minimisation of 

the discrepancy between the measured and the simulated power flow at a certain location. 

4.4 Artificial Intelligence Methods 

4.4.1 Artificial Neural Networks  

Artificial Neural Network (ANN) is a new computational technique which mimics the function of the 

brain. The understanding of the neuron functions and its pattern of interconnections prompts the 

use of ANN in mathematical modelling [79-83]. A simple diagram is shown in Figure 4.4 an 

illustration of the basic structure of a MultiLayer Perceptron (MLP) or a multilayer feedforward 

network. The circle represents neurons and the arrow represents the interconnections. Modelling an 

effective ANN model requires two stages, training and validation. The perceptron can be trained by 

adjusting the weights of the inputs with a larger proportion of data, and the trained model is 

validated with the remaining data. 
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Figure 4. 4 Basic Structure of ANN 

The complexity of modern power systems is increasing due to their large size, component 

nonlinearity and operational uncertainty. In order to cope this, ANN is widely used in power system 

as a very effective computational technique [84-88] to derive the external network equivalents. MLP 

is the most commonly used approach. 

[85, 86] presents an approach to model a dynamic equivalent of a system that is to be reduced. 

Measurements captured from the location between the retained system and the system which is to 

be reduced is fed into a first-stage ANN to extract estimates of states of the reduced order 

equivalent. A second-stage ANN embedded in an Ordinary Differential Equation (ODE) solver was 

trained to approximate a continuous-time system with the same states which was extracted at the 

first stage.   

Back-propagation and Radial-Basis Function (RBF) neural networks were employed to identify the 

dynamic equivalent of an external power system in [87]. The identification is restricted from online 

use as transient stability indices, such as peak overshoot, decay constant and the frequency of 

oscillation were utilised as the input in training the ANN. 

[89] demonstrates a hybrid method to combine both coherency-based method and ANN method in 

deriving a dynamic equivalent. The proposed method is illustrated in Figure 4.5, 
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Figure 4. 5 Dynamic Equivalent Based On Hybrid Method [89] 

The network was first reduced using the conventional coherency-based approach. Then an ANN-

based equivalent as developed to adjust power injection at the boundary bus, in order to minimise 

the discrepancy of voltage response between the real system and the reduced model. Voltage at the 

boundary bus was taken as the input of the ANN-based equivalent. 

4.4.2 K-means Clustering 

The k-means algorithm is a clustering method that aims to partition   observations into   clusters 

[90]. For a set of observations           , the k-means method aims to allocate each observation 

to a cluster in order to minimise the sum of the squares, as shown: 

                    
 
        (4. 8) 

Where   is the cluster centres and    is the mean point in the  th cluster centre. 

In [91], K-means method was employed to develop a dynamic equivalent for the distribution 

network. A grey-box equivalent model was presented in the form of a nonlinear state space. 
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                   (4. 9) 

where       and   are the coefficient matrices,   is the state vector,   is the input vector,   is the 

output vector and      a function that represents the nonlinear parts of the model. 

The input vector includes the bus voltage and frequency. A nonlinear least square method was 

utilised to estimate the unknown parameters in the coefficient matrices of the grey-box model. The 

clustering method was tested under a series of disturbance scenarios. Simulation results showed 

that it was indiscernible from the standard grey box parameter estimation value, which could closely 

approximate to the dynamic response of the network.  

4.4.3 Genetic Algorithms 

Genetic Algorithms (GAs) are new artificial intelligent computation methods which mimics the 

evolution [92]. They are especially developed to solve problems that require searching through a 

large amount of possibilities. GAs are broadly used in power system for optimisation. [93] 

demonstrates the application of GAs in the generator scheduling. It is specified in [94] the 

implementation of GAs in optimal power flow studies. 

 [95] presented the techniques to deriving a dynamic equivalent of a permanent synchronous motor 

using GAs. [96, 97] introduced the application of GAs to model the dynamic equivalent for a multi-

machine system. 

4.5 Conclusions 

It was found that the equivalent models derived by model-based methods cannot timely reflect the 

dynamic characteristics of the system. Often, there are a large discrepancy between the model-

based equivalent and the real system. Moreover, these methods require comprehensive knowledge 

on the external network. In some countries private utilities compete with each other and not intend 
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to disclose any information about their business, which makes it impractical to get access to detailed 

information. 

In contrast, measurement-based methods and AI techniques can effectively circumvent the problem 

that occurs in the model-based methods. These methods normally rely on both system 

measurements and prior knowledge. The models achieved by these two methods can retain certain 

topology,  whilst enable the parameters to be updated in a timely manner according to the 

measurements. 

In comparison, it is evident that the measurement-based methods and AI methods have advantages 

over the conventional modelling techniques. For the purpose of retaining the physical information of 

the network, trade-off has to be made between model-based methods and measurement-based 

methods. In the following chapters, a new measurement-based approach which could retain 

network information will be proposed and tested. 
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Chapter 5 Modal Analysis of Multi-Machine System 

5.1 Introduction 

Oscillatory modes are constantly monitored in power systems. Generator dynamics provide great 

contribution to this phenomenon. By modelling the generator dynamics property in a linear form for 

small signal analysis, the oscillations are reflected as complex eigenvalues. As mentioned in Chapter 

2, the oscillatory information, such as oscillatory frequency, damping and mode shapes can be 

extracted from direct Wide Area Measurements (WAM) with considerable accuracy [98] .  

This chapter presents a deep insight between oscillatory information and multi-machine system 

dynamics. A Modal Assurance Criterion (MAC) technique will be used to differentiate between the 

various modes. Those with similar oscillatory information will also be introduced. This knowledge 

constructs a concrete theoretical foundation to develop the model update scheme.  

5.2 Simulation Models 

5.2.1 Two-Area Model 

Two-area models are adequate representation of the network topology for a general study in many 

countries [99]. The Great Britain power flow pattern in 2009/2010 provided by National Grid in GB 

Seven Year Statement 2009 is shown in Figure 5.1. The pattern indicates that the GB network can be 

divided into Scotland and England by the boarder B6.  
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Figure 5. 1 Power Flow Pattern in GB Network [100] 

The two-area model is shown in Figure 5.2 marked with the length of each part of the transmission 

lines. The system consists of two areas, each with two generators and two loads located at bus 7 and 

bus 9. The system details are specified in [101]. This artificial model was created by the Canadian 

Electrical Association [5] to demonstrate the types of oscillations in an interconnected power system.  

 

Figure 5. 2 Two-area System Diagram 
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5.2.2 New York-New England (NY-NE) Model 

The NY-NE model which consists of sixteen generators and five coherent groups is described in 

Figure 5.3.  

 

Figure 5. 3 NY-NE Power System Model 

The division of coherency is given in Table 5.1, 

Table 5. 1 Coherent Groups of NY-NE Model 

Group Generator Number of Generators 

Group 1 G1,G2,G3,G4,G5,G6,G7,G8,G9 9 

Group 2 G10,G11,G12,G13 4 

Group 3 G14 1 

Group 4 G15 1 

Group 5 G16 1 

5.3 Modal Sensitivity Analysis  

The sensitivity of an eigenvalue to a particular system parameter indicates how much the variation 

of this parameter can be reflected in this eigenvalue. If the eigenvalue is insensitive to a certain 

parameter, the estimation of this parameter using this eigenvalue may result in large deviation from 

the real value or algorithm divergence. Three system parameters are concerned and shown in 

Equation (2.16), inertia constant  , damping coefficient   and synchronising torque coefficient  . 
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For a particular mode   , it is given in Equation (2.5) that, 

                   (5. 1) 

where          .    is the number of modes in the system and    is the right eigenvector 

(mode shape) for  th mode and    is the  -th eigenvalue.  

5.3.1 Modal Sensitivity to Inertia Constants  

To investigate the modal sensitivity to inertia constants, Equation (5.2) was employed by simply 

differentiation (5.1) with respect to any inertia constant   , 

               
  

   
    

   

   
 

   

   
     

   

   
   (5. 2) 

Premultiplying by  -th left eigenvector   , and noting that            , the sensitivity function 

can be written as, 

   

   
   

  

   
       (5. 3) 

Hence, for a classical generator model given by Equation (2.16), the full sensitivity function of the  -

th mode to the  -th inertia constant can be expanded as, 

   

   
               

 

 
 
 
 
 
        
        

   

  
   

   

  
 

  

  
  

   

  
  

        
         

 
 
 
 

 
 
 
 
 
  

 
  

 
   

 
 
 
 

 

  (5. 4) 

The polynomial form is derived from (5.4), 

                  
   

   
       

   

  
 

 
                 

  

  
            (5. 5) 

Based on (2.17), the sensitivity of the real parts and the imaginary parts to the inertia constant are, 
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                (5. 6) 

                 
  

  
 

       

           
             (5. 7) 

Similarly, the sensitivity for sixth-order generator model in (2.20) is derived as, 

                  
  

   
 

 
 
 
 
 
 
        
        

 
   

  
 

  

  
   

 

  
 

   

    
  

 

  
 

   

    
   

        
         

 
 
 
 
 

  (5. 8) 

The corresponding sensitivity function in the form of polynomial can then be represented as, 

  
   

   
 

       

  
              

   

    
          

   

    
        

 
            

  

  
            (5. 9) 

The full sensitivity matrix consists of all sensitivity function as its elements, 

                                             

 
 
 
 
 
 
 
   

   
 

   

   
 

   

   

     
   

   
 

   

   
 

   

   

     
   

   
 

   

   
 

   

    
 
 
 
 
 
 

     (5. 10) 

where   denotes the number of generators, 

  is the number of oscillatory modes. 

5.3.2 Modal Sensitivity to Damping Coefficients 

The modal sensitivity to damping coefficient can be achieved by differentiating (5.1) with respect to 

any damping coefficient   , and premultiplying the outcome by jth left eigenvector   . 

   

   
   

  

   
        (5. 11) 

For a classical generator model, the sensitivity can be written as, 
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     (5. 12) 

Based on (2.17), the sensitivity of the real parts and the imaginary parts to the damping coefficient 

can be derived as, 

                                     
  

  
  

 

  
             (5. 13) 

  

  
 

 

          
           (5. 14) 

The eigenvalue sensitivity to damping coefficient for sixth-order generator model as, 

   

   
  

              

  
     (5. 15) 

The full sensitivity matrix with respect to damping coefficients is then formed,  

                               

 
 
 
 
 
 
 
   

   
 

   

   
 

   

   

     
   

   
 

   

   
 

   

   

     
   

   
 

   

   
 

   

    
 
 
 
 
 
 

     (5. 16) 

5.3.3 Modal Sensitivity to Synchronising Torque Coefficients  

The same technique was applied to develop the relationship between modes and synchronising 

torque coefficients. The sensitivity of a particular eigenvalue to the synchronising torque coefficient 

can be written as, 

   

    
               

 

 
 
 
 
 
     
     

   
 

  
  

     
      

 
 
 
 

 
 
 
 
 
  

 
  

 
   

 
 
 
 

 

   (5. 17) 

For classical model, the polynomial form is, 
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           (5. 18) 

For sixth-order model, it can be expressed as, 

   

    
         

 

  
           (5. 19) 

5.4 Model Update  

5.4.1 Linear Approximation 

For a mode     , its full Taylor series expansion at a given value    can be written as, 

                    
      

  
       

       

  
        

        

  
          (5. 20) 

By neglecting high order terms in (5.20), a linear approximation can be derived, 

           (5. 21) 

where         , is the perturbation of the parameter.   indicates the parameter;        , 

is the change of eigenvalues;   indicates eigenvalues and    is the eigenvalues at   ;   is the modal 

sensitivity matrix. 

5.4.2 Model Update Foundation 

To make the parameters best reflect any measured oscillatory mode   ,  a model update theory 

was proposed in [102]. The model update theory estimates the parameters based on an iterative 

algorithm, 

                     (5. 22) 

where    is the corresponding eigenvalue at  -th iteration;    is the sensitivity matrix at  -th 

iteration;    and      are the parameter estimates at  -th and      -th iteration respectively. 
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5.4.3 Objective Function 

The optimal estimate can be achieved through the minimisation of the following objective function: 

              (5. 23) 

where          , 

                         (5. 24) 

                (5. 25) 

When 
      

   
   , the minimum of       can be obtained at 

      
    

  
  

              (5. 26) 

Equation (5.26) can be further expanded as (5.27) which is the update algorithm, 

        
    

  
  

                 (5. 27) 

In practice, the measured modal data are not necessarily accurate. The accuracy of measurements 

can be incorporated into the update algorithm through the minimisation of the weighted objective 

function, 

                 (5. 28) 

   in (5.28) is a positive definite weighting matrix. The weighting matrix is normally a diagonal 

matrix whose elements are given by the reciprocals of the variance of the corresponding 

measurements. If the variances of the measurements are uncorrelated then, 

                          (5. 29) 

where          
    

      
     

    and   
  is the variance of the  -th measurement. 
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The weights are given by the inverse measurement variances, 

           (5. 30) 

If 

                          (5. 31) 

Then, 

   
 

  
       (5. 32) 

 Through the minimisation of (5.28), gives, 

      
      

  
  

         (5. 33) 

Thus, the weighted update algorithm is  

           
      

  
  

             (5. 34) 

5.5 Modal Assurance Criterion 

It is insufficient to simply rearrange the modal frequencies in ascending order of magnitude, 

especially when two modes are close together in frequency, because the magnitudes of different 

modes vary in different operational conditions. This gives rise to a higher possibility of mis-pairing. 

The modal frequencies and mode shapes of the measured and updated data must relate to the same 

mode, i.e. they must be paired correctly for the model update process. The Modal Assurance 

Criterion (MAC) was used to assess the degree of correlation between mode shapes. In model 

update, MAC is applied to pair mode shapes derived from initial model and updated the model at 

each stage of iteration, with those from the measured modes. The advantage of this method is that 

it does not require prior system matrices. 
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Normally, it can be difficult to collect a full set of modes due to the limited system observability.  The 

MAC can help to pair the measured modes with the calculated ones computed from the initial model.  

The MAC between a measured mode     and a given mode     is defined as, 

 

                       
    

     
 

    
         

     
    (5. 35) 

From (5.35), it can be seen that the value of the MAC is between 0 and 1. A value of 1 means that 

one of the mode shape vector is a multiple of the other, i.e. they are correlated, while a value of 0 

means that the two modes are uncorrelated. The measured and computed mode shapes must 

contain the same number of elements, although their scaling does not have to be the same. Note 

that the complex mode shapes may be correlated using the MAC as long as the transpose is taken to 

be conjugate transpose. Usually, the calculated modes are correlated with all the measured modes. 

An example was used to demonstrate MAC below. For the two-area system, the calculated mode 

shapes are given as   , 

    

                           
                           
                           
                          

  

Due to unknown perturbations in the system, the snapshot measurements captured are shown, 

    

                           
                           
                           
                         

  

MAC is calculated based on (5. 31), 
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The correlated mode shapes are: 

Original mode 1 with measured mode 3; 

Original mode 2 with measured mode 1; 

Original mode 3 with measured mode 4; 

Original mode 4 with measured mode 2; 

The pairing results can be validated based on the nature of the modes. There are four types of 

electrical mechanical modes excited in this model, local mode 1 (G1 and G2 participating), local 

mode 2 (G3 and G4 participating), interarea mode, and a zero mode. These can be found by checking 

their participation factors as introduced in previous chapters. The validation are shown in the 

diagram below, 

 

Figure 5. 4 Validation of MAC in two-area system model 

5.6 Conclusions 

The main contribution of this chapter is to establish the relationship between modal information and 

system parameters. By focusing on the system dynamic properties, parameters such as the 

generator inertia constants, the damping coefficients and the synchronising torque coefficients are 

of particular concern. Modal sensitivity matrices for these parameters were derived analytically for 

different generator models. It can be found that the inertia constant was involved in all three 

sensitivity matrices. Thus, the precision of inertia constant contributes most to the sensitivity 

computation.  
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The model update concept was initially introduced to power system in this chapter. This concept 

was originally used in structural engineering to monitor the health of a structure through vibration 

tests. WAMS, have been successfully introduced to power system engineering [103] for real-time 

power system dynamics analysis. In comparison to conventional online study methods, this 

technique only requires system modal information that can be easily measured from the grid.  

The objective function is a key part in this method. Through the minimisation of the discrepancy 

between the measured modes and the estimated modes, an iterative algorithms was developed to 

estimate parameter values that best reflect the measured modes in a timely manner. The weighted 

model update method was also developed based on the initial method, to achieve more accurate 

estimation results. The Modal Assurance Criterion (MAC) was proposed to pair measured modes 

with calculated modes. Some difficulties were encountered when attempt to pair modes close in 

frequency for a large power system. The advantage of MAC is that it can work without any system 

matrices and associate corresponding modes with high accuracy. 
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Chapter 6 Iterative Parameter Estimation Without 

Pseudomeasurement 

6.1 Introduction 

Least Square Method (LSM) is a standard approach to approximate the solution of over-determined 

equations where the number of equations is more than that of the unknowns. The method seeks a 

solution by minimising the sum of the squares of the errors in the results of every equation.  

LSM can be classified into two categories: Linear Least Squares (LLS) and Non-linear Least Squares 

(NLS).  The classification depends on whether the residuals are linear or not in all unknowns. The LLS 

has a closed-form solution, i.e., any formula can be evaluated in a finite number of standard 

operations, while the NLS has no closed-form solution and is normally solved by iterative refinement. 

A linear system is used to approximate the nonlinear one at each iteration stage. The NLS requires 

the initial conditions of the parameters whilst the LLS does not have such requirement. 

The objective of LSM is to adjust the model parameters to fit a set of data. The adjusted parameters 

should best fit the data set. Through minimisation of the sum of the squares of the errors in the 

results, the optimal solution can be achieved. A residual is defined as the difference between the 

actual values and the estimated values. 

In this work, a truncated Taylor series expansion of the modal data is used to linearise the 

relationship between the modal data and the system parameters at each iteration stage. As an 

example to demonstrate the methodology, the system inertia constants are adjusted/ updated to fit 

the modal data (eigenvalues). The problem is formulated as an over-determined systems of 

nonlinear equations and solved using weighted least squares method. 

The modal measurements used in this thesis are extracted using ambient signal methods which 

conducts modal data estimation continuously under small system disturbance. This method is more 

practical to provide real time modal information in industry. 
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The measurement errors of modal data are considered in this thesis. They are mainly produced due 

to measuring devices and mode estimation methods. The errors are in certain ranges. It was 

suggested by manufacturers that (-1%, 1%) error is applicable for modal frequencies, and (-10%, 10%) 

is applicable for modal damping. In the simulation tests of this thesis, measurement errors are 

generated from the standard uniform distribution on an open interval. For example, modal 

frequency error   % means the errors are pseudorandom scalars drawn from the standard uniform 

distribution on the open interval (  %,  %). This will be applied throughout this thesis as the 

indication of measurement error ranges. 

In the simulation using a particular set of measurements, measurements with their errors will be 

sampled only once. Then, the algorithms will work on updating current parameters. However, this 

could lead to divergence of the algorithms due to the nonlinearity of the process with random inputs. 

6.2 Frequency Method 

In this section, the proposed method is employed to estimate the inertia constants of the generators 

in multi-machine power systems based on the modal frequency measurements only, since modal 

frequencies are more closely related to inertia constants. The optimal estimation can be obtained 

through the minimisation of (6.1), 

        
          (6. 1) 

where    is a vector contains the errors between measured modal frequency and estimated modal 

frequency, 

   is a weighting matrix that allows relative uncertainty in the frequency measurements. 

The optimal solution is given in (6.2) for (5.34), 

            
       

  
   

             (6. 2) 
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where     is the modal frequency sensitivity matrix at the  -th step, 

   is a vector consists of measured modal frequencies, 

   is a vector contains calculated modal frequencies computed based on the updated system at the 

 -th step, 

   is a vector contains the updated inertia constants at the  -th step. 

The modal frequency sensitivity matrix     is defined as, 

                                                           

 
 
 
 
 
 
 
   

   
 

   

   
 

   

   

     
   

   
 

   

   
 

   

   

     
   

   
 

   

   
 

   

    
 
 
 
 
 
 

    (6. 3) 

 

The algorithm is illustrated in Figure 6.1. The oval blocks represent the input data and the 

rectangular ones are the necessary modules for the model update method. 
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Figure 6.1 Frequency method 

The flow chart is summarised, 

1. Initialise system model with    (  , for the first time); 

2. Calculate the eigenvalues of the initialised system model; 

3. Calculate sensitivity matrix of modal frequency; 

4. Pair eigenvalues calculated at step 2, with the measured eigenvalues; 

5. Calculate perturbations between corresponding calculated frequencies and measured 

frequencies; 

6.  Update inertia constants using equation (6.2); 

7. If the updated results are approximately equal to last update, then return results. Otherwise, 

go back to step 1. 
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The estimation errors in this thesis are defined as, 

     
     

  
           (6. 4) 

where    is the actual value of inertia constant and    is the estimated value. 

6.3 Test on Two-Area System 

6.3.1 Sensitivity Analysis for Two-Area System 

Tests are conducted under three sets of scenarios of the two-area system, for single machine, two 

machines and three machines. It is assumed that the full observability for this system is available in 

the tests. Frequency Measurement Error (FME) is introduced in each test within the range of  0.2%- 

 10%. Initial guess and true values of inertia constants are given in Table 6.1, and the discrepancies 

are also presented, 

Table 6.1 Initial guess and true values for inertia constants in Two-area system 

Generator Inertia Initial True Discrepancy (%) 

M1 13 12 8.33 

M2 13 12 8.33 

M3 9 10 10.00 

M4 9 10 10.00 

 

For different cases, only the inertia constant(s) to be estimated are changed to their true values, 

whilst the inertia constants of the generators at rest remain the same as initial guess. The purpose of 

doing so is to simulate a operational status which is different from the initial one. The sensitivity 

matrix of modal frequencies to inertia constants calculated based on the initial guess is given in 

Table 6.2. We can see that the frequency of mode 1 is sensitive to M3 and M4, whilst the changes in 

M1 and M2 can hardly affect it. The frequency of mode 2 is more sensitive to M1 and M2. The 

frequency of mode 3 is sensitive to all four inertia constants but more dependent on those of M3 

and M4. Figure 6.2 visualises the sensitivity of modal frequencies in a bar diagram. 
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Table 6. 2 frequency sensitivity matrix 

 M1 M2 M3 M4 

   -0.0000j -0.0000j -0.1812j -0.2416j 

   -0.0861j -0.1269j -0.0020j -0.0006j 

   -0.0180j -0.0037j -0.0837j -0.0641j 

 

 

Figure 6.2 Sensitivity of modal frequencies to inertia constants for two-area system 

6.3.2 Single-Machine Estimation 

The estimates of M1 for different FME are shown in Table 6.3. From the table, it can be seen that the 

number of iterations to produce the optimal estimate increases with the increase of FME, while the 

estimation accuracy decreases. Clearly as shown in the table,  1% FME is the boarder of 'good' and 

'bad' parameter estimates. When FME is less than  1%, the method produces precise estimates 

with less than 5.48% errors which are smaller than original discrepancy, (8.33%) shown in Table 6.1. 

However, the estimates are not acceptable when FME is over  1%. 

Table 6.3 Estimation errors of M1 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 1.03 1.05 2.17 5.48 11.40 9.41 127.00 

steps 3 steps 3 steps 4 steps 2 steps 3 steps 5 steps 9 steps 

 

Table 6.4-6.6 show the estimation errors for M2, M3 and M4 individually. Similar conclusions can be 

drawn, as the measurement error increases, the estimation errors increase and a slightly longer 
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estimation time is required for the algorithm to converge. In general, the resultant estimates are 

poor when FME is over  1%. 

Table 6. 4 Estimation errors of M2 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M2 Estimation Error (%) 0.63 1.23 2.27 3.22 6.67 11.20 44.87 

steps 3 steps 3 steps 2 steps 3 steps 2 steps 4 steps 5 steps 
 

Table 6. 5 Estimation errors of M3 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M3 Estimation Error (%) 0.06 0.31 0.00 0.58 5.35 6.56 17.16 

steps 3 steps 3 steps 3 steps 4 steps 4 steps 6 steps 9 steps 
 

Table 6. 6 Estimation errors of M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M4 Estimation Error (%) 0.15 0.19 0.76 0.536 1.28 0.58 1.64 

3 steps 4 steps 4 steps 4 steps 4 steps 6 steps 9 steps 3 steps 

6.3.3 Two-Machine Estimation 

There are six scenarios in the test for the two machines. When the change is applied to M1 and M2 

the results for the estimation are provided in Table 6.7. For this scenario, the resultant estimates 

become unacceptable when FME exceeds  0.5%, which  significant limits the implementation of this 

methodology when measurement noise exists. The number of iterations required to reach 

convergence increases slightly when FME is growing. Similar results are found in the estimation of 

M1 and M3, and M1 and M4  shown in Table 6.8 and 6.9 respectively. 

Table 6. 7 Estimation errors of M1 and M2 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 2.51 7.53 13.71 14.10 25.61 83.20 285.77 

M2 Estimation Error (%) 1.03 5.74 15.82 4.96 6.84 29.69 13.58 

steps 3 steps 3 steps 4 steps 3 steps 4 steps 6 steps 6 steps 
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Table 6. 8 Estimation errors of M1 and M3 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 1.07 1.22 2.27 5.65 12.04 11.72 196.10 

M3 Estimation Error (%) 0.14 0.54 0.38 0.46 1.39 8.32 12.90 

steps 3 steps 3 steps 3 steps 4 steps 4 steps 7 steps 24 steps 

 

Table 6. 9 Estimation errors of M1 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 1.10 1.02 2.00 5.87 12.45 9.55 204.89 

M4 Estimation Error (%) 0.28 0.07 0.53 1.26 2.81 1.00 17.76 

steps 3 steps 3 steps 4 steps 4 steps 4 steps 6 steps 16 steps 

 

The proposed method has robust performance up to  2% FME when it is employed to estimate the 

scenarios of 'M2 and M3', and 'M2 and M4'. Relatively, the estimates of M2 have larger errors than 

those of M3 and M4 at the same FME level.  

Table 6. 10 Estimation errors of M2 and M3 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M2 Estimation Error (%) 0.63 1.24 2.27 3.22 6.69 11.39 43.73 

M3 Estimation Error (%) 0.02 0.37 0.01 0.41 0.50 6.04 13.69 

steps 3 steps 3 steps 3 steps 4 steps 5 steps 5 steps 8 steps 
 

Table 6. 11 Estimation errors of M2 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M2 Estimation Error (%) 0.64 1.21 2.24 3.25 6.75 11.14 45.23 

M4 Estimation Error (%) 0.16 0.16 0.71 0.64 1.49 0.30 0.22 

steps 3 steps 4 steps 3 steps 3 steps 4 steps 5 steps 8 steps 

 

Accurate estimates can be achieved when the method is applied to estimate M3 and M4, when FME 

level is less than  0.5 %. However, the results in Table 6.12 shows that the algorithm has poor 

robustness in this test. Convergence cannot be achieved when FME is  0.8% and  10%. Large 

estimation errors also occurred when FME is higher than  1%. 
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Table 6. 12 Estimation errors of M3 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M3 Estimation Error (%) 2.59 5.77 N/A 10.84 17.48 36.54 N/A 

M4 Estimation Error (%) 2.41 5.06 N/A 9.13 14.08 23.79 N/A 

steps 3 steps 3 steps N/A 4 steps 4 steps 5 steps N/A 

6.3.4 Three-Machine Estimation 

In this section four scenarios are presented for the estimation of three inertia constants. The 

estimation results are given in Table 6.13 to Table 6.16. It is found that the algorithm could 

encounter divergence problems. In the estimation of 'M1, M2 and M3', and 'M1, M2 and M4', valid 

estimates cannot be produced at FME level,  0.8%,  5% and  10%, due to divergence. Moreover, 

the estimates have large errors in the resultant estimates of M1 and M2 in these two scenarios 

when FME is larger than  0.2%.  

Table 6. 13 Estimation of M1, M2 and M3 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 5.72 14.57 N/A 30.17 60.29 N/A N/A 

M2 Estimation Error (%) 2.97 9.00 N/A 10.87 15.25 N/A N/A 

M3 Estimation Error (%) 0.86 1.93 N/A 4.20 7.99 N/A N/A 

steps 3 steps 4 steps N/A 4 steps 5 steps N/A N/A 

 

Table 6. 14 Estimation of M1, M2 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 4.40 11.70 N/A 23.46 45.16 N/A N/A 

M2 Estimation Error (%) 2.20 7.74 N/A 8.72 12.35 N/A N/A 

M4 Estimation Error (%) 0.64 1.44 N/A 3.13 6.02 N/A N/A 

steps 3 steps 4 steps N/A 4 steps 4 steps N/A N/A 

 

In the estimation of 'M1, M3 and M4', and 'M2, M3 and M4', large errors occur in M3 and M4 when 

FME level is larger than  1%. Still, the proposed algorithm cannot converge at  0.8% and  10% 

FME. 
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Table 6. 15 Estimation of M1, M3 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 0.85 1.90 N/A 4.35 9.23 16.01 N/A 

M3 Estimation Error (%) 2.00 6.92 N/A 8.69 13.53 43.67 N/A 

M4 Estimation Error (%) 2.01 5.72 N/A 8.07 12.56 25.07 N/A 

steps 3 steps 4 steps N/A 4 steps 4 steps 6 steps N/A 

 

Table 6. 16 Estimation of M2, M3 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M2 Estimation Error (%) 0.59 1.36 N/A 2.97 6.22 12.23 N/A 

M3 Estimation Error (%) 2.46 6.06 N/A 10.42 16.70 38.35 N/A 

M4 Estimation Error (%) 2.32 5.23 N/A 8.90 13.77 24.06 N/A 

steps 3 steps 3 steps N/A 4 steps 4 steps 5 steps N/A 

6.4 Test on NY-NE System 

The proposed method is tested on a larger system which consists of sixteen generators. To avoid a 

large amount of testing scenarios, the inertia constants of G1, G10, G14, G15 and G16 from different 

coherent groups were selected. The initial guess and actual values of the inertia constants of these 

generators are shown in Table 6.17.  

Table 6. 17 Initial guess and true values for inertia constants of selected group  in NY-NE system 

Generator Inertia Initial True SD(%) 

M1 6.8000 7.8000 12.82 

M10 5.8210 4.8210 20.74 

M14 6.0000 6.8000 14.71 

M15 6.0000 6.8000 14.71 

M16 8.9000 9.9000 10.10 

 

For a large power system, it is not practical to assume that the full observability is known. Thus, it is 

necessary for the algorithm to deal with the condition when the number of measurements is less 

than the number of parameters to be estimated.  Two conditions are hence defined to test the 

proposed method, in terms of the number of measurements,  

 Condition 1: more measurements than parameters  

 Condition 2: more parameters than measurements 
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Three scenarios are designed based on the two conditions, because full observability is considered 

as a special scenario under the condition when there are more measurements than parameters. As it 

is shown,    and    are designed based on 'Condition 1', while    is designed in terms of 'Condition 2'. 

Full observability is desirable for state estimation and system condition monitoring, but it is difficult 

to be obtained in practice.    and    are quite practical, while    is ideal for testing purposes.  

                         

                      

            

It should be noted that    which includes three modes is highly associated with all parameters to be 

estimated, because misusing non-sensitive modes would not contribute towards the estimation. 

Even worse, it may lead the algorithm to divergence or return irrational results. This can be 

explained mathematically. If we assume that there are more measurements than parameters to be 

estimated, the simultaneous equations (6.2) becomes over-determined. Therefore, according to the 

nature of least square method, relatively reasonable results can be obtained. However, if the 

number of measured modes is less than the number of parameters, (6.2) becomes under-

determined, i.e. infinite number of solutions satisfies the equation. This suggests the results are 

invalid and do not have a physical meaning. 

The sensitivity of the frequencies of all oscillatory modes to selected generator inertia constants is 

presented in Table 6.18. It is also illustrated in the bar charts from Figure 6.3 to Figure 6.7, 
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Table 6. 18 Frequency sensitivity to selected generator inertia constants 

 M1 M10 M14 M15 M16 

   -0.0426j -0.0290j -0.0001j -0.0000j -0.0002j 

   -0.6690j -0.0066j -0.0000j -0.0000j -0.0000j 

   -0.0002j -0.0001j -0.0000j 0.0000j -0.0000j 

   0.0000j 0.0000j 0.0000j 0.0000j 0.0000j 

   -0.0108j 0.0514j 0.0001j 0.0000j 0.0001j 

   -0.0023j -0.6277j -0.0006j -0.0000j -0.0004j 

   -0.0001j -0.0013j -0.0000j -0.0000j -0.0000j 

   -0.0000j -0.0105j -0.0001j -0.0000j -0.0002j 

   -0.0000j -0.0000j 0.0000j 0.0000j 0.0000j 

    -0.0002j -0.0029j -0.0001j -0.0000j -0.0000j 

    -0.0005j -0.0004j -0.0000j -0.0000j -0.0000j 

    -0.0000j -0.0001j -0.1063j -0.2423j -0.0212j 

    -0.0017j 0.0000j -0.0008j -0.0000j -0.0017j 

    -0.0001j -0.0001j -0.0997j -0.0049j -0.0949j 

    -0.0007j -0.0015j -0.0321j -0.0364j -0.0140j 

 

 

Figure 6.3 Sensitivity of modal frequencies to M1 

 

 

Figure 6.4 Sensitivity of modal frequencies to M10 
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Figure 6.5 Sensitivity of modal frequencies to M14 

 

 

Figure 6.6 Sensitivity of modal frequencies to M15 

 

 

Figure 6.7 Sensitivity of modal frequencies to M16 
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6.4.1 Estimation with redundant measurements 

The estimation results based on full observability are described in Table 6.19. The algorithm displays 

its limitation to use in large power systems. It cannot provide valid results when FME level is  0.5%, 

 2%,  5% and  10%. Accurate estimates can be achieved when FME is less  2%. Relatively 

accurate results are obtained when estimating M1, M10 and M15 at  0.8% and  1% FME level. 

However, the identified values of M14 and M16 were deviated significantly from their true values.   

Similar results were obtained when the estimation is based on   . The accuracy did not vary much by 

using fewer measurements, as shown in Table 6.20. In addition, the results for the two cases are 

very similar. 

Table 6. 19 Estimation based on    

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 0.42 N/A 1.28 2.10 N/A N/A N/A 

M10 Estimation Error (%) 0.30 N/A 1.12 1.47 N/A N/A N/A 

M14 Estimation Error (%) 3.97 N/A 13.91 12.41 N/A N/A N/A 

M15 Estimation Error (%) 1.03 N/A 4.94 2.21 N/A N/A N/A 

M16 Estimation Error (%) 3.00 N/A 9.04 9.32 N/A N/A N/A 

steps 4 steps N/A 5 steps 4 steps N/A N/A N/A 

 

Table 6. 20 Estimation based on    

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 0.40 N/A 1.35 2.03 N/A N/A N/A 

M10 Estimation Error (%) 0.29 N/A 1.21 1.43 N/A N/A N/A 

M14 Estimation Error (%) 3.90 N/A 13.94 12.33 N/A N/A N/A 

M15 Estimation Error (%) 1.00 N/A 4.94 2.11 N/A N/A N/A 

M16 Estimation Error (%) 2.95 N/A 9.06 9.27 N/A N/A N/A 

steps 3 steps N/A 4 steps 4 steps N/A N/A N/A 

6.4.2 Estimation with inadequate measurements 

The proposed method does not converge to any results when the number of measurements is less 

than the number of parameters. This constrains the practical implementation of this method.  
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Table 6. 21 Estimation based on    

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) N/A N/A N/A N/A N/A N/A N/A 

M10 Estimation Error (%) N/A N/A N/A N/A N/A N/A N/A 

M14 Estimation Error (%) N/A N/A N/A N/A N/A N/A N/A 

M15 Estimation Error (%) N/A N/A N/A N/A N/A N/A N/A 

M16 Estimation Error (%) N/A N/A N/A N/A N/A N/A N/A 

steps N/A N/A N/A N/A N/A N/A N/A 

 

6.5 Summary of Frequency  Method 

The frequency method minimises the difference of imaginary parts for the selected eigenvalues by 

moving the estimated frequencies as close as possible to the measured frequencies. The results 

showed that the method is not robust or accurate enough. This is due to high nonlinearity of the 

model, and thus the estimation was very sensitive to measurement noise. More importantly, the 

least square method can be under-determined when the number of measurements is less than the 

number of parameters. Thus, modal damping will be taken into account in the next step 

development of the method. 

6.6 Frequency-Damping Method 

Frequency method shows its limitation when estimating the inertia constants of the generators in a 

multi-machine system. The performance of this method is not robust, even in the case of the 

redundant measurements that are available. Thus, a new technique which minimises the difference 

of the entire eigenvalues is proposed in this section. By adding modal damping as an extra 

measurements to the objective function, the new objective function can be expressed as, 

        
     +  

         (6. 5) 

where    is a vector contains the errors between measured modal damping and estimated modal 

damping, 

   is the weighting matrix that allows damping measurement uncertainty. 
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The optimal solution is written as, 

       
        

      
  

   
        

         (6. 6) 

Equation (6.5) is rewritten in iterative form as,  

            
          

       
  

    
         

        (6. 7) 

where     is the modal damping sensitivity matrix at the  -th step.  

The modal damping sensitivity matrix     can be defined as, 

   

 
 
 
 
 
 
 
   

   
 

   

   
 

   

   

     
   

   
 

   

   
 

   

   

     
   

   
 

   

   
 

   

    
 
 
 
 
 
 

    (6. 8) 

The algorithm is illustrated in Figure 6.8, 
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Figure 6. 8 Frequency-Damping method 

By the inclusion of the damping measurements into the objective function, the measurement errors 

of damping also need to be introduced. The Damping Measurement Error (DME) range in the test 

was set to  5%,  10% and  20%., which will be used to form damping weighting matrix   . The 

flow chart is summarised, 

1. Initialise system model with    (  , for the first time); 

2. Calculate the eigenvalues of the initialised system model; 

3. Calculate sensitivity matrix of modal frequency; 

4. Pair eigenvalues calculated at step 2, with the measured eigenvalues; 

5. Calculate perturbations between corresponding calculated frequencies and measured 

frequencies; 



70 

 

6.  Update inertia constants using equation (6.7); 

7. If the updated results are approximately equal to last update, then return results. Otherwise, 

go back to step 1. 

6.7 Test on Two-Area System 

Still, three categories of tests can be executed based on the number of inertia constants to be 

estimated. In all the tests, only the inertia constants to be identified change from their initial guess 

to the actual values, while the rest remain unchanged as initial values. The full observability is also 

assumed in this test. 

The complex sensitivity matrix is shown in Table 6.22 where the real values are damping sensitivity 

and imaginary parts are frequency sensitivity. The sensitivity of modal frequencies to inertia 

constants are the same as that is shown in Table 6.2 and Figure 6.2, and the sensitivity of modal 

damping is presented in Figure 6.9. By comparing Figure 6.2, clearly the changes of inertia constants 

can be better reflected by the modal frequencies. However, the variances of modal damping is much 

smaller. By comparing this with to the summary of frequency method, the introduction of modal 

damping measurements can improve the estimation accuracy for selected cases. 

Table 6. 22 mode sensitivity matrix 

 M1 M2 M3 M4 

   -0.0000-0.0000j 0.0001-0.0000j 0.0244-0.1812j 0.0213-0.2416j 

   0.0111-0.0861j 0.0056-0.1269j -0.0002-0.0020j -0.0000-0.0006j 

   0.0071-0.0180j 0.0051-0.0037j -0.0028-0.0837j -0.0018-0.0641j 
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Figure 6. 9 Sensitivity of modal damping to inertia constants for two-area system 

 

6.7.1 Single-Machine Estimation 

The proposed method produces good estimates when identifying single machine inertia constant. 

Especially, the estimated results at  10% DME level have been significantly improved in comparison 

to those in the frequency method. However, in some cases estimates that are significantly deviated 

from the true values still exist, especially when measurement errors are high. The estimation time 

increases with the growth of FME and DME. 

In the estimation of M1, the algorithm shows the capability to produce estimates within 5.69% 

deviation when FME is within  1%. When FME is more than  1%, large errors occur in three cases, 

 20% DME with  2% FME,  10% DME with  5% FME, and  20% DME with  10% FME.  

From Table 6.24 and 6.25, it can be seen that the algorithm can generate highly accurate estimates 

within  2% FME in the identification of M2 and M3. However, large estimation errors still occur 

when FME becomes higher than  2%. 

The accuracy of the estimation results of M4 is shown in Table 6.26. Results with less than  8% 

errors can be achieved when FME is within  5% as. 
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Table 6. 23 Estimation of M1 

               FME(%)  
DME(%)       

 0.2  0.5  0.8  1  2  5  10 

 5 1.03 0.92 2.16 4.95 7.31 0.07 5.46 

3 steps 3 steps 3 steps 2 steps 3 steps 5 steps 4 steps 

 10 0.98 1.31 1.42 4.11 5.39 16.16 7.84 

3 steps 3 steps 3 steps 3 steps 2 steps 5 steps 3 steps 

 20 1.04 0.97 2.33 5.69 11.78 0.95 38.73 

3 steps 3 steps 3 steps 2 steps 3 steps 4 steps 5 steps 

 

Table 6. 24 Estimation of M2 

               FME(%)  
DME(%)       

 0.2  0.5  0.8  1  2  5  10 

 5 0.64 1.16 2.36 3.33 6.72 3.54 14.61 

3 steps 3 steps 3 steps 3 steps 3 steps 6 steps 6 steps 

 10 0.62 1.31 2.02 2.81 4.93 15.49 0.94 

3 steps 3 steps 2 steps 3 steps 2 steps 3 steps 4 steps 

 20 0.63 1.21 2.31 3.27 6.78 8.37 29.46 

3 steps 3 steps 2 steps 2 steps 2 steps 4 steps 10 steps 

 

Table 6. 25 Estimation of M3 

               FME(%)  
DME(%)       

 0.2  0.5  0.8  1  2  5  10 

 5 0.03 0.15 0.39 0.08 1.59 6.10 10.78 

3 steps 3 steps 3 steps 4 steps 4 steps 4 steps 2 steps 

 10 0.07 0.42 0.26 1.00 2.50 13.95 36.71 

3 steps 3 steps 3 steps 4 steps 4 steps 6 steps 7 steps 

 20 0.06 0.30 0.03 0.53 0.63 3.74 9.35 

3 steps 3 steps 3 steps 4 steps 4 steps 6 steps 11 steps 

 

Table 6. 26 Estimation of M4 

               FME(%)  
DME(%)       

 0.2  0.5  0.8  1  2  5  10 

 5 0.16 0.31 0.45 1.00 3.00 7.96 13.24 

3 steps 3 steps 3 steps 3 steps 4 steps 3 steps 3 steps 

 10 0.13 0.11 0.95 0.22 0.02 7.68 30.85 

3 steps 3 steps 3 steps 4 steps 4 steps 6 steps 10 steps 

 20 0.15 0.20 0.74 0.58 1.46 1.82 4.69 

3 steps 3 steps 3 steps 4 steps 4 steps 7 steps 11 steps 
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6.7.2 Two-Machine Estimation 

The estimates of the two inertia constants have been significantly improved when compared with 

those produced by frequency method, especially when FME is high. However, more number of 

iterations is required for the production of such results. It should be noted that convergence when 

estimating M3 and M4 at  0.8% and  10% FME still cannot be reached.  

Moreover, the accuracy of the estimation do not change with FME and DME regularly. For example, 

the errors of the estimates at  1% FME and  5% DME result in 10.70% errors in the estimates of 

M1 and 3.64% in the estimates of M2. For the same FME, the increase of DME to  10% caused a 

dramatic reduction in the error of M1 estimate from 10.70% to 0.48%, and a slight increase in the 

estimation of M2 from 3.64% to 5.00%. It should be noted that the resultant estimates changed 

significantly again for M1 from 0.48% to 13.37% when DME is increased to  20%. It should be noted 

that high FME and DME can lead to divergence during the estimation of M1 and M2. 

 The two machine estimation tests showed that the method was not robust enough to deal with 

some cases, e.g.  in the case of the estimation of M1 and M2. Also, divergence may occur when FME 

and DME at certain levels. 

Table 6. 27 Estimation of M1 and M2 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 2.56 7.56 17.61 10.70 14.88 27.01 13.50 

M2 1.06 5.74 22.53 3.64 26.95 25.63 33.82 

 3 steps 4 steps 13 steps 9 steps 15 steps 4 steps 6 steps 

 10 M1 2.17 5.48 15.72 0.48 7.35 6.40 16.17 

M2 0.83 4.72 18.24 5.00 11.94 11.22 16.63 

 3 steps 3 steps 11 steps 3 steps 4 steps 9 steps 25 steps 

 20 M1 2.58 7.56 7.13 13.37 19.34 21.17 N/A 

M2 1.07 5.74 8.30 4.56 4.20 17.29 N/A 

 3 steps 4 steps 18 steps 6 steps 12 steps 57 steps N/A 
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Table 6. 28 Estimation of M1 and M3 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 1.09 1.00 2.36 5.22 7.66 0.54 3.66 

M3 0.17 0.32 0.76 0.91 2.36 6.23 9.92 

 3 steps 3 steps 3 steps 4 steps 4 steps 6 steps 5 steps 

 10 M1 1.02 1.52 1.39 4.00 4.86 16.85 5.94 

M3 0.11 0.70 0.03 0.26 1.64 15.84 35.28 

 3 steps 3 steps 3 steps 4 steps 6 steps 5 steps 7 steps 

 20 M1 1.08 1.13 2.45 5.89 12.48 1.91 38.18 

M3 0.14 0.51 0.45 0.56 1.66 4.13 2.11 

 3 steps 3 steps 3 steps 3 steps 4 steps 6 steps 10 steps 
 

Table 6. 29 Estimation of M1 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 1.11 0.85 2.11 5.33 7.71 0.53 3.72 

M4 0.30 0.22 0.23 1.58 3.49 8.20 12.76 

 3 steps 3 steps 3 steps 4 steps 4 steps 5 steps 5 steps 

 10 M1 1.05 1.31 1.19 4.30 5.47 19.72 6.37 

M4 0.26 0.05 0.82 7.43 0.64 9.11 28.45 

 3 steps 3 steps 3 steps 4 steps 5 steps 6 steps 8 steps 

 20 M1 1.11 0.94 2.17 6.08 12.78 0.69 41.78 

M4 0.28 0.09 0.49 1.33 3.01 1.65 12.17 

 3 steps 3 steps 3 steps 3 steps 4 steps 6 steps 11 steps 

 

Table 6. 30 Estimation of M2 and M3 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M2 0.64 1.16 2.38 3.37 6.77 4.52 11.56 

M3 0.00 0.19 0.48 0.21 1.61 6.89 8.59 

 3 steps 3 steps 3 steps 4 steps 4 steps 6 steps 7 steps 

 10 M2 0.61 1.33 2.00 2.79 4.86 15.44 4.21 

M3 0.04 0.48 0.18 0.86 2.29 13.96 37.89 

 3 steps 3 steps 3 steps 4 steps 5 steps 6 steps 7 steps 

 20 M2 0.64 1.22 2.30 3.27 6.80 8.55 29.48 

M3 0.02 0.36 0.13 0.36 0.27 4.21 8.52 

 3 steps 3 steps 3 steps 4 steps 4 steps 6 steps 11 steps 

 

 

 

 

 



75 

 

Table 6. 31 Estimation of M2 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M2 0.65 1.20 2.35 3.38 6.72 4.52 11.55 

M4 0.18 0.17 0.40 1.10 2.94 8.60 11.78 

 3 steps 3 steps 3 steps 3 steps 3 steps 6 steps 6 steps 

 10 M2 0.62 1.30 1.98 2.83 4.92 15.43 2.91 

M4 0.15 0.08 0.91 0.30 0.10 7.58 31.97 

 3 steps 3 steps 3 steps 5 steps 4 steps 6 steps 10 steps 

 20 M2 0.64 1.20 2.27 3.30 6.86 8.32 29.46 

M4 0.16 0.17 0.68 0.68 1.66 1.65 5.60 

 3 steps 3 steps 3 steps 4 steps 4 steps 6 steps 10 steps 
 

Table 6. 32 Estimation of M3 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M3 0.18 5.43 N/A 9.80 14.18 21.21 21.06 

M4 0.65 4.92 N/A 8.89 13.74 22.45 26.34 

 3 steps 3 steps N/A 4 steps 5 steps 6 steps 7 steps 

 10 M3 0.62 5.95 N/A 11.32 18.84 41.68 N/A 

M4 0.15 5.12 N/A 9.16 13.79 20.57 N/A 

 3 steps 3 steps N/A 4 steps 5 steps 7 steps N/A 

 20 M3 0.64 5.77 N/A 10.88 17.70 38.15 N/A 

M4 0.17 5.07 N/A 9.20 14.39 25.39 N/A 

 3 steps 3 steps N/A 5 steps 5 steps 7 steps N/A 

 

6.7.3 Three-Machine Estimation 

Divergence still exists when FME is at  0.8%,  5% and  10% in three-machine estimation. However, 

the ability for the algorithm to converge is improved by using this method.  

During the estimation of M1, M2 and M3, at  0.5% FME, the proposed method can converge when 

DME is less than  5%. At  5% and  10% FME, convergence can be achieved when DME is up to 

 10%. In comparison to frequency method, the accuracy of the estimation for this case has been 

significantly improved, especially when FME is greater than  0.8%. Similar results can be obtained 

for the estimation of M1, M2 and M4 as shown in Table 6.14. However, divergence still exists in 

some cases. 
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Table 6. 33 Estimation of M1, M2 and M3 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 5.94 14.38 18.74 16.47 9.86 26.27 13.39 

M2 3.09 9.00 24.35 6.53 1.25 25.58 31.70 

M3 0.91 2.00 1.36 2.50 2.65 5.29 6.52 

 5 steps 5 steps 8 steps 8 steps 35 steps 5 steps 6 steps 

 10 M1 4.74 8.58 N/A 4.45 12.94 18.37 17.62 

M2 2.41 6.36 N/A 0.15 18.43 1.88 24.44 

M3 0.69 0.87 N/A 0.41 3.86 16.17 39.81 

 4 steps 4 steps N/A 6 steps 10 steps 11 steps 17 steps 

 20 M1 5.81 14.09 N/A 25.02 31.52 N/A N/A 

M2 3.01 8.77 N/A 9.17 8.50 N/A N/A 

M3 0.87 1.87 N/A 3.51 4.57 N/A N/A 

 4 steps 5 steps N/A 5 steps 10 steps N/A N/A 

 

Table 6. 34 Estimation of M1, M2 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 4.54 12.04 18.76 15.36 10.59 25.78 13.28 

M2 2.28 7.97 24.35 6.02 1.82 25.35 31.00 

M4 0.67 1.56 1.73 2.56 3.73 7.57 10.18 

 4 steps 5 steps 8 steps 6 steps 23 steps 4 steps 5 steps 

 10 M1 3.83 8.19 N/A 8.00 8.93 12.78 17.80 

M2 1.87 6.15 N/A 2.24 13.66 4.73 23.68 

M4 0.56 0.97 N/A 1.17 0.74 8.65 34.32 

 3 steps 4 steps N/A 4 steps 5 steps 23 steps 12 steps 

 20 M1 4.47 11.48 N/A 20.80 28.87 24.86 N/A 

M2 2.23 7.63 N/A 7.68 7.68 18.25 N/A 

M4 0.64 1.42 N/A 2.90 4.72 5.03 N/A 

 4 steps 4 steps N/A 4 steps 8 steps 45 steps N/A 

 

Convergence still cannot be reached for the two cases, during the estimation of 'M1, M3 and M4', 

and 'M2, M3 and M4' at  0.8% FME. However, it can be achieved when FME is  10% and DME is 

within  5%. The estimation errors in these two cases are also reduced in comparison with that are 

estimated by frequency method. 
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Table 6. 35 Estimation of M1, M3 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 0.88 1.61 N/A 4.30 6.77 0.70 8.06 

M3 1.92 6.41 N/A 7.91 12.66 22.13 32.96 

M4 1.96 5.51 N/A 7.92 13.11 22.89 29.97 

 3 steps 4 steps N/A 5 steps 5 steps 6 steps 7 steps 

 10 M1 0.79 2.21 N/A 2.75 2.95 17.41 N/A 

M3 2.09 7.25 N/A 10.32 17.74 45.10 N/A 

M4 2.07 5.86 N/A 8.54 13.38 21.23 N/A 

 3 steps 4 steps N/A 4 steps 4 steps 8 steps N/A 

 20 M1 0.86 1.81 N/A 4.60 9.82 5.77 N/A 

M3 1.99 6.87 N/A 8.60 13.56 40.54 N/A 

M4 2.00 5.70 N/A 8.04 12.80 25.82 N/A 

 3 steps 3 steps N/A 4 steps 5 steps 7 steps N/A 

 

Table 6. 36 Estimation of M2, M3 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M2 0.60 1.27 N/A 3.20 6.76 2.30 26.83 

M3 2.39 5.69 N/A 9.45 14.27 20.15 50.12 

M4 2.28 5.08 N/A 8.70 13.77 22.13 33.63 

 3 steps 3 steps N/A 5 steps 4 steps 5 steps 9 steps 

 10 M2 0.57 1.45 N/A 2.55 4.48 15.47 N/A 

M3 2.51 6.25 N/A 10.99 18.43 41.72 N/A 

M4 2.34 5.30 N/A 8.98 13.61 20.41 N/A 

 3 steps 3 steps N/A 4 steps 4 steps 6 steps N/A 

 20 M2 0.59 1.34 N/A 3.02 6.34 9.31 N/A 

M3 2.46 6.06 N/A 10.45 16.93 39.41 N/A 

M4 2.32 5.24 N/A 8.97 14.08 25.54 N/A 

 3 steps 3 steps N/A 3 steps 4 steps 6 steps N/A 

 

6.8 Test on NY-NE System 

The same tests are performed in this section as those in section 6.4 by using frequency-damping 

method instead of frequency method. The tests are also based on the two conditions, redundant 

measurements and inadequate measurements, and three scenarios are designed. 

The sensitivity of both modal frequency and modal damping calculated based on initial guess is given 

in Table 6.37. Figure 6.3-6.7 already illustrated sensitivity of modal frequencies to each inertia 
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constants to be estimated. The modal damping sensitivity to inertia constants are presented in 

Figure 6.10 to Figure 6.14. Clearly, the sensitivity of the modal damping is much lower than the 

sensitivity of frequency.  

Table 6. 37 Modal sensitivity to inertia constants 

 M1 M10 M14 M15 M16 

   -0.0083-0.0426j 0.0002-0.0290j 0.0000-0.0001j -0.0000-0.0000j 0.0000-0.0002j 

   0.0832-0.6690j -0.0022-0.0066j -0.0000-0.0000j -0.0000-0.0000j -0.0000-0.0000j 

   -0.0000-0.0002j -0.0001-0.0001j -0.0000-0.0000j -0.0000+0.0000j 0.0000-0.0000j 

   0.0000+0.0000j 0.0000+0.0000j -0.0000+0.0000j -0.0000+0.0000j -0.0000+0.0000j 

   0.0171-0.0108j -0.1135+0.0514j 0.0001+0.0001j 0.0000+0.0000j -0.0000+0.0001j 

   -0.0057-0.0023j 0.1366-0.6277j -0.0001-0.0006j 0.0000-0.0000j -0.0000-0.0004j 

   -0.0001-0.0001j -0.0006-0.0013j -0.0000-0.0000j -0.0000-0.0000j -0.0000-0.0000j 

   0.0000-0.0000j 0.0042-0.0105j 0.0000-0.0001j 0.0000-0.0000j -0.0000-0.0002j 

   -0.0000-0.0000j -0.0000-0.0000j 0.0000+0.0000j 0.0000+0.0000j -0.0000+0.0000j 

    0.0001-0.0002j 0.0009-0.0029j -0.0000-0.0001j -0.0000-0.0000j -0.0000-0.0000j 

    0.0001-0.0005j -0.0001-0.0004j -0.0000-0.0000j -0.0000-0.0000j -0.0000-0.0000j 

    -0.0000-0.0000j 0.0000-0.0001j 0.0046-0.1063j 0.0099-0.2423j 0.0004-0.0212j 

    0.0002-0.0017j -0.0000+0.0000j 0.0001-0.0008j -0.0001-0.0000j 0.0003-0.0017j 

    0.0000-0.0001j 0.0000-0.0001j 0.0064-0.0997j 0.0009-0.0049j 0.0033-0.0949j 

    0.0001-0.0007j 0.0002-0.0015j 0.0022-0.0321j 0.0028-0.0364j 0.0016-0.0140j 

 

 

Figure 6.10 Sensitivity of modal damping to M1 
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Figure 6.11 Sensitivity of modal damping to M10 

 

 

Figure 6.12 Sensitivity of modal damping to M14 

 

 

Figure 6.13 Sensitivity of modal damping to M15 
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Figure 6.14 Sensitivity of modal damping to M16 

 

6.8.1 Estimation with Redundant Measurements 

With redundant measurements, when FME is at  0.5%,  2% and  10% respectively, no results can 

be produced by the proposed method due to the divergence. At  5% FME, convergence is also 

unavailable when DME is over  5%. However, the estimation errors are slightly reduced in this 

simulation in comparison with those provided by frequency method.         

Table 6. 38 Estimation based on    

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 0.39 N/A 0.92 1.49 N/A 1.28 N/A 

M10 0.29 N/A 1.01 1.28 N/A 21.54 N/A 

M14 3.86 N/A 12.76 10.20 N/A 16.65 N/A 

M15 1.01 N/A 4.95 2.04 N/A 13.53 N/A 

M16 2.93 N/A 8.43 8.09 N/A 16.69 N/A 

 4 steps N/A 4 steps 4 steps N/A 12 steps N/A 

 10 M1 0.41 N/A 1.11 1.81 N/A N/A N/A 

M10 0.29 N/A 1.06 1.37 N/A N/A N/A 

M14 4.04 N/A 13.37 11.51 N/A N/A N/A 

M15 1.05 N/A 4.84 1.96 N/A N/A N/A 

M16 3.04 N/A 8.63 8.63 N/A N/A N/A 

 4 steps N/A 7 steps 7 steps N/A N/A N/A 

 20 M1 0.42 N/A 1.32 2.14 N/A N/A N/A 

M10 0.30 N/A 1.16 1.53 N/A N/A N/A 

M14 0.04 N/A 13.58 11.87 N/A N/A N/A 

M15 1.04 N/A 4.86 1.99 N/A N/A N/A 

M16 3.02 N/A 8.82 8.96 N/A N/A N/A 

 4 steps N/A 6 steps 6 steps N/A N/A N/A 

0 
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Table 6. 39 Estimation based on    

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 0.38 N/A 1.02 1.48 N/A 0.02 N/A 

M10 0.28 N/A 1.08 1.20 N/A 20.66 N/A 

M14 3.78 N/A 12.73 10.01 N/A 16.11 N/A 

M15 0.98 N/A 4.94 1.99 N/A 13.36 N/A 

M16 2.88 N/A 8.41 7.96 N/A 16.43 N/A 

 4 steps N/A 4 steps 4 steps N/A 17 steps N/A 

 10 M1 0.40 N/A 1.20 1.78 N/A N/A N/A 

M10 0.28 N/A 1.13 1.29 N/A N/A N/A 

M14 3.97 N/A 13.39 11.42 N/A N/A N/A 

M15 1.03 N/A 4.84 1.94 N/A N/A N/A 

M16 2.99 N/A 8.64 8.57 N/A N/A N/A 

 5 steps N/A 7 steps 7 steps N/A N/A N/A 

 20 M1 0.41 N/A 1.40 2.10 N/A N/A N/A 

M10 0.29 N/A 1.24 1.47 N/A N/A N/A 

M14 3.93 N/A 13.60 11.78 N/A N/A N/A 

M15 1.01 N/A 4.86 1.97 N/A N/A N/A 

M16 2.97 N/A 8.83 8.89 N/A N/A N/A 

 4 steps N/A 6 steps 6 steps N/A N/A N/A 

 

6.8.2 Estimation with Inadequate Measurements 

The frequency-damping method cannot deal with the situation when the number of parameters to 

be estimated is more than that of the measurements. As shown in Table 6.40, no estimation results 

can be provided due to algorithm divergence, since the damping measurements do not contribute 

much to the iterative estimation in (6.7). In other words, it is caused by the fact that the sensitivity of 

modal damping is much lower than that of modal frequency.  
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Table 6. 40 Estimation based on    

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 N/A N/A N/A N/A N/A N/A N/A 

M10 N/A N/A N/A N/A N/A N/A N/A 

M14 N/A N/A N/A N/A N/A N/A N/A 

M15 N/A N/A N/A N/A N/A N/A N/A 

M16 N/A N/A N/A N/A N/A N/A N/A 

 N/A N/A N/A N/A N/A N/A N/A 

 10 M1 N/A N/A N/A N/A N/A N/A N/A 

M10 N/A N/A N/A N/A N/A N/A N/A 

M14 N/A N/A N/A N/A N/A N/A N/A 

M15 N/A N/A N/A N/A N/A N/A N/A 

M16 N/A N/A N/A N/A N/A N/A N/A 

 N/A N/A N/A N/A N/A N/A N/A 

 20 M1 N/A N/A N/A N/A N/A N/A N/A 

M10 N/A N/A N/A N/A N/A N/A N/A 

M14 N/A N/A N/A N/A N/A N/A N/A 

M15 N/A N/A N/A N/A N/A N/A N/A 

M16 N/A N/A N/A N/A N/A N/A N/A 

 N/A N/A N/A N/A N/A N/A N/A 

 

6.9 Summary of Frequency-Damping Method 

It was found that the frequency method was not capable to deal with the case when there are fewer 

measurements than parameters. To circumvent this problem, frequency-damping method which 

includes both frequency and damping into the objective function has been developed. Thus, the 

estimated results are produced to move both frequency and damping as close as possible to the 

measured values. The simulation results showed that the estimation errors could be reduced for 

some cases when the damping was weighted higher.  

Generally, the performance of this method also has poor robustness at different levels of FME and 

DME due to the fact that the high nonlinearity of the model. Thus, the frequency-damping method 

still cannot deal with the scenarios when there is a lack of measurement data, which significantly 

restricts the practical implementation of this method. 
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It should be note that the estimation errors increase with the growth of measurement error levels, 

and they are more sensitive to FME than DME. In other words, the FME level determines the 

estimation error levels mainly. This again can be interpreted by the sensitivity difference between 

the two types of measurements. Algorithm divergence can also be caused by particular 

measurement errors. This is due to the nonlinearity of the algorithm, thus the results are highly 

dependent on input measurement errrors. 

6.10 Conclusions 

In this chapter, two approaches have been proposed for the use of estimating the inertia constants 

of synchronous generators using system modal measurements with different levels of errors.  

The frequency method seeks the optimal solutions through the minimisation of the difference 

between the estimated system modal frequencies and the measured modal frequencies. The 

algorithm only requires the information of modal frequencies. The initial tests of this method on 

two-area system showed that it could produce accurate results when the measured frequencies 

were at low FME, but incorrect estimation results occurred when FME was high. Moreover, it could 

not guarantee the convergence of the algorithm. Convergence is highly dependent on a particular 

FME.  Furthermore, the method was also tested in the NY-NE system with two conditions, redundant 

measurements and inadequate measurements. It was discovered that the proposed method could 

not converge and deal with the condition of inadequate measurements. Practically, it cannot be 

avoided that the number of measurements is smaller than the number of parameters to be updated. 

Thus, the implementation of the proposed method is highly restricted. 

By minimising the difference between measured modes and estimated modes, frequency-damping 

method was developed by introducing extra measurements into the estimation. The tests for both 

two-area system and NY-NE systems showed that the estimation errors were reduced slightly for 

some tests. Similarly for frequency method, the frequency-damping method cannot deal with the 
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situation when the number of parameters to be estimated is more than that of the measurements 

due to damping measurements do not contribute much to the optimisation search.  

From the estimated results in this chapter, it also can be seen that the two proposed algorithms 

have poor performance in some tests even when there are more measurements than parameters, 

and they are completely invalid to deal with the situation that lacks of measurement data. 
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Chapter 7 Iterative Parameter Estimation With 

Pseudomeasurement 

7.1 Introduction 

In this chapter, two measurement-parameter-based methods are proposed in order to solve the 

divergence problems which occurred frequently in the measurement-based methods. The main 

reason that caused the algorithm to diverge is because the number of unknown parameters 

exceeded the number of measured modes, equation (6.2) and (6.7) become under-determined. Thus, 

there are an infinite number of sets of parameter differences that satisfy these two equations. It was 

suggested in [102] that the set that produces the smallest parameter changes is preferable. Based on 

the existing two measurement-based methods, two measurement-parameter-based methods will be 

explained in this chapter. 

In order to minimise parameter changes, initial guess of unknown parameters were selected as 

reference. Moreover, the initial guess of unknown parameters mainly plays as pseudo-

measurements in the estimation, for the purpose of introducing more measurements. 

7.2 Frequency-Pseudomeasurements Method 

The frequency-pseudomeasurements method was developed in terms of frequency method by 

adding a term which reflects the change of parameters into the objective function in (7.1). The 

objective function for this method is then written as, 

        
                        (7. 1) 

where   is the initial guess for inertia constant and    is the parameter weighting matrix. 

   is diagonal matrix and positive definite. The diagonal elements in    are the reciprocals of the 

estimated variance of the corresponding parameters.    is important because the parameter 

estimation are not equally accurate. Thus, it is desirable to assign accordingly to the weight of each 
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parameter. To determine the variance, some engineering insight was required. Normally, the 

method to estimate the elements in the parameter weighting matrix is based on the predicted 

Standard Deviation (SD) which provides a quantitative estimation of the uncertainty. 

The optimal solution can be achieved and presented in (7.2), 

      
  

    
     

  
   

  
                      (7. 2) 

where    is modal frequency sensitivity matrix which is defined in (6.3). 

Equation (7.2) can be further expanded into an iterative form as is shown in (7.3), 

                        
  

    
     

  
   

  
                      (7. 3) 

The frequency-pseudomeasurements method can be outlined in a flow chart as shown in Figure 7.1. 

The oval shapes represent the input data and the rectangular shapes represent the necessary steps 

in the algorithm. In this method, only modal frequency measurements and parameter initial guess 

are needed. 
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Figure 7. 1 Frequency-Pseudomeasurements method 

The estimation errors are calculated based on (6.4). The FME is set as  0.2%,  0.5%  0.8%,  1.0%, 

 2.0%,  5.0% and  10% respectively to investigate the robustness of the method. DME was not 

considered in this method, since only the modal frequencies are involved in the algorithm. The flow 

chart is summarised as, 

1. Initialise system model with    (  , for the first time); 

2. Calculate the eigenvalues of the initialised system model; 

3. Calculate sensitivity matrix of modal frequency; 

4. Pair eigenvalues calculated at step 2, with the measured eigenvalues; 

5. Calculate perturbations between corresponding calculated frequencies and measured 

frequencies; 
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6.  Update inertia constants using equation (7.3); 

7. If the updated results are approximately equal to last update, then return results. Otherwise, 

go back to step 1. 

 

7.3 Test on Two-Area System 

The initial guess and actual values of inertia constants in this system were shown in Table 5.1.  To 

calculate the weighting matrix of parameter changes,   , standard deviation of estimating M1, M2, 

M3 and M4 are all set as 10% as a target of the simulation. Three types of tests were conducted 

based on the number of inertia constants to be estimated with full observability. The change of 

inertia constant confirms with that was stated in Chapter 6. The modal frequency sensitivity matrix is 

provided in Table 6.2.  

7.3.1 Single-Machine Estimation 

It can be seen from Table 7.1 and 7.2, accurate estimation were achieved when FME is less than  2% 

for the estimation of M1 and M2. It should be noted that the estimation error for both M1 and M2 

dropped at  5% FME to an acceptable estimation error range. However, the general trend of errors 

increases with the increase of FME. 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 1.07 0.69 2.78 5.95 9.94 5.40 11.00 

steps 3 steps 3 steps 3 steps 2 steps 2 steps 3 steps 3 steps 
Table 7. 1 Estimation of M1 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M2 Estimation Error (%) 0.66 1.03 2.61 3.66 7.16 2.36 10.87 

steps 3 steps 3 steps 3 steps 3 steps 2 steps 5 steps 3 steps 
Table 7. 2 Estimation of M2 

The proposed method performs slightly better when estimating M3 and M4 individually. As it is 

shown in Table 7.3 and 7.4, precise estimates are obtained when FME is up to  5%. In all four cases, 
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single-machine estimation can be completed within very short time and the main trend of errors is 

growing with the increase of FME. 

Table 7. 3 Estimation of M3 

FME (%) 0.2% 0.5% 0.8% 1% 2% 5% 10% 

M3 Estimation Error (%) 0.01 0.01 0.68 0.55 2.63 6.17 8.17 

steps 3 steps 4 steps 3 steps 3 steps 3 steps 2 steps 2 steps 

 

Table 7. 4 Estimation of M4 

FME (%) 0.2% 0.5% 0.8% 1% 2% 5% 10% 

M4 Estimation Error (%) 0.19 0.44 0.10 1.43 3.81 7.39 9.16 

steps 3 steps 3 steps 3 steps 4 steps 3 steps 3 steps 3 steps 

 

7.3.2 Two-Machine Estimation 

When estimating the inertias of two machines, the proposed method produced a precise estimation 

when FME is below  1%, as shown in Table 7.5 to Table 7.10. The estimation can be completed 

within short steps. However, in the estimation of M3 and M4, small estimation errors were achieved 

when FME is up to  5%. 

Table 7. 5 Estimation of M1 and M2 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 2.50 5.47 1.72 6.73 7.38 5.38 10.29 

M2 Estimation Error (%) 0.99 4.38 3.90 0.36 3.57 1.42 10.20 

steps 3 steps 4 steps 4 steps 5 steps 4 steps 5 steps 3 steps 

 

Table 7. 6 Estimation of M1 and M3 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 1.14 0.73 3.13 6.50 10.91 5.96 11.21 

M3 Estimation Error (%) 0.20 0.14 1.17 1.60 3.94 6.49 8.38 

steps 3 steps 3 steps 4 steps 3 steps 3 steps 4 steps 3 steps 

 

Table 7. 7 Estimation of M1 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 1.16 0.59 2.81 6.52 10.83 5.91 11.17 

M4 Estimation Error (%) 0.33 0.38 0.20 2.14 4.70 7.62 9.32 

steps 3 steps 3 steps 3 steps 4 steps 3 steps 3 steps 4 steps 
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Table 7. 8 Estimation of M2 and M3 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M2 Estimation Error (%) 0.66 1.02 2.64 3.72 7.32 2.50 10.93 

M3 Estimation Error (%) 0.03 0.06 0.79 0.73 2.88 6.23 8.22 

steps 3 steps 3 steps 3 steps 3 steps 3 steps 4 steps 3 steps 

 

Table 7. 9 Estimation of M2 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M2 Estimation Error (%) 0.67 1.01 2.60 3.73 7.29 2.47 10.91 

M4 Estimation Error (%) 0.21 0.42 0.04 1.53 3.96 7.43 9.20 

steps 3 steps 3 steps 3 steps 3 steps 3 steps 4 steps 3 steps 

 

Table 7. 10 Estimation of M3 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M3 Estimation Error (%) 2.30 3.68 3.04 3.38 0.07 4.53 7.39 

M4 Estimation Error (%) 2.21 3.60 2.84 4.29 4.13 6.30 8.51 

steps 3 steps 4 steps 12 steps 5 steps 4 steps 3 steps 3 steps 

7.3.3 Three-Machine Estimation 

The estimation errors for M1 are larger than those of M2, M3 and M4 when FME is more than 1%, as 

shown in Table 7.11, 7.12 and 7.13. Convergence of the algorithm takes longer to estimate M1, M3 

and M4 at  0.8% FME, and M2, M3 and M4 at  0.8%, which are 22 steps and 19 steps respectively. 

Accurate estimates were obtained for all three inertias in the estimation of M2, M3 and M4 when 

FME is within  1%. 

Table 7. 11 Estimation of M1, M2 and M3 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 5.44 8.58 0.89 9.07 8.13 5.97 10.50 

M2 Estimation Error (%) 2.77 5.93 3.35 1.54 3.06 1.44 10.24 

M3 Estimation Error (%) 0.86 1.26 0.70 2.02 3.89 6.56 8.42 

steps 4 steps 5 steps 4 steps 5 steps 4 steps 5 steps 3 steps 

 

Table 7. 12 Estimation of M1, M2 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 4.31 7.93 1.92 8.94 8.72 5.91 10.47 

M2 Estimation Error (%) 2.10 5.66 4.04 1.49 3.06 1.41 10.23 

M4 Estimation Error (%) 0.66 1.26 0.20 2.41 4.65 7.66 9.35 

steps 4 steps 5 steps 4 steps 6 steps 5 steps 5 steps 3 steps 
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Table 7. 13 Estimation of M1, M3 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 0.95 1.09 3.13 6.31 10.93 6.21 11.34 

M3 Estimation Error (%) 1.68 4.24 3.65 1.56 1.25 4.80 7.59 

M4 Estimation Error (%) 1.79 3.93 3.04 3.47 4.08 6.44 8.65 

steps 3 steps 5 steps 22 steps 5 steps 5 steps 3 steps 3 steps 

 

Table 7. 14 Estimation of M2, M3 and M4 

FME (%)  0.2  0.5  0.8  1  2  5  10 

M2 Estimation Error (%) 0.62 1.09 2.66 3.68 7.34 2.58 10.96 

M3 Estimation Error (%) 2.18 3.86 3.22 3.01 0.22 4.59 7.44 

M4 Estimation Error (%) 2.11 3.71 2.92 4.10 4.08 6.32 8.54 

steps 3 steps 5 steps 19 steps 4 steps 4 steps 4 steps 3 steps 

 

7.4 Test on NY-NE System 

Initial guess and actual values of M1, M10, M14, M15 and M16 in NY-NE system were given in Table 

6.17. The sensitivity matrix presented in Table 6.18 was utilised in this test. The tests in this section 

are also executed in terms of the two conditions that introduced in Chapter 6. The chosen sets of 

measurements,   ,    and    were presented in Chapter 6.  

7.4.1 Estimation with Redundant Measurements 

The proposed method aim to solve the divergence problems which frequently occurs in the 

estimation using measurement-based methods. The estimation results based on the full 

observability are described in Table 7.15 where the estimates are highly accurate when FME is not 

more than  1%. Acceptable estimation results were achieved when FME is not more than  2%. 

However, large errors can occur when the FME is high, which is shown in the last two columns in the 

table. 

Through the comparison of Table 7.16 and Table 7.15, the reduction in the number of 

measurements in this case merely changes the accuracy of the estimation. The difference between 

the estimation calculated based on    and    was negligible. The convergence was reached within a 

small number of steps for both cases. 
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Table 7. 15 Estimation based on    

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 0.39 1.06 0.78 1.26 5.12 2.60 6.49 

M10 Estimation Error (%) 0.27 1.00 0.64 0.73 5.63 4.36 13.04 

M14 Estimation Error (%) 1.99 1.15 0.04 0.63 2.93 9.36 10.06 

M15 Estimation Error (%) 0.43 1.40 1.72 0.49 6.69 7.83 8.80 

M16 Estimation Error (%) 1.75 0.48 1.21 2.18 0.88 9.31 9.47 

steps 4 steps 5 steps 4 steps 3 steps 4 steps 4 steps 7 steps 
 

Table 7. 16 Estimation based on    

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 0.37 1.03 0.84 1.19 4.98 2.51 6.59 

M10 Estimation Error (%) 0.26 1.06 0.73 0.68 5.81 3.95 13.72 

M14 Estimation Error (%) 1.91 1.23 0.06 0.66 2.94 9.36 10.06 

M15 Estimation Error (%) 0.40 1.38 1.73 0.49 6.69 7.82 8.80 

M16 Estimation Error (%) 1.70 0.55 1.23 2.15 0.13 9.37 9.45 

steps 4 steps 4 steps 4 steps 3 steps 4 steps 4 steps 5 steps 

 

7.4.2 Estimation with Inadequate Measurements 

Convergence was reached for all levels of FME in this simulation. Small estimation errors were 

achieved when FME is not greater than  1%. Acceptable accuracy was also obtained when FME as 

at  2%, but the error of the estimates of M14 and M16 increased to 5.37% and 4.57% respectively. 

Steps to convergence were almost twice of those of estimation based on    and   . 

Table 7. 17 Estimation based on    

FME (%)  0.2  0.5  0.8  1  2  5  10 

M1 Estimation Error (%) 0.37 1.03 0.83 1.18 4.98 2.53 6.60 

M10 Estimation Error (%) 0.26 1.06 0.74 0.70 5.81 3.87 13.68 

M14 Estimation Error (%) 0.29 0.94 1.49 0.23 5.37 9.43 9.50 

M15 Estimation Error (%) 0.11 1.30 1.83 0.61 5.61 9.51 9.59 

M16 Estimation Error (%) 0.58 0.55 1.05 0.10 4.57 8.15 8.19 

steps 8 steps 8 steps 7 steps 8 steps 5 steps 4 steps 5 steps 

 

7.5 Summary of Frequency-Pseudomeasurements Method 

Frequency-pseudomeasurements method was designed to introduce the parameter perturbation 

objective component into the objective function of the frequency method. The frequency-
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pseudomeasurements method significantly improved the accuracy of estimation. Moreover, the 

divergence caused by measurement noise or lack of measurements could be effectively 

circumvented. Highly accurate results were achieved when FME was not more than  1% in the tests 

on both two-area model and NY-NE model. Acceptable estimation precision could be obtained when 

FME was not greater than  2%.  

7.6 Frequency-Damping-Pseudomeasurements Method 

Through the introduction of parameter changes into the objective function (6.5), a new objective 

function is formed in (7.4).  

        
     +  

                        (7. 4) 

Through the minimisation of the objective function, the optimal solution is presented in (7.5), 

      
        

         
  

   
        

                 (7. 5) 

Equation (7.5) can be rewritten in an iterative form, 

           
        

         
  

   
             

               

 0)   ]     (7. 6) 
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Figure 7. 2 Frequency-damping-pseudomeasurements method 

In Figure 7.2, the oval shapes represent the inputs which are the measurements that need to be 

provided to execute the algorithm. The rectangular shapes contain the procedures of the algorithm. 

Besides modal frequency measurements and parameter initial guess, the method presented in this 

section also requires modal damping measurements. The flow chart can be summarised as, 

1. Initialise system model with    (  , for the first time); 

2. Calculate the eigenvalues of the initialised system model; 

3. Calculate sensitivity matrices of modal frequency and modal damping; 

4. Pair eigenvalues calculated at step 2, with the measured eigenvalues; 

5. Calculate perturbations between corresponding calculated eigenvalues and measured 

eigenvalues; 
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6.  Update inertia constants using equation (7.6); 

7. If the updated results are approximately equal to last update, then return results. Otherwise, 

go back to step 1. 

7.7 Test on Two-Area System 

This section shows the estimation results of Frequency-damping-pseudomeasurements method 

applied to the two-area system. The standard deviations of uncertainty for the estimation of all four 

inertias are all set to 10%. Since modal damping measurements are used in this method, it is 

necessary to consider the Damping Measurement Error (DME) which varies from  5% to  20%. The 

tests are conducted in three divisions, the estimation of a single inertia, two inertias and three 

inertias. 

7.7.1 Single-Machine Estimation 

The resultant estimation of a single machine is presented from Table 7.18 to 7.21. Generally, 

accuracy can be guaranteed when FME is not greater than  1%. However, accurate results can also 

be achieved through the estimation of M3 and M4 at  2% FME. The variation of DME is not affected 

when the FME is not greater than  2%. Nevertheless, during the estimation, the same inertia, it was 

found that estimation errors at  10% DME were relatively small compared to those at  5% and 

 20% DME.  

Table 7. 18  Estimation of M1 

               FME(%)  
DME(%)       

 0.2  0.5  0.8  1  2  5  10 

 5 1.08 0.58 2.72 5.43 7.64 3.86 6.92 

4 steps 4 steps 4 steps 4 steps 5 steps 6 steps 13 steps 

 10 1.03 0.95 2.08 4.75 6.57 0.44 4.35 

4 steps 4 steps 3 steps 3 steps 3 steps 6 steps 6 steps 

 20 1.09 0.62 2.92 6.12 10.20 6.28 11.40 

4 steps 4 steps 4 steps 3 steps 3 steps 4 steps 6 steps 
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Table 7. 19 Estimation of M2 

               FME(%)  
DME(%)       

 0.2  0.5  0.8  1  2  5  10 

 5 0.67 0.97 2.69 3.76 7.16 3.33 10.11 

4 steps 4 steps 4 steps 5 steps 5 steps 6 steps 8 steps 

 10 0.64 1.11 2.37 3.29 5.88 0.79 7.04 

4 steps 4 steps 4 steps 4 steps 3 steps 5 steps 5 steps 

 20 0.66 1.01 2.64 3.71 7.24 2.80 10.90 

4 steps 4 steps 4 steps 4 steps 3 steps 4 steps 7 steps 

 

Table 7. 20 Estimation of M3 

               FME(%)  
DME(%)       

 0.2  0.5  0.8  1  2  5  10 

 5 0.02 0.14 1.03 1.10 3.97 8.32 10.26 

4 steps 4 steps 4 steps 4 steps 3 steps 4 steps 5 steps 

 10 0.03 0.11 0.44 0.18 1.48 3.31 4.40 

4 steps 4 steps 4 steps 4 steps 4 steps 4 steps 5 steps 

 20 0.01 0.00 0.71 6.02 2.78 6.51 8.60 

4 steps 4 steps 4 steps 4 steps 4 steps 3 steps 4 steps 

 

Table 7. 21 Estimation of M4 

               FME(%)  
DME(%)       

 0.2  0.5  0.8  1  2  5  10 

 5 0.21 0.56 0.18 1.83 4.80 9.13 10.98 

4 steps 4 steps 4 steps 4 steps 4 steps 4 steps 4 steps 

 10 0.17 0.37 0.28 1.15 2.90 4.95 5.88 

4 steps 4 steps 4 steps 4 steps 4 steps 3 steps 4 steps 

 20 0.19 0.45 0.08 1.47 3.93 7.72 9.60 

4 steps 4 steps 4 steps 4 steps 4 steps 4 steps 4 steps 

 

7.7.2 Two-Machine Estimation 

The frequency-damping-pseudomeasurements method also had an excellent performance when 

estimating the inertias of two machines at the same time, which is shown from Table 7.22 to 7.27. 

Precise outcomes are obtained when FME was not greater than  1%. The estimation of M3 and M4, 

shown in Table 7.27 had slightly higher accuracy than the other scenarios.  
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Table 7. 22 Estimation of M1 and M2 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 2.53 5.93 2.22 5.69 4.36 3.64 3.61 

M2 1.01 4.63 4.53 0.11 4.53 1.58 8.47 

 4 steps 6 steps 8 steps 9 steps 9 steps 12 steps 13 steps 

 10 M1 2.19 4.13 3.44 3.96 3.47 0.04 3.20 

M2 0.81 3.71 4.94 0.86 4.12 0.60 6.41 

 4 steps 4 steps 4 steps 8 steps 5 steps 6 steps 6 steps 

 20 M1 2.56 5.58 1.02 6.94 7.71 5.98 10.52 

M2 1.03 4.42 3.41 0.44 3.46 1.52 9.99 

 4 steps 5 steps 5 steps 4 steps 3 steps 5 steps 6 steps 

 

Table 7. 23 Estimation of M1 and M3 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 1.16 0.55 3.10 5.94 8.12 3.38 6.00 

M3 0.22 0.06 1.47 1.93 4.54 8.19 9.78 

 4 steps 4 steps 4 steps 4 steps 6 steps 8 steps 7 steps 

 10 M1 1.09 1.03 2.30 5.06 7.03 0.28 4.32 

M3 0.17 0.29 0.79 0.98  2.27 3.31 4.39 

 4 steps 4 steps 4 steps 4 steps 4 steps 5 steps 6 steps 

 20 M1 1.15 0.64 3.29 6.68 11.15 6.78 11.55 

M3 0.20 0.11 1.22 1.67 4.10 6.84 8.77 

 4 steps 4 steps 4 steps 4 steps 4 steps 4 steps 5 steps 

 

Table 7. 24 Estimation of M1 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 1.17 0.44 2.81 5.92 8.05 3.45 6.16 

M4 0.35 0.51 0.45 2.39 5.21 9.08 10.66 

 4 steps 4 steps 5 steps 4 steps 5 steps 6 steps 9 steps 

 10 M1 1.11 0.87 2.04 5.16 7.07 0.30 4.28 

M4 0.31 0.26 0.07 1.70 3.45 4.91 5.85 

 4 steps 4 steps 4 steps 4 steps 4 steps 6 steps 7 steps 

 20 M1 1.17 0.51 2.96 6.69 11.05 6.72 11.53 

M4 0.33 0.39 0.24 2.19 4.83 7.96 9.75 

 4 steps 4 steps 4 steps 4 steps 4 steps 4 steps 5 steps 
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Table 7. 25 Estimation of M2 and M3 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M2 0.67 0.96 2.74 3.83 7.18 2.69 9.17 

M3 0.05 0.11 1.13 1.23 3.99 8.24 9.70 

 4 steps 4 steps 4 steps 4 steps 6 steps 7 steps 9 steps 

 10 M2 0.64 1.11 2.39 3.33 5.97 0.76 6.99 

M3 0.01 0.16 0.54 0.33 1.66 0.33 4.34 

 4 steps 4 steps 4 steps 4 steps 4 steps 6 steps 5 steps 

 20 M2 0.67 1.01 2.68 3.77 7.39 2.91 10.92 

M3 0.03 0.04 0.83 0.78 3.02 6.56 8.62 

 4 steps 4 steps 4 steps 4 steps 4 steps 4 steps 5 steps 

 

Table 7. 26 Estimation of M2 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M2 0.68 0.95 2.70 3.82 7.14 2.78 9.33 

M4 0.23 0.54 0.23 1.90 4.80 9.08 10.59 

 4 steps 4 steps 4 steps 4 steps 5 steps 7 steps 12 steps 

 10 M2 0.65 1.10 2.35 3.33 5.94 0.82 6.94 

M4 0.19 0.34 0.23 1.23 2.99 4.93 5.83 

 4 steps 4 steps 4 steps 5 steps 4 steps 6 steps 5 steps 

 20 M2 0.67 0.99 2.63 3.77 7.36 2.88 10.91 

M4 0.21 0.43 0.02 1.57 4.07 7.74 9.62 

 4 steps 4 steps 4 steps 4 steps 4 steps 5 steps 5 steps 

 

Table 7. 27 Estimation of M3 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M3 2.23 3.38 3.54 2.66 1.05 5.62 7.77 

M4 2.17 3.48 3.00 4.14 4.34 6.90 8.60 

 4 steps 5 steps 13 steps 5 steps 6 steps 5 steps 5 steps 

 10 M3 2.34 3.86 2.68 3.82 1.05 2.05 3.59 

M4 2.23 3.67 2.71 4.34 3.83 4.45 5.32 

 4 steps 5 steps 13 steps 5 steps 5 steps 4 steps 5 steps 

 20 M3 2.30 3.68 3.10 3.37 0.01 4.74 7.68 

M4 2.21 3.61 2.87 4.32 4.21 6.51 8.82 

 4 steps 5 steps 13 steps 5 steps 5 steps 4 steps 4 steps 

7.7.3 Three-Machine Estimation 

The estimation errors  increased when the proposed method was used to estimate three inertias at 

the same time. The results  are shown from Table 7.28 to 7.31. The growth of estimation errors can 
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be easily seen from Table 7.28 and 7.29 when FME is  0.5%. However, this algorithm effectively 

avoids divergence problems that occurred within the previous methods.  

Generally, more steps are required for this algorithm to converge, in comparison to the frequency-

pseudomeasurements method. For example, when estimating the combination M1, M2 and M3, it 

can take up to 12 steps to reach convergence, whilst a maximum 5 steps is required through the 

utilisation of the frequency-pseudomeasurements method. Similar findings also can be seen through 

the estimation of the other combinations. 

Table 7. 28 Estimation of M1, M2 and M3 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 5.63 8.62 1.02 7.86 5.36 3.39 2.99 

M2 2.87 5.99 3.65 1.15 3.86 1.09 7.85 

M3 0.91 1.28 1.03 2.23 4.41 8.17 9.50 

 6 steps 6 steps 9 steps 9 steps 9 steps 12 steps 12 steps 

 10 M1 4.64 5.88 3.32 5.04 4.11 0.13 3.18 

M2 2.31 4.68 4.87 0.26 3.87 0.63 6.35 

M3 0.72 0.73 0.14 1.06 2.11 3.35 4.34 

 5 steps 6 steps 5 steps 6 steps 5 steps 6 steps 7 steps 

 20 M1 5.52 8.62 0.09 9.20 9.07 6.51 10.68 

M2 2.81 5.99 2.80 1.57 2.98 1.52 10.00 

M3 0.88 1.28 0.84 2.08 4.04 6.88 8.79 

 5 steps 6 steps 5 steps 4 steps 4 steps 5 steps 6 steps 

 

Table 7. 29 Estimation of M1, M2 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 4.42 8.48 2.09 7.71 5.28 3.41 3.06 

M2 2.17 5.97 4.44 1.08 3.86 1.11 7.91 

M4 0.69 1.41 0.08 2.59 5.10 9.06 10.46 

 6 steps 7 steps 8 steps 7 steps 8 steps 12 steps  33 steps 

 10 M1 3.80 5.94 3.95 5.40 4.24 0.12 3.13 

M2 1.81 4.71 5.31 0.05 3.77 0.69 6.30 

M4 0.60 0.96 0.57 1.76 3.31 4.90 5.79 

 5 steps 6 steps 5 steps 8 steps 5 steps 6 steps 6 steps 

 20 M1 4.36 7.95 1.15 9.02 8.95 6.44 10.66 

M2 2.13 5.66 3.49 1.50 3.00 1.50 10.00 

M4 0.67 1.27 0.11 2.46 4.77 7.97 9.76 

 5 steps 5 steps 5 steps 5 steps 4 steps 5 steps 6 steps 
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Table 7. 30 Estimation of M1, M3 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 0.98 0.86 3.12 5.76 8.07 3.21 5.61 

M3 1.60 3.83 4.06 1.19 1.59 5.47 7.36 

M4 1.74 3.75 3.15 3.46 4.32 6.90 8.43 

 4 steps 5 steps 17 steps 7 steps 6 steps 7 steps 7 steps 

 10 M1 0.89 1.40 2.29 4.82 7.02 0.25 4.24 

M3 1.77 4.54 3.13 2.45 0.26 2.06 3.58 

M4 1.84 4.06 2.87 3.73 3.80 4.41 5.29 

 4 steps 5 steps 16 steps 5 steps 6 steps 5 steps 6 steps 

 20 M1 0.96 1.01 3.28 6.44 11.15 6.97 11.65 

M3 1.67 4.18 3.74 1.49 1.34 5.02 7.83 

M4 1.78 3.91 3.08 3.47 4.16 6.66 8.95 

 4 steps 5 steps 17 steps 5 steps 5 steps 5 steps 6 steps 

 

Table 7. 31 Estimation of M2, M3 and M4 

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M2 0.63 1.01 2.76 3.81 7.18 2.52 8.77 

M3 2.11 3.53 3.69 2.37 1.07 5.54 7.30 

M4 2.07 3.58 3.07 3.98 4.32 6.88 8.38 

 4 steps 5 steps 14 steps 8 steps 6 steps 8 steps 10 steps 

 10 M2 0.61 1.19 2.39 3.27 5.96 0.79 6.90 

M3 2.22 4.04 2.84 3.51 0.84 2.09 3.54 

M4 2.14 3.77 2.80 4.17 3.79 4.41 5.28 

 4 steps 5 steps 14 steps 7 steps 6 steps 5 steps 5 steps 

 20 M2 0.62 1.07 2.68 3.72 7.39 2.94 10.92 

M3 2.17 3.85 3.28 2.99 2.92 4.79 7.70 

M4 2.11 3.71 2.95 4.12 4.16 6.53 8.84 

 4 steps 5 steps 14 steps 5 steps 5 steps 5 steps 5 steps 

7.8 Test on NY-NE System 

The same sensitivity matrix shown in Table 6.37 will be used in this section due to damping 

discrepancies in frequency-damping-pseudomeasurements method. Simulation tests are conducted 

for two scenarios.  

7.8.1 Estimation with Redundant Measurements 

Full observability was employed to produce the results given in Table 7.32. It shows the capability of 

the algorithm to avoid divergence. Since modal damping components are less sensitive to the 
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variation of inertias, the changes of DME at the same FME can hardly cause an effect on the 

estimation results. High precision can be guaranteed when FME was not greater than  1%. The 

estimation accuracy was acceptable when FME is  2%. In comparison to the estimates presented in 

Table 7.15, the estimation errors can be slightly reduced. 

Table 7. 32 Estimation based on    

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 0.37 1.16 0.45 0.74 5.42 4.71 6.48 

M10 0.26 1.01 0.55 0.59 4.90 21.06 21.80 

M14 1.85 1.25 0.15 0.87 2.79 7.33 7.46 

M15 0.39 1.44 1.84 0.28 7.30 8.84 9.62 

M16 1.66 0.54 1.10 2.03 0.09 7.57 7.14 

 4 steps 5 steps 5 steps 5 steps 9 steps 5 steps 6 steps 

 10 M1 0.38 1.11 0.62 1.01 5.59 4.75 8.02 

M10 0.26 1.01 0.60 0.65 5.14 20.50 23.07 

M14 2.03 0.95 0.28 0.43 2.28 7.41 7.51 

M15 0.43 1.45 1.75 0.49 6.63 7.36 8.22 

M16 1.77 0.38 1.27 2.17 0.15 8.03 8.89 

 3 steps 6 steps 3 steps 4 steps 5 steps 4 steps 5 steps 

 20 M1 0.39 1.04 0.81 1.30 4.80 1.92 5.06 

M10 0.27 0.99 0.68 0.79 5.53 3.81 12.80 

M14 1.97 1.12 0.08 0.63 2.68 8.60 9.05 

M15 0.42 1.39 1.67 0.58 6.56 7.44 8.22 

M16 1.74 0.46 1.21 2.16 0.06 8.96 8.89 

 4 steps 7 steps 4 steps 4 steps 4 steps 7 steps 8 steps 

 

Estimation results based on    are quite similar to those that were obtained for full observability. 

The reduction of the number of measurements does not have significant impacts on estimation 

accuracy when the sensitive modes were involved in the estimation.  
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Table 7. 33 Estimation based on    

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 0.36 1.12 0.54 0.73 5.19 4.21 6.09 

M10 0.25 1.09 0.61 0.50 5.37 20.20 21.21 

M14 1.76 1.33 0.14 0.90 2.81 7.33 7.45 

M15 0.36 1.42 1.84 0.29 7.31 8.85 9.64 

M16 1.60 0.61 1.10 1.98 0.17 7.53 7.03 

 6 steps 7 steps 4 steps 4 steps 8 steps 4 steps 4 steps 

 10 M1 0.36 1.08 0.70 0.97 5.39 3.93 7.82 

M10 0.25 1.08 0.66 0.57 5.51 3.65 22.68 

M14 1.95 1.03 0.29 0.46 2.28 7.39 7.51 

M15 0.42 1.43 1.76 0.49 6.64 7.34 7.89 

M16 1.72 0.45 1.29 2.14 0.19 8.06 7.57 

 4 steps 7 steps 3 steps 3 steps 6 steps 15 steps 5 steps 

 20 M1 0.38 1.01 0.89 1.27 4.60 1.62 4.76 

M10 0.26 1.06 0.75 0.72 5.89 4.03 14.61 

M14 1.89 1.19 0.09 0.65 2.69 8.60 9.04 

M15 0.39 1.37 1.68 0.59 6.56 7.44 8.22 

M16 1.68 0.53 1.23 2.12 0.11 8.99 8.85 

 4 steps 6 steps 4 steps 4 steps 4 steps 6 steps 33 steps 

7.8.2 Estimation with Inadequate Measurements 

The frequency-damping method does not perform well when the number of parameters to be 

estimated is more than that of the measurements. As it is shown in Table 6.40, no estimation results 

can be provided. Convergence was reached again by using pseudomeasurements in the estimation 

when the number of measurements was less than the number of parameters to be estimated.  

Through the comparison of the results in Table 7.34 against those estimated based on redundant 

measurements, the accuracy level remains the same. Only at  2% FME, the errors of M16 increase 

from less than  0.2% to about 4.92%. However, this does not degrade the entire estimation 

accuracy. 

By comparing against frequency-pseudomeasurements method, the estimation accuracy of 

frequency-damping-pseudomeasurements, was not improved through the inclusion of the modal 

damping component in the optimisation objective function. This is because the sensitivity of modal 

damping to inertia was much smaller than that of the frequency to inertia.  
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Table 7. 34 Estimation based on    

               FME(%)  
DME(%)       

  0.2  0.5  0.8  1  2  5  10 

 5 M1 0.35 1.12 0.53 0.72 5.19 4.23 6.10 

M10 0.25 1.09 0.62 0.51 5.39 20.18 21.21 

M14 0.24 1.46 2.05 0.89 6.05 10.10 10.27 

M15 0.05 1.19 1.78 0.61 5.83 9.95 10.18 

M16 1.02 0.14 0.71 0.40 4.49 8.34 8.45 

 8 steps 7 steps 7 steps 7 steps 7 steps 4 steps 4 steps 

 10 M1 0.36 1.08 0.69 0.97 5.39 3.95 7.83 

M10 0.26 1.08 0.67 0.58 5.52 3.61 22.67 

M14 0.05 1.23 1.74 0.50 5.34 8.80 8.63 

M15 0.11 1.08 1.60 0.34 5.26 8.78 8.64 

M16 0.06 1.05 1.54 0.36 4.92 8.16 7.92 

 8 steps 8 steps 8 steps 10 steps 6 steps 15 steps 4 steps 

 20 M1 0.38 1.01 0.88 1.26 4.60 1.63 4.76 

M10 0.26 1.06 0.76 0.73 5.90 3.96 14.60 

M14 0.03 1.21 1.72 0.47 5.35 8.95 8.84 

M15 0.10 1.10 1.61 0.35 5.29 8.95 8.85 

M16 0.09 1.01 1.48 0.32 4.82 8.08 7.96 

 9 steps 7 steps 7 steps 8 steps 5 steps 7 steps 31 steps 

7.9 Summary of Frequency-Damping-Pseudomeasurements Method 

The effect to include the parameter perturbation within the objective function  was demonstrated in 

this method. By comparing against the methods presented in Chapter 6, with the frequency-

pseudomeasurements method the advantages of this method are similar. However, the inclusion of 

the modal damping term within the optimisation algorithm does not improve the estimation 

accuracy significantly in comparison to the results obtained from the frequency-

pseudomeasurements method. 

7.10 Conclusions 

In this chapter, two methods based on modal measurements and pseudomeasurements were 

designed. In comparison to the methods proposed in Chapter 6, the two methods in this chapter 

have effectively solved the divergence problems due to nonlinearity and inadequate available 

measurements. This facilitates practical implementation when there is a lack of modal 

measurements.  
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Generally, frequency-damping-pseudomeasurements method can be applied to identify parameters 

associated with oscillatory modes. However, it is well known that generator inertia is more related 

to modal frequencies. This can be also proved  through the investigation of the sensitivity matrix. 

Thus, theoretically, the estimation accuracy should not be different to those using frequency-

pseudomeasurements method and frequency-damping-pseudomeasurements method in order to 

obtain the inertia constants. The theory was supported by the simulation results obtained within this 

chapter.  
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Chapter 8 Conclusions  

Input: Power system oscillations are commonly detected in modern power systems, through 

measurements, such as power flow, system frequency, and voltage angles. These measurements 

normally contain oscillations of several modes. These modes are associated with the system dynamic 

properties. Techniques to extract these dynamic characteristics from measurements were 

comprehensively studied in the literature. Benefits from these techniques, continuous modal 

frequencies and damping which are treated as input to the estimation methods can be achieved in 

near-real-time base, depending on the size of the system. 

Estimation: Power system dynamics of a power system is mainly reflected by the generator dynamic 

properties within and outside of the power system, thus it highly depends on the operating 

condition which is time variant. The timely operating condition determines the parameters of 

generators that contribute towards the dynamic characteristics of a power system. It indicates that 

the power system model can hardly be represented by a set or sets of fixed data. An adaptive 

estimation of the generator parameters relating to the changes of operating condition plays a 

significant role in the reveal of the potential risks. The estimation methods developed in this work 

can be implemented to estimate generator parameters of an external network equivalents and also 

internal networks. Besides inertia constants, the methodology can also be used to estimate other 

parameters with minor modification. 

The estimation techniques proposed simply compare the modal measurements with the modal data 

which are calculated based on initial guesses of the parameters. The discrepancies of modal data 

were then calculated accordingly. These differences imply that the parameters of generators within 

or outside the system under examination may undergo certain changes which have an impact on the 

system's dynamic properties. By using WLS method, the estimation methods are extended to an 

iterative estimation to update the parameters, and prompt the original modal data to move towards 

to the measured modal data. It was found that the methods which utilise modal data only have poor 
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performance. Moreover, they could not reach convergence when the number of measurements is 

less than the number of parameters to be estimated. Hence, pseudomeasurements which are the 

initial guesses of these parameters are included in the estimation. This successfully circumvented the 

divergence problems. Prior knowledge on the system is very important to achieve reasonable initial 

guesses.  

It should be noted that not all modes contribute to the estimation of certain sets of parameters. 

Therefore, modal sensitivity analysis can indicate the required parameters. It should be addressed 

that it is not necessary to use both modal frequencies and damping in the estimation, whilst pseudo-

measurements are highly recommended. The reason is that the variation of parameters may not be 

adequately reflected in both modal frequencies and damping.  

Output: The estimates are a set of parameters which can best reflect the system dynamics under the 

certain operation condition. Simulation results showed that the proposed methods can effectively 

produce estimation to high accuracy.  
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Chapter 9 Future Works 

In this thesis, a methodology was developed to estimate the generator parameters adaptively. Four 

approaches were developed. Comparative studies were conducted in order to find their benefits and 

drawbacks. Simulation tests were used to estimate the generator inertia constants. The proposed 

methodology suitable for general use for parameters estimation which is associated with power 

system oscillations. Thus, it is not limited to estimate only generator inertia constants, but can also 

be applied to estimate other parameters such as damping coefficients. Damping coefficient is a 

parameter which has a significant impact on power system dynamics, since it is associated with 

modal damping which determines the stability of the system. Therefore, it is suggested estimated 

damping coefficients to be executed in future studies. This can make contributions to power system 

management and tuning of Power System Stabilisers (PSS). 

Modal frequencies and damping data used in the estimation are corrupted with different levels of 

noise. However, only one test is conducted in terms of each level. It is highly suggested to apply 

Monte-Carlo simulation to the test at each measurement error level. 

It is also suggested that the proposed methodology to be used to reconstruct external network with 

high renewable energy penetration. Since the amount of generation from renewable energy is 

increasing significantly, it is useful if we can demonstrate the use of the proposed methodology in 

this field. 

  



108 

 

Reference 
1. J. Machowski., J. W. Bialek, and J. R. Bumby, Power system dynamics - stability and control 

2nd ed.. UK: John Wiley & Sons, 2008. 
2. C4.601, Review of on-line dynamic security assessment tools and techniques, in CIGRE 

Technical Brochure 2007. 
3. G. Rogers, Power system oscillations. New York: Kluwer Academic Publishers, 1983. 
4. Y. N. Yu, Electric power system dynamics. Vancouver: Academic Press, 1983. 
5. M. Klein, G. Rogers, and P. Kundur, "A fundamental study of inter-area oscillations in power 

systems," IEEE Trans. Power Syst., vol. 6, no. 3, pp. 914-921, 1991. 
6. J. M. Undrill and A. E. Turner, "Construction of power system electromechanical equivalents 

by modal analysis," IEEE Trans. Power App. Syst., vol. PAS-90, no. 5, pp. 2049-2059, 1971.  
7. D. J. Trudnowski and J. W. Pierre. "Overview of algorithms for estimating swing modes from 

measured responses," in Proc. Power Eng. Soc. General Meeting, Calgary, Canada, 2009.  
8. N. Zhou, et al., "Electromechanical mode online estimation using regularized robust RLS 

methods," IEEE Trans. Power Syst., vol. 23, no. 4, pp. 1670-1680, 2008. 
9. Ning, Z., J.W. Pierre, and J.F. Hauer, "Initial results in power system identification from 

injected probing signals using a subspace method, " IEEE Trans. Power Syst., vol. 21, no. 3, pp. 
1296-1302, 2006 

10. Zhou, N., J.W. Pierre, and D. Trudnowski. "A Bootstrap Method for Statistical Power System 
Mode Estimation and Probing Signal Selection,"  in Proc. Power Systems Conference and 
Exposition,  2006. 

11. F. B. Hildebrand, Introduction to numerical analysis. 2nd ed. New York: Dover Publications, 
1987. 

12. S. M. Kay and S. L. Marple Jr, "Spectrum analysis- a modern perspective," in Proc. of the IEEE, 
vol. 69, no. 11, pp. 1380-1419, 1981. 

13. A. Poggio, et al., "Evaluation of a processing technique for transient data," IEEE Trans. 
Antennas Propagat., vol. 26, no. 1, pp. 165-173, 1978. 

14. M. VanBlaricum and R. Mittra, "Problems and solutions associated with Prony's method for 
processing transient data," IEEE Trans. Antennas Propagat., vol. 26, no. 1, pp. 174-182, 1978. 

15. J. F. Hauer, "Application of Prony analysis to the determination of modal content and 
equivalent models for measured power system response," IEEE Trans. Power Syst., vol. 6, 
no.3, pp. 1062-1068, 1991. 

16. J. J. Sanchez-Gasca and J. H. Chow, "Performance comparison of three identification 
methods for the analysis of electromechanical oscillations," IEEE Trans. Power Syst., vol. 14, 
no. 3, pp. 995-1002, 1999. 

17. J .F. Hauer, C. Demeure, and L. Scharf, "Initial results in Prony analysis of power system 
response signals," IEEE Trans. Power Syst., vol. 5, no. 1, pp. 80-89, 1990. 

18. C. Grund, et al., "Comparison of Prony and eigenanalysis for power system control design," 
IEEE Trans. Power Syst., vol. 8, no. 3, pp. 964-971, 1993. 

19. D. Trudnowski, J. Johnson, and J. Hauer, "Making Prony analysis more accurate using 
multiple signals," IEEE Trans. Power Syst., vol. 14, no. 1, pp. 226-231, 1999. 

20. D. Pierre, D. Trudnowski, and J. Hauer, "Identifying linear reduced-order models for systems 
with arbitrary initial conditions using Prony signal analysis," IEEE Trans. Autom. Control, vol. 
37, no. 6, pp. 831-835, 1992. 

21. J. Hauer, "Application of Prony analysis to the determination of modal content and 
equivalent models for measured power system response," IEEE Trans. Power Syst., vol. 6, no. 
3, pp. 1062-1068, 1991. 

22. D. Trudnowski, M. Donnelly, and J. Hauer, "Advances in the identification of transfer 
function models using Prony analysis," in Proc. of IEEE American Control Conference, 1993. 



109 

 

23. D. Pierre, et al., "General formulation of a Prony based method for simultaneous 
identification of transfer functions and initial conditions," in Proc. of 31st IEEE Conf. Decision 
and Control, 1992. 

24. I. Kamwa, et al., "A minimal realization approach to reduced-order modelling and modal 
analysis for power system response signals," IEEE Trans. Power Syst., vol. 8, no. 3, pp. 1020-
1029, 1993. 

25. I. Kamwa, G. Trudel, and L. GerinLajoie, "Low-order black-box models for control system 
design in large power systems," IEEE Trans. Power Syst., vol. 11, no. 1, pp. 303-311, 1996. 

26. J. J. Sanchez-Gasca and J. H. Chow, "Computation of power system low-order models from 
time domain simulations using a Hankel matrix," IEEE Trans. Power Syst., vol. 12, no. 4, pp. 
1461-1467. 

27. M. L. Crow and A. Singh, "The matrix pencil for power system modal extraction," IEEE Trans. 
Power Syst., vol. 20, no. 1, pp. 501-502, 2005. 

28. T. K. Sarkar and O. Pereira, "Using the matrix pencil method to estimate the parameters of a 
sum of complex exponentials," IEEE Trans. Antennas Propagat., vol. 37, no. 1, pp. 48-55, 
1995. 

29. Y. Hua and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM 
system from its transient response," IEEE Trans. Antennas Propagat., vol. 37, no. 2, pp. 229-
234, 1989. 

30. L. Guoping, J. Quintero, and V. Venkatasubramanian, "Oscillation monitoring system based 
on wide area synchrophasors in power systems," in Bulk Power System Dynamics and 
Control - VII. Revitalizing Operational Reliability, iREP Symposium, 2007. 

31. J. W. Pierre, D. J. Trudnowski, and M. K. Donnelly, "Initial results in electromechanical mode 
identification from ambient data, ". IEEE Trans. Power Syst., vol. 12, no. 3, pp. 1245-1250, 
1997. 

32. R. W. Wies, J. W. Pierre, and D. J. Trudnowski, "Use of ARMA block processing for estimating 
stationary low-frequency electromechanical modes of power systems," IEEE Trans. Power 
Syst., vol. 18, no. 1, pp. 167-173, 2003. 

33. M. Andersron, et al., "Bootstrap-based confidence interval estimates for electromechanical 
modes from multiple output analysis of measured ambient data," in Proc. Power Eng. Soc. 
General Meeting, 2005. 

34. H. Ghasemi, C. Canizares, and A. Moshref, "Oscillatory stability limit prediction using 
stochastic subspace identification," IEEE Trans. Power Syst., vol. 21, no. 2, pp. 736-745. 

35. C. Y. Chung, and D. Bo, "A Combined TSA-SPA Algorithm for Computing Most Sensitive 
Eigenvalues in Large-Scale Power Systems," IEEE Trans. Power Syst. vol. 28, no. 1, pp. 149-
157, 2013. 

36. J. Ni, C. Shen, and F. Liu. "Estimating the electromechanical oscillation characteristics of 
power system based on measured ambient data utilizing stochastic subspace method," in 
Proc. Power Eng. Soc. General Meeting, 2011. 

37. R. W. Wies, J. W. Pierre, and D. J. Trudnowski, "Use of least mean squares (LMS) adaptive 
filtering technique for estimating low-frequency electromechanical modes in power 
systems," in Proc. Power Eng. Soc. General Meeting, 2004. 

38. N. Zhou, et al., "Robust RLS methods for online estimation of power system 
electromechanical modes," IEEE Trans. Power Syst., vol. 22, no. 3: pp. 1240-1249, 2007. 

39. L. Dosiek and J. W. Pierre, "Estimating electromechanical modes and mode shapes using the 
multichannel ARMAX model," IEEE Trans. Power Syst. vol. 28, no. 2, pp. 1950-1959, 2013. 

40. L. Dosiek, J. W. Pierre, and J. Follum, "A recursive maximum likelihood estimator for the 
online estimation of electromechanical modes with error bounds," IEEE Trans. Power Syst., 
vol. 28, no. 1, pp. 441-451, 2013. 



110 

 

41. S. A. Nezam Sarmadi and V. Venkatasubramanian, "Electromechanical mode estimation 
using recursive adaptive stochastic subspace identification," IEEE Trans. Power Syst., vol. 29, 
no. 1, pp. 349-358, 2013. 

42. F. J. De Marco, et al., "Efficient online estimation of electromechanical modes in large power 
systems," IEEE Fourth LASCAS, 2013. 

43. A. R. Messina, and V. Vittal, "Nonlinear, non-stationary analysis of interarea oscillations via 
Hilbert spectral analysis," IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1234-1241, 2006. 

44. A. Messina, et al., "Interpretation and visualization of wide-area PMU measurements using 
Hilbert analysis," IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1763-1771, 2006. 

45. M. A. Andrade, et al., "Identification of instantaneous attributes of torsional shaft signals 
using the Hilbert transform," IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1422-1429, 2004. 

46. S. L. Hahn, Hilbert transforms in signal processing. Vol. 2. 1996: Artech House Boston. 
47. N. E. Huang, et al., "The empirical mode decomposition and the Hilbert spectrum for 

nonlinear and non-stationary time series analysis," Proc. of the Royal Society of London. 
Series A: Mathematical, Physical and Engineering Sciences, 1998. 454(1971): p. 903-995. 

48. A. Messina and V. Vittal, "Extraction of dynamic patterns from wide-area measurements 
using empirical orthogonal functions," IEEE Trans. Power Syst., vol. 22, no. 2, pp. 682-692, 
2007. 

49. T. J. Browne, et al., "A comparative assessment of two techniques for modal identification 
from power system measurements," IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1408-1415, 
2008. 

50. B. L. Kokanos and G. G. Karady, "Associate Hermite Expansion Small Signal Mode 
Estimation," IEEE Trans. Power Syst., vol. 25, no. 2, pp. 999-1006, 2010. 

51. B. L. Kokanos and G. G. Karady, "Comparison of various power system electromechanical 
mode estimators," in Proc. IEEE PowerTech, Trondheim, 2011. 

52. L. Oatts, "External network modeling-recent practical experience," IEEE Trans. Power Syst., 
vol. 9, no. 1, pp. 216-228, 1994.. 

53. J. H. Chow, "Time-scale modeling of dynamic networks with applications to power systems," 
1982: Springer-Verlag. 

54. U. D. Annakkage, et al., "Dynamic System Equivalents: A Survey of Available Techniques," 
IEEE Trans. Power Del., vol. 27, no. 1, pp. 411-420, 2012. 

55. J. M. Undrill, et al., "Electromechanical Equivalents for Use in Power System Stability 
Studies," IEEE Trans. Power App. Syst., vol. PAS-90, no. 5, pp. 2060-2071, 1971. 

56. W. Price, et al., "Testing of the modal dynamic equivalents technique," IEEE Trans. Power 
App. Syst., vol. PAS-97, no. 4, pp. 1366-1372, 1978. 

57. I. J. Perez-Arriaga, G.C. Verghese, and F.C. Schweppe, "Selective Modal Analysis with 
Applications to Electric Power Systems, PART I: Heuristic Introduction," IEEE Trans. Power 
App. Syst., vol. PAS-101, no. 9, pp. 3117-3125, 1982. 

58. G. C. Verghese, I. J. Perez-Arriaga, and F. C. Schweppe, "Selective Modal Analysis With 
Applications to Electric Power Systems, Part II: The Dynamic Stability Problem," IEEE Trans. 
Power App. Syst., vol. PAS-101, no. 9, pp. 3126-3134, 1982. 

59. I. J. Perez-Arriaga, et al., "Developments in selective modal analysis of small-signal stability in 
electric power systems," Automatica, vol. 26, no. 2, pp. 215-231, 1990.. 

60. Wang, L., et al., "Dynamic reduction of large power systems for stability studies," IEEE Trans. 
Power Syst., vol. 22, no. 2, pp. 889-895, 1997. 

61. X. Lei, D. Povh, and O. Ruhle, "Industrial approaches for dynamic equivalents of large power 
systems," in Proc. Power Eng. Soc. Winter Meeting, 2002. 

62. R. Podmore, "Identification of coherent generators for dynamic equivalents," IEEE Trans. 
Power App. Syst., vol. PAS-97, no. 4, pp. 1344-1354, 1978. 

63. A. J. Germond and R. Podmore, "Dynamic Aggregation of Generating Unit Models," IEEE 
Trans. Power App. Syst., vol. PAS-97, no. 4, pp. 1060-1069, 1978. 



111 

 

64. A. M. Gallai, "Coherency-based dynamic equivalents for transient-stability studies of power 
systems," 1980: Cornell University. 

65. S. B. Yusof, , G. J. Rogers, and R. T. H. Alden, "Slow coherency based network partitioning 
including load buses," IEEE Trans. Power Syst., vol. 8, no. 3, pp. 1375-1382, 1993. 

66. M. L. Ourari, L.A. Dessaint, and D. Van-Que, "Dynamic equivalent modeling of large power 
systems using structure preservation technique," IEEE Trans. Power Syst., vol. 21, no. 3, pp. 
1284-1295, 2006. 

67. E. Muljadi and B. Parsons, "Comparing single and multiple turbine representations in a wind 
farm simulation," National Renewable Energy Laboratory, 2006. 

68. L. M. Fernandez, , J. R. Saenz, and F. Jurado, "Dynamic models of wind farms with fixed 
speed wind turbines," Renewable Energy, vol. 31, no. 8, pp. 1203-1230, 2006. 

69. Q. Wei, R. G. Harley, and G. K. Venayagamoorthy, "Dynamic modeling of wind farms with 
fixed-speed wind turbine generators," in Power Eng. Soc. General Meeting, 2007. 

70. V. Akhmatov and H. Knudsen, "An aggregate model of a grid-connected, large-scale, offshore 
wind farm for power stability investigations-importance of windmill mechanical system," 
International Journal of Electrical Power & Energy Systems, vol. 24, no. 9, pp. 709-717, 2002. 

71. D. J. Trudnowski, et al., "Fixed-speed wind-generator and wind-park modeling for transient 
stability studies," IEEE Trans. Power Syst., vol. 19, no. 4, pp. 1911-1917, 2004. 

72. M. A. Poller, "Doubly-fed induction machine models for stability assessment of wind farms," 
in Proc. Power Tech Conf., Bologna, 2003. 

73. S. Geeves, "A modal-coherency technique for deriving dynamic equivalents," IEEE Trans. 
Power Syst., vol. 3, no. 1, pp. 44-51, 1988. 

74. A. Chakrabortty, J. H. Chow, and A. Salazar, "A measurement-based framework for dynamic 
equivalencing of large power systems using wide-area phasor measurements," IEEE Trans. 
Smart Grid, vol. 2, no. 1 pp. 68-81, 2011. 

75. X. Feng, Z. Lubosny, and J. W. Bialek, "Identification based dynamic equivalencing," in Proc. 
Power Tech, Lausanne, 2007. 

76. X. Feng, Z. Lubosny, and J. W. Bialek, "Dynamic equivalencing of distribution network with 
high penetration of distributed generation," in Proc. UPEC, 2006. 

77. Z. Huang, et al., "Generator dynamic model validation and parameter calibration using 
phasor measurements at the point of connection. IEEE Trans. Power Syst., vol. 28, no. 2, pp. 
1939-1949. 

78. J. V. Milanovic and S. Mat Zali, Validation of equivalent dynamic model of active distribution 
network cell. IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2101-2110. 

79. R. Hecht-Nielsen, Neurocomputer applications, in Neural computers. 1988, Springer. p. 445-
453. 

80. P. D. Wasserman, Neural computing: theory and practice. 1989: Van Nostrand Reinhold Co. 
81. T. Khanna, Foundations of neural networks. 1990. 
82. J. Freeman and D. Skapura, Neural networks, algorithms, applications, and programming 

techniques. 1991. 
83. Y. Pao, Adaptive pattern recognition and neural networks. 1989. 
84. V. S. S. Vankayala and N.D. Rao, "Artificial neural networks and their applications to power 

systems-a bibliographical survey," Electric Power Systems Research, vol. 28, no. 1, pp. 67-79, 
1993. 

85. A. M. Stankovic, A.T. Saric, and M. Milosevic, "Identification of nonparametric dynamic 
power system equivalents with artificial neural networks," IEEE Trans. Power Syst., vol. 18, 
no. 4, pp. 1478-1486, 2003. 

86. A. M. Azmy and I. N. Erlich. "Identification of dynamic equivalents for distribution power 
networks using recurrent ANNs," in Proc. Power Systems Conference and Exposition, 2004. 



112 

 

87. A. Rahim and A. Al-Ramadhan, "Dynamic equivalent of external power system and its 
parameter estimation through artificial neural networks," International journal of electrical 
power & energy systems, vol. 24, no. 2, pp. 113-120, 2002. 

88. H. Shakouri G and H. R. Radmanesh, "Identification of a continuous time nonlinear state 
space model for the external power system dynamic equivalent by neural networks," 
International journal of electrical power & energy systems, vol. 31, no. 3, pp. 334-344, 2009. 

89. M. Feng and V. Vittal, "A Hybrid Dynamic Equivalent Using ANN-Based Boundary Matching 
Technique," IEEE Trans. Power Syst. vol. 27, no. 3, pp. 1494-1502, 2012. 

90. J. MacQueen, "Some methods for classification and analysis of multivariate observations," in 
Proc. the 5th Berkeley symposium on mathematical statistics and probability, California, 
1967. 

91. S. M. Zali, N. Woolley, and J. Milanovic, Development of equivalent dynamic model of 
distribution network using clustering procedure. in Proc. 17th PSCC. 

92. M. Melanie, An introduction to genetic algorithms. Cambridge, Massachusetts London, 
England, 5th printing, 1999.  

93. S. Orero and M. Irving, "A genetic algorithm for generator scheduling in power systems," 
International journal of electrical power & energy systems, vol. 18, no. 1, pp. 19-26, 1996. 

94. A. G. Bakirtzis, et al., "Optimal power flow by enhanced genetic algorithm," IEEE Trans. 
Power Syst. vol. 17, no. 2, pp. 229-236, 2002. 

95. A. Shahat and H. Shewy, "Permanent magnet synchronous motor dynamic modeling with 
genetic algorithm performance improvement," International Journal of Engineering, Science 
and Technology. vol. 2, no. 2, pp. 93-106, 2010. 

96. J. Ramfirez, and R. G. A. Valle, "A technique to reduce power systems electromechanical 
models," IEEE Trans. Energy Convers, vol. 19, no. 2, pp. 456-458, 2004. 

97. M. Gavrilas, O. Ivanov, and G. Gavrilas, "REI equivalent design for electric power systems 
with genetic algorithms," WSEAS Transactions on Circuits and Systems, vol. 7, no. 10, pp. 
911-921, 2008. 

98. D. H. Wilson, K. Hay, and G. J. Rogers, "Dynamic model verification using a continuous modal 
parameter estimator," in Proc. Power Tech Conference, 2003. 

99. Y. Qixun, B. Tianshu, and W. Jingtao, "WAMS implementation in China and the challenges for 
bulk power system protection,". in Proc. Power Eng. Soc. General Meeting, 2007.  

100. 2011 National Electricity Transmission System Seven Year Statement. 2011, National Grid. 
101. P. Kundur, Power System Stability and Control. 1993: McGraw-Hill. 
102. M. I. Friswell and J. E. Mottershead, Finite Element Model Updating in Structural Dynamics. 

1995: Kluwer Academic Publishers. 
103. S. Guo and J. Bialek, "Synchronous machine inertia constants updating using wide area 

measurements," in Proc. ISGT, Berlin, 2012. 
 
 


